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A SPLINE-ASSISTED SEMIPARAMETRIC
APPROACH TO NONPARAMETRIC
MEASUREMENT ERROR MODELS

Fei Jiang and Yanyuan Ma

Abstract

Nonparametric estimation of the probability density function of a random vari-
able measured with error is considered to be a difficult problem, in the sense
that depending on the measurement error prop- erty, the estimation rate can be
as slow as the logarithm of the sample size. Likewise, nonparametric estimation
of the regression function with errors in the covariate suffers the same possibly
slow rate. The traditional methods for both problems are based on deconvolu-
tion, where the slow convergence rate is caused by the quick convergence to zero
of the Fourier transform of the measurement error density, which, unfortunately,
appears in the denominators during the construction of these methods. Using a
completely different approach of spline-assisted semiparametric methods, we are
able to construct nonparametric estimators of both density functions and regres-
sion mean functions that achieve the same nonparametric convergence rate as in
the error free case. Other than requiring the error-prone variable distribution to
be compactly supported, our assumptions are not stronger than in the classical
deconvolution literatures. The performance of these methods are demonstrated
through some simulations and a data example.
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Nonparametric estimation of the probability density function of
a random variable measured with error is considered to be a difficult
problem, in the sense that depending on the measurement error prop-
erty, the estimation rate can be as slow as the logarithm of the sample
size. Likewise, nonparametric estimation of the regression function
with errors in the covariate suffers the same possibly slow rate. The
traditional methods for both problems are based on deconvolution,
where the slow convergence rate is caused by the quick convergence
to zero of the Fourier transform of the measurement error density,
which, unfortunately, appears in the denominators during the con-
struction of these methods. Using a completely different approach
of spline-assisted semiparametric methods, we are able to construct
nonparametric estimators of both density functions and regression
mean functions that achieve the same nonparametric convergence
rate as in the error free case. Other than requiring the error-prone
variable distribution to be compactly supported, our assumptions
are not stronger than in the classical deconvolution literatures. The
performance of these methods are demonstrated through some sim-
ulations and a data example.

1. Introduction. Density estimation is a familiar problem in the non-
parametric estimation literature. Generally, we observe independent and
identically distributed (iid) variables X1, . . . , Xn from a distribution with
probability density function (pdf) fX(x) and nonparametric estimators such
as kernel methods are available in the literature to estimate fX(x). Even
when the Xi’s are not directly observed, nonparametric estimation of fX(x)
can still be carried out based on their surrogates. Specifically, assume that
instead of observing Xi, we observe Wi ≡ Xi + Ui, where Ui is a mean
zero random error independent of Xi and follows a distribution with pdf
fU (u). This problem was studied extensively in the literature and by large
the main stream approach is deconvolution (Carroll and Hall, 1988; Liu and
Taylor, 1989; Stefanski and Carroll, 1990; Zhang, 1990; Fan, 1991). However,
as established in these works, the deconvolution based estimator of fX(x)
may converge very slowly. For example, when the error distribution fU (u)
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is normal or other distributions that are “super smooth”, the deconvolution
estimator only converges to fX(x) at the rate of {log(n)}−k where k is a
positive constant. When the error distribution fU (u) is Laplace or other
“ordinary smooth” type, the convergence rate is n−k, where k is a positive
constant smaller than 0.2. Here “super smooth” and “ordinary smooth” are
characteristics that play an important role in determining the convergence
properties of the deconvolution estimators. Because these characteristics are
irrelevant in our approach, we skip the precise description and refer to Fan
(1991) for details.

Given that when Xi’s are observed, nonparametric density estimation
usually performs better than these results, it prompts us to ask whether we
could further improve the estimation performance for the error-in-variable
case. However, the convergence rates described above are shown to be “op-
timal” in the literature as long as deconvolution is used. Thus, if better
convergence is to be achieved, the estimation has to go beyond the decon-
volution framework. In other words, novel approaches totally different from
the existing literature will be required.

A related problem to nonparametric density estimation is nonparametric
regression. Likewise, when iid observations (Xi, Yi), i = 1, . . . , n, are avail-
able, many nonparametric estimators such as kernel and spline based meth-
ods have been proposed to estimate the regression mean of Y conditional
on X. Here the assumption is that Yi = m(Xi) + εi, where for simplicity,
we assume εi is independent of Xi and has mean zero with density fε(ε).
When Xi is unavailable and instead only Wi described above is available,
we encounter the problem of nonparametric regression with measurement
error. The traditional way to estimate m(x) is also deconvolution (Fan and
Truong, 1993), resulting in the same possibly slow rate of convergence. Be-
cause the same reason that results in the slow convergence rate in the density
estimation is also responsible for the nonparametric regression estimation,
methods that do not rely on deconvolution have to be employed in order to
achieve improvement.

Our breakthrough came when it struck us that if the functions that we
want to estimate, fX(x) and m(x), had been parametric, we would have
much simpler problems. If these problems can be solved without using de-
convolution, then we can approximate fX(x) and m(x) with B-spline, and
operationally we would be dealing with parametric models and deconvolu-
tion can be avoided too. Thus, we study both problems in this work with the
help of a spline representation. Using spline representation in measurement
error models is not entirely new, although it was mostly used in the Bayesian
framework (Berry, Carroll and Ruppert, 2002; Staudenmayer, Ruppert and
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Buonaccorsi, 2008). While the density estimator is relatively easy to devise,
regression estimator turns out to be challenging and requires further semi-
parametric treatment. A second challenge in both problems is in establishing
the convergence rates of the resulting estimators. The common obstacle in
both estimators is the fact that it is a latent function that needs to be ap-
proximated with a spline representation, which requires unusual treatment
different from the typical handling of the spline approximation. In addition,
for the regression problem, we encounter further difficulties because not only
the estimator, but also the estimating equation that generates the estima-
tor, do not have closed forms. Much effort is spent in clearing these hur-
dles, where we resort to extensive use of bilinear operators (Conway, 1990),
which are very different from typical regression spline asymptotic analysis
(Ma et al., 2015). The detailed proofs are respectively in the Appendix at
the end of the paper and in an online supplementary document.

The success of the B-spline-assisted procedures in achieving the better
rates of convergence in these problems is encouraging. Despite of the satis-
factory result, it is not immediately clear what is the intuitive reason behind
the success. To rationalize the convergence rate of the B-spline based pro-
cedures, we can consider the parametric pdf and regression problems with
measurement error. In these simpler problems, root-n convergence of the
parameter estimation is indeed achievable. Thus, bridging a nonparamet-
ric problem to a parametric problem via B-splines, it is not unreasonable
to expect a classical nonparametric convergence rate for measurement error
problems as well. A critical assumption in such B-spline treatment is that the
possible range of the unobserved covariates are bounded, hence we can con-
fine to a compact set in estimating the functions of interest. This restricted
the impact from the tails of the measurement error distribution, which is ex-
actly what brings down the convergence rate of the deconvolution methods.
More explicitly, in the B-spline approximation, the compact set on which
we perform the estimation is built into the procedure at the very beginning
and we benefit from that throughout the procedure. However, in the decon-
volution procedures, the Fourier and inverse Fourier transformation steps
do not take advantage of the compact set knowledge, and it automatically
estimates these functions on the whole interval, which is much harder to do.

In the following, we devise the estimation procedures for both the prob-
ability density function and the regression mean function in Section 2, and
summarize the theoretical properties of our estimators in Section 3. We
provide simulation studies to demonstrate the rate properties of the new
estimators in Section 4, and illustrate the methods in a data example in
Section 5. The paper is concluded with a discussion in Section 6.
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2. B-spline-assisted estimation procedures.

2.1. Probability density function estimation. To set the notation, we use
fX(x) to denote a generic pdf function of the random variable X, and use
fX0(x) to denote the true pdf that generates the data. We approximate
fX0(x) on its support using B-splines (Masri and Redner, 2005). For sim-
plicity, let the support be contained in [0, 1]. To ensure that the density
function is nonnegative and integrates to 1, we let the approximation be

fX(x,θ) ≡ exp{Br(x)Tθ}∫ 1
0 exp{Br(x)Tθ}dx

,

where Br(x) is a vector of B-spline basis functions, and θ is the B-spline
coefficient vector to be estimated. Then

fW (w,θ) ≡
∫ 1
0 exp{Br(x)Tθ}fU (w − x)dx∫ 1

0 exp{Br(x)Tθ}dx

is an approximation to the pdf of W ≡ X + U , a surrogate of X. We then
perform a simple maximum likelihood estimator (MLE) to obtain θ, i.e. we
maximize

n∑
i=1

logfW (Wi,θ)

=
n∑
i=1

log

∫ 1

0
exp{Br(x)Tθ}fU (Wi − x)dx− nlog

∫ 1

0
exp{Br(x)Tθ}dx

with respect to θ to obtain θ̂, and then reconstruct fX(x, θ̂) and use it as
the estimator for fX0(x), i.e. f̂X0(x) = fX(x, θ̂).

While the estimation procedure for fX0(x) is extremely simple, it is not as
straightforward to establish the large sample properties of the estimator. In
Section 3, we will show that f̂X0(x) converges to fX0(x) at a nonparametric
rate under mild conditions.

2.2. Regression function estimation. Unlike in the density estimation
case, the estimation procedure in the regression model is much more com-
plex as we now describe. The key observation is that as soon as the nonpara-
metric function m(x) is approximated with the B-spline representation, the
regression function itself without measurement error is a purely parametric
model (Wang and Yang, 2009), hence the idea behind Tsiatis and Ma (2004)
can be adapted. Specifically, we treat the B-spline coefficients as parame-
ters of interest, treat the unspecified distribution of X, fX(x), as nuisance
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parameter, and cast the problem as a semiparametric estimation problem.
We can then construct the efficient score function, which relies on fX0(x).
A key observation of Tsiatis and Ma (2004) is that by replacing fX0(x) with
an arbitrary working model, the consistency of the estimation can still be
retained. We now describe the estimation procedure in detail.

First, let f∗X(x) be a working pdf of X. Note that f∗X(x) may not be the
same as fX0(x), that is, f∗X(x) is possibly misspecified. Following the practice
of density estimation in Section 2.1, assume that the true density function
fX0(x) has compact support contained in [0, 1]. Therefore we only need to
consider m(x) on [0, 1]. We approximate m(x) using spline representation
Br(x)Tβ. Define

S∗β(W,Y,β) =
∂

∂β
log

∫ 1

0
fε{Y −Br(x)Tβ}fU (W − x)f∗X(x)dµ(x)

= −
∫ 1
0 f
′
ε{Y −Br(x)Tβ}fU (W − x)f∗X(x)Br(x)dµ(x)∫ 1
0 fε{Y −Br(x)Tβ}fU (W − x)f∗X(x)dµ(x)

.

As the notation suggests, S∗β(W,Y,β) is the score function with respect to
β calculated from the joint pdf of (W,Y ) under the working model f∗X(x)
and the spline approximation. Due to the possible misspecification of f∗X(x),
the mean of S∗β(W,Y,β) is not necessarily zero even if the mean function

is exactly Br(x)Tβ. Therefore simply solving
∑n

i=1 S
∗
β(Wi, Yi,β) = 0 may

generate an inconsistent estimator. The idea behind our estimator is to find
a function a(x,β) so that

E{S∗β(W,Y,β) | X}(1)

= E

[∫ 1
0 a(x,β)fε{Y −Br(x)Tβ}fU (W − x)f∗X(x)dµ(x)∫ 1

0 fε{Y −Br(x)Tβ}fU (W − x)f∗X(x)dµ(x)
| X

]
,

and then solve for β using the estimating equation

n∑
i=1

[
S∗β(Wi, Yi,β)(2)

−
∫ 1
0 a(x,β)fε{Yi −Br(x)Tβ}fU (Wi − x)f∗X(x)dµ(x)∫ 1

0 fε{Yi −Br(x)Tβ}fU (Wi − x)f∗X(x)dµ(x)

]
= 0.

This will guarantee a consistent estimator of β if the mean function is indeed
Br(x)Tβ, because our construction ensures the left hand side of (2) has mean
zero. Note that the right hand side of (1) is the conditional expectation of
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a(X,β) calculated under the B-spline approximation and the posited model
f∗X(x), hence we alternatively write it as E∗{a(X,β) | Yi,Wi,β}.

To solve for a(x,β), we discretize the integral equation (1). In particular,
let f∗X(x) =

∑L
j=1 cjI(x = xj), where xj ’s are the points selected on [0, 1],

and cj ≥ 0,
∑L

j=1 cj = 1. Then

S∗β(W,Y,β) = −
∑L

j=1Br(xj)f
′
ε{Y −Br(xj)

Tβ}fU (W − xj)cj∑L
j=1 fε{Y −Br(xj)Tβ}fU (W − xj)cj

.

Next, to write out the right hand side of (1) upon discretization, let A(β)
be an L× L matrix with its (i, j) entry

Aij(β) =

∫
fε{y −Br(xj)

Tβ}fU (w − xj)cj∑L
j=1 fε{y −Br(xj)Tβ}fU (w − xj)cj

×fε{y −Br(xi)
Tβ}fU (w − xi)dµ(y)dµ(w).

Let ai = a(xi,β), a = (a1, . . . ,aL). Further, define Hj(β) = {H1j(β), . . . ,HLj(β)},
where

Hij(β) = −
∫

f ′ε{y −Br(xj)
Tβ}fU (w − xj)cj∑L

j=1 cjfε{y −Br(xj)Tβ}fU (w − xj)

×fε{y −Br(xi)
Tβ}fU (w − xi)dµ(y)dµ(w),

and let b(β) be a p× L matrix, with its ith column

bi(β) =
L∑
j=1

Hij(β)Br(xj).

Then b(β) =
∑L

j=1Br(xj)Hj(β).
With these notations, the integral equation (1) is equivalently written

as
∑L

j=1Aijaj =
∑L

j=1Hij(β)Br(xj) for i = 1, . . . , L, or more concisely,

aAT(β) =
∑L

j=1Br(xj)Hj(β). Therefore

a(β) =
L∑
k=1

Br(xk)Hk(β){A−1(β)}T,

hence

aj(β) =

L∑
k=1

Br(xk)Hk(β){A−1(β)}Tej ,

https://biostats.bepress.com/cobra/art118
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where ej is a length L vector with the jth component 1 and all others zero.
Thus, we have obtained a(X,β) on the discrete set x1, . . . xL and can form

E∗{a(X,β) | Y,W,β}

=

∑L
j=1 aj(β)fε{Y −Br(xj)

Tβ}fU (W − xj)cj∑L
j=1 fε{Y −Br(xj)Tβ}fU (W − xj)cj

=
L∑
k=1

Br(xk)
Hk(β)

∑L
j=1{A−1(β)}Tejfε{Y −Br(xj)

Tβ}fU (W − xj)cj∑L
j=1 fε{Y −Br(xj)Tβ}fU (W − xj)cj

=

L∑
k=1

Br(xk)Pk(W,Y,β),

where

Pk(W,Y,β) =
Hk(β)

∑L
j=1{A−1(β)}Tejfε{Y −Br(xj)

Tβ}fU (W − xj)cj∑L
j=1 fε{Y −Br(xj)Tβ}fU (W − xj)cj

.

We then obtain the estimator for β by solving the estimating equation (2)
with the corresponding a(x,β) plugged in. Note that in all the functions
that are explicitly written to depend on β, the dependence is always through
Br(·)Tβ.

We show that Br(x)Tβ̂ converges to m(x) at a nonparametric rate and we
derive its estimation variance in Section 3 under mild conditions. As pointed
out by an anonymous referee, instead of adopting a working model f∗X(x),
we could in fact estimate fX0(x) using the method developed in Section
2.1 to obtain f̂X(x), and then use f̂X(x) instead of f∗X(x) to carry out the
subsequent operations. We believe that this is the optimal thing to do and
will generate the most efficient estimator. However, rigorously establishing
the theoretical property of such practice is challenging so we leave this option
to future research.

3. Asymptotic results.

3.1. Results of probability density function estimation. We assume the
following regularity conditions.

(C1) The true density function fX0(x) has compact support contained in
[0, 1], is bounded on its support and satisfies fX0(x) ∈ Cq([0, 1]),
q ≥ 1. fU (u) is bounded above. The conditional pdf of X given W ,
fX|W (x|w), is bounded.

(C2) The spline order r ≥ q.

Hosted by The Berkeley Electronic Press
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(C3) We define the knots t−r+1 = · · · = t0 = 0 < t1 < · · · < tN < 1 =
tN+1 = · · · = tN+r, where N is the number of interior knots and [0, 1]
is divided into N+1 subintervals. Let dθ = N+r. N satisfies N →∞,
N−1n(logn)−1 →∞, and Nn−1/(2q) →∞ when n→∞.

(C4) Let hp be the distance between the (p + 1)th and pth interior knots
and let hb = max

r≤p≤N+r
hp, hs = min

r≤p≤N+r
hp. There exists a constant

chb , 0 < chb <∞, such that

hb/hs < chb .

Therefore, hb = O(N−1), hs = O(N−1).
(C5) θ0 is a spline coefficient such that supx∈[0,1] |Br(x)Tθ0−log{fX0(x)}| =

Op(h
q
b). The existence of such θ0 has been shown in De Boor (1978).

(C6) The expectation

E

([∫ 1
0 exp{Br(x)Tθ}fU (Wi − x)Br(x)dx∫ 1

0 exp{Br(x)Tθ}fU (Wi − x)dx
−
∫ 1
0 exp{Br(x)Tθ}Br(x)dx∫ 1

0 exp{Br(x)Tθ}dx

])
is a smooth function of θ and has unique root for θ in the neighborhood
of θ0.

Condition (C1) contains some basic boundedness and smoothness con-
ditions on various densities and is quite standard. The only requirement
that appears nonstandard is that fX0(x) has compact support. This how-
ever is practically relevant in many situations as the range of the values
a random variable can be may very well be bounded. Condition (C2) is a
standard requirement to ensure that splines of sufficiently high order are
utilized. Condition (C3) requires suitable amount of spline basis to be used
according to the sample size, and Condition (C4) makes sure that the spline
knots are distributed sufficiently evenly. In summary, Conditions (C2), (C3)
and (C4) are standard requirements and together with Condition (C1), they
ensure Condition (C5). We list Condition (C5) instead of stating it in the
proof for convenience. Finally, Condition (C6) ensures that we are not in
the degenerate case where the expression in (C6) is constantly zero. Under
these conditions, we obtain the following properties of f̂X0(x).

Proposition 1. Assume Conditions (C1) – (C6) to hold. Let θ̂ maxi-
mize

n∑
i=1

logfW (Wi,θ)

=
n∑
i=1

log

∫ 1

0
exp{Br(x)Tθ}fU (Wi − x)dx− nlog

∫ 1

0
exp{Br(x)Tθ}dx,
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then θ̂ − θ0 = op(1) element-wise.

Proposition 2. Assume Conditions (C1) – (C6) to hold. Let θ̂ maxi-
mize

n∑
i=1

logfW (Wi,θ)

=

n∑
i=1

log

∫ 1

0
exp{Br(x)Tθ}fU (Wi − x)dx− nlog

∫ 1

0
exp{Br(x)Tθ}dx.

Then ‖θ̂ − θ0‖2 = Op{(nhb)−1/2}. Further, define

R00 = n−1
n∑
i=1

∫ 1

0

{
fX0(x)fU (Wi − x)∫ 1

0 fX0(x)fU (Wi − x)dx
− fX0(x)

}
Br(x)dx.

Then

θ̂ − θ0

=

(
E

[∫ 1
0 fX0(x)fU (Wi − x)Br(x)Br(x)Tdx∫ 1

0 fX0(x)fU (Wi − x)dx

−

{∫ 1
0 fX0(x)fU (Wi − x)Br(x)dx

}⊗2
{∫ 1

0 fX0(x)fU (Wi − x)dx
}2 −

∫ 1

0
fX0(x)Br(x)Br(x)Tdx

+

{∫ 1

0
fX0(x)Br(x)dx

}⊗2])−1
R00{1 + op(1)}.

Propositions 1 and 2 establishes the consistency and convergence rate
properties of θ̂ to θ0 defined in Condition (C5). The proof of Propositions
1 and 2 are in Supplement S.3 and S.4 respectively. We then utilize these
properties to analyze the bias, variance and convergence rate of f̂X0(x) in
Theorem 1, with its proof in Appendix A.1.

Theorem 1. Assume Conditions (C1) – (C6) to hold. Let θ̂ be defined
in Proposition 2 and

f̂X0(x) =
exp{Br(x)Tθ̂}∫ 1

0 exp{Br(x)Tθ̂}dx
.

Then supx∈[0,1] |log{f̂X0(x)} − log{fX0(x)}| = Op{(nhb)−1/2}. Further

bias{f̂X0(x)} ≡ E{f̂X0(x)− fX0(x)} = Op(h
q−1/2
b ),

Hosted by The Berkeley Electronic Press
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and √
nhb

[
f̂X0(x)− fX0(x)− bias{f̂X0(x)}

]
=

√
nhb

∂

∂θT

exp{Br(x)Tθ0}∫ 1
0 exp{Br(x)Tθ0}dx

(
E

[∫ 1
0 fX0(x)fU (Wi − x)Br(x)Br(x)Tdx∫ 1

0 fX0(x)fU (Wi − x)dx

−

{∫ 1
0 fX0(x)fU (Wi − x)Br(x)dx

}⊗2
{∫ 1

0 fX0(x)fU (Wi − x)dx
}2 −

∫ 1

0
fX0(x)Br(x)Br(x)Tdx

+

{∫ 1

0
fX0(x)Br(x)dx

}⊗2])−1

×n−1
n∑
i=1

∫ 1

0

{
fX0(x)fU (Wi − x)∫ 1

0 fX0(x)fU (Wi − x)dx
− fX0(x)

}
Br(x)dx+ op(1).

Theorem 1 shows that the B-spline MLE density estimator is root-nhb
consistent to fX0(x), which is a standard nonparametric density estima-
tion rate when no measurement error occurs, and is improved substantially
compared to the nonparametric deconvolution method.

3.2. Results of regression mean function estimation. To facilitate the de-
scription of the regularity conditions and the asymptotic results, we intro-
duce some notations. Define

P (x,W, Y,β) =
H(x,β)

∑L
j=1{A−1(β)}Tejfε{Y −Br(xj)

Tβ}fU (W − xj)cj∫ 1
0 fε{Y −Br(x)Tβ}fU (W − x)f∗X(x)dµ(x)

,

H(x,β) = {H1(x,β), . . . ,HL(x,β)},

Hi(x,β) = −
∫

f ′ε{y −Br(x)Tβ}fU (w − x)f∗X(x)∫ 1
0 fε{y −Br(x)Tβ}fU (w − xj)f∗X(x)dµ(x)

×fε{y −Br(xi)
Tβ}fU (w − xi)dµ(y)dµ(w),

and write

E∗{a(X,β) | Y,W,β} =

∫ 1

0
Br(x)P (x,W, Y,β)dµ(x),

S∗β(W,Y,β) =

∫ 1

0

Br(x)f ′ε{Y −Br(x)Tβ}fU (W − x)f∗X(x)

−
∫ 1
0 fε{Y −Br(x)Tβ}fU (W − x)f∗X(x)

dµ(x).

We further define S∗β(Wi, Yi,m), E∗{a(X,m) | Yi,Wi,m}, P (x,W, Y,m),
Pk(W,Y,m) to be the resulting quantities when we replace all the appear-
ance of Br(·)Tβ in S∗β(Wi, Yi,β), E∗{a(X,β) | Yi,Wi,β}, P (x,W, Y,β), and
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Pk(W,Y,m) by m(·) respectively. Here a(X,m) is a function that satisfies

E[S∗β(Wi, Yi,m)− E∗{a(X,m)|Yi,Wi,m}|X,m] = 0,

where the last m is used to emphasize that the calculation of the outside
expectation depends on m. Note that these definitions do not conflict with
the notations used before. In fact, some generalize the previous notations.
We further define Sm(Y,W,m) to be a linear operator on Lp whose value at
s ∈ Lp is

Sm(Y,W,m)(s)

=

∫ 1

0

[
−

f ′ε{Y −m(x)}fU (W − x)f∗X(x)dµ(x)∫ 1
0 fε{Y −m(x)}fU (W − x)f∗X(x)dµ(x)

− P (x, Y,W,m)

]
s(x)dx.

The derivative of Sm(Y,W,m) is a bilinear operator on Lp × Lq with 1/p+
1/q = 1, 1 ≤ p, q ≤ ∞, whose value at s ∈ Lp, v ∈ Lq is

∂Sm(Y,W,m)

∂m
(s, v) =

∂Sm(Y,W,m+ tv)(s)

∂t

∣∣∣∣
t=0

.

Further, we define a bilinear operator

S2
m(Y,W,m)(s, v) = Sm(Y,W,m)(s)Sm(Y,W,m)(v).

From the above definition, we can see that

E{Sm(Y,W,m)}(s) = 0,

n−1
∑n

i=1 Sm(Yi,Wi,m)(s)− E{Sm(Yi,Wi,m)}(s) = op(1)‖s‖p.

Also,

n−1
∑n

i=1
∂Sm(Yi,Wi,m)

∂m (s, v)− E
{
∂Sm(Yi,Wi,m)

∂m

}
(s, v) = op(1)‖s‖p‖v‖q,

n−1
∑n

i=1 S
2
m(Yi,Wi,m)(s, v)− E{S2

m(Yi,Wi,m)}(s, v) = op(1)‖s‖p‖v‖q,

where E{S2
m(Yi,Wi,m)}(s, v) = E{Sm(Y,W,m)(s)Sm(Y,W,m)(v)} and

E{∂Sm(Yi,Wi,m)/∂m}(s, v) = E[{∂Sm(Y,W,m)/∂m}(s, v)].
We now list the regularity conditions.

(D1) The true density functions fX0(x), fε(ε) are bounded on their supports.
In addition, the support of fX0(x) is compact.

(D2) E {∂Sm(Y,W,m)/∂m} is a bounded bilinear operator on L2×L2, L1×
L∞, and L∞ × L1. E{S2

m(Yi,Wi,m)} is a bounded bilinear operator
on L2 × L2.
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(D3) m(x) is bounded on [0, 1] and it satisfies m(x) ∈ Cq([0, 1]), q ≥ 1.
(D4) β0 is a dβ dimensional spline coefficient such that supx∈[0,1] |Br(x)Tβ0−

m(x)| = Op(h
q
b). The existence of such β0 has been shown in De Boor

(1978).
(D5) The expectation

E[S∗β(Wi, Yi,β)− E∗{a(X,β)|Yi,Wi,β}]

has unique root for β in the neighborhood of β0. Its derivative with
respect to β is a smooth function of β in the neighborhood of β0, with
its singular values bounded and bounded away from zero. Denote the
unique zero β∗.

Conditions (D1) and (D2) contain bounded requirement on pdfs and op-
erators and are not stringent. Condition (D1) further requires the compact
support of the distribution of X. This is similar to the density estimation
case and is crucial. Conditions (D3) and (D4) are regarding the mean func-
tion m(x) and its spline approximation which are quite standard. Condition
(D5) is a unique root requirement similar to (C6) and is used to exclude the
pathologic case where the estimating equation is constantly zero.

In the following, we establish the consistency of the parameter estimation
in Proposition 3 and then further analyze its convergence rate in Proposition
4. The results in these propositions are subsequently used to further establish
the asymptotic properties of the estimator of the regression mean function
m(x) in Theorem 2. The proofs of both the propositions and the theorem
are in Supplement S.5, S.6 and Appendix A.2 respectively.

Proposition 3. Assume Conditions (C2) – (C4), (D1) – (D5) to hold.
Let β̂ satisfy

n∑
i=1

S∗β(Wi, Yi, β̂)− E∗{a(X, β̂) | Yi,Wi, β̂} = 0.

Then β̂ − β0 = op(1) element-wise.

Proposition 4. Assume Conditions (C2) – (C4), (D3) – (D5) to hold.
Let β̂ satisfy

n∑
i=1

S∗β(Wi, Yi, β̂)− E∗{a(X, β̂) | Yi,Wi, β̂} = 0.
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Then ‖β̂ − β0‖2 = Op{(nh)−1/2}. Further,

β̂ − β0 =

{
E

(
∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]

∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)}−1
×T00{1 + op(1)},

where

T00 = n−1
n∑
i=1

S∗β(Wi, Yi,m)− E∗{a(X,m) | Yi,Wi,m}.

Theorem 2. Assume Conditions (C2) – (C4), (D1) – (D5) to hold. Let
m̂(x) = Br(x)Tβ̂. Then supx∈[0,1] |m̂(x) −m(x)| = Op{(nhb)−1/2}. Specifi-

cally, bias{m̂(x)} = E{m̂(x)−m(x)} = Op(h
q−1/2
b ) and√

nhb[m̂(x)−m(x)− bias{m̂(x)}]
=

√
nhbBr(x)T

×

−{E(∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]
∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)}−1

×n−1
n∑
i=1

S∗β(Wi, Yi,m)− E∗{a(X,m) | Yi,Wi,m}

]
+ op(1).

Theorem 2 shows that even with misspecified f∗X(x), m̂(x) converges to
m(x) with root-nhb rate, which is the standard nonparametric rate of the
regression mean function without measurement errors, and is considerably
faster than deconvolution estimators.

4. Simulation studies.

4.1. Performance of B-spline-assisted MLE. We conduct two simulation
studies to illustrate the finite sample performance of the proposed pdf and
regression mean estimators. To evaluate the B-spline MLE method for es-
timating the density functions, we generated data sets of sample sizes from
n = 500 to n = 2000, where X is generated from a beta distribution with
both shape parameters equal to 4. We then generated the measurement error
U from three models:

I(a): a normal distribution with mean 0, variance 0.25, denoted by
N(0, 0.25),
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I(b): a Laplace distribution with mean 0 and scale 0.5/
√

2, denoted by
Lap(0, 0.5/

√
2),

I(c): a uniform distribution on [−0.25, 0.25], denoted by Unif(−0.25, 0.25).

We used cubic splines to approximate the density functions, with number
of knots equal to the smallest integer larger than 1.7n1/5. In the left panel
of Figure 1, we plotted the averaged root-(nhb) maximum absolute error
(MAE), calculated as

√
nhb supx |f̂X0(x)− fX0(x)|, versus the sample sizes

n. Following Theorem 1, the root-(nhb) MAE has a constant order. This
translates to the curves in the plots that stabilize in a small range, which is
what we observe, especially when sample size grows to larger than 700.

We also compared the B-spline MLE method with the widely used decon-
volution method for density estimation. In the upper row of Figure 2, we
plotted the average values of supx |f̂X0(x) − fX0(x)| based on 200 simula-
tions for both methods at different sample sizes. We adopted the two-stage
plug-in bandwidth selection method proposed in Delaigle and Gijbels (2002)
in implementing the deconvolution method. Much to our surprise, results in
the upper row of Figure 2 indicate that the B-spline MLE method outper-
forms the deconvolution method with rather significant gain in this case.
We suspect that this is because the measurement errors are quite large here
which caused difficulties for both methods but especially for the deconvolu-
tion method.

To further examine the performance of individual estimated pdf curves
from both methods, we also plotted the estimated density curves for sample
sizes 500, 1000 and 2000. Because the deconvolution method performs poorly
when the measurement errors are large (see upper row of Figure 2), we
reduced the error variances, and generated the three error distributions from
models

II(a): N(0, 0.0025), II(b): Lap(0, 0.05/
√

2), II(c): Unif(−0.125, 0.125).

Under the reduced error variability, we performed the estimation and plot-
ted the resulting density estimates and their 90% confidence bands. Figure
3 contains the results of the B-spline MLE and the deconvolution estimator
using the two-stage plug-in bandwidth (Delaigle and Gijbels, 2002), at sam-
ple size 500. The results show that although not as dramatic as the large
error case, the B-spline MLE is still closer to the true pdf with narrower
confidence band, hence is more precise than the deconvolution method. We
also provide the similar comparison results at sample sizes 1000 and 2000
in Figures S.1 and S.2 in the supplement. For a quantitative comparison,
we also computed the MAE between the true pdf curve and the estimated
pdf curve in the upper part of Table 1. These results show that the B-spline
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MLE performs consistently better than deconvolution.

4.2. Performance of B-spline-assisted semiparametric estimator. We next
evaluated the finite sample performance of the B-spline semiparametric
mean regression method described in Section 2.2. We used sample sizes n
from 500 to 2000 and generated X from a beta distribution with both shape
parameters equal to 2. The true regression mean function is m(x) = sin(2πx)
and we generated the regression model errors ε from a normal distribution
with mean zero variance 0.25. We generated the measurement errors U from
the three different distributions described in model I (a)–(c). Cubic splines
were used to approximate the mean function, and the number of interior
knots were proportional to n1/5. In the right panel of Figure 1, we plotted
the averaged root-(nhb) MAE calculated via

√
nhb supx |m̂(x) −m(x)| as a

function of the sample size n. Similar to the density estimation experiment,
the curves stabilize as sample size increases, and is largely flattened after
n = 1000, indicating that supx |m̂(x)−m(x)| has order (nhb)

−1/2.
We further compared the B-spline semiparametric method with the decon-

volution method in the nonparametric mean regression model. In the lower
row of Figure 2, we plotted the average supx |m̂(x) −m(x)| over 200 simu-
lations for both methods. Again, in this case, with moderate to significant
amount of noise, the B-spline semiparametric method greatly outperforms
the deconvolution method with smaller average error.

Similar to the pdf investigation, we reduce the measurement error vari-
ability and generated the errors from model II (a)–(c) to investigate the
mean function curve fitting. We plotted the mean function estimates and
the 90% confidence bands for the B-spline semiparametric and deconvolu-
tion methods in Figure 4 and Figures S.3 and S.4 in the supplement for
sample sizes 500, 1000 and 2000 respectively. These results indicate that the
B-spline semiparametric estimator indeed outperforms the deconvolution
method. Their performance difference in terms of averaged MAE between
the estimated and true mean curves are further provided in the lower half
of Table 1.

5. Data Example. Heavy fine particulate matter (PM2.5) air pollu-
tion has become a serious problem in China in recent years and its possible
effect on respiratory diseases has been a concern in public health. Start-
ing from 2012, Beijing Environmental Protection Bureau (BEPB) has been
recording the daily PM2.5 levels in Beijing. Based on these data, Xu et al.
(2016) studied the effect of PM2.5 on asthma in year 2013. Specifically, they
explored the PM2.5 effect on the number of daily asthma emergency room
visits (ERV) in ten hospitals in Beijing, but found no significant effect. In
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fact, the mean number of daily asthma ERVs even shows a decreasing trend
along the increase of measured PM2.5. This contradicts with the general
conclusion that PM2.5 has short term adverse effect on asthma (Fan et al.,
2016).

A potential reason of this inconsistency is the errors in the PM2.5 mea-
surements which were not taken into account in the above analysis. In fact,
there are many debates on the accuracy of the PM2.5 reports, especially
in the early years such as 2013. For example, we compared the daily aver-
age PM2.5 reports in 2013 from 17 ambient air quality monitoring stations
and those reports from the “Mission China Beijing” website (Mission-China,
2016) maintained by the U.S. department of state, and show the two esti-
mated pdfs of PM2.5 in Figure 5. It is clear that the estimated pdfs of PM2.5
from the two sources are very different, where the PM2.5 concentrations ob-
tained from the BEPB yields a pdf estimate with the mode to the left of
that obtained from the “Mission China Beijing”, indicating a generally less
severe air pollution problem. This motivates us to consider the measurement
error issue in studying the effect of PM2.5 on the daily asthma ERV.

We restrict our analysis of PM2.5 in the range from 0 to 400. The largest
recorded PM2.5 value is 328. The data set we analyzed contains 337 obser-
vations. In the data available to us, the ith observation contains the number
of daily asthma ERVs, which we treat as response Yi, the average PM2.5
level over 17 ambient air quality monitoring stations from BEPB, which we
denote as Wi, and the PM2.5 level from “Mission China Beijing”, which
we write as W0i. To carry out the analysis, we let the true PM2.5 value
be Xi, and let Wki, Uki be the observed PM2.5 value and its corresponding
measurement error at the kth monitoring station, k = 1, . . . , 17. We assume
Uki’s are independent of each other and of Xi. Then Wi =

∑17
k=1Wki/17.

Writing U i =
∑17

k=1 Uki/17, we have Wi = Xi + U i. Because our prelim-
inary analysis result in Figure 5 suggests a possible discrepancy between
the measurements in Wi and in W0i, we allow a potential bias term b and
model W0i = b + Xi + U0i, where U0i is the measurement error of W0i.
We assume all the Uki, k = 0, . . . , 17 to have the same distribution with
mean zero, and we estimate b by b̂ = n−1(

∑n
i=1W0i −

∑n
i=1Wi), which

yields the value b̂ = 132. We further estimated the variance of U i based on
var(U) = {var(W0i−Wi)}/18. This yields v̂ar(U) = 0.008. Further, because
U i is the average of 17 iid Uki’s, it is sensible to assume that U i has a normal
distribution.

Based on the above preliminary analysis, we proceed to estimate the pdf of
PM2.5, i.e. Xi, and the mean regression function of asthma ERVs conditional
on PM2.5, i.e. E(Yi | Xi), using the B-spline-assisted MLE/semiparametric
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methods in Sections 2.1 and 2.2. We further implemented 100 bootstraps to
estimate the asymptotic variances of the resulting estimators. We also com-
pared the B-spline MLE and the B-spline semiparametric regression estima-
tor with the deconvolution density and regression estimators. In implement-
ing the B-spline approximation, we used two and three equally spaced knots
respectively, and in implementing the deconvolution methods, we used band-
width 0.05. The number of knots is chosen based on the simulation studies in
Section 4. In terms of the bandwidth selection, because the crossvalidation
(Stefanski and Carroll, 1990) and the plug-in (Delaigle and Gijbels, 2002)
bandwidth selection algorithms tend to select small bandwidths that induce
large numerical errors, we used the smallest bandwidth that produced sta-
ble results in our analysis. The upper panel in Figure 6 shows the estimated
pdfs based on the B-spline MLE and the deconvolution method. Compared
with the kernel estimator in the same plots which ignores the measurement
errors, the B-spline MLE shows more difference than the deconvolution es-
timator. This is sensible given that the noise-to-signal ratio is quite large at
var(Ūi)/var(Xi) = 0.2, hence measurement error is likely not ignorable. The
lower panel in Figure 6 provides the estimated mean of Yi as a function of
Xi. The B-spline semiparametric estimator shows a fluctuating pattern in
the range from 0 to 200, although the pattern is not significant. In the range
of PM2.5 concentration larger than 200, it shows clearly an increasing trend,
which agrees with the conclusion in Fan et al. (2016) that the exposure to
high PM2.5 has adverse effect on asthma onset. In contrast, the relation
from the deconvolution estimator is similar to that of the local linear regres-
sion estimator ignoring the measurement errors, and it is unable to detect
the increasing trend of the asthma ERVs as the PM2.5 level increases.

6. Discussion. We have developed a B-spline-assisted MLE for non-
parametric pdf estimation and a B-spline-assisted semiparametric estimator
for nonparametric regression mean function, under the situation that the
covariates are measured with errors. The performance of both procedures
are superior to the widely used deconvolution methods, in terms of both
their theoretical convergence rate and their numerical performance.

A key difference between our procedures and the deconvolution procedures
is that we restrict our interest in estimating the functions on a compact set.
Given that practically most time, the possible range of a random variable
is indeed finite, hence the relevant information is indeed only functions in a
finite range, we are very curious if deconvolution methods can achieve the
same convergence property in such case, with possibly some modifications
on the existing procedures. To this end, Hall and Qiu (2005) provides some
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relevant results, while we leave this general question as an open problem for
researchers who specialize in deconvolution methods.

Another curious issue is regarding kernel treatment to nonparametric
functions. In many nonparametric estimation problems, kernel methods and
B-spline methods generate comparable results. However, our procedures crit-
ically rely on the B-spline approximation to convert the unknown func-
tions to “parametric” ones, hence we cannot readily replace the B-spline
method with kernel method. Whether or not kernel methods can be applied
in nonparametric density estimation and nonparametric regression estima-
tion problems with measurement errors to achieve the same convergence rate
as B-spline based methods remains a challenging and interesting question.

The density and regression function estimation problems studied in this
work is the most basic ones. In practice, various complications may occur.
For example, the error distribution fU (u) may not be known and need to be
estimated parametrically or nonparametrically based on repeated measure-
ments or other instruments. If one estimates fU (·) parametrically first then
insert it into our procedure, it will not have first order effect. However, if
fU (·) is estimated nonparametrically, it will in general affect both the bias
and variance of the resulting estimation of both the density and regression
functions. See Delaigle and Hall (2016) for deconvolution based estimation
incorporating unknown error distribution. The story may be even more in-
teresting when U and X are correlated hence heteroscedastic measurement
errors occur. These are all very interesting problems and are worth careful
investigation.

Appendix.

A.1. Proof of Theorem 1. Note that

sup
x∈[0,1]

|log{f̂X(x)} − log{fX0(x)}|

= sup
x∈[0,1]

|Br(x)Tθ̂ − log

∫ 1

0
exp{Br(x)Tθ̂}dx− log{fX0(x)}|

= sup
x∈[0,1]

|Br(x)Tθ̂ −Br(x)Tθ0 + Br(x)Tθ0 − log{fX0(x)}

−log

∫ 1

0
exp{Br(x)Tθ̂}dx+ log

∫ 1

0
exp{Br(x)Tθ0}dx

−log

∫ 1

0
exp{Br(x)Tθ0}dx|
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≤ sup
x∈[0,1]

{‖Br(x)‖2‖θ̂ − θ0‖2}+ sup
x∈[0,1]

|Br(x)Tθ0 − log{fX0(x)}|

+|log

∫ 1

0
exp{Br(x)Tθ̂}dx− log

∫ 1

0
exp{Br(x)Tθ0}dx|

+|log

∫ 1

0
exp{Br(x)Tθ0}dx|

= sup
x∈[0,1]

{‖Br(x)‖2‖θ̂ − θ0‖2}+ sup
x∈[0,1]

|Br(x)Tθ0 − log{fX0(x)}|

+| ∂
∂θT

log

∫ 1

0
exp{Br(x)Tθ?}dx(θ̂ − θ0)|+ |log

∫ 1

0
exp{Br(x)Tθ0}dx|

≤ sup
x∈[0,1]

{‖Br(x)‖2‖θ̂ − θ0‖2}+ sup
x∈[0,1]

|Br(x)Tθ0 − log{fX0(x)}|

+‖ ∂

∂θT
log

∫ 1

0
exp{Br(x)Tθ?}dx‖2‖(θ̂ − θ0)‖2 + |log

∫ 1

0
exp{Br(x)Tθ0}dx|

= Op{(nhb)−1/2 + hqb},

where θ? is the point on the line connecting θ̂ and θ0. The last equality holds
by Condition (C5), Proposition 2, and the fact that log

∫ 1
0 exp{Br(x)Tθ0}dx

is a smooth function of Br(x)Tθ0, which implies

|log

∫ 1

0
exp{Br(x)Tθ0}dx|

= |log

∫ 1

0
exp{Br(x)Tθ0}dx− log

∫ 1

0
exp[log{fX0(x)}]dx| = Op(h

q
b)

following Condition (C5). Further for any x,

bias{f̂X(x)} = E

[
exp{Br(x)Tθ̂}∫ 1

0 exp{Br(x)Tθ̂}dx

]
− fX0(x)

= E

[
exp{Br(x)Tθ̂}∫ 1

0 exp{Br(x)Tθ̂}dx

]
−

[
exp{Br(x)Tθ0}∫ 1

0 exp{Br(x)Tθ0}dx

]

+

[
exp{Br(x)Tθ0}∫ 1

0 exp{Br(x)Tθ0}dx

]
−

[
exp[log{fX0(x)}]∫ 1

0 exp[log{fX0(x)}]dx

]

= E

(
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
(θ̂ − θ0)

)
+Op(h

q
b),(A.1)

where θ3 is on the line connecting θ0 and θ̂. The third equality holds by
Condition (C5). Consider the expectation in (A.1), recall that from (S.8),

θ̂ − θ0 = −R1(θ
∗)−1(R00 + R01),(A.2)
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where R00,R01,R1(θ) are defined in Proposition 2 and (S.10) and (S.9)
respectively. Further

E

(
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1R00

)

= E

(
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1

×
∫ 1

0

{
fX0(t)fU (Wi − t)∫ 1

0 fX0(x)fU (Wi − x)dx
− fX0(t)

}
Br(t)dt

)

=

∫ 1

0

∫
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1

×

{
fX0(t)fU (Wi − t)∫ 1

0 fX0(x)fU (Wi − x)dx
− fX0(t)

}
fW0(Wi)Br(t)dWidt

=

∫ 1

0

∫ (
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1

× fX0(t)fU (Wi − t)∫ 1
0 fX0(x)fU (Wi − x)dx

fW0(Wi)Br(t)

)
dWidt

−
∫ 1

0

∫
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1fX0(t)fW0(Wi)Br(t)dWidt

=

∫ 1

0

∫
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1fX0(t)fU (Wi − t)Br(t)dWidt

−
∫ 1

0

∫
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1fX0(t)fU (Wi − t)Br(t)dWidt

= 0.(A.3)

In addition, we have∣∣∣∣E
(

∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1R01

)∣∣∣∣
≤ E

(∥∥∥∥ ∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]∥∥∥∥
2

‖R1(θ
∗)−1‖2‖R01‖2

)
.(A.4)

https://biostats.bepress.com/cobra/art118



NEW NONPARAMETRIC MEASUREMENT ERROR MODEL ESTIMATOR 21

First note that,∥∥∥∥ ∂∂θ
[

exp{Br(x)Tθ3}∫ 1
0 exp{Br(x)Tθ3}dx

]∥∥∥∥
2

(A.5)

=

{
dθ∑
k=1

(
exp{Br(x)Tθ3}Brk(x)∫ 1

0 exp{Br(x)Tθ3}dx

−
exp{Br(x)Tθ3}

∫ 1
0 exp{Br(x)Tθ3}Brk(x)dx

[
∫ 1
0 exp{Br(x)Tθ3}dx]2

)2


1/2

≤

 dθ∑
k=1

[
exp{Br(x)Tθ3}Brk(x)∫ 1

0 exp{Br(x)Tθ3}dx

]21/2

+


dθ∑
k=1

(∫ 1

0

exp{Br(x)Tθ3} exp{Br(t)
Tθ3}

[
∫ 1
0 exp{Br(t)Tθ3}dt]2

Brk(t)dt

)2


1/2

≤

[ exp{Br(x)Tθ3}∫ 1
0 exp{Br(x)Tθ3}dx

]2 dθ∑
k=1

B2
rk(x)

1/2

+


∫ 1

0

(
exp{Br(x)Tθ3} exp{Br(t)

Tθ3}
[
∫ 1
0 exp{Br(t)Tθ3}dt]2

)2 dθ∑
k=1

B2
rk(t)dt


1/2

=

[ exp{Br(x)Tθ3}∫ 1
0 exp{Br(x)Tθ3}dx

]2 dθ∑
k=1

B2
rk(x)

1/2

+


∫ 1

0

(
exp{Br(x)Tθ3} exp{Br(t)

Tθ3}
[
∫ 1
0 exp{Br(t)Tθ3}dt]2

)2

dt

dθ∑
k=1

B2
rk(t

∗)


1/2

= Op(1),

where t∗ is the point in (0, 1). In the above derivation, the first inequality
holds by the trianglar inequality, the second inequality holds by Cauchy-
Schwarz inequality, the second equality holds by the mean value theorem,
the last equality holds because

‖Br(x)‖22 =

dθ∑
k=1

B2
rk(x) ≤ sup

k
Brk(x)

dθ∑
k=1

Brk(x) = sup
k
Brk(x) = Op(1).
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Combining (A.4), (A.5), (S.12), (S.18), we have∣∣∣∣E
(

∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
R1(θ

∗)−1R01

)∣∣∣∣
= Op(h

−1
b d

1/2
θ hq+1

b ) = Op(h
q−1/2
b ).(A.6)

Combining (A.6), (A.2) and (A.3), we obtain

E

(
∂

∂θT

[
exp{Br(x)Tθ3}∫ 1

0 exp{Br(x)Tθ3}dx

]
(θ̂ − θ0)

)
= Op(h

q−1/2
b ).

Plug this result to (A.1), we have bias{f̂X(x)} = Op(h
q−1/2
b ).

Hence,√
nhb

[
f̂X(x)− fX0(x)− bias{f̂X(x)}

]
=

√
nhb

[
exp{Br(x)Tθ̂}∫ 1

0 exp{Br(x)Tθ̂}dx
− fX0(x)− bias{f̂X(x)}

]

=
√
nhb

[
exp{Br(x)Tθ̂}∫ 1

0 exp{Br(x)Tθ̂}dx
− exp{Br(x)Tθ0}∫ 1

0 exp{Br(x)Tθ0}dx

+
exp{Br(x)Tθ0}∫ 1

0 exp{Br(x)Tθ0}dx
− fX0(x)− bias{f̂X(x)}

]

=
√
nhb

[
exp{Br(x)Tθ̂}∫ 1

0 exp{Br(x)Tθ̂}dx
− exp{Br(x)Tθ0}∫ 1

0 exp{Br(x)Tθ0}dx

]
+Op(h

q
bn

1/2)

=
√
nhb

∂

∂θT

[
exp{Br(x)Tθ0}∫ 1

0 exp{Br(x)Tθ0}dx

](
E

[∫ 1
0 fX0(x)fU (Wi − x)Br(x)Br(x)Tdx∫ 1

0 fX0(x)fU (Wi − x)dx

−

{∫ 1
0 fX0(x)fU (Wi − x)Br(x)dx

}⊗2
{∫ 1

0 fX0(x)fU (Wi − x)dx
}2 −

∫ 1

0
fX0(x)Br(x)Br(x)Tdx

+

{∫ 1

0
fX0(x)Br(x)dx

}⊗2])−1
n−1

n∑
i=1

∫ 1

0

{
fX0(x)fU (Wi − x)∫ 1

0 fX0(x)fU (Wi − x)dx

−fX0(x)}Br(x)dx+ op(1).

The last equality hold by Proposition 2 and Condition (C3). This proves the
results.
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A.2. Proof of Theorem 2.

sup
x∈[0,1]

|m̂(x)−m(x)|

= sup
x∈[0,1]

|Br(x)Tβ̂ −Br(x)Tβ0 + Br(x)Tβ0 −m(x)|

≤ sup
x∈[0,1]

|Br(x)Tβ̂ −Br(x)Tβ0|+ sup
x∈[0,1]

|Br(x)Tβ0 −m(x)|

= Op{(nhb)−1/2 + hqb},

by Proposition 2 and Condition (C5).

bias{m̂(x)}
= E{m̂(x)−m(x)}
= E{Br(x)Tβ̂ −Br(x)Tβ0}+ {Br(x)Tβ0 −m(x)}
= E{Br(x)Tβ̂ −Br(x)Tβ0}+Op(h

q
b).(A.7)

The last equality holds by Condition (C5). By (S.21) and Proposition 2, we
can see that

|E{Br(x)Tβ̂ −Br(x)Tβ0}|

=

∣∣∣∣E
Br(x)TE

(
∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]

∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)−1

× (T00 + T01){1 + op(1)}}
∣∣∣∣

=

∣∣∣∣E
Br(x)TE

(
∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]

∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)−1

×T01{1 + op(1)}}
∣∣∣∣

≤ E


∥∥∥∥E
(
∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]

∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)−1 ∥∥∥∥
2

×‖Br(x)T‖2‖T01‖2{1 + op(1)}
}

= Op(h
−1
b h

q+1/2
b ) = Op(h

q−1/2
b ).

The second equality holds because E(T00) = 0. The fourth line holds by the

fact that
∑dβ

k=1{ukBrk(x)}2 = M
∑dβ

k=1Brk(x) = M for some finite constant
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M and hence ‖Br(x)T‖2 = O(1),∥∥∥∥E
(
∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]

∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)−1 ∥∥∥∥
2

= Op(h
−1
b )

by (S.28), and ‖T01‖2 ≤ d
1/2
β ‖T01‖∞ = Op(h

q+1/2
b ) by (S.25). Plug this

result to (A.7), we have

bias{m̂(x)} = Op(h
q−1/2
b ).

Hence√
nhb[m̂(x)−m(x)− bias{m̂(x)}]

=
√
nhbBr(x)T

×

−{E(∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]
∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)}−1

× 1

n

n∑
i=1

S∗β(Wi, Yi,m)− E∗{a(X,m) | Yi,Wi,m}

]
−
√
nhbbias{m̂(x)}

=
√
nhbBr(x)T

×

−{E(∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]
∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)}−1

×n−1
n∑
i=1

S∗β(Wi, Yi,m)− E∗{a(X,m) | Yi,Wi,m}

]
+Op(n

1/2hqb)

=
√
nhbBr(x)T

×

−{E(∂[S∗β(Wi, Yi,β)− E∗{a(X,β) | Yi,Wi,β}]
∂βT

∣∣∣∣
Br(·)Tβ=m(·)

)}−1

×n−1
n∑
i=1

S∗β(Wi, Yi,m)− E∗{a(X,m) | Yi,Wi,m}

]
+ op(1),

The second equality holds by the fact that bias{m̂(x)} = Op(h
q−1/2
b ). The

last equality holds by Condition (C3). This proves the result.
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Fig 1. Performance of B-spline MLE pdf estimation (upper) and B-spline semiparametric
mean estimation (lower). Results based on 200 simulations.

Fig 2. Comparison of pdf (upper) and mean (lower) estimators based on the B-spline MLE
or B-spline semiparametric estimator (solid) and the deconvolution (dashed) method, when
measurement errors are norm (left), Laplace (middle) and uniform (right) respectively.

Average maximum absolute error supx |f̂X(x)− fX(x)| (upper) or supx |m̂X(x)−mX(x)|
(lower) is computed based on 200 simulations at sample sizes from 500 to 2000.
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Fig 3. B-spline MLE density estimation (left) and deconvolution estimation (right) from
200 simulations: The solid lines represent the true functions and the dash lines represent
the estimated functions and their 90% confidence bands. The first row to third row are the
results for model II (a)–(c) respectively. Sample size 500.
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Fig 4. B-spline semiparametric regression estimation (left) and deconvolution estimation
(right) from 200 simulations: The solid lines represent the true functions and the dash
lines represent the estimated functions and their 90% confidence bands. The first row to
third row are the results for model II (a)–(c), respectively. Sample size 500.
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Fig 5. The estimated pdf of PM2.5 without considering measurement error, based on data
from Beijing Environmental Protection Bureau (solid line) and “Mission China” website
(dash-line).
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Table 1
Performance comparison between B-spline MLE/semiparametric estimator and

deconvolution. Mean of the maximum absolute differences are reported. Results based on
average over 200 simulations.

pdf estimation: E{supx |f̂X0(x)− fX0(x)|}
B-spline MLE Deconvolution

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000
model II(a) 0.204 0.160 0.109 0.238 0.212 0.160
model II(b) 0.213 0.153 0.110 0.230 0.197 0.158
model II(c) 0.222 0.184 0.124 0.315 0.242 0.230

mean estimation: E{supx |m̂(x)−m(x)|}
B-spline semiparametric Deconvolution

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000
model II(a) 0.370 0.263 0.175 0.908 0.796 0.762
model II(b) 0.425 0.264 0.163 0.857 0.828 0.779
model II(c) 0.414 0.291 0.219 0.880 0.832 0.801
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Fig 6. The B-spline MLE (upper left) and deconvolution (upper right) pdf estimators
and their 95% confidence bands of PM2.5. The B-spline semiparametric (bottom left) and
deconvolution (bottom right) regression estimators and their 95% confidence bands. The
red line is the naive estimator ignoring measurement errors.
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