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Summary

The performance of a well calibrated risk model, Risk(Y ) = P (D = 1|Y ), can be characterized

by the population distribution of Risk(Y ) and displayed with the predictiveness curve. Better

performance is characterized by a wider distribution of Risk(Y ), since this corresponds to better

risk stratification in the sense that more subjects are identified at low and high risk for the

outcome D = 1. Although methods have been developed to estimate predictiveness curves

from cohort studies, most studies to evaluate novel risk prediction markers employ case-control

designs. Here we develop semiparametric and nonparametric methods that accommodate case-

control data and assume apriori knowledge of P (D = 1). Large and small sample properties

are investigated. The semiparametric methods are flexible, substantially more efficient than the

nonparametric counterparts and naturally generalize methods previously developed for cohort

data. Applications to prostate cancer risk prediction markers illustrate the methods.
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1. Introduction

Selecting biomarkers for medical application is an important and challenging task. Of the thou-

sands of markers made available by modern techniques, we want to find those that can assist

medical decision making and help identify disease or risk of disease early when interventions are

most effective. Criteria for evaluating a biomarker should depend on its purpose. An intrinsic

property of a diagnostic marker is classification accuracy, i.e. its ability to provide the correct

diagnosis given a subject’s true disease status. Classification accuracy of a continuous marker

has been commonly assessed by the receiver operating characteristic (ROC) curve (Pepe, 2003).

Classification, however, is not always the objective. Sometimes a marker is used mainly to predict

risk of disease and to stratify the population into risk groups geared towards different treatment

recommendations. Because of its popularity in the field of diagnostic testing, the ROC curve has

been used frequently in this setting as well. However, as pointed out by Gail and Pfeiffer (2005),

Cook (2007), and Pencina et al. (2007), criteria for evaluating a classification marker might be

unnecessarily stringent for evaluating a risk prediction marker. In other words, the ROC curve

may not be optimal when selecting a marker for risk prediction.

Pepe et al. (2008a) suggested using the predictiveness curve (Bura and Gastwirth, 2001) to

evaluate a risk prediction marker or model. They argued that the performance of a model to

predict risks within a population relies not only on the effect of each predictor in the risk model,

but also on the distributions of the predictors. The predictiveness curve integrates these two

factors together by displaying the population distribution of risk endowed by the risk model. Let

D denote a binary outcome that we term disease here, D = 1 for diseased and D = 0 for non-

diseased. Let Y denote a vector of predictors of interest and let Risk(Y ) = P (D = 1|Y ) denote

the risk calculated on the basis of Y . The predictiveness curve is the curve R(v) vs v for v ∈ (0, 1),

where R(v) is the vth percentile of Risk(Y ). The inverse function R−1(p) = P{Risk(Y ) ≤ p}

is the proportion of the population with risks less than or equal to p. An attractive feature of

this curve is that it provides a common meaningful scale for comparing markers that may not be
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comparable on their original scales. A risk prediction model with larger variability in R(v) has a

better capacity to stratify risk. A particularly clinically meaningful comparison can be based on

R−1(p). Suppose there exists a pre-specified low risk threshold pL and/or a high risk threshold

pH such that recommendation for or against treatment is clear if the estimated risk for a patient

is above pH or below pL. A risk model which assigns more people into the low and high risk

ranges (i.e. larger R−1(pL) and larger 1 − R−1(pH)) is preferred.

Pepe et al. (2001) proposed five phases for developing a biomarker. Case-control studies are

conducted in phases 1, 2, and 3, since they are smaller and more cost efficient than cohort studies.

Since early phase studies dominate biomarker research, it is crucial that measures of biomarker

performance accommodate case-control designs. Huang et al. (2007) developed a semiparametric

estimator of the predictiveness curve for cohort studies. Here we address the more common case-

control design and extend estimation to include nonparametric and alternative semiparametric

methods. We start with the scenario of a single continuous marker or a pre-defined marker

combination and examine later the extension to a general risk model. Biomarker researchers are

well aware of problems caused by developing combinations and assessing them in the same dataset

and encourage the assessment of a predefined combination with independent data (Ransohoff,

2007; Simon, 2005; Pepe et al., 2008b). Examples of well known pre-defined combination scores

are the Framingham score for cardiovascular events (Anderson et al., 1991) and the Gail score

for breast cancer risk (Gail et al., 1989).

Let Y , YD , and YD̄ denote the marker measurement in the general, diseased, and non-diseased

populations respectively. Let F , FD, and FD̄ be the corresponding distribution functions and

let f , fD, and fD̄ be the density functions. Let ρ = P (D = 1) denote the disease prevalence.

We assume either that ρ is known or that a prevalence estimate ρ̂ is available in addition to the

case-control sample. For example, an estimate might be obtained from a cohort study reported

in the literature. Alternatively, it may be calculated from a parent cohort within which the case-

control study is nested (Baker et al., 2002; Pepe et al., 2008b). In these scenarios, variability in

ρ̂ can be evaluated and taken into account in calculating the variance of the predictiveness curve

estimator.
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Furthermore, we assume the risk of disease P (D = 1|Y ) is monotone increasing in Y . Under

this monotone increasing risk assumption, we have R(v) = P{D = 1|Y = F−1(v)}, the risk at

the vth quantile of Y in the population. Thus the curve R(v) vs v is the same as the curve P (D =

1|Y = y) vs F (y). Therefore, estimation of the predictiveness curve can be undertaken in two

steps: estimation of the risk model P (D = 1|Y = y), and estimation of the marker distribution

F (y). We develop estimators for these two entities and combine them to get a predictiveness

curve estimate. We consider a case-control study with nD cases YDi, i = 1, . . . , nD , and nD̄

controls YD̄i, i = 1, . . ., nD̄ and write {Yk , k = 1, . . . , n} for
{
YD̄1, . . . , YD̄nD̄

, YD1, . . . , YDnD

}

where n = nD̄ + nD.

2. Semiparametric Estimators

2.1 Estimation of the Risk Model

Suppose the risk model of interest is P (D = 1|Y ) = G(θ, Y ), where

logit{G(θ, Y )} = θ0 + η(θ1, Y ) (1)

and η is some monotone increasing function of Y . Examples of logit{G(θ, Y )} include θ0 +
θ1Y with θ1 > 0, the ordinary linear logistic model, and θ0 + θ1Y

(θ2) with θ1 > 0, where

Y (θ2) = (Y θ2 − 1)/θ2 when θ2 6= 0 and Y (θ2) = logY when θ2 = 0, the logistic model with

Box-Cox transformation (Cole and Green, 1992). In case-control studies, since the sampling

rate of cases versus controls is fixed by design, the intercept term θ0 in the risk model is not

estimable. However, the odds ratio for disease is still estimable. It has been shown that the

maximum likelihood estimator of the odds ratio from the retrospective likelihood can be obtained

by applying the prospective logistic model to the case-control sample (Anderson, 1972; Prentice

and Pyke, 1979), and that this achieves the semiparametric information bound (Bickel et al.,

1993; Breslow et al., 2000; Gilbert, 2000).

Let S denote being selected into the case-control sample. We apply the standard logistic

regression model logit{P (D = 1|Y, S)} = θ0S + η(θ1S , Y ) to the data and correct the intercept

with disease prevalence according to Bayes’ theorem,
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P (D = 1|Y )
P (D = 0|Y )

=
P (D = 1|Y, S)
P (D = 0|Y, S)

P (D = 0|S)
P (D = 1|S)

P (D = 1)
P (D = 0)

.

That is, let
(
θ̂0S , θ̂1S

)
be the maximum likelihood estimators of (θ0S , θ1S), the estimator of θ is

θ̂ =




θ̂0

θ̂1


 =




θ̂0S + log
(

nD̄
nD

ρ̂
1−ρ̂

)

θ̂1S


 .

2.2 Estimation of the Marker Distribution and the Predictiveness Curve

In a case-control study, since we do not have an independent identically distributed sample

from the population, the marker distribution F cannot be estimated directly. Rather, with an

estimate of disease prevalence, ρ̂, we can estimate F according to ρ̂FD + (1 − ρ̂)FD̄. Next we

examine two ways of estimating FD and FD̄.

2.2.1 Semiparametric “Empirical” Estimators In an unmatched case-control study, since

control and case samples are representative of their corresponding distributions in the population,

natural estimators for FD̄ and FD are the empirical estimators F̃D̄ and F̃D. We estimate F with

F̃ = ρ̂F̃D + (1 − ρ̂)F̃D̄. The semiparametric “empirical” estimators of R(v) and R−1(p) are

R̃(v) = G
{
θ̂, F̃−1(v)

}
for v ∈ (0, 1),

R̃−1(p) = F̃
{
G−1(θ̂, p)

}
for p ∈ {R(v) : v ∈ (0, 1)}.

2.2.2 Semiparametric Maximum Likelihood Estimators Observe that the risk model (1) im-

plies the following relationship between marker densities in cases and controls

fD(Y ) = LR(Y )fD̄(Y ) = exp{α + η(β, Y )}fD̄(Y ), (2)

where α = θ0 + log {(1 − ρ)/ρ}, β = θ1, and LR(Y ) is the likelihood ratio of Y (Green and

Swets, 1966). When we estimate FD and FD̄ empirically as in Section 2.2.1, positive point

masses are allocated only to those marker values observed in the corresponding case or control

sample. For a marker measured on a continuous scale, the supports for F̃D̄ and F̃D are rarely
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the same. Therefore the relationship (2) is not incorporated into estimation of FD and FD̄ in

the “empirical” procedure. An issue with a similar flavor has been raised in a different problem

where the task is to estimate the misclassification rates of a binary classification rule constructed

from binomial regression (Lloyd, 2000). Lloyd (2000) pointed out that if the accuracy of the rule

is summarized by the empirical type I and type II misclassification rates, the exponential tilt

relationship (2) between densities of predictors in the diseased and non-diseased populations is

ignored.

Incorporating (2) can be achieved by using the semiparametric likelihood framework (Qin and

Zhang, 1997, 2003). This was originally proposed by Qin and Zhang (1997) to test the logistic

regression assumption under a case-control sampling plan, and used by Qin and Zhang (2003) to

estimate the ROC curve as an alternative to the fully parametric and nonparametric approaches.

Suppose η(β, Y ) = βT r(Y ),where r(Y ) is a vector of functions of Y . The likelihood ratio of

Y becomes LR(Y ) = exp
{
α + βT r(Y )

}
. Here we focus on Y being a single marker, but this

method applies also when Y is a vector of markers. The semiparametric likelihood for observing

the case-control data is

L(α, β, FD̄) =
nD̄∏

i=1

dFD̄(YD̄i)
nD∏

j=1

exp
{
α + βT r(YDj)

}
dFD̄(YDj) (3)

=

{
n∏

i=1

dFD̄(Yi)

}


nD∏

j=1

exp
{
α + βTr(YDj)

}

 ,

subject to
∑n

i=1 dFD̄(Yi) = 1 and
∑n

i=1 exp
{
α + βTr(Yi)

}
dFD̄(Yi) = 1. Refer to Qin and Zhang

(1997, 2003) for details about solving this restricted maximum likelihood using the Lagrange

Multiplier method. As a result, the maximum likelihood estimators for FD̄ and FD are

F̂D̄(y) =
1

nD̄

n∑

i=1

I(Yi ≤ y)

1 + nD
nD̄

exp
{
α̂ + β̂Tr(Yi)

} =
1
n

n∑

i=1

I(Yi ≤ y)
nD̄
n + nD

n L̂R(Yi)
,

F̂D(y) =
1

nD̄

n∑

i=1

exp
{
α̂ + β̂Tr(Yi)

}
I(Yi ≤ y)

1 + nD
nD̄

exp
{
α̂ + β̂Tr(Yi)

} =
1
n

n∑

i=1

L̂R(Yi)I(Yi ≤ y)
nD̄
n + nD

n L̂R(Yi)
,
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where α̂ = θ̂ − log{ρ̂/(1 − ρ̂)}, β̂ = θ̂, and L̂R is the maximum likelihood estimator of LR.

We use these estimators to compute F̂ = (1− ρ̂)F̂D̄ + ρ̂F̂D. Then we plug θ̂ and F̂ into G to

get the semiparametric model-based estimators of R(v) and R−1(p):

R̂(v) = G
{
θ̂, F̂−1(v)

}
for v ∈ (0, 1),

R̂−1(p) = F̂
{
G−1(θ̂, p)

}
for p ∈ {R(v) : v ∈ (0, 1)}.

Note that an intrinsic property of the predictiveness curve is that the area under the curve is

equal to ρ since
∫ 1
0 R(v)dv = P (D = 1) = ρ. This is not necessarily true, though, for an estimated

predictiveness curve due to estimation error. However, it can be shown that the area under the

semiparametric maximum likelihood estimator R̂(v) is always equal to ρ̂ (see Huang (2007) for

a proof). This property facilitates visual comparison between two estimated curves. This result

does not hold for R̃(v). An intuitive explanation is that the “empirically” estimated marker

distribution does not take advantage of the structure imposed by the risk model.

2.3 Estimation in a Cohort Design

The semiparametric methods were developed for case-control designs but can nevertheless

be applied to a cohort study as well by plugging in the sample prevalence ρ̂ = nD/n. Let

α̂, β̂ be the MLE of α, β by applying the logistic regression model logit{P (D = 1|Y )} =

α + βT r(Y ) + log
(

nD̄
nD

)
to the cohort sample. The last term is included here in order to make

notation, and definition of α in particular, consistent with the previous subsection. For y ∈ R,

the semiparametric “empirical” estimator of F becomes

F̃ (y) =
nD

n

1
nD

nD∑

i=1

I(YDi ≤ y) +
nD̄

n

1
nD̄

nD̄∑

i=1

I(YD̄i ≤ y) =
1
n

n∑

i=1

I(Yi ≤ y),

while the semiparametric maximum likelihood estimator is

F̂ (y) =
nD

n

1
nD̄

n∑

i=1

exp
{

α̂ + β̂Tr(Yi)
}

I(Yi ≤ y)

1 + nD
nD̄

exp
{
α̂ + β̂Tr(Yi)

} +
nD̄

n

1
nD̄

n∑

i=1

I(Yi ≤ y)

1 + nD
nD̄

exp
{

α̂ + β̂Tr(Yi)
}

=
1
n

n∑

i=1

I(Yi ≤ y).
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That is, F̂ and F̃ calculated from a cohort sample are the same as the empirical distribution

function. This is also true for a case-control sample where the proportion of cases is equal to

ρ̂. Consequently the two semiparametric estimators of the predictiveness curve developed in

Section 2 when applied to a cohort study is the same as the semiparametric estimator developed

in Huang et al. (2007). That is our methods generalize those methods to case-control designs.

Of course, the asymptotic theory presented next for the case-control design does not apply to a

cohort design since nD and nD̄ are fixed in the former but random in the latter.

3. Asymptotic Theory for Semiparametric Estimators

We present asymptotic theory for the semiparametric estimators defined in Section 2 as well as

some consequent attractive properties. We assume the following conditions hold:

(i) G(s, Y ) is differentiable with respect to s and Y at s = θ, Y = F−1(v);

(ii) ∂G−1(s, p)/∂s exists at s = θ;

(iii) for 0 < a < b < 1, F has continuous positive density f on [F−1(a) − ε, F−1(b) + ε] for

some ε > 0;

(iv) ρ̂ is either estimated from a cohort or is equal to the true ρ.

Asymptotic theory for the semiparametric maximum likelihood predictiveness curve estimator

is presented in Theorems 1 and 2 (proof given in Huang and Pepe (2008)). Note that variability

in ρ̂ is incorporated into asymptotic variances of the predictiveness curve estimators.

Theorem 1 As n → ∞,
√

n
{
R̂(v)− R(v)

}
converges to a normal random variable with mean

zero and variance

Σ1M(v) =
{

∂R(v)
∂v

}2

var
(√

n
[
F̂

{
F−1(v)

}
− v

])
+

(
∂R(v)

∂θ

)T

var
{√

n(θ̂ − θ)
} (

∂R(v)
∂θ

)

+ 2
(

∂R(v)
∂θ

)T

cov
(√

n(θ̂ − θ),
√

n
[
F̂

{
F−1(v)

}
− v

]) {
∂R(v)

∂v

}
.

Theorem 2 As n → ∞,
√

n
{

R̂−1(p)− R−1(p)
}

converges to a normal random variable with
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mean zero and variance

Σ2M(p) = var
(√

n
[
F̂

{
G−1(θ, p)

}
− F

{
G−1(θ, p)

}])
+

(
∂R−1(p)

∂θ

)T

var
{√

n(θ̂ − θ)
} (

∂R−1(p)
∂θ

)

+ 2
(

∂R−1(p)
∂θ

)T

cov
(√

n
(
θ̂ − θ

)
,
√

n
[
F̂

{
G−1(θ, p)

}
− F

{
G−1(θ, p)

}])
.

Observe that when v = R−1(p),
{
∂R−1(p)/∂θ

}
{∂R(v)/∂v} = {∂v/∂θ} {∂R(v)/∂v} = ∂R(v)/∂θ,

thus Σ1M(v) = {∂R(v)/∂v}2 Σ2M(p). That is the variance of R̂(v) and its inverse are related by

a factor equal to the derivative of R(v). Intuitively a perturbation in R(v) can be approximated

by R′(v) times a perturbation in R−1(p). Using an analogous approach, we can prove asymptotic

theory for the semiparametric “empirical” estimators.

Theorem 3 As n → ∞,
√

n
{
R̃(v)− R(v)

}
converges to a normal random variable with mean

zero and variance

Σ1E(v) =
{

∂R(v)
∂v

}2

var
(√

n
[
F̃

{
F−1(v)

}
− v

])
+

(
∂R(v)

∂θ

)T

var
{√

n(θ̂ − θ)
} (

∂R(v)
∂θ

)

+ 2
(

∂R(v)
∂θ

)T

cov
(√

n(θ̂ − θ),
√

n
[
F̃

{
F−1(v)

}
− v

]) {
∂R(v)

∂v

}
.

Theorem 4 As n → ∞,
√

n
{

R̃−1(p)− R−1(p)
}

converges to a normal random variable with

mean zero and variance

Σ2E(p) = var
(√

n
[
F̃

{
G−1(θ, p)

}
− F

{
G−1(θ, p)

}])
+

(
∂R−1(p)

∂θ

)T

var
{√

n(θ̂ − θ)
} (

∂R−1(p)
∂θ

)

+ 2
(

∂R−1(p)
∂θ

)T

cov
(√

n
(
θ̂ − θ

)
,
√

n
[
F̃

{
G−1(θ, p)

}
− F

{
G−1(θ, p)

}])
.

Again, when v = R−1(p), we have Σ1E(v) = {∂R(v)/∂v}2 Σ2E(p). Analytical forms for

components for these variances can be found in Huang and Pepe (2008).
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Note that estimating F using the maximum likelihood method in a case-control design is a

special case of the biased sampling problem. Vardi (1985) developed a nonparametric maximum

likelihood estimator of the distribution function in a biased sampling model with known selection

weights, for which the large sample theory was provided in Gill et al. (1988). Gilbert et al. (1999)

extended this method to allow the weight functions to depend on an unknown finite dimensional

parameter θ. Gilbert (2000) demonstrated that the maximum likelihood estimators for θ and

FD̄ are semiparametric efficient, which implies that our semiparametric maximum likelihood

estimators are efficient.

3.1 Comparison of Efficiency between the Two Semiparametric Estimators

It can be shown that the asymptotic covariance between θ̂ and the estimator of F is the same

for the two semiparametric procedures (Huang and Pepe, 2008). This is expected according to

the convolution theorem (van der Vaart, 1998, theorem 25.20) given the fact that θ̂ is the semi-

parametric efficient estimator. Thus the difference in asymptotic variance between R̂(v) and R̃(v)

or between R̂−1(p) and R̂−1(p) is completely attributed to the difference in asymptotic variance

between F̂ and F̃ . The latter can be shown to be positively proportional to the asymptotic

variance of
√

n
{
F̂D̄ − F̃D̄

}
(Huang and Pepe, 2008). Thus, as expected, R̂(v) and R̂−1(p) are

asymptotically more efficient than R̃(v) and R̃−1(p).

4. Nonparametric Estimator

To this point we have estimated the predictiveness curve semiparametrically by assuming a

parametric risk model but leaving the control distribution unspecified. A more robust approach

is to estimate the risk model nonparametrically under the monotone increasing risk assumption.

4.1 Estimation of the Risk Model Using Isotonic Regression

We compute the nonparametric maximum likelihood estimator for the risk function subject

to monotonicity using isotonic regression (Barlow et al., 1972). A heuristic explanation of the

algorithm in this particular circumstance was given by Lloyd (2002). Marker data {y1, . . . , yn}

are arranged in increasing order, followed by repetitive blocking and pooling of adjacent blocks
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until the sample proportion of cases within each block is non-decreasing. Finally, we calculate

P̂ (D = 1|Y = yj , S), the proportion of diseased subjects within the block containing yj . We then

estimate the risk function in the population according to Bayes’ theorem

P̂ (D = 1|Y )
P̂ (D = 0|Y )

=
P̂ (D = 1|Y, S)
P̂ (D = 0|Y, S)

nD̄

nD

ρ̂

1 − ρ̂
.

4.2 Estimation of the Marker Distribution and the Predictiveness Curve

We can estimate FD and FD̄ empirically with F̃D̄ and F̃D and calculate F̃ = ρ̂F̃D +(1− ρ̂)F̃D̄.

The nonparametric “empirical” estimators of R(v) and R−1(p) are

R̃(v) = P̂
{
D = 1|Y = F̃−1(v)

}
v ∈ (0, 1),

R̃−1(p) = F̃
[
sup

{
y : P̂ (D = 1|Y = y) ≤ p

}]
p ∈ {R(v) : v ∈ (0, 1)}.

Alternatively, we can incorporate the estimated risk function into estimation of the marker

distribution, as was done for the semiparametric procedure. Lloyd (2002) showed that maximizing

the joint likelihood of D and Y can be achieved by first obtaining P̂ (D = 1|Y, S), and then

estimating fD̄ and fD based on the relationship

LR(Y ) =
fD(Y )
fD̄(Y )

=
P (D = 1|Y, S)
P (D = 0|Y, S)

nD̄

nD
∝ P (D = 1|Y, S)

P (D = 0|Y, S)
.

In particular, let ŵ(Y ) = P̂ (D = 1|Y, S)/P̂(D = 0|Y, S). Let κ denote {k : ŵ(Yk) = ∞}, Lloyd

(2002) showed that by maximizing,L(FD̄) =
∏nD̄

i=1 fD̄(YD̄i)
∏nD

j=1 fD(YDj) =
∏n

i=1 fD̄(Yi)
∏nD

j=1
ŵ(YDj)

µ

with µ a normalizing factor, the estimators of fD̄ and fD are

f̂D̄(Yk) =





µ̂/(nDŵ(Yk) + nD̄µ̂) k /∈ κ

0 k ∈ κ
, f̂D(Yk) =





ŵ(Yk)f̂D̄(Yk)/µ̂ k /∈ κ

1/nD k ∈ κ
,

in the absence of ties. He also suggested that µ̂ could be found by solving

∑

k/∈κ

µ/ {nDw(Yk) + nD̄µ} = 1, (4)
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which is monotone increasing in µ. We found that when P (D = 1|Y, S) is estimated using

isotonic regression, µ̂ can be written down explicitly as a function of nD̄ and nD, as presented in

the following new result, proved in Appendix.

Theorem 5

When P (D = 1|Y, S) is estimated using isotonic regression, µ̂ = nD/nD̄.

Plugging µ̂ into (4), we have

f̂D̄(Yk) =





1
nD̄{ŵ(Yk)+1} k /∈ κ

0 k ∈ κ

and

f̂D(Yk) =





ŵ(Yk)
nD{ŵ(Yk)+1} k /∈ κ

1/nD k ∈ κ
.

Calculating F with F̂ = ρF̂D + (1 − ρ)F̂D̄, the nonparametric model-based estimators of R(v)

and R−1(p) are

R̂(v) = P̂
{

D = 1|Y = F̂−1(v)
}

for v ∈ (0, 1),

R̂−1(p) = F̂
[
sup

{
y : P̂ (D = 1|Y = y) ≤ p

}]
for p ∈ {R(v) : v ∈ (0, 1)} .

Interestingly, even if the nonparametric “empirical” and model-based procedures described

above lead to different estimators of the marker distribution F , the corresponding predictive-

ness curve estimators are the same (Theorem 6), a fact that is not true for the semiparametric

estimators. A proof can also be found in Appendix.

Theorem 6

When risk model is estimated nonparametrically with isotonic regression, R̂(v) = R̃(v) and

R̂−1(p) = R̃−1(p).

Another appealing property of the nonparametric predictiveness curve is that the area under

the curve is always equal to ρ, as shown in Huang (2007). Finally, note that the nonparametric

12

http://biostats.bepress.com/uwbiostat/paper333



method can be applied to a cohort design. In that case, the step adjusting for biased sampling

in risk estimation is no longer needed.

5. Simulation Studies

We simulate a case-control study under a linear logistic risk model with equal number of YD̄ ∼

N(0, 1) and YD ∼ N(µD, 1). Assume ρ̂ can be obtained from a phase-one cohort, in which the

case-control sample is nested and which is five times the size of the case-control sample. For each

simulated sample, variance estimates of the predictiveness estimators are calculated based on

analytic formulae, with variability in ρ̂ incorporated. Bootstrapping is also performed. Separate

resampling of cases and controls is employed, together with resampling of D from the parent

cohort. Results for ρ = 0.2 and µD = 1 are presented in Tables 1 - 3 for v = 0.1, 0.3, 0.5, 0.7,

and 0.9 and the corresponding p = R(v). We explore varying sample sizes from 100 to 2,000.

For each scenario, 5,000 Monte-Carlo simulations are conducted.

The semiparametric estimators for R(v) have minimal bias for sample sizes as small as 100,

while the nonparametric estimator has considerable bias at v = 0.1 even when n = 2000 (Table

1). Asymptotic variances of the semiparametric estimators agree well with the empirical variance

from simulations. For this particular simulation setting, the semiparametric “empirical” estima-

tor is fairly efficient relative to the semiparametric maximum likelihood estimator. Both are much

more efficient than the nonparametric one, especially when n is large (Table 2). Coverage of the

semiparametric 95% Wald confidence intervals using asymptotic or bootstrap variance estimates

are fairly close to the nominal level, except for a little undercoverage when n ≤ 200. Coverage of

the nonparametric 95% confidence intervals for R(v) is not as good as its semiparametric coun-

terpart; undercoverage exists even when n is as large as 1000 for small v. A logit transformation

lessens the problem of undercoverage in all cases, but creates overcoverage in the nonparametric

setting when n is small and v is close to the boundary (results not shown). Confidence intervals

using percentiles of the bootstrap distribution seem to have reasonable coverage in all settings,

except when v = 0.1 and n ≤ 100 for the nonparametric estimator (Table 3). Results for R−1(p)

follow a similar pattern.
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Table 1
Bias of the semiparametric and nonparametric estimators and their asymptotic variances in
case-control studies for the linear logistic model. Here nD = nD̄, n = nD + nD̄. Size of the

phase-one cohort for estimating ρ̂ is 5n.

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9
R(v) 0.045 0.094 0.15 0.24 0.43

% bias in R̂(v)
n = 100 SPMLEa 4.47 −0.50 −1.39 −0.82 0.82

SPEb 5.13 −0.40 −1.18 −0.53 0.94
NPMLEc −35.35 −9.42 −5.44 −3.27 2.86

n = 500 SPMLE 1.14 −0.06 −0.34 −0.13 0.16
SPE 1.12 −0.06 −0.30 −0.07 0.15

NPMLE −13.15 −3.21 −1.86 −1.38 0.58
n = 2000 SPMLE 0.16 −0.13 −0.13 −0.07 0.11

SPE 0.15 −0.13 −0.10 −0.06 0.10
NPMLE −4.72 −1.59 −0.83 −0.47 0.35

% bias in asymptotic variance of R̂(v)
n = 100 SPMLE 0.14 7.51 3.03 −3.79 −4.82

SPE 3.54 6.50 4.51 −4.30 −4.15
n = 500 SPMLE −0.49 0.25 0.13 −0.85 −0.47

SPE −0.91 0.75 0.13 −1.35 −2.06
n = 2000 SPMLE −0.36 0.38 −0.33 −0.35 −0.57

SPE −0.04 0.62 −0.06 −0.11 −0.77

p = 0.045 p = 0.094 p = 0.15 p = 0.24 p = 0.43
R−1(p) 0.1 0.3 0.5 0.7 0.9

% bias in R̂−1(p)
n = 100 SPMLE 12.68 0.39 −0.16 0.55 0.11

SPE 12.90 0.38 −0.34 0.50 0.12
NPMLE 80.50 15.00 5.86 2.06 −0.79

n = 500 SPMLE 2.43 0.02 0.002 0.11 0.03
SPE 2.53 0.02 −0.04 0.06 0.04

NPMLE 29.78 5.84 2.11 0.86 −0.23
n = 2000 SPMLE 0.94 0.15 0.05 0.04 −0.01

SPE 0.94 0.14 0.03 0.04 −0.01
NPMLE 12.84 2.47 0.98 0.34 −0.16

% bias in asymptotic variance of R̂−1(p)
n = 100 SPMLE 11.89 6.92 −3.35 −5.99 9.07

SPE 11.74 8.07 −3.14 −4.93 9.16
n = 500 SPMLE 3.54 0.09 0.002 −2.47 1.62

SPE 3.50 −0.002 −0.40 −2.71 0.34
n = 2000 SPMLE 0.35 0.67 0.33 0.47 0.62

SPE 0.33 0.71 0.96 1.56 1.24

a: semiparametric maximum likelihood estimator
b: semiparametric “empirical” estimator
c: nonparametric maximum likelihood estimator
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Table 2
Efficiency (ratio of observed variances in simulation studies) of the semiparametric “empirical”

estimator and nonparametric estimator relative to the semiparametric maximum likelihood
estimator of the predictiveness curve in case-control studies for the linear logistic model.

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9
R(v) 0.045 0.094 0.15 0.24 0.43
Asymptotic SPEa 0.99 0.97 0.97 0.90 0.91

n = 100 SPE 1.02 0.97 0.97 0.90 0.91
NPMLEb 0.45 0.41 0.27 0.18 0.29

n = 500 SPE 0.98 0.98 0.96 0.90 0.89
NPMLE 0.25 0.25 0.16 0.10 0.18

n = 2000 SPE 0.99 0.98 0.96 0.90 0.91
NPMLE 0.17 0.16 0.10 0.06 0.11

p = 0.045 p = 0.094 p = 0.15 p = 0.24 p = 0.43
R−1(p) 0.1 0.3 0.5 0.7 0.9
Asymptotic SPE 0.99 0.97 0.97 0.90 0.91

n = 100 SPE 0.99 0.99 0.96 0.91 0.91
NPMLE 0.47 0.47 0.32 0.21 0.38

n = 500 SPE 0.99 0.98 0.95 0.90 0.90
NPMLE 0.28 0.27 0.17 0.10 0.20

n = 2000 SPE 0.99 0.98 0.96 0.91 0.91
NPMLE 0.18 0.16 0.10 0.06 0.12

a: semiparametric “empirical” estimator
b: nonparametric maximum likelihood estimator

Based on these limited simulations, we recommend use of the percentile bootstrap confi-

dence intervals for the predictiveness curve because they have good coverage and because the

corresponding lower and upper confidence bands are also monotone increasing in v.

6. Illustration

We illustrate our methods using a simulated case-control dataset from the Prostate Cancer Pre-

vention Trial, a randomized prospective study of men with PSA < 3.0 ng/mL and 55 years and

older who were followed up for 7 years with annual PSA measurements. Thompson et al. (2006)

identified 5519 men on the placebo arm of the trial who had undergone prostate biopsy and had

a PSA and digital rectal exam (DRE) during the year prior to biopsy and at least 2 PSA values

from the 3 years prior to biopsy, and evaluated prostate cancer risk as a function of PSA, PSA

velocity and several other variables including age, family history, DRE and prior prostate biopsy.

We randomly sampled 250 cases and 250 controls from this study cohort to form the case-control

sample. Sample disease prevalence from the study cohort is ρ̂ = 21.9% and is used for estimation
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Table 3
Coverage of 95% percentile bootstrap confidence intervals based on the semiparametric and

nonparametric estimators in case-control studies for the linear logistic model (%).

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9
R(v) 0.045 0.094 0.15 0.24 0.43

n = 100 SPMLEa 94.24 94.50 95.08 95.86 94.80
SPEb 94.58 94.64 95.28 96.36 94.98

NPMLEc 79.74 94.30 96.58 97.54 98.02
n = 500 SPMLE 94.18 94.18 94.42 95.88 94.22

SPE 94.66 94.16 94.60 96.02 94.54
NPMLE 93.04 95.92 97.18 97.40 98.20

n = 2000 SPMLE 94.38 94.52 94.66 94.72 94.22
SPE 94.58 94.38 95.08 95.08 94.76

NPMLE 94.80 96.66 97.44 97.80 97.96

p = 0.045 p = 0.094 p = 0.15 p = 0.24 p = 0.43
R−1(p) 0.1 0.3 0.5 0.7 0.9

n = 100 SPMLE 94.24 94.54 95.04 95.90 94.80
SPE 94.56 94.72 95.28 96.38 95.08

NPMLE 79.74 94.36 96.62 97.60 98.06
n = 500 SPMLE 94.12 94.06 95.02 94.90 94.22

SPE 94.22 94.46 95.40 95.18 94.62
NPMLE 91.44 96.02 97.20 97.92 98.20

n = 2000 SPMLE 94.38 94.48 94.70 94.74 94.12
SPE 94.58 94.42 95.12 95.10 94.74

NPMLE 94.80 96.62 97.46 97.80 97.92

a: semiparametric maximum likelihood estimator
b: semiparametric “empirical” estimator
c: nonparametric maximum likelihood estimator
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of the predictiveness curve.

We compare PSA and PSA velocity as risk prediction markers for prostate cancer utilizing the

predictiveness curve technique. A logistic regression risk model with a Box-Cox transformation

of the marker is employed. The two semiparametric estimators of the predictiveness curves are

fairly similar to each other for both PSA and PSA velocity and are much smoother than the

nonparametric ones. The semiparametric maximum likelihood and nonparametric estimators

are displayed in Figure 1(a). PSA has more steep predictiveness curves, suggesting that it is a

better marker for predicting risk of prostate cancer.

The pointwise 95% percentile bootstrap confidence intervals for R(v) constructed from semi-

parametric maximum likelihood estimators are displayed in Figure 1(b)(c), with variability in

ρ̂ incorporated. They are much narrower compared to those constructed from nonparametric

estimators.

Table 4(a) presents results comparing PSA and PSA velocity with respect to risk percentiles,

R(v), for v = 10% and 90%, and risk stratum sizes, R−1(p), for a low risk threshold 10% and

a high risk threshold 30%. P -values for comparing markers are based on bootstrap variance

estimates. Using the semiparametric methods we conclude that PSA is a significantly better risk

prediction marker than PSA velocity. Specifically, it is better for predicting high risk (larger

R(0.9)), better for predicting low risk (smaller R(0.1)), and it classifies more people into the low

and high risk ranges. In contrast, these conclusions cannot be drawn with the nonparametric

methods due to their large sampling variability.

In practice, there may not always be a cohort for estimating prevalence. Oftentimes an

investigator plugs in a specific prevalence value and treats it as known. We illustrate application

of a sensitivity analysis using our example. We study ρ = 0.165 and ρ = 0.274 which correspond

to a 25% change in ρ̂ = 0.219. The corresponding predictiveness curves are displayed in Figure

1(d). Note that the comparison of predictiveness curves with respect to steepness is not sensitive

to perturbation in prevalence. PSA appears overall to be a better risk prediction marker than

PSA velocity in the sense that the risk percentiles vary more. Comparison at particular risk

thresholds, on the other hand, are affected by prevalence. For example, when ρ = 0.165, based on
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(b) 95% CI for PSA
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(c) 95% CI for PSA Velocity
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(d) Sensitivity analysis
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Figure 1. (a) The predictiveness curves for PSA and PSA velocity for predicting prostate
cancer;(b)(c) their 95% pointwise confidence intervals constructed from percentiles of the boot-
strap distribution; and (d) sensitivity analysis. The horizontal lines indicate disease prevalences
plugged in. SPMLE: semiparametric maximum likelihood estimator; NPMLE: nonparametric
maximum likelihood estimator.
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Table 4
Comparisons between (a) PSA and PSA velocity and (b) between PSA and PSA plus other risk

factors for predicting risk of prostate cancer.

(a)
Measure Method PSA PSA Velocity pvalue

Est 95% CI Est 95% CI
R(0.1) NPMLEa 0.079 (0.043,0.110) 0.088 (0.044, 0.131) 0.730

SPMLEb 0.072 (0.046, 0.109) 0.122 (0.075, 0.159) 0.027
R(0.9) NPMLE 0.474 (0.369, 0.577) 0.302 (0.253, 0.402) 0.005

SPMLE 0.413 (0.356, 0.476) 0.313 (0.275, 0.356) < 0.001
R−1(0.1) NPMLE 0.304 (0.050, 0.39) 0.155 (0.019, 0.305) 0.178

SPMLE 0.188 (0.073, 0.291) 0.06 (0.020, 0.142) 0.021
1 − R−1(0.3) NPMLE 0.302 (0.140, 0.447) 0.168 (0.007, 0.501) 0.274

SPMLE 0.244 (0.191, 0.296) 0.129 (0.030, 0.197) 0.009
R−1(0.3)− R−1(0.1) NPMLE 0.393 (0.210, 0.664) 0.677 (0.301, 0.933) 0.100

SPMLE 0.568 (0.443, 0.724) 0.811 (0.668, 0.935) 0.004

(b)
Measure Method PSA PSA + other factors pvalue

Est 95% CI Est 95% CI
R(0.1) SPMLE 0.072 (0.045, 0.109) 0.070 (0.039, 0.094) 0.798
R(0.9) SPMLE 0.413 (0.356, 0.476) 0.429 (0.372, 0.502) 0.223
R−1(0.1) SPMLE 0.188 (0.073, 0.291) 0.204 (0.109, 0.310) 0.595
1 − R−1(0.3) SPMLE 0.244 (0.191, 0.296) 0.243 (0.203, 0.281) 0.952
R−1(0.3)− R−1(0.1) SPMLE 0.568 (0.443, 0.724) 0.554 (0.436, 0.662) 0.667

a: nonparametric maximum likelihood estimator
b: semiparametric maximum likelihood estimator

the semipmarametric maximum likelihood procedure, PSA assigns significantly more people into

low risk range than PSA velocity, with estimates of R−1(0.1) being 31.3% and 13.5% respectively

(p-value< 0.001). PSA is also a significantly better marker for predicting high risk than PSA

velocity, with estimates of 1−R−1(0.3) being 12.5% and 2.9% respectively (p-value < 0.001). In

contrast, when ρ = 0.263, estimates of R−1(0.1) become 9.7% and 3.8% for PSA and PSA velocity,

and estimates of 1 − R−1(0.3) are 38.9% and 36.9% respectively. None of the comparisons are

significant (p-value=0.192 and 0.736). The comparison with respect to percentage classified into

the equivocal risk range is significant when ρ = 0.165 (p-value < 0.001) but not when ρ = 0.274

(p-value=0.375).

7. Extension of Semiparametric Estimation

The semiparametric estimators can be extended naturally to accommodate multiple predictors

or to settings where the monotone increasing risk assumption is not true. Let FR, FDR, FD̄R indi-

cate the cumulative distribution functions of Risk(Y ) in the general, diseased, and nondiseased
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populations respectively. We first calculate Risk(Yi) as the predicted risk for subject i based on

a a standard logistic regression model with offset log{(1− ρ̂)/ρ̂). Then estimate FR according to

ρ̂FDR + (1 − ρ̂)FD̄R. Note that FDR and FD̄R can be estimated “empirically” using

F̃DR(p) =
1

nD

nD∑

i=1

I
{
R̂isk(YDi) ≤ p

}
,

F̃D̄R(p) =
1

nD̄

nD̄∑

i=1

I
{
R̂isk(YD̄i) ≤ p

}
,

or based on the semiparametric maximum likelihood method

F̂DR(p) =
1
n

n∑

i=1

L̂RR

{
R̂isk(Yi)

}
I

{
R̂isk(Yi) ≤ p

}

nD̄
n + nD

n L̂RR

{
R̂isk(Yi)

} ,

F̂D̄R(p) =
1
n

n∑

i=1

I
{
R̂isk(Yi) ≤ p

}

nD̄
n + nD

n L̂RR

{
R̂isk(Yi)

} ,

where L̂RR

{
R̂isk(Yi)

}
= R̂isk(Yi)/

{
1 − R̂isk(Yi)

}
× (1− ρ̂)/ρ̂. Compute semiparametric max-

imum likelihood estimators R̂(v) = F̂−1
R (v) and R̂−1(p) = F̂R(p) and semiparametric “empirical”

estimators R̃(v) = F̃R(p) and R̃−1(p) = F̃R(p). Following similar arguments as in the single

marker setting, asymptotic distribution theory presented in Theorems 7 and 8 can be derived.

In practice, since estimation of asymptotic variance involves both numerical differentiation and

nonparametric density estimation, we rely on resampling techniques for inference.

Theorem 7

As n → ∞,
√

n
{

R̂−1(p)− R−1(p)
}

converges to a normal random variable with mean zero

and variance

Σ2M.R(p) = var
[√

n
{
QM(p)− R−1(p)

}]

+
(

∂R−1(p)
∂θ

)T

var
{√

n(θ̂ − θ)
} (

∂R−1(p)
∂θ

)

+ 2
(

∂R−1(p)
∂θ

)T

cov
[√

n
(
θ̂ − θ

)
,
√

n
{
QM(p)− R−1(p)

}]
,
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and
√

n
{
R̂(v)− R(v)

}
converges to a normal random variable with mean zero and variance

Σ1M.R(v) =
{

∂R(v)
∂v

}2

Σ2M.R{R(v)},

where

QM(p) = ρ
1
n

n∑

i=1

L̂RR

{
R̂isk(Yi)

}
I{Risk(Yi) ≤ p}

nD̄
n + nD

n L̂RR

{
R̂isk(Yi)

} + (1− ρ)
1
n

n∑

i=1

I {Risk(Yi) ≤ p}
nD̄
n + nD

n L̂RR

{
R̂isk(Yi)

} .

Theorem 8

As n → ∞,
√

n
{

R̃−1(p)− R−1(p)
}

converges to a normal random variable with mean zero

and variance

Σ2E.R(p) = var
[√

n
{
QE(p) − R−1(p)

}]

+
(

∂R−1(p)
∂θ

)T

var
{√

n(θ̂ − θ)
} (

∂R−1(p)
∂θ

)

+ 2
(

∂R−1(p)
∂θ

)T

cov
[√

n
(
θ̂ − θ

)
,
√

n
{
QE(p) − R−1(p)

}]
,

and
√

n
{
R̂(v)− R(v)

}
converges to a normal random variable with mean zero and variance

Σ1E.R(v) =
{

∂R(v)
∂v

}2

Σ2E.R{R(v)},

where

QE(p) = ρ
1

nD

nD∑

i=1

I {Risk(YDi) ≤ p} + (1− ρ)
1

nD̄

nD̄∑

i=1

I {Risk(YD̄i) ≤ p} .

Components of these asymptotic variance terms can be calculated similar to those in the

single marker setting by replacing the marker distribution with the risk distribution. Note that

when Y has only one component and under the monotone increasing risk assumption, the variance
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expressions in Theorems 7 and 8 reduce to those in Theorems 1-4, i.e. QM (p) = F̂ {G−1(p)} and

QE(p) = F̃{G−1(p)}.

7.1 Illustration

We illustrate using the simulated case-control sample described in Section 6. We compare the

logistic risk model based on PSA alone with a more comprehensive risk model that combines Box-

Cox transformation of PSA and other risk factors, including family history of prostate cancer,

DRE, and previous negative biopsies. All of these factors are highly statistically significant

(Thompson et al., 2006).

Figure 2(a) displays the semiparametric maximum likelihood estimators of the predictiveness

curves for PSA alone and for PSA plus other factors (the semiparametric “empirical” estimators

are similar), for ρ̂ = 21.9%. The two risk models have very similar predictiveness curves. To

assess model fit, we let R̂isk(Y ) be risk estimates from the model employing PSA and other

risk factors and partition the observations into deciles of the distribution for R̂isk(Y ). For

k ∈ {1, . . . , 10}, we estimate P̂ (D = 1|k, S) as the observed proportion of cases within the kth

group. The population risk within the kth group, P (D = 1|k) is estimated according to

P̂ (D = 1|k)
1 − P̂ (D = 1|k)

=
P̂ (D = 1|k, S)

1− P̂ (D = 1|k, S)
nD̄

nD

1− ρ̂

ρ̂
.

At the midpoints of the kth group, a visual comparison can be made between these points and the

predictiveness curve by superimposing the value of P̂ (D = 1|k) on the plot. This comparison of

observed risk and average risk within deciles of modeled risk is the basis for the Hosmer-Lemeshow

test (Hosmer and Lemeshow, 1980). Our approach provides a graphical display that generalizes

to case-control data. In Figure 2(a), there seems to be a slight lack of fit in the middle of the

curve but good fit at both ends which are the regions of primary interest. Confidence intervals

for R(v) constructed with the semiparametric maximum likelihood estimators are presented in

Figure 2(b). Variabilities from the two risk models appear to be similar in magnitude.

Detailed results comparing the two models for predictiveness are shown in Table 4(b). Briefly,

the percentages of people classified into the low, high, or equivocal risk ranges are not significantly
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(c) Sensitivity analysis
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Figure 2. (a) The semiparametric predictiveness curves for PSA and PSA plus other factors
for predicting risk prostate cancer,the dots are average risk within deciles of modeled risk based
on the latter model; (b) their 95% pointwise confidence intervals using percentiles of the boot-
strap distribution; and (c) sensitivity analysis. The horizontal lines indicate disease prevalences.
SPMLE: semiparametric maximum likelihood estimator; NPMLE: nonparametric maximum like-
lihood estimator.

different between the two models, nor are the 10th and 90th percentiles of risk. Thus including

other factors in the model in addition to PSA does not lead to a significant improvement in risk

stratification even when these factors are all statistically significant in the multivariate logistic

regression model. It reinforces our earlier argument that the risk model by itself is not enough

to characterize the population performance of a risk prediction model.

Again, we conducted sensitivity analysis with fixed ρ = 0.165 and ρ = 0.274, the correspond-

ing predictiveness curves are displayed in Figure 2(c). Different choices of ρ do not change our

conclusion about the comparison between the two risk models.

8. Concluding Remarks

In this article we have developed flexible semiparametric and nonparametric estimators of the

predictiveness curve for case-control studies. This is particularly valuable for evaluating a risk

prediction marker or model early in its development when case-control designs are most com-

mon. Both estimators are easy to compute: risk models can be estimated utilizing standard

statistical procedures, and risk distributions can be calculated easily based on analytic formulae.

The nonparametric estimator is highly robust but demands very large sample sizes for reasonable

precision. This begs for introduction of smoothing techniques in future research. The semipara-

23

Hosted by The Berkeley Electronic Press



metric estimators, in contrast, have satisfactory finite-sample performance. Another approach

to estimate the predictiveness curve is based on its relationship with the ROC curve. This is

currently under investigation (Huang and Pepe, 2007).

In terms of comparison between the two semiparametric estimators, their validity both rely

upon assumptions about the risk model. If the risk model is misspecified, bias can be introduced

into both estimators. This, however, may not be a big concern since the risk model can be made

highly flexible using techniques such as regression splines. Given a well specified model, the semi-

parametric maximum likelihood estimator is more efficient than the its “empirical” counterpart.

Asymptotic relative efficiency of the former versus the latter is a complicated function of the

disease prevalence, separation between cases and controls, case-control sampling ratio, and the

quantile of interest. In the examples, we showed that when the disease prevalence is medium,

the two estimators have similar efficiency. We note that for rare diseases, using the model-based

approach may achieve considerable efficiency gains compared to the “empirical” approach for

certain quantiles (Huang, 2007).

An important use of the asymptotic theory is to guide study design. To design an efficient

case-control study for evaluating a risk model, the optimal case-control sampling ratio is dictated

by the disease prevalence, separation between cases and controls, and the measure that are of

primary interest. A detailed study can be found in Huang (2007).

Comparing markers or models for their risk stratification capacity is of great significance in

medical practice. Researchers are often interested in whether additional risk factors which may be

hard to measure can lead to a significant improvement in utility compared to an existing model.

More research on methods to evaluate incremental value is warranted. Methods described here

might be adapted for such purposes. An important issue pertaining to the general risk model

methods is overfitting when the number of predictors gets large relative to the sample size. The

effectiveness of cross-validation techniques for addressing biases needs to be investigated.

Pepe et al. (2008a) proposed displaying the predictiveness curve and curves displaying true

and false positive rates together for maximum information. Specifically, to evaluate a risk pre-

diction marker, one will be interested in knowing not only 1 − R−1(p), the proportion of the
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population with risk above p, but also the proportion of diseased subjects correctly classified

(the true positive rate TPR(p) = P (Risk(Y ) > p|D = 1) ) and the proportion of non-diseased

subjects incorrectly classified (the false positive rate FPR(p) = P (Risk(Y ) > p|D = 0)), accord-

ing to the classification rule ‘Risk(Y ) > p’. Our semiparametric and nonparametric procedures

developed in this manuscript yield estimators of FD, FD̄ and F as by-products, which can be

directly plugged into TPR(p) = FD{F−1(p)} and FPR(p) = FD̄{F−1(p)} for estimation of these

quantities. Asymptotic theory for corresponding semiparametric estimators can be developed in

a similar fashion.
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9. Appendix

9.1 Components for Asymptotic Variances of Semiparametric Estimators in Theorems 1-4

Consider ρ̂ estimated from a cohort independent of the case-control sample, or the parent

cohort where the case-control sampled is nested within. Assume the size of the cohort is λ times

the size of the case-control sample. Denote

F̂ ?(t) = ρF̂D(t) + (1 − ρ)F̂D̄(t)

F̃ ?(t) = ρF̃D(t) + (1 − ρ)F̃D̄(t),

θ̂? =




θ̂0S + log
(

nD̄
nD

ρ
1−ρ

)

θ̂1S


 ,

then the following Lemma holds.

Lemma 0

var
[√

n
{
F̂ (t) − F (t)

}]
= {FD(t)− FD̄(t)}2 ρ(1− ρ)/λ + var

[√
n

{
F̂ ?(t) − F (t)

}]
,

var
[√

n
{
F̃ (t) − F (t)

}]
= {FD(t)− FD̄(t)}2 ρ(1− ρ)/λ + var

[√
n

{
F̃ ?(t) − F (t)

}]
,

var
{√

n
(
θ̂ − θ

)}
=




1
λρ(1−ρ) 0

0 0


 + var

{√
n

(
θ̂? − θ

)}

cov
[√

n
(
θ̂ − θ

)
,
√

n
{
F̂ (t) − F (t)

}]
=

FD(t) − FD̄(t)
λ

+ cov
[√

n
(
θ̂? − θ

)
,
√

n
{
F̂ ?(t) − F (t)

}]
.

Suppose

logit{G(θ, Y )} = θ0 + θT
1 r(Y ) = α + log

(
ρ

1 − ρ

)
+ βT r(Y ).

Let α̂, β̂ be the MLE of α, β based on the semiparametric likelihood (3). Let η = nD/nD̄.

The following Lemmas are needed to calculate the asymptotic variances of the semiparametric

predictiveness curve estimators. Lemma 1 characterizes the distribution of θ̂?, a result proved

in Prentice and Pyke (1979), Qin and Zhang (1997) and Zhang (2000). Lemmas 2 to 7 present
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asymptotic theory for F̂ ?, F̃ ? and the correlation between them and θ̂?. Proofs of Lemmas 2-7

are given in Appendix B.

Lemma 1 Let

A0(t) =
∫ t

−∞

exp
{
α + βT r(y)

}

1 + η exp {α + βT r(y)}
dFD̄(y),

A1(t) =
∫ t

−∞

r(y) exp
{
α + βT r(y)

}

1 + η exp {α + βT r(y)}dFD̄(y),

A2(t) =
∫ t

−∞

r(y)r(y)T exp
{
α + βT r(y)

}

1 + η exp {α + βTr(y)} dFD̄(y),

A(t) =




A0(t) A1(t)T

A1(t) A2


 ,

and A = A(∞). If A−1 exists,

√
n




α̂ − α

β̂ − β


 d→ N(0, Σ),

where

Σ =
1 + η

η





A−1 −




1 + η 0

0 0








.

Lemma 2 As n → ∞,
√

n
{
F̂ ?(t) − F (t)

}
converges weakly in D[−∞,∞] to W (t), a Gaussian

process with mean 0 and covariance function specified by
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E {WM (s)WM(t)}

= (1− ρ)2(1 + η) {FD̄(s ∧ t) − FD̄(s)FD̄(t)} + ρ21 + η

η
{FD(s ∧ t) − FD(s)FD(t)}

−
(

1 + η

η

)
{ρ − (1 − ρ)η}2





A0(s ∧ t) −
(
A0(s), A1(s)T

)
A−1




A0(t)

A1(t)








.

Lemma 3

√
n

(
F̂ ?−1(v)− F−1(v)

)
d→ W{F−1(v)}/f{F−1(v)}

on D[a, b], where W is the Gaussian process with continuous sample path as specified in Lemma

2.

Lemma 4 As n → ∞,
√

n
{
F̃ ?(t) − F (t)

}
converges weakly in D[−∞,∞] to WE(t), a Gaussian

process with mean 0 and covariance function specified by

E {WE(s)WE(t)}

= (1 − ρ)2(1 + η) {FD̄(s ∧ t) − FD̄(s)FD̄(t)}+ ρ21 + η

η
{FD(s ∧ t) − FD(s)FD(t)} .

Lemma 5

√
n

(
F̃ ?−1(v)− F−1(v)

)
d→ WE{F−1(v)}/f{F−1(v)}

on D[a, b], where WE is the Gaussian process with continuous sample path as specified in Lemma

4.
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Lemma 6

cov



√

n




α̂ − α

β̂ − β


 ,

√
n

{
F̂ ?(t) − F (t)

}

 = cov



√

n




α̂ − α

β̂ − β


 ,

√
n

{
F̃ ?(t) − F (t)

}



=
1 + η

η


{ρ − η(1− ρ)}A−1




A0(t)

A1(t)


 −




ρFD(t) − η(1− ρ)FD̄(t)

0





 + op(1)

Lemma 7

cov



√

n




α̂ − α

β̂ − β


 ,

√
n

{
F̂ ?−1(v)− F−1(v)

}

 = cov



√

n




α̂ − α

β̂ − β


 ,

√
n

{
F̃ ?−1(v)− F−1(v)

}



=
1

f {F−1(v)}





1 + η

η
{ρ − η(1− ρ)}A−1




A0

{
F−1(v)

}

A1

{
F−1(v)

}




− 1 + η

η




ρFD{F−1(v)} − η(1− ρ)FD̄{F−1(v)}

0








+ op(1)

9.2 Proofs of Lemmas and Theorems for Semiparametric Estimators

9.2.1 Proof of Lemma 0

√
n

{
F̂ (t) − F (t)

}

=
√

n
{

F̂ (t) − F ?(t)
}

+
√

n
{
F̂ ?(t) − F (t)

}

'
√

n {ρ̂FD(t) + (1 − ρ̂)FD̄(t) − F (t)} +
√

n
{
F̂ ?(t) − F (t)

}
. (5)
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Since the two terms in (5) are asymptotically uncorrelated, we have

var
[√

n
{
F̂ (t) − F (t)

}]

' var
[√

n {FD(t) − FD̄(t)}2 var(ρ̂)
]

+ var
[√

n
{
F̂ ?(t) − F (t)

}]

= {FD(t) − FD̄(t)}2 ρ(1− ρ)/λ + var
[√

n
{
F̂ ?(t) − F (t)

}]
.

The proofs of other results in this Lemma follow similar arguments.

9.2.2 Proof of Lemma 2 Let

H1(t) =
1

nD̄

n∑

i=1

I(Yi ≤ t)
1 + η exp {α + βTr(Yi)}

,

H2(t) =
1

nD̄

n∑

i=1

exp
{
α + βTr(Yi)

}
I(Yi ≤ t)

1 + η exp {α + βTr(Yi)}
,

H3(t) =
1
n

(
A0(t), A1(t)T

)
S−1




∂l(α,β)
∂α

∂l(α,β)
∂β


 .

By first-order Taylor expansion,

F̂ ?(t) = (1 − ρ)F̂D̄(t) + ρF̂D(t)

= (1− ρ)
1

nD̄

n∑

i=1

I(Yi ≤ t)

1 + η exp
{
α̂ + β̂T r(Yi)

} + ρ
1

nD̄

n∑

i=1

exp
{
α̂ + β̂Tr(Yi)

}
I(Yi ≤ t)

1 + η exp
{
α̂ + β̂Tr(Yi)

}

= (1− ρ)
1

nD̄

n∑

i=1

I(Yi ≤ t)
1 + η exp {α + βT r(Yi)}

+ ρ
1

nD̄

n∑

i=1

exp
{
α + βTr(Yi)

}
I(Yi ≤ t)

1 + η exp {α + βTr(Yi)}

+ {ρ − (1 − ρ)η}
(
α̂ − α, β̂T − βT

)



1
nD̄

∑n
i=1

exp{α+βT r(Yi)}I(Yi≤t)

[1+η exp{α+βT r(Yi)}]2

1
nD̄

∑n
i=1

r(Yi) exp{α+βT r(Yi)}I(Yi≤t)

[1+η exp{α+βT r(Yi)}]2


 + op(n−1/2)

= (1− ρ)H1(t) + ρH2(t) +
{ρ− (1− ρ)η}

n

(
A0(t), A1(t)T

)
S−1




∂l(α,β)
∂α

∂l(α,β)
∂β


 + op

(
n−1/2

)
.
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We have

cov{H1(s), H1(t)} =
1

nD̄

{FD̄(s ∧ t) − FD̄(s)FD̄(t)}

+
η

nD̄

{FD̄(s)A0(t) + FD̄(t)A0(s)} −
η

nD̄

A0(s ∧ t) − η(1 + η)
nD̄

A0(s)A0(t),

cov{H1(s), H2(t)} =
1

nD̄

A0(s ∧ t) − 1
nD̄

FD̄(s)A0(t) −
1

nD̄

FD(t)A0(s) +
1 + η

nD̄

A0(s)A0(t),

cov{H1(s), H3(t)} =
1

nD̄

A0(t) {FD̄(s) − (1 + η)A0(s)} ,

cov{H2(s), H2(t)} =
1

nD
{FD(s ∧ t) − FD(s)FD(t)} +

1
nD

{FD(s)A0(t) + FD(t)A0(s)}

− 1
nD

A0(s ∧ t) − 1 + η

nD
A0(s)A0(t),

cov{H2(s), H3(t)} =
1

nD
A0(t) {(1 + η)A0(s) − FD(s)} ,

cov{H3(s), H3(t)} =
1

nD

(
A0(s), A1(s)T

)
A−1




A0(t)

A1(t)


 − 1 + η

nD
A0(s)A0(t).

It can be shown that

E [(1 − ρ)H1(t) + ρH2(t) + {ρ− (1 − ρ)η}H3(t) − F (t)] = (1− ρ)FD̄(t) + ρFD(t) − F (t) = 0

and that

cov
(√

n [(1 − ρ)H1(s) + ρH2(s) + {ρ− (1− ρ)η}H3(s)] ,
√

n [(1 − ρ)H1(t) + ρH2(t) + {ρ − (1 − ρ)η}H3(t)]
)

= (1− ρ)2(1 + η) {FD̄(s ∧ t) − FD̄(s)FD̄(t)} + ρ21 + η

η
{FD(s ∧ t) − FD(s)FD(t)}

−
(

1 + η

η

)
{ρ − (1 − ρ)η}2





A0(s ∧ t) −
(
A0(s), A1(s)T

)
A−1




A0(t)

A1(t)








.
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Thus according to standard central limit theorem, the finite-dimensional distribution of
√

n
{
F̂ ?(t) − F (t)

}

converges weakly to that of W (t). The asymptotic tightness of the process can be proved by

employing the tightness criteria in Billingsley (1999), and has been shown in Gilbert (2000).

9.2.3 Proof of Lemma 3 Let

rn1(v) = −
{
F−1F̂ ?F−1(v)− F−1FF−1(v) + Vn(v)

}
,

rn2(v) = F−1FF̂ ?−1(v)− F−1F̂ ?F̂ ?−1(v) + F−1F̂ ?F−1(v)− F−1FF−1(v),

rn3(v) = F−1F̂ ?F̂ ?−1(v)− F−1(v),

then F̂ ?−1(v)− F−1(v) = Vn(v) + rn1(v) + rn2(v) + rn3(v). Following arguments similar to that

in Zhang (2000), it can be shown that

supa≤t≤b|rn1(v)| = op(n−1/2),

supa≤t≤b|rn2(v)| = op(n−1/2),

supa≤t≤b|rn3(v)| = Op(n−1),

and the convergence of F̂ ?−1(v)− F−1(v) follows.

9.2.4 Proof of Lemma 4

E
{
F̃ ?(t) − F (t)

}
= (1− ρ)E

{
F̃D̄(t)

}
+ ρE

{
F̃D(t)

}
− F (t) = (1 − ρ)FD̄(t) + ρFD(t) − F (t) = 0,

cov
[√

n
{
F̃ ?(s) − F (s)

}
,
√

n
{
F̃ ?(t) − F (t)

}]

= n(1 − ρ)2cov
{
F̃D̄(s), F̃D̄(t)

}
+ nρ2cov

{
F̃D(s), F̃D(t)

}

= (1 − ρ)2(1 + η) {FD̄(s ∧ t) − FD̄(s)FD̄(t)} + ρ21 + η

η
{FD(s ∧ t) − FD(s)FD(t)}
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9.2.5 Proof of Lemma 5 Proof of Lemma 5 follows arguments similar to those in the proof

of Lemma 3 (omitted).

9.2.6 Proof of Lemma 6

cov



√

n




α̂ − α

β̂ − β


 ,

√
n

{
F̂ ?(t) − F (t)

}



= cov
(√

nH4,
√

n [(1 − ρ)H1(t) + ρH2(t) + {ρ− (1 − ρ)η}H3(t)]
)

+ op(1),

where

H4 =
1
n

S−1




∂l(α,β)
∂α

∂l(α,β)
∂β


 .

We have

cov{H1(t), H4} =
1

nD̄




FD̄(t) − (1 + η)A0(t)

0


 .

cov{H1(t), H4} =
1

nD̄




FD̄(t) − (1 + η)A0(t)

0


 ,

cov{H2(t), H4} =
1

nD




(1 + η)A0(t) − FD(t)

0


 ,

cov{H3(t), H4} =
1

nD

(
A0(t), A1(t)T

)
A−1 −

(
1 + η

nD
A0(t), 0

)
.

The result follows by plugging in covariances between individual terms.
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Similarly,

cov



√

n




α̂ − α

β̂ − β


 ,

√
n

{
F̃ ?(t) − F (t)

}



= n(1− ρ)cov{H4, F̃D̄(t)} + nρ × cov{H4, F̃D(t)} + op(1).

We have

cov
{
H4, F̃D̄(t)

}
=

1 + η

n




−A−1




A0(t)

A1(t)


 +




FD̄(t)

0








,

cov
{
H4, F̃D(t)

}
=

1
n

1 + η

η





A−1




A0(t)

A1(t)


 −




FD(t)

0








.

9.2.7 Proof of Lemma 7 Lemma 7 follows immediately from Lemmas 3, 5, and 6.

9.2.8 Proof of Theorem 1 By Taylor’s expansion,

√
n

{
R̂(v)− R(v)

}
=

√
n

[
G

{
θ̂, F̂−1(v)

}
− G

{
θ, F−1(v)

}]

=
{

∂G(s, y)
∂y

|s=θ,y=F−1(v)

}T √
n

{
F̂−1(v)− F−1(v)

}
+

(
∂G(s, y)

∂s
|s=θ,y=F−1 (v)

)T √
n(θ̂ − θ) + op(1).

The result follows according to the delta method.

9.2.9 Proof of Theorem 2

√
n

{
R̂−1(p)− R−1(p)

}
=

√
n

[
F̂

{
G−1

(
θ̂, p

)}
− F{G−1(θ, p)}

]

=
√

n
[
F̂

{
G−1(θ, p)

}
− F{G−1(θ, p)}

]
+
√

n
[
F

{
G−1

(
θ̂, p

)}
− F{G−1(θ, p)}

]
+ Rn,
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where

Rn =
√

n
[
F̂

{
G−1

(
θ̂, p

)}
− F̂

{
G−1(θ, p)

}]
−

(√
n

[
F

{
G−1

(
θ̂, p

)}
− F{G−1(θ, p)}

])
= op(1)

by equicontinuity of the process
√

n
(
F̂ − F

)
.

The result follows according to the delta method.

Proof of Theorems3-4 follow similar arguments.

9.3 Results about Nonparametric Predictiveness Curve Estimator

9.3.1 Proof of Theorem 5 Suppose there are m pooled groups after isotonic regression with

w(Y ) < ∞. In the ith group, there are mi observations, among which mDi are cases. Then for

subject k (k /∈ κ) belonging to the ith group, ŵ(Yk) = mDi/(mi − mDi).

Plugging µ̂ = nD/nD̄ into (4) results in

∑

k/∈κ

µ̂

nDŵ(Yk) + nD̄µ̂
=

∑

k/∈κ

nD
nD̄

nDŵ(Yk) + nD̄
nD
nD̄

=
m∑

i=1

nD
nD̄

mi

nD
mDi

mi−mDi
+ nD̄

nD
nD̄

=
m∑

i=1

nD
nD̄

mi(mi − mDi)

nDmDi + nD(mi − mDi)

=
m∑

i=1

mi − mDi

nD̄

=
nD̄

nD̄

= 1.

Since the term on the left-hand side of (4) is monotone increasing in µ, µ̂ = nD/nD̄ is the only

solution.

9.3.2 Proof of Theorem 6 At the end of the isotonic regression, the estimated risks are

constant within each block of marker values. Suppose there are m blocks with mi subjects and

mDi cases in the ith block. Let y(1), ..., y(n) be the marker values in the case-control sample

ordered increasingly, with y(i1), ..., y(imi) belonging to the ith block, then P̂ (D = 1|Y ) is constant

for Y ∈
{
y(i1), ..., y(imi)

}
. Because the quantile function F−1 is defined to be left continuous by

convention, the nonparametric estimator R̂(v) or R̃(v) vs v is a step function where a jump is

ready to be made (but not yet) at every v corresponding to the largest element in a block, i.e.
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v = F̂
{
y(imi)

}
or v = F̃

{
y(imi)

}
for i = 1, ..., m.

Therefore, to show the equivalence between the two predictiveness curve estimators, all we

need to show is that the sets of v′s where jumps are about to happen is the same between the

two curves. In other words, we want to show that

F̃
{
y(imi)

}
= F̂

{
y(imi)

}
for i = 1, ..., m.

Notice that

F̃
{
y(imi)

}
= ρ̂

1
nD

nD∑

j=1

I
{
YDj ≤ y(imi)

}
+ (1 − ρ̂)

1
nD̄

nD̄∑

j=1

I
{
YD̄j ≤ y(imi)

}

= ρ̂
1

nD

i∑

l=1

mDl + (1 − ρ̂)
1

nD̄

i∑

l=1

(ml − mDl)

and

F̂
{
y(imi)

}
= ρ̂

1
n

n∑

j /∈κ,j=1

mDj

mj−mDj

nD̄
nD

I
{
Yj ≤ y(imi)

}

nD̄
n + nD

n
mDj

mj−mDj

nD̄
nD

+ ρ̂

n∑

j∈κ,j=1

I
{
Yj ≤ y(imi)

}

nD

+ (1− ρ̂)
1
n

n∑

j=1

I
{
Yj ≤ y(imi)

}
nD̄
n + nD

n
mDj

mj−mDj

nD̄
nD

= ρ̂
1

nD

i∑

l6⊂κ,l=1

mDl + ρ̂
1

nD

i∑

l⊂κ,l=1

ml + (1 − ρ̂)
1

nD̄

i∑

l=1

(ml − mDl)

= ρ̂
1

nD

i∑

j 6⊂κ,l=1

mDl + ρ̂
1

nD

i∑

l⊂κ,l=1

mDl + (1 − ρ̂)
1

nD̄

i∑

l=1

(ml − mDl)

= ρ̂
1

nD

i∑

l=1

mDl + (1− ρ̂)
1

nD̄

i∑

l=1

(ml − mDl).

Consequently under the monotone increasing risk model assumption, the nonparametric “empir-

ical” and model-based approaches lead to the same estimator of the predictiveness curve.
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