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Supervised Dimension Reduction for
Large-scale “Omics” Data with Censored

Survival Outcomes Under Possible
Non-proportional Hazards

Lauren Spirko-Burns and Karthik Devarajan

Abstract

The past two decades have witnessed significant advances in high-throughput
“omics” technologies such as genomics, proteomics, metabolomics, transcrip-
tomics and radiomics. These technologies have enabled simultaneous measure-
ment of the expression levels of tens of thousands of features from individual pa-
tient samples and have generated enormous amounts of data that require analysis
and interpretation. One specific area of interest has been in studying the relation-
ship between these features and patient outcomes, such as overall and recurrence-
free survival, with the goal of developing a predictive “omics” profile. Large-scale
studies often suffer from the presence of a large fraction of censored observations
and potential time-varying effects of features, and methods for handling them have
been lacking. In this paper, we propose supervised methods for feature selection
and survival prediction that simultaneously deal with both issues. Our approach
utilizes continuum power regression (CPR) - a framework that includes a variety
of regression methods - in conjunction with the parametric or semi-parametric
accelerated failure time (AFT) model. Both CPR and AFT fall within the linear
models framework and, unlike black-box models, the proposed prognostic index
has a simple yet useful interpretation. We demonstrate the utility of our methods
using simulated and publicly available cancer genomics data.
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Abstract

The past two decades have witnessed significant advances in high-throughput “omics” tech-
nologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These
technologies have enabled simultaneous measurement of the expression levels of tens of thou-
sands of features from individual patient samples and have generated enormous amounts of
data that require analysis and interpretation. One specific area of interest has been in
studying the relationship between these features and patient outcomes, such as overall and
recurrence-free survival, with the goal of developing a predictive “omics” profile. Large-scale
studies often suffer from the presence of a large fraction of censored observations and poten-
tial time-varying effects of features, and methods for handling them have been lacking. In
this paper, we propose supervised methods for feature selection and survival prediction that
simultaneously deal with both issues. Our approach utilizes continuum power regression
(CPR) - a framework that includes a variety of regression methods - in conjunction with
the parametric or semi-parametric accelerated failure time (AFT) model. Both CPR and
AFT fall within the linear models framework and, unlike black-box models, the proposed
prognostic index has a simple yet useful interpretation. We demonstrate the utility of our
methods using simulated and publicly available cancer genomics data.
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1 Introduction

Advances in high-throughput technologies in the past two decades have enabled large-scale

“omics” studies that generate enormous amounts of data that are measured on a variety of

scales. Examples include, but are not limited to, genomic studies such as next-generation se-

quencing, methylation, allele-specific expression, microarrays, and DNA copy number as well

as studies involving genome-wide association, proteomics, metabolomics, transcriptomics

and radiomics. Genomic studies, for instance, enable the simultaneous measurement of the

expression profiles of tens of thousands of genomic features, often from a relatively small

number of individual patient samples. Such studies result in massive quantities of data

requiring analysis and interpretation while offering tremendous potential for growth in our

understanding of the pathophysiology of many diseases. When information on an outcome

variable such as time to an event (or survival time) is available, one of the goals of an in-

vestigator is to understand how the expression levels of genomic features, and clinical and

demographic variables (covariates) relate to an individual’s survival over the course of a dis-

ease. The number of covariates (n) far exceeds the number of observations (p), typically, in

these large-scale genomic studies. With the tremendous volume of information available, the

investigator can now estimate and attempt to understand the effects of specific genomic fea-

tures on various diseases with the ultimate goal of developing a prognostic profile of patient

survival. In this context, biomarker discovery poses many challenges and plays a pivotal

role in the search for more precise treatments. The role and significance of the analysis of

time-to-event data in cancer research cannot be overstated where current efforts focus on

predicting therapeutic responses of patients with a view to personalizing cancer treatment.

The ill-conditioned problem of predicting the survival probability when p >> n is further

compounded by the presence of censored survival times. In this high-dimensional setting, one

is often interested in building a genomic profile that is predictive of the survival probability for

a new patient. The Cox proportional hazards (PH) model is the most celebrated and widely

used statistical model linking survival time to covariates (Cox, 1972). It is a multiplicative
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hazards model that implies constant hazard ratio (HR); that is, it postulates that the risk

(or hazard) of death of an individual given their covariates is simply proportional to their

baseline risk in the absence of any covariate. While this model has proved to be very useful in

practice due to its simplicity and interpretability, the assumption of constant HR has been

shown to be invalid in a variety of situations in medical studies (Devarajan & Ebrahimi,

2011; Peri et al., 2013). When applied to our problem, the PH model would implicitly

assume a constant effect of genomic feature expression on survival over the entire period of

follow-up in a study, a supposition that is neither verifiable nor likely for each feature. For

example, non-proportional hazards (NPH) can occur when the effect of a genomic feature

increases or decreases over time leading to converging or diverging hazards (CH or DH), a

situation that cannot be handled by the PH model (Bhattacharjee et al., 2001; Xu et al.,

2005; Dunkler et al., 2010; Rouam et al., 2011). In addition, NPH can result from model mis-

specification such as from omitting a strong clinical covariate (for instance, age at diagnosis

or stage of disease) or another genomic feature. Another scenario encountered in practice

is the case of dependence between covariates and the censoring time distribution (Chen et

al., 2002). These scenarios require more general survival models that consider time-varying

covariate effects. Examples of such models include the Accelerated Failure Time (AFT) and

Proportional Odds (PO) models, among others (Buckley & James, 1979; Jin et al., 2006;

Martinussen & Scheike, 2006; Yang & Prentice, 2005; Devarajan & Ebrahimi, 2011). The

AFT model is a censored linear regression model in which the covariates cause an acceleration

(linear transformation) of the time scale while the PO model postulates that the odds of

death for an individual, given their covariates, is simply proportional to their baseline odds

- a situation typically encountered when the effect of a genomic feature decreases with time

leading to diverging hazards. Unlike PH, these models do not imply a constant HR and,

interestingly, both PH and PO models intersect with the AFT model. Moreover, the AFT

model can accommodate a variety of well known survival time distributions - such as the

lognormal, log-logistic, Weibull and exponential, to name a few - useful for modeling censored
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survival data in practice or accommodate a completely distribution-free approach with no

prior assumption on the data generating mechanism (Kalbfleisch & Prentice, 2002; Jin et

al., 2006). These attractive properties provide modeling flexibility and make the AFT model

a versatile alternative useful for handling a variety of data structures.

As evidenced by the following literature survey, very little research has been done to

account for the time-varying effect of genomic features or to study the consequences of NPH

on feature selection and survival prediction, despite its clear importance in translational

medicine. Within a broader context, these shortcomings extend to the many types of high-

throughput “omics” studies outlined earlier. In this paper, we generically use the term

“omics” to represent this variety and the term feature to denote the appropriate “omic”

feature of interest. The rest of the paper is organized as follows. In §2, we survey existing

methods for supervised dimension reduction within the context of high-throughput “omics”

data and censored survival outcomes, and discuss their weaknesses. Section 3 begins with

a motivation of the need for a flexible method using real-life cancer genomic data. In §4,

we propose an approach that combines continuum power regression with the parametric or

semi-parametric AFT model and in §5, we develop a prognostic index and survival prediction

algorithm using this approach. Section 6 is devoted to simulation studies for evaluating the

proposed methods while §7 focuses on the application of these methods to several publicly

available data sets in cancer genomics. Last but not least, §8 provides a summary and

discussion including future work. The Supplementary Information (SI) section contains

detailed results from simulation studies and real-life data sets.

2 A brief survey of existing methods and their limitations

A variety of methods are currently available in the literature for handling a large number of

features in conjunction with censored survival outcomes. These include methods based on

principal components regression (PCR) (Li & Li, 2004; Bair et al., 2006; Ma et al., 2006),

partial least squares (PLS) (Park et al., 2002; Li & Gui, 2004; Nguyen & Rocke, 2002;
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Nguyen, 2005; Nygard et al., 2008; Boulesteix & Strimmer, 2007; Devarajan et al., 2010;

Bastien et al., 2015) and regularization such as the ridge regression, least absolute shrinkage

and selection operator (LASSO), least angle regression, elastic net or related variants (Tib-

shirani, 1997; Gui & , 2005; Segal, 2008; Engler & Yi, 2009; Wang et al., 2009; Kaneko et

al., 2012). Other available methods in this context include those based on boosting (Li &

Luan, 2005; Wei & Li, 2007; Luan & Li, 2008; Lu & Li, 2008), sure screening procedures

(Fan et al., 2010), Cox assisted clustering (Eng & Hanlon, 2012), networks (Zhang et al.,

2013), kernel methods (Li & Luan, 2003) and nested cross-validation (Laimighofer et al.,

2016).

A comparison of various existing methods has revealed that those based on a linear

combination of features (such as PCR and PLS) or regularization (such as LASSO etc.)

showed overall superior performance (Bovelstad et al., 2007; van Wieringen et al., 2009;

Witten & Tibshirani, 2008). Methods based on PLS and PCR typically utilize all features

for prediction and cannot directly specify relevant features that are associated with survival.

Regularization methods generally perform well in this setting by identifying unimportant

features from the large number of features present by shrinking their coefficients to exactly

zero. However, a method such as LASSO suffers from some fundamental limitations due to

the L1 penalty. For instance, the number of non-zero coefficients can be at most n, i.e., the

number of features that can be selected by LASSO is bounded by the sample size of the

data set (Rosset et al., 2004). In large-scale genomic studies, this can lead to the unrealistic

conclusion that no more than n genomic features are relevant to survival in a complex

biological process where p � n are actually present. This is further compounded by the

relatively small number of observations often seen in these biomedical studies. Moreover, the

expression levels of features sharing a particular biological pathway can be highly correlated.

It is therefore desirable to have a method that automatically selects the entire set of correlated

features; however, LASSO can usually select only one feature in this situation. On the other

hand, a method such as ridge regression necessarily selects all features in a data set. These

5

Hosted by The Berkeley Electronic Press



issues can pose serious problems particularly when dealing with the ultra high-dimensional

data sets obtained in modern “omics” studies (Wang et al., 2008).

An inherent weakness of these methods is the assumption of PH in their formulation

which does not permit the incorporation and, therefore, the detection of time-dependent

covariate effects. However, there exist methods based on alternate survival models such

as the AFT (Huang et al., 2006; Wang & Leng, 2007; Datta et al., 2007; Wang et al.,

2008; Luan & Li, 2008; Cai et al., 2009; Wang & Wang, 2010; Engler & Yi, 2009; Liu

et al., 2010; Devarajan et al., 2010), PO (Lu & Li, 2008), non-linear transformation (Lu

& Li, 2008), additive hazards (Ma et al., 2006) or that are model-free (Van Belle et al.,

2011; Geng et al., 2014; Pang et al., 2012). Huang et al. (2006) combine the AFT model

with LASSO or threshold-gradient-directed regularization (TGDR) using Stute’s estimator

(Stute, 1993), thereby providing flexible methods for handling NPH and high-dimensionality.

In addition to known limitations, their LASSO approach has been known to result in inferior

prediction accuracy in empirical studies. Furthermore, TGDR is sensitive to the choice of

a parameter value that could significantly alter the number of features selected and thus

lead to overestimation of the number of non-zero coefficients, potentially further reducing

the number of features selected (Wang & Wang, 2010). Datta et al. (2007) developed an

approach that combines standard PLS or LASSO with the AFT model after mean imputation

of censored observations. This approach does not improve upon these existing methods and

suffers from the limitations of LASSO. Devarajan et al. (2010) outlined a PLS-based method

for lognormally distributed data; however, it not only relies on unrealistic assumptions on

the data generating mechanism but also cannot be used on independent test data. Wang

et al. (2008) proposed a doubly penalized method based on the AFT model for estimation,

feature selection and survival prediction by extending elastic net regression for linear models

to censored survival data. Unlike LASSO, this approach can select an arbitrary number

of highly correlated features with non-zero coefficients; however, it involves the selection

of tuning parameters and can be computationally slow. Engler & Yi (2009) proposed an
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elastic net approach with mean imputation in conjunction with the Cox PH or AFT model

and showed that the AFT version showed better performance. Existing model-free methods

provide a flexible alternative that can account for linear and non-linear covariate effects;

however, they tend to be computationally infeasible and typically require the choice of various

tuning parameters.

3 Motivation for the proposed methods

In the high-dimensional setting, incorporating time-dependent covariates in the Cox PH

model, use of stratification or separate modeling for different time periods in order to ac-

count for NPH are prohibitive and infeasible. As outlined in the literature survey above,

computational speed and/or infeasibility, number and choice of tuning parameters, restric-

tions on the number of “omic” features that can be selected, over-estimation of the number

of relevant features and poor predictive performance are some of the noteworthy limitations

when regularization is used on more general survival models that account for NPH or when

a completely model-free method (such as SVM, random forests etc.) is used. Unlike the

PH model, the AFT is built on the linear regression model for censored survival data and

is a viable alternative to it since it directly models survival time and, thus, has a simpler

and more intuitive interpretation. More importantly, it allows crossing hazard and survival

curves, a useful property for modeling large-scale “omics” data with tens of thousands of

features. In this paper, we adopt a more pragmatic approach for initially identifying the

number of relevant features in a data set by simultaneously utilizing model significance and

model fit based on different criteria. In addition, we adjust for potential confounders such as

age of diagnosis and stage of disease with the goal of further eliminating spurious features.

Such supervised marginal screening ensures that each feature selected for inclusion in the

development of a prediction model actually fits the model of interest and has a statistically

significant effect on survival.

Let Y denote the survival time of a typical subject in the study, the length of time entry

7

Hosted by The Berkeley Electronic Press



into the study until a prescribed endpoint is attained. This endpoint may be the onset of

a disease or event associated with it, or death itself. In addition, we let C be the duration

of observation of the subject, i.e. the time from entry into the study until removal. The

random variable C is referred to as a censoring variable. In general, we assume that both

Y and C are non-negative random variables of which only the first one to occur is observed.

Thus, an observation consists of the pair (T, δ), where T = min(Y,C) and δ = I(T = Y ).

We also have data on p covariates from each subject. It is assumed that censoring is non-

informative, i.e. the survival time Y and the censoring mechanism C are independent, and

that the covariates do not provide information about the censoring time C. Survival data

usually consists of N samples, each containing the triple (Ti, δi, zi) for i = 1, · · · , n, where

zi = (zi1, · · · , zip) is the covariate vector or profile of the i-th subject, Ti is the survival time

if δi = 1 and it is the right censored time if δi = 0. The AFT model postulates a log-linear

relationship between time and covariates given by,

log Y = β′z + σε, (3.1)

where β′ is a vector of regression coefficients, z is the vector of covariates, σ is a scale

parameter and ε is the error term whose distribution is either pre-specified or is left com-

pletely unspecified, thus resulting in parametric or semi-parametric versions of the model

(Kalbfleisch & Prentice, 2002; Jin et al., 2006). The intercept can be absorbed into β′ and in

the semi-parametric version, σ ≡ 1 without loss of generality. Its log-linear form enables the

measurements of the direct effect of features on survival time instead of the hazard; more-

over, the regression coefficients can be interpreted in a similar fashion to that of multiple

linear regression. In this model, effect size is measured as the ratio of expected survival times

between two groups, say, patients exhibiting low and high expression of a particular feature

or a set of features. In the clinical setting, it quantifies the effect of a feature on the expected

duration of illness for a patient. This has lead many prominent statisticians, most notably
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Sir D. R. Cox, to observe that the AFT model and its estimated regression coefficients to

have a rather ’direct physical interpretation’ (Reid, 1994). Moreover, it is well-known that

the PH and AFT models cannot simultaneously hold except in the case of extreme value

error distributions. Therefore, the AFT model assumptions can hold when the PH model

assumptions fail.

The semi-parametric AFT (sAFT ) model is particularly attractive due to its distribution-

free nature. Rank-based inference for this model is described in Jin et al. (2003), and regu-

larized estimation is described in Cai et al. (2009) for high-dimensional data. An iterative

solution has been developed to estimate the regression parameters (Jin et al., 2006). This

procedure is based on the least-squares principle while accounting for censoring; however, it

is computationally slow which can be problematic in the high-dimensional setting. The scope

and applicability of AFT models can be significantly broadened by use of the generalized F

distribution (GenF ) (Ciampi et al. (1986) and more recently by Cox (2008)). GenF has

the form seen in equation (4.4). Estimation for this model is based on maximum likelihood

and, thus, offers a flexible and computationally efficient alternative to the sAFT model. Al-

though GenF spans a variety of well known and lesser known models that are appropriate for

modeling survival data, it has received little recognition in the literature. Its benefit lies in

its umbrella structure and it embeds the generalized gamma (which includes Weibull, expo-

nential, gamma and log-normal models), generalized log-logistic (which includes log-logistic

models), F and Burr-type distributions. Other models such as the Maxwell-Boltzmann, gen-

eralized normal, half-normal, Chi and Raleigh are also members of this family among others.

Thus, GenF provides a flexible approach to modeling patient survival in conjunction with

large-scale “omics” data. There are several advantages to using GenF . As alluded to in

§1, the AFT model intersects with the PH and PO models when the underlying data dis-

tribution is Weibull and log-logistic, respectively. The Weibull model with its monotonic

hazard function and the log-normal model due to its mathematical intractability in dealing

with censored observations offer limited potential for modeling survival data. Although the

9
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log-logistic model is similar in shape to the log-normal, its non-monotonic hazard function

allows hazard curves to converge with time thereby incorporating a particular type of NPH

and making it suitable for modeling cancer survival. It can be used if the course of the

disease is such that mortality peaks after a finite time period and then slowly declines.

We motivate the utility of the AFT model for our problem using three data sets from

large-scale cancer genomic studies that are detailed in §7.1. In this analysis, we fit semi-

parametric PH, PO and AFT models to each feature, after adjusting for clinical covariates

such as age at diagnosis and stage of cancer, and evaluate their goodness-of-fit (GOF) us-

ing appropriate methods (Therneau & Grambsch, 1994; Martinussen & Scheike, 2006; and

Novak, 2010). For each model, the q-value method was used to account for multiple testing

(Storey & Tibshirani, 2003). The goal is to identify features that exhibit some form of NPH,

thus demonstrating the need for alternatives to the PH model and, in particular, providing

the rationale for a flexible model like AFT.

The results are summarized in Table 1 where A and B refer to sets of features for which

the PH and PO model do not fit, respectively, and C refers to the set of features for which

the AFT model fits, at the 5% significance level. Typically, we observe that there is a large

number of features for which the PH or PO model does not fit across all data sets. More

importantly, in each data set there is a significantly large fraction of features for which the

AFT model fits (median of 97%). After correction for multiple testing, these observations

are further corroborated by the corresponding q-values which indicate that the AFT model

provides a good fit. The intersections of these sets is particularly revealing where we observe

that the AFT model fits a large fraction of features for which the PH or PO model do not

provide a good fit (median of 95%). Thus, it would be beneficial to develop methods based

on the more general AFT model, which overlaps with the PH and PO models, due to its

inherent ability to account for crossing hazards.
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Table 1: Summary of model fits

Data Set HNSCC GBM Ovarian Ovarian Oral
cancer cancer cancer
(OS) (RFS)

p 19,341 9,452 24,736 13,696 12,776

n 221 280 273 276 86

% C 62% 26% 59% 32% 59%

A: PH 752 217 1,814 2,407 1,810

(lack of fit) (4%)a (2%)c (7%)c (18%)c (14%)b

B: PO 1,992 744 1,413 1,312 1,232

(lack of fit) (10%)b (8%)b (5%)c (10%)c (10%)b

C: AFT 19,090 9,380 24,006 11,655 9,753

(good fit) (99%)a (99%)a (97%)a (85%)a (76%)b

A ∩ C 733 212 1,759 1,865 1,379

B ∩ C 1,966 725 1,350 1,122 1,023

A ∩ B 464 47 381 808 863

A ∩ B ∩ C 451 46 362 659 694

q-value: 0.99a,≤ 0.25b,≈ 0.5c; p=number of features, n=number of observations,
C=censored; numbers within parentheses represent fractions of subsets A, B or C

4 Continuum power regression for large-scale “omics” data

We develop analytical methods for large-scale “omics” data using continuum power regression

(CPR) - a unified framework for supervised dimension reduction - in conjunction with the

AFT model. CPR embeds a spectrum of regression methods into a single framework that

includes well known methods such as ordinary least squares (OLS), partial least squares

(PLS) and principal components regression (PCR) as special cases. Stone & Brooks (1990)

first proposed continuum regression (CR) and showed that OLS, PLS and PCR differed

only in the target quantity being maximized in the process of extracting latent components

that are linear combinations of these high-dimensional covariates. CR aims to maximize a

quantity that includes the variation in covariates as well as the correlation of response with
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covariates, the relative proportions of which are controlled via a single parameter γ. At

the extremes of this continuum, OLS maximizes correlation and PCR extracts orthogonal

components by maximizing variance, while PLS lies in-between and maximizes the covariance

between response and covariates. The numerical instability suffered by OLS due to multi-

collinearity and high-dimensionality are circumvented by the unsupervised and supervised

approaches provided by PCR and PLS, respectively, while the choice of γ provides further

modeling flexibility.

Given an n× p matrix Z of predictors and an n-vector t of quantitative responses of an

outcome, the objective function for constructing reduced components in CR can be expressed

in terms of the objective functions for OLS (correlation, R2), PLS (covariance, Cov) and

PCR (variance, V ar) as

`γ(ν) = gγ(R2(Zν, t), V ar(Zν))

= R2(Zν, t)[V ar(Zν)]γ (4.1)

∝ Cov(Zν, t)2[V ar(Zν)]γ−1.

The optimization criterion is max||ν||=1 `γ(ν) subject to ν′Sνj = 0, j = 1, ...,K, where S = Z′Z is

the covariance of Z, the columns of ν are weight vectors, γ ≥ 0 and K is the number of components.

CR reduces to OLS (γ = 0), PLS (γ = 1) and PCR (γ →∞) and can be shown to be closely related

to ridge regression (Sundberg, 2002).

CPR is a variant of CR that is defined by the algorithm and not as the solution to the optimiza-

tion problem in equation (4.1). In CPR, the PLS estimate τ ∝ ZZ′t is generalized to τ ∝ (ZZ′t)γ

for γ ≥ 0 where Z is modified into its powered version Z(γ) via the SVD of Z, i.e., Z(γ) = ULγ/2V ′.

CPR simplifies similar methods by requiring only one SVD after which standard PLS can be applied

to Z(γ), thus significantly improving computational speed and ease of interpretation (de Jong et al.,

2001; Lorber et al., 1987). CPR coincides with CR for the special cases (γ = 0, 1 and ∞). It has

been suggested that the continuity parameter γ and dimensionality K can play similar roles (Stone

& Brooks, 1990; Frank & Friedman, 1993). There is also evidence to suggest that it is sufficient

to consider only the three important special cases (OLS, PLS and PCR) and that the continuum
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may be unnecessary in CR under certain conditions (Chen & Cook, 2010). Given the fact that at

three points CR is identical to CPR and that K and γ have similar effects, the simplicity, modeling

flexibility and speed of CPR confer significant advantages over CR. In general, PLS requires fewer

components than PCR; this is because the components from the latter need not necessarily be

correlated with time-to-event, whereas all PLS components must be. PLS may be regarded as a

compromise between OLS and PCR.

4.1 The CPR-AFT model

For a given application, CPR has the potential to offer insight into the underlying model. The

ability of AFT to incorporate crossing hazard curves offers unparalleled flexibility for modeling

large-scale “omics” data. As both CPR and AFT fall within the linear models framework, it seems

natural to consider a hybrid model that combines their strengths. By combining AFT with CPR

in a two-step procedure, we develop supervised dimension reduction methods jointly referred to as

(A)CPR-AFT which include CPR-AFT and Adjusted CPR-AFT or ACPR-AFT, that adjusts for

censored observations. (A)CPR-AFT represents a powerful array of solutions for this problem and

enables identification of an “omic” profile that is predictive of a patient’s response to a specific

treatment under a variety of scenarios encountered in practice.

(A)CPR-AFT has a distinct advantage over other methods in the literature because it directly

addresses the three main issues with the application of survival analysis to “omics” data. First,

it addresses the issue of high-dimensionality using CPR, reducing the number of “omic” features

into a smaller number of CPR components that are linear combinations of these features. Second,

it addresses the issue of NPH by using the AFT model, a model that does not assume PH but

partly overlaps with the PH model. Lastly, it addresses the issue of censoring by imputing the

censored observations using the extracted CPR components and the fitted AFT model. In the

literature survey in §2 we noted other dimension reduction methods and, while some utilized either

PLS or AFT, none of the methods addressed the issue of censoring directly. A large number of

published large-scale genomic studies with censored survival outcomes seem to indicate that the

proportion of censored observations is in the 60-80% range. Examples of such studies can be found

in The Cancer Genome Atlas (TCGA) Network (http://cancergenome.nih.gov/), Gene Expression
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Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and Rouam et al. (2011), among others.

Thus, in this application, having a method like ACPR-AFT that adjusts for censored data is not

only beneficial but also desirable (Spirko, 2017). Furthermore, we explore the utility of CPR

coefficients, ω, which are computed as ω = νc′ where the columns of ν are weights vectors and c′

are the loadings, in developing a survival prediction model and for feature ranking and selection.

4.1.1 Supervised extraction of CPR components

The first step in the implementing the CPR-AFT model is to apply CPR which finds weight

vectors, columns of ν, such that the linear combinations Z(γ)ν maximize the objective function

R2(Z(γ)ν, t̃)[Var(Z(γ)ν)]
γ

where t̃ = (log t1, . . . , log tn) are the log transformed observed event times

subject to the constraints outlined earlier. Here, Z(γ) is found via the spectral decomposition of Z;

after this step, standard PLS can be applied to Z(γ) . Let uik = z∗iνk, i = 1, . . . , N, k = 1, . . . ,K,

denote the linear combinations selected by CPR where z∗i denotes the ith row of Z(γ) and νk denotes

the kth column of ν. These represent the CPR components, and the number of components K < p

is chosen based on leave-one-out cross validation (LOOCV) to minimize the predicted residual sum

of squares (PRESS) statistic. We use the reparametrization γ ≡ α/(1 − α) where α values of 0,

1/2 and 1 correspond to OLS, PLS and PCR, respectively. In subsequent sections, we outline

how (A)CPR-AFT can be used to select K, the optimal number of components, and α, the CPR

parameter. PLS is an important special case of CPR which maximizes the covariance between Zν

and log(t) and has been discussed by Devarajan et al. (2010) within this context.

4.1.2 Fitting the AFT model to CPR components

The next step in the (A)CPR-AFT methods involve fitting the AFT model in equation (3.1). We

propose flexible parametric and distribution-free versions of (A)CPR-AFT using the GenF and

sAFT models, respectively. The flexible parametric AFT model, GenF , is given by

log Yi = β′ui + σ∗Wi, i = 1, . . . , N, (4.2)
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where Yi is the survival time for the i-th subject, u′i = (ui0, . . . , uiK) is a (K + 1) vector for the

i-th subject, β = (β0, β1, . . . , βK) is the (K + 1) vector of unknown regression parameters, Wi are

independent error terms with a common distribution FW ∼ GenF and σ∗ is the scale parameter. In

this setting, uik, k = 1, . . . ,K represent the K CPR components for the i-th subject, i = 1, . . . , N .

The semi-parametric AFT model, sAFT , has the form

log Yi = β′ui +Wi, i = 1, . . . , N, (4.3)

where the terms are as defined in equation (4.2). Here, Wi are independent error terms with

unknown distribution FW . Given a feature expression vector z and PLS component u, using

equation (4.2) the survival function of Y is given by

S(y|z) = P (Y > y|z) ≈ P (log Y > log y|u)

= P (β′u + σ∗W > log y|u)

= P (W > (log y − β′u)/σ∗)

= 1− FW
(

log y − β′u
σ∗

)
,

and is estimated by replacing the unknown parameters with their maximum likelihood estimates.

4.2 The parametric and semi-parametric (A)CPR-AFT algorithms

Below, we outline the CPR-AFT and ACPR-AFT algorithms. CPR-AFT ignores censoring and

treats those observations as complete while ACPR-AFT imputes censored observations using mean

residual life based on available data. For a pre-specified CPR parameter α, ACPR-AFT facilitates

efficient extraction of the optimal number, K, of CPR components as determined by PRESS and

LOOCV. The survival prediction algorithm proposed in §5, based on (A)CPR-AFT, simultaneously

allows the optimal choice of α to be chosen in addition to the optimal K and utilizes the CPR

coefficients, ω, from the final model.
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Algorithm 1 CPR-AFT

1: Choose the parameter α and a pre-specified range of values for K.
2: For each K in the range pre-specified in Step 1, compute the PRESS statistic based on

LOOCV and choose the number of CPR components, K, that minimizes the PRESS
statistic. Note that, in this approach, K remains fixed and is chosen independently of α.

3: Perform CPR using α chosen in Step 1 and K identified in Step 2 to obtain weight
vectors νk, k = 1, . . . , K. These weight vectors are used to compute the CPR coefficients
ω as described in §4.1.1.

4: Build the final model using ω as detailed in §5.

Algorithm 2 ACPR-AFT

1: Repeat Steps 1-3 of CPR-AFT (Algorithm 1).
2: Use uncensored data to obtain CPR components where the number of components,
K, is chosen as specified in Step 2 of the CPR-AFT algorithm. For GenF , use these
components as covariates for the model in equation (4.2) and obtain estimates for β and
σ∗; and for sAFT , use these components as covariates for the model in equation (4.3)
and obtain the estimate for β. It is important to note that the components obtained in
this step are used only to estimate β and/or σ∗.

3: Let vi = log ti. Impute censored observations by estimating the mean residual life using
observed data vi by v∗i = δivi + (1 − δi)Ê(log Yi| log Yi > vi), i = 1, . . . , N . Under the

GenF model in equation (4.2), Ê(log Yi| log Yi > vi) = β̂ui + σ̂∗E
(
W |W > vi−β̂ui

σ̂∗

)
,

where β̂ and σ̂∗ are obtained in Step 2 and W is the error term in equation (4.2). Under

the sAFT model (4.3), Ê(log Yi| log Yi > vi) = β̂ui + σ̂∗E
(
W |W > vi − β̂ui

)
, where

β̂ is obtained in Step 2 and W is the error term in equation (4.3). The calculation of
this conditional expectation for GenF and sAFT models are outlined in §4.3 and §4.4,
respectively. Here, ui are the CPR components obtained in Step 2 of CPR-AFT.

4: Use v∗1, . . . , v
∗
N from Step 3 to construct new CPR components. The number of compo-

nents, K, for the adjusted survival data is determined based on LOOCV such that the
PRESS statistic is minimized. The weight vectors νk corresponding to these new CPR
components are used to compute the CPR coefficients ω.

5: Repeat Steps 1-4 for different choices of α and choose the optimal combination of (α,K)
that minimizes the PRESS statistic.

6: Retain the CPR coefficients ω corresponding to the optimal choice of (α,K) in Step 5
to build the final model. This approach is outlined in detail in §5.
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4.3 A flexible parametric approach to (A)CPR-AFT

In equation (4.2), if Y ∼ GenF then the density of can be written as

fY (y|µ, σ, n,m) =
1

σB(n,m)
e

−µn
σ y

n
σ
−1
( n
m

)n
(4.4){[

1 +
( n
m

)
(e−µy)

1
σ

]−(n+m)
}
,

where y > 0. As shown in Ciampi et al. (1986) and Cox (2008), this model has an umbrella

structure that includes many special cases where choosing specific parameter values will result in

a particular model of interest. Important special cases include the generalized gamma, Weibull

(exponential), gamma, log-normal, log-logistic, and Burr-type distributions and are listed in Table

2. The hazard behavior of GenF for finite values of the parameters is described in Cox (2008)

and clearly highlights the flexibility provided by this model in handling different hazard shapes.

Here, we propose a generalization of (A)CPR-AFT using the GenF model, which encompasses

Table 2: GenF Model: Some special Cases

Model Parameters
Generalized Gamma m→∞

Weibull (exponential) m→∞, n = 1(σ = 1)
Gamma m→∞, σ = 1

Log-Normal m→∞, n→∞
Generalized log-logistic m = n

Log-Logistic m = 1, n = 1
Burr III m = 1
Burr XII n = 1

many important models and is, therefore, a flexible alternative for modeling censored survival

data in conjunction with large-scale “omics” data. To this end, we first obtain the density of

W = log Y−µ
σ in equation (4.2) and use it to derive the expression for the conditional expectation

E
(
W |W > vi−β̂ui

σ̂∗

)
for this model in the ACPR-AFT algorithm. Using equation (4.4), the density

of W can be derived to be

fW (w) =
1

β(n,m)

( n
m

)n
enw

[
1 +

( n
m

)
ew
]−(n+m)

,
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where −∞ < w <∞. Using the density of W ,

E(W |W > z) =

∞∫
z
wfW (w) dw

1− F (z)
(4.5)

=

1∫
τ

ln
[
m
n

(
v

1−v

)]
fV (v) dv

1−
τ∫
0

fV (v) dv

,

where fV (v) ∼ B(n,m) = 1
B(n,m)v

n−1 (1− v)m−1, τ =
( nm)ez

1+( nm)ez
and z = vi−β̂ui

σ̂∗ .

In CPR-AFT, GenF is used for model fitting in Step 3 while in ACPR-AFT, it is used to use

to compute the expression in equation (4.5) in Step 3 and to fit appropriate models to estimate

the parameters in Steps 2 and 5. The GenF model can be fitted using the R package flexsurvreg

(R Core Team, 2018) and is described in Cox (2008). In addition to GenF , we are also interested

in comparing its performance to important special cases such as the log-normal, log logistic, and

Weibull. To obtain the conditional expectation, E(W |W > z), for these special cases, one just

needs to replace the parameters in equation (4.5) with those listed in Table 2 for the respective

model.

4.4 A semi-parametric approach to (A)CPR-AFT

Although the generalization based on GenF is parametric in nature, it offers tremendous modeling

flexibility. Here, we further extend our (A)CPR-AFT approach using the sAFT model which has

no distributional assumption for the error term. This is an attractive property as it does not force

the choice of a specific model, thus providing more flexibility in the application of the method. The

sAFT model has the form given in equation (4.2). Following Jin et al. (2006), the conditional

expectation in Step 3 of ACPR-AFT is obtained as

E(W |W > z) =

∫∞
ei(β)

udF̂β(u)

1− F̂β{ei(β)}
, (4.6)

where z = ei(β) = vi − β̂ui and F̂β(t) = 1 −
∏

i:ei(β)<t

(
1− δi∑n

j=1 I{ej(β)≥ei(β)}

)
is the Kaplan Meier

estimator of F based on {ei(β), δi}. In CPR-AFT, sAFT is used for model fitting in Step 3 while in
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ACPR-AFT, it is used to compute the expression in equation (4.6) in Step 3 and to fit appropriate

models to estimate the parameters in Steps 2 and 5. Fitting the semi-parametric AFT model is

based on the Buckley-James (BJ) type estimator developed by Jin et al. (2006) and is implemented

in the R package lss (R Core Team, 2018).

Merits of BJ Estimation The BJ estimation method (Buckley & James, 1979) is an iterative

least squares approach that is closely related to OLS without censoring and, thus, provides a more

accessible interpretation to practitioners. It has been utilized in a variety of applications involving

many areas such as medicine (Hammer et al., 2002), genetics (Bautista et al., 2008), astronomy

(Steffen et al., 2006) and economics (Deaton and Irish, 1984; Calli and Wever bergh, 2009), and has

been shown to be the preferred estimation approach in a comparison study (Wang & Wang, 2010).

In contrast to methods that assume independence between the censoring mechanism and covariates,

the BJ approach requires weaker assumptions and, in conjunction with boosting, has been shown

to be superior to LASSO-type methods and to generate sparser models (Wang & Wang, 2010). It

utilizes Kaplan-Meier estimates and is readily available in statistical software such as R (R Core

Team, 2018); moreover, BJ estimation for the AFT model can be conveniently extended to describe

more complex data structures with existing software, such as MART and MARS (Friedman, 1991;

2001). Hence, we use BJ estimation in the proposed algorithms.

5 Supervised dimension reduction

A natural approach to build a final model based on (A)CPR-AFT is using the K CPR components

from ACPR-AFT as covariates in equation (4.2) and following Step 3 of CPR-AFT. It would result

in an AFT model based on reduced components from ACPR-AFT. A prognostic index can be

defined as η = uβ, where u is the n ×K matrix whose columns contain the K CPR components

and β is the K-vector of coefficients from this final AFT model fit. A major disadvantage of

this approach is that component information is not available for new subjects and, therefore, it

is not possible to develop a prediction model that can be used on future subjects with feature

expression profiles. Recall that ωp×1 = νp×Kc′K×1 where the K columns of ν contain weight
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vectors and c′ contains the loadings associated with the K CPR components which are contained

in the columns of un×K . Hence, we propose an approach based on the CPR coefficients, ω, rather

than directly using the reduced CPR components, u, for predicting the survival probability of a

future subject whose feature expression profile is readily available. As shown in the next section,

some important differences exist between this approach and the final AFT model discussed above

with vastly different implications for prediction.

5.1 Developing a prognostic index

We use the CPR coefficients to devise an approach based on the weighted average of feature

expressions and illustrate its utility in developing a survival prediction model. Using the vector of

CPR coefficients, ω, for the p features from a particular model of interest and the n × p feature

expression matrix, Z, the weighted average, η, is calculated as

η = Zω. (5.1)

This results in an n-dimensional vector, which we call the prognostic index (PI), where each element

represents a subject’s weighted average feature expression. In the calculation of η, a heavier weight

is placed on features deemed significant and in our approach, we calculate η using the subset of

features determined by marginal screening procedures (see §5.2 for details). It is worth noting that

PI represents the predicted (log) survival times and, thus, enables the development of a prediction

model using (A)CPR-AFT as outlined in the next section.

5.2 Predictive modeling using (A)CPR-AFT

We develop a survival prediction algorithm using the CPR coefficients ω from (A)CPR-AFT, sep-

arately for GenF and sAFT , by adopting a flexible approach that simultaneously chooses the

optimal α in addition to the optimal K, the number of CPR components. The proposed approach

utilizes (A)CPR-AFT for several choices of α that represent a variety of scenarios: the midpoint

of the trajectory from OLS and PLS (α = 0.25), PLS (0.5), the midpoint of the trajectory from

PLS to PCR (0.75) and PCR (0.95). Since p � n, OLS (α = 0) is not a useful option in our
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application and PCR (α = 1) requires a value of α close to 1 in order to avoid numerical instability.

In this approach, the final model is chosen based on the optimal (α,K) combination that results

in the smallest PRESS using LOOCV after applying (A)CPR-AFT, and the corresponding CPR

coefficients ω are used to develop the PI for evaluating the performance of this prediction model.

In CPR-AFT, there is no way of choosing an optimal α because it plays no role in the selection

of K and is only used after K is chosen to run CPR. Therefore, an optimal (α,K) combination

cannot be chosen because Step 2 (choosing K using PRESS) does not depend on α. K would remain

the same even if Steps 3 and 4 of CPR-AFT are repeated for different choices of α where each α

would yield a different survival prediction model, and models corresponding to various choices of α

would have to be evaluated and compared separately. On the other hand, an optimal combination

can be chosen in ACPR-AFT because each pre-specified α directly impacts the adjustments. By

comparing the PRESS statistics after adjustments are made (step 4 of ACPR-AFT) for different

choices of α, the optimal (α,K) combination can be selected. Thus, ACPR-AFT has a significant

advantage over CPR-AFT because it adjusts for censored observations. For these reasons, we

consider two different unadjusted methods in our comparisons, one each based on the chosen value

of α from GenF and sAFT in ACPR-AFT.

Prior to the application of (A)CPR-AFT, supervised marginal screening procedures were used

to narrow down the number of features. These methods ensure that features used for prediction

demonstrate an association with survival, at the univariate level, after adjusting for potential

confounders such as age of diagnosis and stage of disease. An added benefit of such pre-filtering

is that it significantly reduces computation time. Supervised marginal screening was performed

to select (i) features that fit the sAFT model and had a statistically significant effect on survival

(sAFT) or (ii) features that had a significant effect on survival using concordance regression (CON)

(Dunkler et al., 2010), at the 0.05 significance level. Once a subset is selected, (A)CPR-AFT is

applied and the optimal (α,K) is chosen. The CPR coefficients, ω, are retained for the adjusted

(ACPR-AFT) and unadjusted (CPR-AFT) methods (based on GenF and sAFT ) and used to

predict the logarithm of survival time for each subject given their feature expression profile Z using

the prognostic index, PI = η = Zω. We use italicized notation (sAFT or GenF ) to denote the

particular method associated with ACPR-AFT while sAFT is used to denote the marginal screening
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method.

The following cross validation approach is used to build and evaluate the prediction models.

The data is first split into training and test sets roughly in a 2:1 ratio, where ωtr represents the

vector of CPR coefficients corresponding to the training set and is used to predict the logarithm

of survival time in the test set. Thus, PI = Zteωtr, where Zte is from the test set, and the model

is evaluated for prediction accuracy. We utilize the following measures of prediction accuracy to

evaluate and compare the predictive performance of ACPR-AFT, using GenF or sAFT models,

to the unadjusted CPR-AFT approach: (i) R2, the fraction of variation that is explained by

the K CPR components in the final (A)CPR-AFT model, (ii) Mean Squared Error, MSE =

1
n∗
∑n

i=1 δi(PIi − log Ti)
2 where PIi is the prognostic index for the ith subject, n∗ =

∑n
i=1 δi and

δi = 1 implies the event was observed; MSE is calculated for both the training set, MSETR, and

the test set, MSETE , and (iii) area under the time-dependent receiver operating characteristic

curve (AUC) which quantifies a method’s ability to predict survival at varying time points such as

2, 3 or 5 years and is implemented in the R package survivalROC (Haegerty et al., 2000; R Core

Team, 2018). An AUC close to 1 indicates better prediction accuracy. In summary, the survival

prediction algorithm involves the following steps:

Algorithm 3 Survival Prediction Algorithm

1: Use supervised marginal screening to filter features using sAFT or CON, as outlined
above.

2: Randomly split the filtered data set into training (67% of subjects) and test sets (33%
of subjects).

3: Apply (A)CPR-AFT (GenF and sAFT ) to the training set using α = (.25, .5, .75, .95).

• Choose optimal (α,K) combination.

• Retain the CPR regression coefficients, ωtr.

4: Use ωtr from Step 3 to predict (log) survival times in the test set, i.e., calculate PI =
Zteωtr, where Zte is from the test set.

5: Evaluate the prediction models using the measures of prediction accuracy outlined above.
6: Repeat Steps 2-5 25 times. Median values of the prediction accuracy measures from step

5 are reported.
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6 Application to simulated data

6.1 Simulation schemes

We considered two different simulation schemes to generate artificial survival and feature expression

data sets based on the approach outlined in Dunkler et al. (2010). In order to account for various

types of hazards, survival times Yi, i = 1, . . . , n, were generated from each of 5 different models

specified as follows: standard log-normal LN (µ = 0, σ = 1); log-logistic LL1 (α1 = 2, λ1 =

2, λ2 = 4) and LL2 (α1 = 3, α2 = 4, λ1 = 1, λ2 = 2); and Weibull W1 (α1 = 1, λ1 = 1
2) and W2

(α1 = 3, α2 = 2, λ1 = 1, λ2 = 1
2), where LL1 and W1 refer to the respective models where the shape

parameters are the same but the scale parameters differ, and LL2 and W2 refer to the respective

models where both the shape and scale parameters differ. We use a more informed approach that

is broader in scope compared to that of Dunkler et al. (2010), who only considered W1 in their

simulations. Here, LN, LL2 and W2 cases are of particular interest because of their ability to

simulate crossing hazards. To simulate censoring, we drew random samples with uniform follow-up

times C from U(0, τ) and defined the observed survival time as T = min(Y,C) with censoring

indicator δ = I(T = Y ). We chose τ to get censoring proportions of 33, 67% and 80%.

For each model, we simulated censored survival times and feature expression data for N = 200

subjects and p = 5000 mock features where feature expression is linked to survival time based

on the logarithm of the hazard ratio (HR), βg(t) = β0 log(HR). Feature expression data was

generated from the standard normal model. Following Klein and Moeschberger (2003), log(HR)

was calculated based on the respective model of interest. For LN, we used βg(t) = β0(t
2 − 1)

to simulate crossing hazards similar to what was done in Dunkler et al. (2010). Then, β0 was

chosen so that only the first 400 features were assumed to have an effect on survival time, with 200

having a large effect and 200 having a small effect. In Scheme 1, we adopt a univariate approach

where feature expression is linked to survival one feature at a time, and in Scheme 2 we adopt a

multivariate approach that incorporates correlations between features. More details on these steps

can be found in Dunkler et al. (2010).
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6.2 Evaluation of methods

In SI §1.1, we discuss feature ranking and selection methods using components extracted from

(A)CPR-AFT. We evaluated their performance for (i) GenF versus its special cases and (ii) GenF

and sAFT -based ACPR-AFT versus unadjusted CPR-AFT under different data generating mech-

anisms and censoring fractions for each simulation scheme. These results are summarized in SI

Tables 1-6 and Figures 1 & 2. In addition, the survival prediction algorithm proposed in §5.2 was

evaluated using GenF or sAFT -based ACPR-AFT and compared with unadjusted CPR-AFT for

each simulation scheme. Details are provided in the SI §1.2 and results are summarized in SI Tables

7-12. Overall, our simulation studies establish the superiority of GenF or sAFT -based ACPR-AFT

under a variety of data generating mechanisms encountered in practice.

7 Application to high-throughput “omics” data

We demonstrate the utility of (A)CPR-AFT in supervised dimension reduction and developing a

survival prediction model using the following publicly available data sets in cancer genomics. These

data sets are described in detail in SI §2.

7.1 Data sets

• Head & Neck squamous cell carcinoma (HNSCC): Published by TCGA and contains survival

data and RNA sequencing gene expression profiles for 221 subjects with HNSCC.

• Glioblastoma (GBM): Published by TCGA and contains survival data and methylation pro-

files for 280 tumor samples obtained using the Infinium HumanMethylation27 platform.

• Ovarian cancer: Published by Tothill et al. (2008) and contains Affymetrix gene expression

profiles for 282 subjects and corresponding overall survival (OS) and recurrence-free survival

(RFS) data.

• Oral cancer: Published by Saintigny et al. (2011) and contains survival data and gene

expression profiles for 86 subjects obtained using the Human Gene 1.ST platform.
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7.2 Extracting genomic components for predictive modeling

We illustrate the utility of (A)CPR-AFT for predictive modeling by applying the survival prediction

algorithm to the HNSCC data set. Table 3 summarizes the results for each marginal screening

method. In each case, the optimal value of α chosen by ACPR-AFT was used for the corresponding

unadjusted method. A significant improvement in predictive performance is noted between each

adjusted method (sAFT or GenF ) and CPR-AFT for both screening methods in terms of at

least two out of the three evaluation measures used, R2, MSE and AUC. Next, we illustrate the

application of (A)CPR-AFT in supervised dimension reduction using the four genomic data sets

outlined above for the special case α = 0.5 (PLS) where ACPR-AFT is based on GenF or sAFT . In

each case, the optimal number of CPR components, K, was determined using the PRESS statistic

based on LOOCV by considering ranks k = 2, . . . , 15. The results, summarized in Table 4, indicate

that for all data sets GenF - and sAFT -based APCRAFT generally outperform the unadjusted

method by explaining a higher proportion of the variation in the data at the chosen optimal K or

by choosing a smaller optimal K. In some cases, ACPR-AFT is observed to choose at least as many

components as the unadjusted method; however, even at the optimal K chosen by the unadjusted

method (ovarian OS and oral) or at a lower rank (HNSCC, GBM, ovarian RFS and oral), ACPR-

AFT explains a higher fraction of the variation compared to the unadjusted method (as shown in

the last three rows of Table 4). For the GBM and ovarian RFS data sets, ACPR-AFT performs

as well as the unadjusted method; this is likely due to the relatively small fraction (26% and 32%,

respectively) of censored observations in these sets compared to others where censoring ranges from

59-62%. These examples suggest that it is possible to choose a more parsimonious model than that

provided by ACPR-AFT while still explaining most of the variation in the data. Moreover, they

highlight the utility of ACPR-AFT for handling censored data. The CPR coefficients, ω, and VIP,

ξ, obtained from ACPR-AFT can also be used for feature ranking purposes as demonstrated by

our simulations (see SI §1.1 for details).
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Table 3: Prediction Summary (HNSCC Data)

Filter Measure ACPR-AFT ACPR-AFT CPR-AFTa

(# of features) GenF sAFT

R2 100 99.8 98.3

sAFT MSE 0.004 0.07 0.53

(2,336) AUC, t = 2 0.81 0.96 0.73

AUC, t = 3 0.85 0.95 0.71

AUC, t = 5 0.67 0.89 0.67

R2 99.0 99.1 91.3

CON MSE 0.95 0.62 1.18

(2,254) AUC, t = 2 0.69 0.92 0.69

AUC, t = 3 0.70 0.93 0.69

AUC, t = 5 0.67 0.9 0.66

a: based on optimal α chosen by the corresponding ACPR-AFT method used. GenF
and sAFT chose the same optimal α.

7.3 Interpreting the prognostic index

The prognostic index, PI = η = Zω can be interpreted as a linear predictor and is partic-

ularly relevant within the context of (A)CPR-AFT which combines two linear models. The

predicted survival curves obtained from GenF - and sAFT -based ACPR-AFT using η, plot-

ted in SI Figure 3 for each data set, thus illustrate the use of CPR coefficients, ω, in building

a prediction model. In each case, the corresponding model under consideration (GenF or

sAFT ) was statistically significant at the 5% significance level. Furthermore, GOF tests

performed using the methods outlined in §3 revealed a good fit for the PH, PO and AFT

models across different methods and data sets. The only exceptions to this were a lack of fit

for the PH model for both sAFT - and GenF -based ACPR-AFT for the ovarian OS data set

which indicates an overall time-varying effect due to features selected by the model. While a

weighted average using VIP, ξ, could serve as a prognostic index, it does not directly predict

survival time and, hence, its interpretation is unclear (see SI §1 for details). These exam-

ples thus serve to illustrate the utility of η in elucidating the relationship between feature

expression and patient survival and to account for time-varying effects of features.
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7.4 Evaluating the prediction algorithm

The survival prediction algorithm outlined in §5.2 was evaluated using the four data sets.

After marginal screening, the prediction algorithm was applied separately to each training

and test set. Median values of different measures of prediction accuracy, based on 25 random

training and test sets, are summarized in SI Tables 13-17. Overall, less variation in these

measures was observed for ACPR-AFT across the training and test sets and for both filters

used compared to CPR-AFT; in particular, GenF showed much less variation in R2 and

MSE compared to sAFT while the opposite effect was observed for AUC (data not shown).

In each run, the optimal (K,α) combination was chosen as outlined earlier for ACPR-AFT.

Since CPR-AFT does not involve choosing α based on adjustment (as in Step 4 of ACPR-

AFT), the optimal α chosen by GenF - and sAFT -based ACPR-AFT is used for comparison

purposes.

The fraction of variation in the data explained by the CPR components extracted by

a particular model, quantified by R2, are significantly higher for GenF - and sAFT -based

ACPR-AFT compared to the unadjusted CPR-AFT. Since computation of R2 requires model

fitting, it is relevant only to the training set. Not surprisingly, MSE is generally larger for

the test set compared to the training set across both marginal screening methods and data

sets. However, for both the training and test sets, we consistently observe smaller MSE

for ACPR-AFT methods compared to CPR-AFT across all four data sets which indicates

that both GenF and sAFT result in more accurate predictions. In particular, a significant

reduction in MSE between ACPR-AFT and CPR-AFT is observed for the oral test sets,

ranging from 58-91% across both filters. For the ovarian RFS and HNSCC test sets, CON

(18%) and sAFT (26%) filters result in maximum reduction, respectively.

In addition, we examine the AUCs calculated for 2, 3 and 5 year survival. Once again,

we note that the training set AUCs are larger than those of the test set in each case.

More importantly, in both the training and test sets and across both filtering mechanisms,

we observe larger AUCs for GenF and sAFT compared to the unadjusted methods. The
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improvements observed in the test sets are particularly relevant and are noteworthy for all

data sets. For example, using the sAFT and CON filters, at t = 5 we observe an AUC range

of 0.74-0.82 for GenF and sAFT for the ovarian OS test sets while the unadjusted methods

range only from 0.68-0.73. The performance of the two filters was similar for the ovarian

(OS & RFS) and HNSCC data sets and resulted in improvements up to 10% and 13% in

AUC, respectively; for the GBM data set, however, CON provided substantial improvement

in AUC of up to 15%. In addition, a statistically significant difference was generally observed

between the AUCs from time-dependent ROC curves for ACPR-AFT and CPR-AFT.

Table 4: (A)CPR-AFT - Summary of Results

Method HNSCC GBM Ovarian OS (RFS) Oral
K R2 K R2 K R2 K R2

GenF † 8 100% 5 100% 2 (13) 96% (100%) 9 100%
sAFT † 8 100% 5 100% 2 (15) 97% (100%) 5 97%

CPR-AFT 12 100% 5 100% 2 (15) 95% (100%) 5 84%
2 92% 2 93% * (2) * (94%) 2 79%

GenF † 2 96% 2 93% * (2) * (94%) 5(2) 97% (86%)
sAFT † 2 98% 2 94% * (2) * (95%) 5 (2) 97% (84%)

† ACPR-AFT; *K = 2 chosen by CPR-AFT and ACPR-AFT

8 Conclusions and discussion

In this paper, we proposed supervised dimension reduction methods for analyzing large-scale

“omics” data in conjunction with censored survival outcomes. Our methods combine CPR

- a unified framework that includes OLS, PCR and PLS as special cases - for dimension

reduction with the AFT model - a censored linear regression model - for handling survival

data, and offer distinct advantages relative to currently available approaches. The versatil-

ity afforded by the parametric (GenF ) and semi-parametric (sAFT ) versions of the AFT

model and its partial overlap with the widely used PH and PO models allow a variety of

time-varying feature effects to be incorporated. Moreover, both CPR and AFT fall within

the linear models framework and the proposed hybrid model, (A)CPR-AFT, combines their
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strengths in a unique fashion that does not match any other available method. The umbrella

structure of GenF provides a fully parametric, yet tremendously flexible, approach for mod-

eling survival data while sAFT utilizes BJ estimation which has been shown to be a robust

method. A particularly attractive characteristic of ACPR-AFT is its ability to account for

censored observations common to studies with survival endpoints. Many large-scale “omics”

studies involving survival outcomes of interest tend to contain a significant fraction of cen-

sored observations and an appropriate method for handling these incomplete observations

has been lacking. The simulation results demonstrated the superior predictive performance

of ACPR-AFT over CPR-AFT under a plethora of data generating mechanisms particularly

as the fraction of censored observations increased, thus making it a practically useful tool for

data analysis. These results were corroborated using publicly available data sets in cancer

genomics where the performance of the proposed survival prediction algorithm was shown

to improve significantly when censoring was accounted for in this manner.

The ability of the proposed methods to handle NPH within this context is unparalleled

and it offers a robust and flexible approach for predictive modeling of a wide variety of

large-scale “omics” data. The CPR coefficients and VIP play complementary roles and

serve different purposes. The former is useful for computing the PI which was used to

develop and evaluate the prediction algorithm while the latter was shown to be a superior

measure for feature ranking. However, choosing an appropriate threshold for these measures

is an important consideration and could form part of future work on this topic. When

combined with an appropriate marginal screening method, this approach could serve as a

useful feature selection tool by significantly reducing the number of relevant features in the

prediction algorithm which could, in turn, not only improve its performance further but also

help develop a feature signature that is predictive of survival. Regularization is another

avenue for future research on ACPR-AFT that would aid in feature selection.

Furthermore, the proposed methods are broadly applicable to a variety of high-throughput

“omics” data such as feature expression data arising from next-generation sequencing, allele-
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specific expression, methylation, microarrays and SNP arrays as well as large-scale data from

proteomics, metabolomics and DNA copy number studies, many of which have been utilized

in this study. There has been a recent surge in integrative “omic” analyses that simulta-

neously involve different data types as well as other quantitative outcome variables using

publicly available data from repositories such as TCGA and GEO (Ramakodi et al., 2016; Li

et al., 2013; Lawrenson et al., 2015). Within this context, the proposed unifying framework

offers a robust platform for analysis and interpretation.
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Supplementary Information

1 Simulation Results

1.1 Feature ranking and selection using (A)CPR-AFT

In this section, we discuss the utility of (A)CPR-AFT for feature ranking and selection
by comparing the performance of (A)CPR-AFT algorithms based on log-normal (LN), log-
logistic (LL), Weibull (W), GenF and sAFT models. Wold et al. (2002), Devarajan et
al. (2010) and Mehmood et al. (2012) discuss the use of PLS coefficients, ω, and variable
importance projection (VIP), denoted by ξ, as measures for feature ranking and selection
in PLS. Note that the PLS coefficients arise as a special case of CPR when α = 0.5. For
example, features could be ranked based on the absolute value of CPR coefficients, ω, which
can take on values on the entire real line, or directly using the VIP, ξ, which is a non-negative
quantity.

VIP accumulates the importance of each feature as reflected by the weight νk from each
component. Essentially, it is a measure of the contribution of each feature according to the
variance explained by each component. The VIP value, ξ, for feature j is calculated as

ξj =

√√√√p
K∑
k=1

[
SSk (νjk/||νk||)2

]
/

K∑
k=1

SSk, j = 1, . . . , p, (1.1)

where p is the number of features, K is the number of components, νk is the weight vector
for the k-th component, and SSk is the sum of squares explained by the k-th component. In
other words, CPR produces K vectors of weights, each of which has p elements corresponding
to the p features. In the VIP calculation, (νjk/||νk||)2 represents the importance of the k-th
component. Thus, ξj is calculated for feature j, j = 1 . . . p, and then features are selected
based on a threshold pre-specified by the user. A popular threshold is 1 (i.e., ξ > 1)
and is discussed in Mehmood et al. (2012). Since the number of relevant features is pre-
determined in simulations, a threshold is not relevant in our application where features are
ranked separately based on decreasing VIP, ξ, and absolute value of ω. Although choice of a
threshold is unclear in the analysis of real data, these measures can be used for feature ranking
and selection under certain scenarios. For example, ξ could be used to rank features identified
in the survival prediction algorithm proposed in §5.2, similar to how the corresponding ω is
used to calculate PI. We plan to investigate choice of the ξ threshold in future work. In
this paper, we utilize ξ only as a feature ranking tool as illustrated in our simulation studies.
Our analyses using a variety of large-scale “omics” data sets showed that α = 0.5 resulted in
overall better performance in terms of model fit and prediction accuracy; hence, we focus on
this special case for the simulation studies. As mentioned earlier, high censoring appears to be
a common theme in many large-scale “omics” studies involving censored survival outcomes
(Bhattacharjee et al., 2001; Beer et al., 2002; Tothill et al., 2008; Saintigny et al., 2011;
Rouam et al., 2011; TCGA Network, GEO); hence, this scenario is also of particular interest
in the simulations. As evidenced in the following sections, our studies indicate that VIP is
a more useful quantity for feature ranking but less useful for the purposes of developing a
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prediction model where the CPR coefficients play a significant role.
For each simulation scheme and censoring combination, 200 randomly generated data sets

were created and assessed. The (A)CPR-AFT algorithm was applied to each simulated data
set and mock features were ranked separately using the absolute value of PLS coefficients,
ω, and VIP, ξ. In the remainder of this section, we will only use ω or ξ to denote these
methods. For CPR-AFT, ω and ξ are calculated in Step 2 of the algorithm, and therefore,
are not model specific. On the other hand, in ACPR-AFT these quantities are computed
after adjusting censored observations in Step 4, thus taking the pre-specified model into
account in the parametric version or in a completely distribution-free manner in the case of
sAFT . In the parametric version, we considered GenF and three of its well-known special
cases - LN, LL and W. For each method, the ranked lists were used to compute mean values
of sensitivity, specificity, Youden Index (=sensitivity+specificity-1) (Youden, 1950) and area
under the receiver operating characteristic (ROC) curve (AUC) across the 200 data sets.
The purpose of this analysis is to compare the performance of (i) the two ranking methods,
ω and ξ, (ii) GenF vs. its special cases in ACPR-AFT, and (iii) CPR-AFT vs. ACPR-AFT
for GenF and sAFT models under both simulation schemes.

1.1.1 Comparison of GenF and its special cases in ACPR-AFT

We examined the performance of GenF and its special cases in ACPR-AFT using AUC and
the Youden Index for 33% and 80% censoring. SI Figure 1 depicts the ROC curves for 33%
and 80% censoring for ω and ξ using simulation scheme 1. In all four cases - shown in panels
(a)-(d) - we observe that GenF outperforms LN, W, and LL. The corresponding AUCs and
Youden Indices are reported in SI Table 5. The AUCs for GenF are higher than its special
cases in each situation, and the differences increase as censoring increases. We note that the
unadjusted CPR-AFT results in the lowest Youden index and AUC in every scenario and
performs significantly worse than ACPR-AFT using GenF . In addition, we observe that ξ
is superior to the use of ω in terms of AUC and the Youden Index, thus indicating that VIP
is a better tool for feature ranking and selection.

Next, we evaluated the performance using simulation scheme 2 for 33% and 80% censor-
ing. Panels (a) and (b) of SI Figure 2 show the ROC curves for these censoring proportions,
respectively, comparing the performance of ω and ξ for GenF . Similar to scheme 1, we
observe that ξ significantly outperforms ω. Panels (c) and (d) of SI Figure 2 show the ROC
curves for 33% and 80%, respectively, comparing the performance of GenF and CPR-AFT
for ξ. Again, it is evident that GenF outperforms the unadjusted method. Although not
shown, scheme 3 showed similar results for GenF compared to its special cases LN, LL and
W. At each censoring level, GenF had the largest AUC and Youden index, similar to what
was observed for scheme 1 in SI Figure 1 and SI Table 5. Since GenF outperformed its spe-
cial cases, we will focus only on GenF , sAFT and the unadjusted method for the remainder
of the paper. A very similar performance was observed across multiple simulated data sets
and thus, results are reported only for a single, representative data set.
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1.1.2 Simulation Scheme 1

In this section, we evaluate the performance of GenF - and sAFT - based ACPR-AFT against
unadjusted CPR-AFT using data simulated from scheme 1 as described in §5.1. SI Table
6 shows the AUCs using ξ as the feature selection tool. Across each scheme and censoring
level, we observe that the proposed ACPR-AFT method (both GenF - and sAFT -based)
have a clear advantage over CPR-AFT, and as the censoring increases, the differences in
performance become stronger. In fact, CPR-AFT has the lowest AUC in every single scheme
for the 67% and 80% censoring cases. Thus, we observe a clear benefit when imputing
censored observations using ACPR-AFT. Next, we examine differences between GenF - and
sAFT -based ACPR-AFT. Both GenF and sAFT perform similarly in many instances, but
there are particular schemes where one outperforms the other. For example, AUCs of GenF
are higher for the LN, LL1 and LL2 cases, and AUCs of sAFT are higher in the W1 and
W2 cases. In SI Table 7, AUCs using ω are shown and observed to be lower than those of
ξ in each case. Thus, ξ appears to be the optimal approach for feature selection; however,
even when ω is used, GenF and sAFT outperform CPR-AFT.

Next, we focus our attention on the Youden index displayed in SI Table 8 for each
method and censoring level using both ω and ξ as ranking methods. First, we note that
Youden indices based on ω are lower than those based on ξ in every single case. Thus, as
expected, ξ significantly outperforms ω in ranking features in every scenario. Furthermore,
we observe that GenF - and sAFT -based ACPR-AFT outperform CPR-AFT in almost every
scenario, and just as we had observed with the AUCs, the differences in performance become
larger as censoring increases. Thus, we notice a clear improvement due to ACPR-AFT.
GenF and sAFT perform similarly in many cases, but as indicated by the AUC results, one
occasionally outperforms the other.

1.1.3 Simulation Scheme 2

We now examine simulation scheme 2, which introduces correlations between features. Recall
that in simulation scheme 1, GenF and sAFT performed similarly and better than the
unadjusted approach, and ξ outperformed ω. In this section, we demonstrate that the same
conclusions can be made for scheme 2. However, although the results have a similar trend,
the AUC and Youden values for scheme 2 are lower than those in scheme 1 likely due to the
complexity in the data introduced by the correlation structure between features. The AUCs
for scheme 2 using ξ are shown in SI Table 9. Similar to scheme 1, we observe that our
adjusted methods have a clear advantage over the unadjusted method and this difference
becomes greater as the censoring fraction increases. We observe that GenF results in higher
AUCs for LN and LL2, which differs slightly from scheme 1 results, but GenF and sAFT
perform very similarly in the remaining schemes. The AUCs using ω were observed to be
much lower than those obtained using ξ in each case (data not shown); in fact, the AUCs
for ω ranged from 0.50 to 0.57 which suggests that its selection capability is only slightly
better than a coin flip. Thus, ξ is seen to be optimal approach for feature selection. Next,
we examine the Youden index displayed in SI Table 10. We note that the Youden indices
based on ω are lower than those based on ξ in every single case, an observation similar to
that in scheme 1. In fact, in many cases, the Youden index for ω is 0. We also observe
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from these results that GenF and sAFT outperform the unadjusted method in practically
every scenario and particularly for higher censoring. GenF and sAFT perform similarly in
many cases, but as indicated by the AUC results, one occasionally outperforms the other.
The simulation results from both schemes showed GenF either outperformed or matched
the performance of LN, LL and W. Hence, we focus only on GenF in the examples in the
remainder of this paper.

1.2 Evaluating the prediction algorithm

Simulated data was generated using the approach outlined in §6.1 for schemes 1 and 2
based on LN, LL1, LL2, W1 and W2 models for 33%, 67% and 80% censoring. Each data
set contained 200 observations and 5,000 mock features and model parameters were chosen
appropriately to result in survival times that mimicked actual survival times (say in months
or years). Training and test sets were obtained using a 2:1 split. For each combination of
simulation scheme, model and censoring proportion, a total of 25 different random splits were
generated and the predictive performance of ACPR-AFT (using α = 0.5) was evaluated on
each data set using GenF or sAFT and compared with the unadjusted method, CPR-AFT.
Median summaries for different measures of prediction accuracy are presented in SI Tables
10-15 where MSETR and MSETE refer to the MSE for the training and test set, respectively.
It is not surprising to note that the overall performance of training sets is better than that
of test sets across all parameters considered for both CPR-AFT and ACPR-AFT. However,
as the censoring fraction increases, a significant improvement is noted in the predictive
performance (AUC and MSE) of ACPR-AFT (both GenF and sAFT ) compared to CPR-
AFT for the test sets. This improved performance is observed under both simulation schemes
for each of the five different models under consideration. These results, thus, highlight the
superiority of ACPR-AFT under a variety of data generating mechanisms encountered in
practice.

Supplementary Tables
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Table 1: Simulation Scheme 1

Censoring Method ω ξ
Youden AUC Youden AUC

ACPR-AFT LN .19 .67 .65 .94
ACPR-AFT W .21 .68 .65 .94

33 % ACPR-AFT LL .20 .67 .65 .94
ACPR-AFT GenF .33 .75 .74 .96

CPR-AFT .12 .64 .48 .88
ACPR-AFT LN .16 .63 .30 .74
ACPR-AFT W .16 .63 .30 .74

80% ACPR-AFT LL .16 .63 .30 .74
ACPR-AFT GenF .44 .80 .49 .84

CPR-AFT .03 .51 .09 .62

Table 2: Simulation Scheme 1: AUC (ξ)

Censoring Method LN LL1 LL2 W1 W2
ACPR-AFT GenF .91 .92 .69 .95 .89

33 % ACPR-AFT sAFT .91 .92 .76 .97 .92
CPR-AFT .88 .89 .74 .93 .89

ACPR-AFT GenF .87 .89 .72 .90 .76
67 % ACPR-AFT sAFT .86 .84 .71 .95 .84

CPR-AFT .80 .78 .65 .85 .72
ACPR-AFT GenF .85 .84 .75 .87 .64

80 % ACPR-AFT sAFT .81 .77 .68 .92 .70
CPR-AFT .72 .66 .59 .77 .56

Table 3: Simulation Scheme 1: AUC (ω)

Censoring Method LN LL1 LL2 W1 W2
ACPR-AFT GenF .67 .64 .52 .66 .56

33 % ACPR-AFT sAFT .68 .64 .55 .71 .54
CPR-AFT .60 .57 .53 .62 .54

ACPR-AFT GenF .71 .63 .57 .62 .52
67 % ACPR-AFT sAFT .66 .55 .56 .73 .55

CPR-AFT .54 .51 .53 .54 .50
ACPR-AFT GenF .68 .63 .60 .62 .51

80 % ACPR-AFT sAFT .59 .54 .54 .75 .53
CPR-AFT .51 .51 .51 .53 .50
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Table 4: Simulation Scheme 1: Youden Index

Model Method 33% cens. 67% cens. 80% cens.
ω ξ ω ξ ω ξ

LN
ACPR-AFT GenF .21 .52 .29 .55 .22 .52
ACPR-AFT sAFT .21 .52 .19 .52 .10 .48

CPR-AFT .10 .50 .03 .41 .01 .17

LL1
ACPR-AFT GenF .15 .56 .15 .54 .14 .45
ACPR-AFT sAFT .15 .56 .05 .43 .04 .24

CPR-AFT .06 .50 .01 .21 .01 .07

LL2
ACPR-AFT GenF .02 .20 .07 .23 .11 .31
ACPR-AFT sAFT .05 .29 .06 .20 .04 .14

CPR-AFT .03 .23 .03 .10 .01 .05

W1
ACPR-AFT GenF .18 .62 .12 .52 .14 .50
ACPR-AFT sAFT .24 .70 .31 .65 .34 .61

CPR-AFT .11 .56 .04 .40 .03 .21

W2
ACPR-AFT GenF .04 .45 .02 .22 .01 .10
ACPR-AFT sAFT .07 .52 .05 .39 .04 .18

CPR-AFT .03 .43 .01 .12 .01 .02

Table 5: Simulation Scheme 2: AUC (ξ)

Censoring Method LN LL1 LL2 W1 W2
ACPR-AFT GenF .58 .82 .66 .68 .61

33 % ACPR-AFT sAFT .57 .89 .66 .67 .60
CPR-AFT .54 .84 .67 .67 .62

ACPR-AFT GenF .82 .88 .70 .79 .67
67 % ACPR-AFT sAFT .75 .88 .69 .69 .68

CPR-AFT .63 .80 .70 .69 .66
ACPR-AFT GenF .84 .86 .84 .83 .70

80 % ACPR-AFT sAFT .76 .88 .76 .74 .71
CPR-AFT .68 .78 .72 .69 .67
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Table 6: Simulation Scheme 2: Youden Index

Model Method 33% cens. 67% cens. 80% cens.
ω ξ ω ξ ω ξ

LN
ACPR-AFT GenF 0 .01 0 .11 0 .13
ACPR-AFT sAFT .01 .01 .01 .09 0 .09

CPR-AFT 0 .01 0 .01 0 .03

LL1
ACPR-AFT GenF .05 .19 .06 .24 .06 .20
ACPR-AFT sAFT .06 .24 .04 .23 .04 .22

CPR-AFT .02 .16 .01 .10 0 .08

LL2
ACPR-AFT GenF 0 .03 0 .04 0 .13
ACPR-AFT sAFT 0 .03 0 .03 0 .06

CPR-AFT 0 .03 0 .03 0 .05

W1
ACPR-AFT GenF .01 .04 .01 .09 .02 .15
ACPR-AFT sAFT .01 .03 .02 .05 .01 .07

CPR-AFT 0 .03 .01 .04 0 .04

W2
ACPR-AFT GenF .01 .02 0 .03 0 .04
ACPR-AFT sAFT .01 .02 0 .04 0 .03

CPR-AFT 0 .02 0 .02 0 .02
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Table 7: Simulation Scheme 1: 33% Censoring

Model Measure ACPR-AFT ACPR-AFT CPR-AFT
GenF sAFT

LN, Scheme 1 R2
COMP 100 99.9 99.9

MSETR 0.007 0.009 0.008
AUC, t = 2 0.94 0.96 0.92
AUC, t = 3 0.91 0.93 0.89
MSETE 12.7 12.8 13.4

AUC, t = 2 0.94 0.92 0.91
AUC, t = 3 0.93 0.95 0.94

LL1, Scheme 1 R2
COMP 100 100 100

MSETR 0.0005 0.0006 0.0006
AUC, t = 2 0.99 0.99 0.99
AUC, t = 3 0.99 0.99 0.99
MSETE 2.05 2.05 2.06

AUC, t = 2 0.97 0.97 0.97
AUC, t = 3 0.97 0.96 0.96

LL2, Scheme 1 R2
COMP 99.8 100 99.8

MSETR 0.03 0.001 0.03
AUC, t = 2 0.98 0.99 0.97
AUC, t = 3 0.98 0.98 0.97
MSETE 2.93 2.95 3.28

AUC, t = 2 0.88 0.88 0.88
AUC, t = 3 0.93 0.95 0.94

W1, Scheme 1 R2
COMP 100 100 99.5

MSETR 0.001 0.001 0.001
AUC, t = 2 0.98 0.98 0.99
AUC, t = 3 0.98 0.99 0.98
MSETE 4.21 4.14 4.94

AUC, t = 2 0.99 0.99 0.98
AUC, t = 3 0.98 0.98 0.98

W2, Scheme 1 R2
COMP 100 100 98.9

MSETR 0.001 0.001 0.05
AUC, t = 2 0.98 0.98 0.98
AUC, t = 3 0.97 0.98 0.96
MSETE 7.52 7.66 8.68

AUC, t = 2 0.86 0.87 0.86
AUC, t = 3 0.92 0.94 0.92
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Table 8: Simulation Scheme 2: 33% Censoring

Model Measure ACPR-AFT ACPR-AFT CPR-AFT
GenF sAFT

LN, Scheme 2 R2
COMP 100 98.2 98.1

MSETR 0.006 0.179 0.228
AUC, t = 2 0.75 0.76 0.76
AUC, t = 3 0.89 0.89 0.9
MSETE 9.3 9.3 9.2

AUC, t = 2 0.89 0.91 0.91
AUC, t = 3 0.88 0.9 0.84

LL1, Scheme 2 R2
COMP 99.9 99.9 100

MSETR 0.002 0.002 0.001
AUC, t = 2 0.71 0.7 0.66
AUC, t = 3 0.71 0.71 0.67
MSETE 3.12 3.11 3.14

AUC, t = 2 0.99 0.98 0.97
AUC, t = 3 0.97 0.97 0.96

LL2, Scheme 2 R2
COMP 97.7 98 97.6

MSETR 0.056 0.097 0.092
AUC, t = 2 0.56 0.56 0.56
AUC, t = 3 0.59 0.58 0.57
MSETE 2.3 2.3 2.3

AUC, t = 2 0.98 0.97 0.95
AUC, t = 3 0.86 0.96 0.89

W1, Scheme 2 R2
COMP 98.2 98 98.1

MSETR 0.08 0.1 0.09
AUC, t = 2 0.84 0.84 0.85
AUC, t = 3 0.79 0.8 0.8
MSETE 4.36 4.04 4.02

AUC, t = 2 0.98 0.99 0.99
AUC, t = 3 0.95 0.98 0.98

W2, Scheme 2 R2
COMP 99.9 98 98

MSETR 0.005 0.127 0.114
AUC, t = 2 0.91 0.91 0.92
AUC, t = 3 0.87 0.88 0.88
MSETE 6.12 5.29 5.3

AUC, t = 2 0.98 0.98 0.98
AUC, t = 3 0.98 0.98 0.97
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Table 9: Simulation Scheme 1: 67% Censoring

Model Measure ACPR-AFT ACPR-AFT CPR-AFT
GenF sAFT

LN, Scheme 1 R2
COMP 100 100 99.9

MSETR 0.003 0.006 0.007
AUC, t = 2 0.82 0.88 0.81
AUC, t = 3 0.82 0.86 0.79
MSETE 10.9 11.6 12.7

AUC, t = 2 0.86 0.84 0.84
AUC, t = 3 0.85 0.85 0.84

LL1, Scheme 1 R2
COMP 100 100 100

MSETR 0.001 0.00001 0.003
AUC, t = 2 0.98 0.97 0.97
AUC, t = 3 0.96 0.96 0.94
MSETE 1.35 1.25 1.36

AUC, t = 2 0.94 0.86 0.84
AUC, t = 3 0.91 0.84 0.79

LL2, Scheme 1 R2
COMP 100 100 100

MSETR 0.0002 0.0003 0.0004
AUC, t = 2 0.87 0.89 0.85
AUC, t = 3 0.93 0.94 0.91
MSETE 1.93 1.89 1.99

AUC, t = 2 0.88 0.86 0.84
AUC, t = 3 0.8 0.84 0.79

W1, Scheme 1 R2
COMP 100 100 99.5

MSETR 0.003 0.0003 0.01
AUC, t = 2 0.97 0.97 0.96
AUC, t = 3 0.93 0.93 0.92
MSETE 3.7 3.79 4.09

AUC, t = 2 0.92 0.9 0.86
AUC, t = 3 0.92 0.88 0.74

W2, Scheme 1 R2
COMP 100 100 100

MSETR 0.0004 0.00001 0.0005
AUC, t = 2 0.96 0.97 0.96
AUC, t = 3 0.98 0.97 0.97
MSETE 5.52 5.51 5.57

AUC, t = 2 0.89 0.89 0.86
AUC, t = 3 0.9 0.85 0.79
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Table 10: Simulation Scheme 2: 67% Censoring

Model Measure ACPR-AFT ACPR-AFT CPR-AFT
GenF sAFT

LN, Scheme 2 R2
COMP 100 100 100

MSETR 0.000002 0.000002 0.000002
AUC, t = 2 0.8 0.79 0.79
AUC, t = 3 0.92 0.92 0.92
MSETE 4.9 4.9 5

AUC, t = 2 0.85 0.87 0.76
AUC, t = 3 0.87 0.87 0.83

LL1, Scheme 2 R2
COMP 100 100 100

MSETR 0.00003 0.00004 0.0009
AUC, t = 2 0.94 0.9 0.79
AUC, t = 3 0.79 0.8 0.74
MSETE 1.12 1.11 1.14

AUC, t = 2 0.95 0.9 0.89
AUC, t = 3 0.87 0.84 0.8

LL2, Scheme 2 R2
COMP 97.5 97.3 97.5

MSETR 0.016 0.046 0.061
AUC, t = 2 0.7 0.7 0.56
AUC, t = 3 0.72 0.7 0.58
MSETE 1.45 1.49 1.52

AUC, t = 2 0.95 0.86 0.76
AUC, t = 3 0.73 0.87 0.78

W1, Scheme 2 R2
COMP 100 100 100

MSETR 0.001 0.001 0.001
AUC, t = 2 0.98 0.98 0.97
AUC, t = 3 0.96 0.96 0.95
MSETE 3.88 3.96 3.97

AUC, t = 2 0.94 0.92 0.9
AUC, t = 3 0.9 0.89 0.83

W2, Scheme 2 R2
COMP 97.7 97.5 97.5

MSETR 0.05 0.06 0.08
AUC, t = 2 0.92 0.91 0.86
AUC, t = 3 0.95 0.93 0.89
MSETE 4.98 5 5

AUC, t = 2 0.98 0.93 0.93
AUC, t = 3 0.92 0.91 0.9
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Table 11: Simulation Scheme 1: 80% Censoring

Model Measure ACPR-AFT ACPR-AFT CPR-AFT
GenF sAFT

LN, Scheme 1 R2
COMP 100 100 99.9

MSETR 0.000004 0.0001 0.0001
AUC, t = 2 0.93 0.88 0.76
AUC, t = 3 0.93 0.92 78
MSETE 10 10 11.4

AUC, t = 2 0.74 0.77 0.65
AUC, t = 3 0.75 0.75 0.64

LL1, Scheme 1 R2
COMP 99.2 99.3 99

MSETR 0.002 0.008 0.01
AUC, t = 2 0.93 0.97 0.93
AUC, t = 3 0.87 0.92 0.84
MSETE 0.61 0.66 0.7

AUC, t = 2 0.9 0.76 0.65
AUC, t = 3 0.71 0.82 0.6

LL2, Scheme 1 R2
COMP 100 100 100

MSETR 0.0001 0.0002 0.0002
AUC, t = 2 0.95 0.97 0.98
AUC, t = 3 0.92 0.95 0.98
MSETE 0.91 0.88 1.07

AUC, t = 2 0.8 0.86 0.75
AUC, t = 3 0.85 0.84 0.83

W1, Scheme 1 R2
COMP 100 100 99.5

MSETR 0.0002 0.0001 0.006
AUC, t = 2 0.92 0.9 0.93
AUC, t = 3 0.92 0.9 0.93
MSETE 2.39 2.16 2.6

AUC, t = 2 0.75 0.78 0.65
AUC, t = 3 0.75 0.78 0.65

W2, Scheme 1 R2
COMP 100 100 100

MSETR 0.0003 0.0003 0.0004
AUC, t = 2 0.91 0.91 0.87
AUC, t = 3 0.93 0.91 0.89
MSETE 3.99 3.98 4.01

AUC, t = 2 0.89 0.81 0.81
AUC, t = 3 0.86 0.81 0.74
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Table 12: Simulation Scheme 2: 80% Censoring

Model Measure ACPR-AFT ACPR-AFT CPR-AFT
GenF sAFT

LN, Scheme 2 R2
COMP 98.9 98.4 98.1

MSETR 0.035 0.12 0.14
AUC, t = 2 0.73 0.74 0.73
AUC, t = 3 0.83 0.82 0.79
MSETE 3.76 3.59 3.76

AUC, t = 2 0.89 0.95 0.84
AUC, t = 3 0.95 0.89 0.86

LL1, Scheme 2 R2
COMP 100 100 100

MSETR 0.0002 0.0002 0.0005
AUC, t = 2 0.95 0.97 0.93
AUC, t = 3 0.94 0.96 0.92
MSETE 1.72 1.72 1.75

AUC, t = 2 0.68 0.79 0.66
AUC, t = 3 0.7 0.83 0.55

LL2, Scheme 2 R2
COMP 100 100 97.7

MSETR 0.0003 0.00001 0.026
AUC, t = 2 0.86 0.89 0.68
AUC, t = 3 0.81 0.9 0.63
MSETE 1.23 1.13 1.33

AUC, t = 2 0.71 0.84 0.61
AUC, t = 3 0.62 0.91 0.61

W1, Scheme 2 R2
COMP 100 100 100

MSETR 0.00002 0.00003 0.00002
AUC, t = 2 0.96 0.95 0.93
AUC, t = 3 0.96 0.95 0.93
MSETE 6.17 4.8 4.55

AUC, t = 2 0.75 0.88 0.68
AUC, t = 3 0.75 0.88 0.68

W2, Scheme 2 R2
COMP 100 100 100

MSETR 0.0006 0.0007 0.0009
AUC, t = 2 0.98 0.99 0.98
AUC, t = 3 0.98 0.98 0.97
MSETE 4.73 4.29 5.25

AUC, t = 2 0.9 0.9 0.86
AUC, t = 3 0.79 0.82 0.66

49

Hosted by The Berkeley Electronic Press



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

LN
W
LL
GenF
CPR−AFT

(a) 33% Censoring, ω

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

LN
W
LL
GenF
CPR−AFT

(b) 80% Censoring, ω

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

LN
W
LL
GenF
CPR−AFT

(c) 33% Censoring, ξ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

LN
W
LL
GenF
CPR−AFT

(d) 80% Censoring, ξ

Figure 1: ROC Curves for Simulation Scheme 1, Comparison of GenF -based ACPR-AFT
vs. its special cases and CPR-AFT for ω (a, b) and ξ (c, d).
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Figure 2: ROC Curves for Simulation Scheme 2, ξ vs. ω for GenF -based ACPR-AFT (a,
b) and GenF -based ACPR-AFT vs. CPR-AFT using ξ (c, d)
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2 Data sets

2.1 Data sets

• Head & Neck squamous cell carcinoma (HNSCC): This data set was published by
TCGA and contains the expression profiles of 19,341 genes obtained using RNA se-
quencing for 221 subjects with cancers of the oral cavity, a subgroup of HNSCC. Pre-
processed gene expression data (RSEM values, Li & Dewey, 2011) was downloaded
from the Broad Institute (http://gdac.broadinstitute.org) and further normalized us-
ing the log2(x+1) transformation which accounts for exact zeros. A gene was included
in the analyses only if (i) if 50% of patients have expression values for that gene, and
(ii) protein expression of that gene was observed in at least one head and neck cancer
sample in the Human Protein Atlas database (Uhlen et al., 2015). Overall survival is
the endpoint of interest.

• Glioblastoma (GBM): This data set was published by TCGA and contains the methy-
lation profiles (beta values) for 280 tumor samples obtained using the Infinium Hu-
manMethylation27 platform. The beta values were normalized using the logit trans-
formation. For genes with multiple methylation probes, the probe most negatively
correlated with expression is used. Overall survival is the endpoint of interest.

• Ovarian cancer: Tothill et al. (2008) studied the relationship between gene expression
and overall survival (OS) and recurrence-free survival (RFS) in ovarian cancer using
tumor samples from 282 subjects and Affymetrix U133 Plus 2 microarrays. Affymetrix
control probe sets and samples with missing survival data were removed from the RMA
normalized data set (Irizarry et al., 2003). For OS, a coefficient of variation threshold
of 35% was used to remove probe sets exhibiting low variation across tumor samples
and resulted in 24,736 probe sets for 273 subjects. For RFS, a coefficient of variation
threshold of 50% resulted in 13,696 probe sets for 276 subjects. Log2 transformed
expression was used in all analyses.

• Oral cancer: Saintigny et al. (2011) studied 86 subjects enrolled in a clinical chemopre-
vention trial where the primary endpoint of interest was time to development of oral
cancer. This RMA normalized and log2 transformed data set (Irizarry et al., 2003)
contains the expression profiles of 12,776 probe sets obtained using the Human Gene
1.ST platform.
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Table 13: HNSCC Data: Summary of results on training and test sets

Marginal screening method Set Measure ACPR-AFT ACPR-AFT CPR-AFT CPR-AFT

(Number of features) GenF sAFT GenF a sAFT a

R2 99.0 99.7 96.9 91.7

Training MSETR 0.66 0.19 0.86 1.08

AUC, t = 2 0.88 0.91 0.84 0.77

sAFT AUC, t = 3 0.87 0.96 0.84 0.75

(2,336) AUC, t = 5 0.79 0.93 0.74 0.65

MSETE 1.35 1.47 1.82 1.5

Test AUC, t = 2 0.72 0.76 0.66 0.64

AUC, t = 3 0.67 0.72 0.61 0.62

AUC, t = 5 0.61 0.67 0.55 0.56

R2 99.0 99.2 91.8 91.8

Training MSETR 0.96 0.57 1.06 1.19

AUC, t = 2 0.76 0.97 0.72 0.73

CON AUC, t = 3 0.73 0.96 0.71 0.71

(2,254) AUC, t = 5 0.73 0.94 0.66 0.69

MSETE 1.30 1.27 1.40 1.44

Test AUC, t = 2 0.67 0.7 0.62 0.62

AUC, t = 3 0.68 0.72 0.65 0.62

AUC, t = 5 0.65 0.71 0.57 0.58

a: based on optimal α chosen by the corresponding ACPR-AFT method.

Table 14: GBM Data: Summary of results on training and test sets

Marginal screening method Set Measure ACPR-AFT ACPR-AFT CPR-AFT CPR-AFT

(Number of features) GenF sAFT GenF a sAFT a

R2 87.9 90.3 85.0 85.6

MSETR 1.10 0.89 0.90 0.90

Training AUC, t = 2 0.63 0.74 0.63 0.71

AUC, t = 3 0.70 0.83 0.70 0.69

sAFT AUC, t = 5 0.95 0.94 0.80 0.86

(3,605) MSETE 1.42 1.33 1.45 1.35

Test AUC, t = 2 0.61 0.62 0.61 0.61

AUC, t = 3 0.69 0.66 0.68 0.67

AUC, t = 5 0.82 0.82 0.82 0.77

R2 88.7 90.5 83.5 80.1

MSETR 0.85 1.08 0.90 1.12

Training AUC, t = 2 0.77 0.74 0.75 0.69

AUC, t = 3 0.78 0.85 0.76 0.79

CON AUC, t = 5 0.93 0.94 0.91 0.90

(1,125) MSETE 1.31 1.22 1.33 1.35

Test AUC, t = 2 0.63 0.65 0.57 0.58

AUC, t = 3 0.79 0.74 0.69 0.69

AUC, t = 5 0.90 0.93 0.79 0.78

a: based on optimal α chosen by the corresponding ACPR-AFT method.
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Table 15: Ovarian Cancer Data (OS): Summary of results on training and test sets

Marginal screening method Set Measure ACPR-AFT ACPR-AFT CPR-AFT CPR-AFT

(Number of features) GenF sAFT GenF a sAFT a

R2 100 99.7 98.5 98.5

Training MSETR 0.004 0.03 0.15 0.15

AUC, t = 2 0.98 .98 0.89 0.88

sAFT AUC, t = 3 0.94 .94 0.83 0.83

(3,119) AUC, t = 5 0.90 .90 0.75 0.76

MSETE 0.53 0.53 0.54 0.52

AUC, t = 2 0.76 0.76 0.74 0.74

Test AUC, t = 3 0.74 0.74 0.74 0.72

AUC, t = 5 0.76 0.74 0.70 0.68

R2 99.9 99.0 98.7 98.7

Training MSETR 0.14 0.14 0.17 0.17

AUC, t = 2 0.95 0.95 0.88 0.88

AUC, t = 3 0.93 0.92 0.82 0.82

CON AUC, t = 5 0.90 0.90 0.77 0.77

(2,485) MSETE 0.66 0.66 0.68 0.68

AUC, t = 2 0.74 0.74 0.70 0.70

Test AUC, t = 3 0.71 0.72 0.68 0.68

AUC, t = 5 0.81 0.82 0.71 0.73

a: based on optimal α chosen by the corresponding ACPR-AFT method.
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Table 16: Ovarian Cancer Data (RFS): Summary of results on training and test sets

Marginal screening method Set Measure ACPR-AFT ACPR-AFT CPR-AFT CPR-AFT

(Number of features) GenF sAFT GenF a sAFT a

R2 99.7 99.5 98.5 96.9

Training MSETR 0.02 0.04 0.03 0.21

AUC, t = 2 0.94 0.96 0.90 0.89

sAFT AUC, t = 3 0.93 0.95 0.89 0.89

(1,880) AUC, t = 5 0.87 0.92 0.85 0.85

MSETE 0.47 0.46 0.48 0.47

AUC, t = 2 0.73 0.77 0.72 0.72

Test AUC, t = 3 0.75 0.82 0.74 0.77

AUC, t = 5 0.68 0.76 0.65 0.71

R2 99.9 99.7 98.9 96.5

Training MSETR 0.007 0.21 0.007 0.22

AUC, t = 2 0.94 0.91 0.92 0.85

AUC, t = 3 0.93 0.94 0.89 0.88

CON AUC, t = 5 0.89 0.92 0.85 0.85

(1,682) MSETE 0.41 0.43 0.50 0.49

AUC, t = 2 0.74 0.76 0.71 0.72

Test AUC, t = 3 0.80 0.82 0.76 0.75

AUC, t = 5 0.78 0.79 0.74 0.80

a: based on optimal α chosen by the corresponding ACPR-AFT method.
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Table 17: Oral Cancer Data: Summary of results on training and test sets

Marginal screening method Set Measure ACPR-AFT ACPR-AFT CPR-AFT CPR-AFT

(Number of features) GenF sAFT GenF a sAFT a

R2 94.6 99 93.7 95.1

Training MSETR 0.03 0.02 0.21 0.14

AUC, t = 2 0.98 1.00 0.97 0.97

sAFT AUC, t = 3 0.97 1.00 0.96 0.98

(3,065) AUC, t = 5 0.96 1.00 0.97 0.98

MSETE 0.10 0.34 1.08 0.99

AUC, t = 2 0.89 0.87 0.86 0.85

Test AUC, t = 3 0.89 0.92 0.89 0.89

AUC, t = 5 0.94 0.95 0.93 0.94

R2 95.6 95.6 89.3 88.3

Training MSETR 0.01 0.12 0.40 0.4

AUC, t = 2 0.96 0.97 0.95 0.94

AUC, t = 3 0.98 0.99 0.97 0.97

CON AUC, t = 5 0.97 0.99 0.96 0.98

(4,652) MSETE 0.36 0.44 1.20 1.17

AUC, t = 2 0.81 0.83 0.82 0.82

Test AUC, t = 3 0.86 0.88 0.86 0.86

AUC, t = 5 0.90 0.92 0.90 0.91

a: based on optimal α chosen by the corresponding ACPR-AFT method.
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(a) HNSCC data
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(b) GBM data
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(c) Ovarian data (OS)
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(d) Ovarian data (RFS)
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(e) Oral data

Figure 3: Predicted survival curves based on PI, GenF vs. sAFT -based ACPR-AFT
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