
Johns Hopkins University, Dept. of Biostatistics Working Papers

10-21-2008

Multilevel Latent Class Models with Dirichlet
Mixing Distribution
Chongzhi Di
Johns Hopkins University, cdi@jhsph.edu

Karen Bandeen-Roche
Johns Hopkins University, kbandeen@jhsph.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commercially reproduced without the permission of the
copyright holder.
Copyright © 2011 by the authors

Suggested Citation
Di, Chongzhi and Bandeen-Roche, Karen, "Multilevel Latent Class Models with Dirichlet Mixing Distribution" (October 2008). Johns
Hopkins University, Dept. of Biostatistics Working Papers. Working Paper 174.
http://biostats.bepress.com/jhubiostat/paper174

http://biostats.bepress.com/jhubiostat


Multilevel Latent Class Models with Dirichlet Mixing

Distribution

Chongzhi Di and Karen Bandeen-Roche

Abstract

Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling

multivariate categorical outcomes in social sciences and biomedical studies. Standard analy-

ses assume data of different respondents to be mutually independent, excluding application

of the methods to familial and other designs in which participants are clustered. In this

paper, we develop multilevel latent class model, in which subpopulation mixing probabilities

are treated as random effects that vary among clusters according to a common Dirichlet

distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by

maximum likelihood (ML). This approach works well, but is computationally intensive when

either the number of classes or the cluster size is large. We propose a maximum pairwise

likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a

simple latent class analysis, combined with robust standard errors, provides another consis-

tent, robust, but less efficient inferential procedure. Simulation studies suggest that the three

methods work well in finite samples, and that the MPL estimates often enjoy comparable

precision as the ML estimates. We apply our methods to the analysis of comorbid symp-

toms in the Obsessive Compulsive Disorder study. Our models’ random effects structure has

more straightforward interpretation than those of competing methods, thus should usefully

augment tools available for latent class analysis of multilevel data.

Keywords: Latent class analysis (LCA), Dirichlet distribution, multilevel models, EM

algorithm, pairwise likelihood
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1. INTRODUCTION

Latent class analysis (LCA; Clogg, 1995) and regression (LCR; Bandeen-Roche et al., 1997)

are widely used in psychosocial, educational, and health research. These models treat a

population of interest as being composed of several subpopulations, 1,..., M, to which subjects

belong with probabilities π1, ..., πM . They also assume that responses of different subjects

are independent of each other. However, this independence assumption may not be valid for

commonly employed designs: for instance, in family studies, relatives may be more likely to

fall into the same subpopulation, or ‘class,’ than members of different families. Application

of the models to studies involving clustering of participants has been limited as a result.

In standard latent class models, the mixing probabilities π = (π1, π2, ..., πM) are assumed

to be fixed parameters. Allowing these to vary randomly among clusters provides one mecha-

nism for introducing intra-cluster dependence among responses. A class of models doing this

has been proposed in recent years (Vermunt, 2003, 2008; henceforth “ML-V”). The models

assume that class mixing, or ‘membership,’ probabilities u˜i = (ui1, ..., uiM) vary over clusters

according to unidimensional, normally distributed random effects vi with unit variance:

log
uim
ui1

= αm0 + λmvi ,m = 2, ...,M. (1)

The unidimensionality makes the approach computationally convenient. However, the ran-

dom effects have latent factor interpretation that is contingent on ‘loadings’ λ and may

therefore be somewhat obscure. Moreover, as we shall illustrate, this random effects struc-

ture sometimes has subtle undesirable implications. This paper alternatively considers mod-

els assuming Dirichlet-distributed mixing probabilities u˜i. Like any parametric model, the

Dirichlet distribution has implications for analytic interpretation; however, we believe its

direct linking to the probability scale and freedom from loadings make it more natural and

interpretable than the alternative, if clustering reasonably may be thought to induce ex-

changeable association. Moreover, as we shall demonstrate, conjugacy between the Dirichlet

and multinomial distributions eases computation burden.
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Because the Dirichlet is conjugate to the multinomial distribution, it was used in la-

tent class models recently. For example, Potthoff et al. (2000) considered a latent-class type

model in single level settings where the mixing probabilities for each individual are considered

Dirichlet distributed random effects. Varki and Chintagunta (2004) proposed an augmented

latent class model which is a mixture of standard LCA and Potthoff et al. (2000)’s model.

However, none of these models considered multilevel setting in which individuals are clus-

tered. To the best of our knowledge, there is no existing work that discusses multilevel latent

class models with Dirichlet mixing distribution, although it is a natural choice. Estimation

and Inference for such models are more complicated due to the multilevel structure. In this

paper, we consider multilevel latent class models with Dirichlet mixing distribution, dis-

cuss estimation and inference using maximum likelihood and maximum pairwise likelihood

methods and investigate the consequence of ignore clustering.

We were motivated to the present research by our collaboration in the Obsessive-Compulsive

Disorder (OCD) study, a family-based study aiming to understand the comorbidity of OCD

with other disorders. Obsessive-Compulsive Disorder is an anxiety disorder characterized

by recurrent thoughts (obsessions) or repetitive behaviors (compulsions) which attempt to

neutralize the obsessions (see, e.g, Jenike et al. 1990). A total of 999 subjects in 238 families

were enrolled into this study, among which 706 subjects from 238 families were OCD cases.

Diagnosis was made of 8 other disorders including major depression, generalized anxiety

disorder, and panic disorder. It is hypothesized that there exist subtypes of OCD, based on

comorbidity (Nestadt et al., 2003). Latent class analysis is a natural tool for evaluating this

hypothesis; however, the clustering within families must be taken into account if correct and

efficient inference is to be made. It is also of interest to estimate the subtype heritability: in

statistical terms, the intra-cluster correlation among class memberships.

This paper develops multilevel latent class analysis (MLCA) models with Dirichlet mixing

distribution, proposes model fitting using both maximum likelihood and maximum pairwise

likelihood methods, and discusses issues of application including missing data and model

selection. We also investigate the use of simple latent class model by ignoring clustering. We
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evaluate methods’ performance in a simulation study and in application to the OCD study.

2. MULTILEVEL LATENT CLASS ANALYSIS: MODELS

Latent class models typically involve vector data per individual, comprising multiple cate-

gorical ‘item’ responses. Though these handle categorical responses in general, for simplicity

of notation we primarily consider binary data. Then let Yijk denote the response of the jth

subject of the ith cluster on the kth item; i = 1, 2, ..., n; j = 1, 2, ..., ni; k = 1, 2, ..., K. We

denote the K-vector of a subject’s responses by Y˜ ij. Let ηij denote the class membership

for subject j in cluster i, taking values in {1, 2, ...,M}, and η˜i = {ηi1, ηi2, ..., ηini
}. Latent

class analysis (LCA) ignoring clustering decomposes the mass function of a subject’s item

responses as

Pr(Y˜ ij = y˜) =
M∑
m=1

Pr(ηij = m) Pr(Y˜ ij = y˜ | ηij = m)

=
M∑
m=1

Pr(ηij = m) ·
K∏
k=1

Pr(Yijk = yk | ηij = m) (2)

=
M∑
m=1

πm ·
K∏
k=1

pyk

km(1− pkm)1−yk ,

where πm = Pr(ηij = m) is the prevalence of class m and pkm = Pr(Yijk = 1 | ηij = m)

is the conditional probability of positive response for item k if the subject belongs to class

m. Typically, LCA imposes the “conditional independence” assumption (as revealed in

the equations above) that a subject’s responses on the items are independent given his

class membership (Clogg, 1995). The conditional probabilities define the “measurement”

part of the model. They are often parameterized in logit scale, i.e, βkm = logit(pkm) =

log(pkm/(1− pkm)). The distribution of classes in the population defines the “mixing” part

of the model, which involves parameters (π1, π2, · · · , πm). LCA assumes that the mixing

distribution is the same for every individual.

Model (2) does not account for potential correlation among response vectors of sub-

jects within the same cluster. To rectify this, we assume that class mixing probabilities

{π1, π2, ..., πM} vary from cluster to cluster, arising from a common Dirichlet distribution.
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Thus, we consider there to be between-cluster heterogeneity in the probabilities governing

underlying outcome status (class membership), and not additionally in the item response

distribution given class membership. Modeling class membership probabilities as Dirichlet

straightforwardly expresses clusterwise heterogeneity: in the OCD example, probabilities

of having each type of comorbidity may vary from family to family. It also explicitly ac-

knowledges classes as competing, such that membership in one class precludes membership

in another. Clustering is accounted for in the sense that subjects from the same cluster are

more likely to fall into same classes since they share the same cluster specific random effects.

The multilevel latent class model that we consider in this paper is formulated as:

Pr(Y˜ ij = y˜) =
M∑
m=1

Pr(ηij = m) ·
K∏
k=1

pyk

km(1− pkm)1−yk

Pr(ηij = m |u˜i) = uim

u˜i ∼ Dirichlet(α1, α2, ..., αM) ,

(3)

where u˜i = (ui1, ..., uiM) are cluster specific class mixing probabilities. For convenience, we

model the conditional probabilities in the logit scale using βkm = logit(pkm) = log(pkm/(1−

pkm)), and then the natural parameters in the model are θ = (β, α). Implicit in (3) is that all

distributions are assumed to be functionally independent of ni. The Dirichlet distribution is

natural for random effects, since the uim’s are non-negative probabilities constrained to sum

to 1. Model (3) implies that in the whole population, the marginal prevalences of classes

are (α1/α0, α2/α0, ..., αM/α0), where α0 =
∑M

m=1 αm. The variance of the cluster-specific

prevalences u˜i varies inversely with the scale parameter, α0, such that the correlation in

same-class membership between same-cluster members is

ρ := Corr{I(ηij = m), I(ηik = m)} =
1

α0 + 1
.

Here ρ can be interpreted as an intra-cluster correlation (ICC) coefficient, i.e, heritability.

The model implicitly assumes that the ICCs for same-class membership are class-invariant.

Appendix A provides formulas for odds ratios for association among both same-class mem-
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bership between same-cluster members and different-class membership between same-cluster

members, as well as other implications of Model (3).

The measurement part of Model (3) is the same as for the simple LCA model. The

conditional independence assumption is retained, i.e, responses on different items are as-

sumed to be independent given class membership. The possible clustering effect is reflected

in the mixing part, that is, potential associations among the class membership indicators

{ηij : i = 1, 2, ..., n; j = 1, ..., ni}. The Dirichlet random effects structure specifies the joint

distribution of class membership vector η˜i = {ηi1, ηi2, ..., ηini
} for cluster i as:

Pr(η˜i = z˜) =

∫ ni∏
j=1

Pr(ηij = zj|u˜i) f(u˜i) du˜i =
Γ(α0 + ni)

Γ(α0)

∏
m

Γ(αm + q
(i)
m )

Γ(αm)
,

where q
(i)
m =

∑
j I(zj = m), the number of subjects from cluster i that belong to class m.

This has nice analytic form because multinomial and Dirichlet distributions are conjugate

families, and eases implementation and interpretation. In Model (1), in contrast, Pr(η˜i = z˜)

does not have a closed form. Exchangeable within cluster association is implied by both

models, meaning the sets of associations among class memberships for any two subjects

from the same cluster are the same.

3. ESTIMATION AND INFERENCE: MAXIMUM LIKELIHOOD

For the multilevel latent class model (3), the complete likelihood contributed by cluster i is

Lci(β, α) = Pr(Y˜ i|η˜i) Pr(η˜i|u˜i) f(u˜i)
=

∏
j

[∏
k

Pr(Yijk|ηij) Pr(ηij|u˜i)
]
f(u˜i).

Since the latent variables η˜i and u˜i are unobservable, the observed likelihood is obtained

by marginalizing the complete likelihood over them, i.e,

Li(β, α) =

∫ ∫
Pr(Y˜ i|η˜i) Pr(η˜i|u˜i) f(u˜i) du˜i dη˜i

=
∑
z˜

[∏
j

∏
k

Pr(Yijk|ηij = zj)

]
· Pr(η˜i = z˜) ,

where the marginal distribution of η˜i is as specified in the previous section.
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3.1 Estimation: EM algorithm

The EM (Expectation-Maximization) algorithm (Dempster et al., 1977) well suits the incom-

pletely observed nature of mixture models. Provided a set of regularity conditions (e.g, in

Dempster et al 1977) which are met in our model, it is stable and ensures that the likelihood

monotonely increases over iterations. For these reasons, we propose to use the EM algorithm

for estimation.

For the E step, take the parameter estimates as β(h), α(h) at the hth iteration. Then, we

need to calculate the expected value of the log complete likelihood:

Q(β, α; β(h), α(h)) = E(β(h), α(h))

[∑
i

log Lci(β, α) |Yi; β(h), α(h)

]
=

∑
i

∑
j

∑
m

wijm Uijm(β) + (
∑

i v
T
i )α

+n [ log Γ(
∑

m αm)−
∑

m log Γ(αm) ] + Constant (4)

where Uijm = log Pr(Y˜ ij| ηij = m) =
∑

k log Pr(Yijk|ηij = m). The weights wijm and
vTi = (vi1, vi2, ..., viM) are

wijm = Pr(ηij = m|Y˜ i; β
(h), α(h))

vim = E[ log(uim)|Y˜ i; β
(h), α(h) ] .

These are the only places where the current parameter estimates β(h), α(h) enter the Q
function.

To obtain weights wij, we need the posterior distribution of η˜i given Yi, which can be

calculated by Bayes’ rule,

Pr(η˜i|Y˜ i) =
Pr(η˜i) ∏

j

∏
k Pr(Yijk|ηij)∑

η˜i

[
Pr(η˜i) ∏

j

∏
k Pr(Yijk|ηij)

]
Here the sum above is taken over all possible class membership combinations for cluster i,

totaling Mni possibilities. To obtain weights vi, we use the double expectation technique

vim = E{E[ log(uim)|Y˜ i, η˜i; β(h), α(h) ] |Y˜ i; β
(h), α(h) }. Here,

E[ log(uim)|Y˜ i, η˜i; β(h), α(h) ] = DΓ(α(h)
m + q(i)

m )−DΓ(
∑

m α
(h)
m + ni)

where DΓ(x) = d
dx

log Γ(x), and q
(i)
m =

∑
j I(ηij = m), the number of subjects from cluster i

belonging to class m; see Appendix B. We then take expectation conditional on Yi to obtain
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the vi’s, which again involves summing over Mni possible patterns of class memberships in

cluster i.

Once we obtain the Q function as in equation (4), the M step is relatively straightforward.

The β parameters appear only in the first term of (4), and the α parameters appear only in

the second and third terms. Maximization over β is equivalent to fitting a logistic regression

model with weights wij. Thus in practice, we can conveniently call any routine that fits

weighted logistic regression for this part of the M step. The first and second derivatives with

respect to α are:
∂Q

∂α
=

∑
i

vi + n [DΓ(α0)1M×1 −DΓ(α) ] ,

∂2Q

∂α ∂α′ = n [TΓ(α0)1M×M − diag (TΓ(α1), ... , TΓ(αM) ) ] ,

where TΓ(x) := ∂2

∂ x2 log Γ(x). Thus, we can carry out a one or multi-step Newton-Raphson

algorithm for this part of the M step. The cross-derivative ∂2Q
∂β ∂α′ is 0, so the two parts can

be carried out separately.

Finally, we iterate between the E step and M step until a suitable convergence criterion

is met.

3.2 Missing Data

By using the EM algorithm, we can conveniently deal with data that are missing at random

(MAR) in the sense of Little and Rubin (2002). Let Mijk be the missing indicator for Yijk,

i.e, Mijk = 1 if Yijk is missing (hence we denote Y miss
ijk ) and Mijk = 0 otherwise (hence we

denote Y obs
ijk ). If Yijk is observed, its contribution to the complete log likelihood and the Q

function are
M∑
m=1

I(ηij = m) log Pr(Y obs
ijk | ηij = m)

M∑
m=1

wijm
[
Y obs
ijk log pkm + (1− Y obs

ijk ) log(1− pkm)
]

(5)

respectively, where pkm = Pr(Yijk = 1|ηij = m) = exp(βkm)/{1 + exp(βkm)}. If Yijk is

missing, its contribution to the complete log likelihood is
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M∑
m=1

I(ηij = m) log Pr(Y miss
ijk | ηij = m) ,

and its contribution to the Q function is

E

[
M∑
m=1

I(ηij = m) log Pr(Y miss
ijk | ηij = m) |Yi ; β(h), α(h)

]

=
M∑
m=1

wijm

[
p

(h)
km log pkm + (1− p

(h)
km) log(1− pkm)

]
, (6)

where p
(h)
km = Pr(Yijk = 1|ηij = m; β(h)) = exp(β

(h)
km)/{1 + exp(β

(h)
km)} is the probability of a

positive response in the current iteration.

We can see that if the response Yijk is missing, the EM algorithm “imputes” it based

on current knowledge, i.e, Y miss
ijk = 1 with probability p

(h)
km and Y miss

ijk = 0 with probability

1− p
(h)
km for a member of the mth class. Only the first term of the Q function changes when

the data are missing.

3.3 Inference and Prediction

We use the observed Fisher information matrix to estimate the standard errors of the esti-

mated parameters. The EM algorithm does not directly provide the Hessian matrix of log

likelihood; rather, methods are available to estimate it from EM outputs, e.g. Louis (1982).

For our problem the application of such methods is computationally complex. Instead, we

numerically calculate the observed Fisher information matrix following Oakes (1999):

∂ log L(θ)

∂θ
=

[
∂Q(ψ; θ)

∂ψ

]
|ψ=θ (7)

∂2 log L(θ)

∂θ ∂θ′
=

[
∂2Q(θ;ψ)

∂θ ∂θ′
+
∂2Q(θ;ψ)

∂θ ∂ψ′

]
|ψ=θ (8)

where θ = (β, α) are the parameters and ψ = (β(h), α(h)) are the current estimates. The

technical details may be found in Appendix C.

As a by-product of the EM algorithm, we can easily obtain best predictions of the random

effects given the data, which includes both latent class memberships ηij and cluster-specific

class prevalence ui. The posterior probabilities of class membership for each subject, Pr(ηij =

m|Y˜ i; β, α),m = 1, ...,M , are calculated as weights in the E-step. As for the cluster-specific

9
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random effect u˜i = (ui1, ..., uiM), the best prediction is the posterior expectation, with the

mth component provided by

E[uim|Y˜ i; β, α ] = E{E[uim|Y˜ i, η˜i; β, α ] |Y˜ i; β, α }.

Appendix B shows that the inner expectation is (αm + q
(i)
m )/(

∑
m αm + ni), since [u˜i | η˜i, Ỹi ]

is Dirichlet-distributed with parameter (α1 + q
(i)
1 , ..., αM + q

(i)
M ). We then marginalize over

all possible patterns of η˜i to obtain the outer expectation.

3.4 Selecting the number of classes

To select among models with different numbers of classes is widely considered as a challenging

problem. Even in latent class models without clustering, the likelihood ratio test comparing

an M-class model and an (M+1)-class model does not follow the typical χ2 distribution,

because under the null hypothesis, some parameters lie on the boundary of the parameter

space, or may be not identifiable. Instead, the AIC (Akaike Information Criterion, Akaike,

1974) and BIC (Bayesian Information Criterion, Schwarz, 1978) and similar statistics have

been widely used for selecting among models. In the multilevel latent class model, appro-

priate specification of AIC and BIC is challenged by the random effects structure. Thus, we

recommend an alternative method for model selection, based on marginalizing model (3).

That marginalization yields

Pr(Y˜ ij = y˜) =
M∑
m=1

Pr(ηij = m) · Pr(Y˜ ij = y˜ | ηij = m)

=
M∑
m=1

∫
Pr(ηij = m |u˜i)f(u˜i) d u˜i ·

K∏
k=1

Pr(Yijk = yk | ηij = m)

=
M∑
m=1

αm
α0

·
K∏
k=1

pyk

km(1− pkm)1−yk

=
M∑
m=1

π∗m ·
K∏
k=1

pyk

km(1− pkm)1−yk , (9)

so that the marginal distribution of a single subject’s response vector is a simple latent class

model with the same number of classes as the MLCA model. This relationship suggests a

simple method for selecting the number of classes: randomly choose one subject per cluster,
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and then apply latent class analysis on the resulting subsample. Standard methods, such as

BIC, could then be used to choose the number of classes. Finally, one would fix the number

of classes, M , in a subsequent multilevel latent class model.

The method just outlined may lose precision since only a subset of the data is used.

Instead, we propose to randomly draw multiple mutually independent subsamples, resulting

in the following algorithm:

1. Draw a subsample S = {(i, j∗i ) : i = 1, ..., n}, where j∗i is a subject randomly chosen

from subjects {1, ..., ni} in cluster i.

2. Fit a latent class model using sample S and obtain the BIC (or other model selection

criterion) statistics for all candidate models with {1, ...,M∗} classes.

3. Repeat steps 1-2 to get L such random subsamples. Record {BIC
(m)
l : l = 1, ..., L,m =

1, ...,M∗}, where BIC
(m)
l is the BIC for m-class model using the lth subsample.

4. Choose the model with the smallest average BIC statistic, i.e, M=arg min { ¯BIC
(m)

:

m = 1, ...,M∗}, where ¯BIC
(m)

=
∑

l BIC
(m)
l /L.

Step 4 is justified under weak law regularity conditions so long as the model selection

statistic has additive form: then, the average estimates the same limiting quantity as the

original statistic.

For standard LCA models, it is known that the BIC would consistently choose the right

model in large samples (Haughton, 1988). The proposed BIC method has the same asymp-

totic property for multilevel data as the usual BIC method. However, the subsampling

creates a different finite sample tradeoff, especially when the sample size is small to medium.

It is known that BIC may underestimates the number of classes in small samples (Yang,

2006). In such cases, one could use the modified BIC with sample size adjustment (Sclove,

1987), which is shown to perform better according to Yang (2006). We suggest that the

method described here be used with caution. Model selection on the number of classes for

multilevel latent class models is a complex problem. A comprehensive study on this issue

would be possible future research directions and is out of scope of this paper.
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4. ESTIMATION AND INFERENCE: MAXIMUM PAIRWISE LIKELIHOOD

In computing weights for the EM Q function (4), the computational burden increases expo-

nentially (O(n·MJ)) with the number of classesM and cluster size J := max{ni, i = 1, ..., n}.

Thus, we recommend using EM fitting when both M and ni are relatively small, and other-

wise using the maximum pairwise likelihood approach we now propose.

4.1 Pairwise likelihood

The idea of using pairwise likelihood for clustered data is not new. Particularly when clus-

ters present complex (e.g. spatial) correlation structure, the joint likelihood may be difficult

to specify. Even if we can specify the joint likelihood, maximizing it may be computation-

ally complicated (e.g. with large clusters), and inferences may be sensitive to the model

assumptions. The pairwise likelihood approach nicely overcomes these difficulties. Pairwise

likelihood falls within the general concept of “composite likelihood” (Lindsay, 1988), which

has been used for a variety of correlated data problems (Nott and Ryden, 1999; Kuk and

Nott, 2000; Cox and Reid, 2004; Renard et al., 2004; Varin et al., 2005).

In the multilevel latent class setting, rather than specifying the joint distribution for each

cluster, we specify only pairwise distributions and then take the product over all possible

pairs:

Lp(β, α) =
n∏
i=1

Lpi (β, α) =
∏
i:ni>1

[ ∏
j1<j2

Pr(Yij1 , Yij2 ; β, α)

]
·

∏
i:ni=1

Pr(Yi; β, α) (10)

where

Pr(Yij1 , Yij2 ; β, α) =
M∑

m1=1

M∑
m2=1

Pr(Yij1 | ηij1 = m1 ; β)Pr(Yij2 | ηij2 = m2 ; β) ·

Pr(ηij1 = m1, ηij2 = m2;α)

and
Pr(Yi; β) =

M∑
m=1

Pr(Yi | ηi = m; β) Pr(ηi = m;α) , for i in {i : ni = 1}

Under typical regularity conditions, the pairwise likelihood estimate, which maximizes

Lp, is the solution to the pairwise score equation

∂ logLp

∂θ
=
∂ logLpi
∂θ

=
∑
i:ni>1

∑
j1<j2

∂ logLij1j2
∂θ

+
∑
i:ni=1

∂ logLi
∂θ

= 0.
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As pointed out by Lindsay (1988), each component in (10) is a likelihood function, and the

corresponding score function is unbiased provided correct pairwise specification. Thus, the

first derivative of the pairwise likelihood is an unbiased estimating function. Hence assuming

that the number of clusters (with at least two subjects) goes to infinity, the pairwise likelihood

estimators for both β and α must be consistent and asymptotically normal with variance{
Eθ

[
∂2 logLp

∂θ∂θ′

]}−1

· Eθ
{[

∂ logLp

∂θ
]T [

∂ logLp

∂θ

]}
·
{
Eθ

[
∂2 logLp

∂θ∂θ′

]}−1

.

The asymptotic variance can be consistently estimated by the “sandwich” variance estimator

(Royall, 1986) that replaces the expectations in the above formula with empirical estimates.

After we obtain parameter estimates, prediction for both cluster-specific and subject-specific

random effects follows by similar methods as described in Section 3.3.

4.2 Estimation: Pairwise EM algorithm

We can view the pairwise likelihood in another way. If we think of “pseudo-data” comprised

of the pairs, and assume the pairs’ responses are mutually independent, then the pairwise

likelihood is exactly the joint likelihood of the “pseudo-data”. This connection enables us

to modify the EM algorithm in Section 3 to maximize the pairwise likelihood. We call this

algorithm Pairwise EM (PEM). Under typical regularity conditions and suitable conditions

on the missing data mechanism stated below, PEM shares similar properties with EM, for

example, the ascent property and linear rate of convergence. The essential reason is that

each pairwise likelihood component satisfies the information inequality,

Eθ0

[
log

f(Y˜ full
ij , Y˜ full

ik , ηij, ηik; θ)

f(Y˜ obs
ij , Y˜ obs

ik ; θ)
|Y˜ obs

ij , Y˜ obs
ik

]
≤ Eθ0

[
log

f(Y˜ full
ij , Y˜ full

ik , ηij, ηik; θ0))

f(Y˜ obs
ij , Y˜ obs

ik ; θ0))
|Y˜ obs

ij , Y˜ obs
ik

]
,

thus does the whole pairwise likelihood by additivity of expectation. The ascent property

for PEM follows by an analogous argument to that which proves the ascent property for EM

(Dempster et al., 1977).

The PEM can handle missing data conveniently, similarly as the EM. However, it re-

quires stricter assumptions on the missing data mechanism to ensure consistency. One set
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of conditions sufficient to ensure the information inequality is that the data be missing at

random (MAR) and that the missing distribution have no more than second-order pairwise

dependence. Equivalently, the needed assumption is that, conditional on one’s own observed

data and that of each single family member, missingness is independent of all other family

members’ observed data as well as data not observed. Under such conditions, the information

inequality holds, and thus the validity of PEM is justified.

4.3 Comparison: MPL vs. ML

The pairwise likelihood (MPL) approach has both advantages and disadvantages compared

to the ML approach. MPL relies only on bivariate distributional assumptions rather than

those for the full distribution, thus is more robust than ML. On the other hand, the asymp-

totic efficiency of MPL can be no better than for ML, and may be worse if the true joint

distribution is correctly specified.

In terms of computational burden, MPL has a clear advantage over ML, since each

pseudo-data cluster contains at most two subjects. The computational complexity is O(n ·

M2J(J − 1)/2) for MPL, as opposed to O(n ·MJ) for ML. Table 1 displays the ratio of

computational complexity comparing ML to MPL. When the number of classes or the cluster

size is less than 5, the difference in computational burden may still be acceptable. However,

the improvement of MPL is huge if the cluster size is greater than 5 and the number of

classes is greater than 3. For instance, ML requires 146 times computations as MPL does

to fit a four class model with cluster size 8. For the OCD example, the cluster sizes range

from 1 to 10. It takes approximately 3 hours to fit a three class model using ML, compared

to 30 minutes using MPL.

[Table 1 about here.]

Finally, though MPL is proposed to reduce computational burden for the Dirichlet model

(3), it is not restricted to this model. In fact, we can assume any bivariate distributions for

pairs (ηij, ηik), and still use the MPL method to obtain consistent estimation.
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5. COMPARISON WITH SIMPLE LATENT CLASS ANALYSIS

It is of interest how simple latent class analysis performs when it is incorrectly applied to

multilevel data, as is the performance of multilevel latent class analysis for independent

subjects. To investigate the former, we consider a more general class of models than model

(3), i.e. the semiparametric model

Pr(Y˜ ij = y˜) =
M∑
m=1

Pr(ηij = m) ·
K∏
k=1

pyk

km(1− pkm)1−yk

η˜i ∼ f(η˜i; π˜∗, α∗)

Pr(ηij = m ) = π∗m

(11)

where the joint distribution f(η˜i;α∗) is unspecified but subject to the constraint that each

subject belongs to class m with probability π∗m marginally. Both model (3) and the ML-V

model are parametric submodels of the general model (11). The following result implies

that the application of ML to the simple latent class model consistently estimates π∗m and β

parameters.

Proposition 1. Assume that {Y˜ ij : i = 1, ..., n; j = 1, ..., ni} are generated from the

semiparametric model (11). Let (β̃, π̃) denote the maximum likelihood estimators from the

simple latent class model (2), and let lS(θ1) := lS(β, π) :=
∑

i

∑
j log f(Y˜ ij) denote the log

likelihood function from it. Then under suitable regularity conditions

1. E{∂ l
S

∂β
; β, α∗} = 0 ,E{∂ l

S

∂π
; β, α∗} = 0 ;

2. As n→∞, β̃
P−→ β, π̃

P−→ π∗;

3.
√
n

 β̃ − β

π̃ − π∗

 D−→ N(0,Σ), where Σ :=
{
Eθ

[
∂2lS

∂θ1∂θ′
1

] }−1

·Eθ
{[

∂ lS

∂θ1

]2
}
·
{
Eθ

[
∂2lS

∂θ1∂θ′
1

] }−1

.

The proof is given in Appendix D. Since our MLCA model (3) is a parametric submodel of

the general semiparametric model (11), the results of Proposition 1 apply to it as a corollary.

Remark 1a. Proposition 1 suggests an alternative correct inference procedure if the

goal is to understand the measurement model and the average proportions of the subclasses:
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one can simply fit the simple latent class model and fix the standard errors by the sandwich

estimator. This method is simple and fast to implement, compared to the two methods

developed above. However, it may suffer some loss of efficiency when the multilevel model

is true. Moreover it does not provide a measure of within cluster association.

Remark 1b. There is an important connection with marginal modeling for longitudinal

or clustered data. If we ignore the measurement part of the model, the latent class ηij’s

are clustered data, correlated within clusters. The simple latent class model corresponds

to a marginal model for ηij’s with working independence correlation, while our multilevel

latent class model corresponds to a marginal model with working exchangeable correlation.

Similarly as with generalized estimating equations (GEE, Liang and Zeger 1986), even if

the working correlation is misspecified as independence, the estimators of marginal param-

eters π∗m’s are consistent, and their standard errors can be consistently estimated using the

robust variance estimator. Moreover, Proposition 1 indicates that the measurement model

parameters (β’s) can also be consistently estimated under such model misspecification.

Remark 1c. If the within cluster association is of interest, or higher efficiency is needed,

the simple latent class model would not be appropriate. A parametric submodel, such

as the ML-V model and our Dirichlet model, provides one solution when the parametric

assumptions are reasonable, but robustness no longer holds generally. Alternatively, one

might make the second moment assumptions for η˜i in addition to the semiparametric model

(11), that is, specify a model for bivariate distributions g(ηij, ηik; π
∗, α∗) for every possible

pair of latent class indicators (ηij, ηik). Two methods might be utilized for estimation of

this general semiparametric model. The first method is the MPL approach. As we pointed

out in Section 4, MPL provides consistent estimates as long as the first two moments for η˜i
are correctly specified. The second possible method is an estimating equation approach, for

instance, mimicking that of Reboussin et al. (1999).
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6. SIMULATION

We evaluated the finite sample performance of our procedure in simulation studies. Data

were generated from the following true settings: n = 200 or 500 clusters, J = 4 subjects per

cluster, K = 5 items, M = 2 classes. The true model was the multilevel latent class model

(3) with true parameters values chosen randomly. The true α parameters were (1.5, 2.3). The

log odds of reporting “1” for class 1 members (β·1) were (−1.21, 0.28, 1.08,−2.35, 0.43) for five

items, respectively, and the log odds for class 2 members (β·2) were (0.51,−0.57,−0.55,−0.56,−0.89).

We conducted 1000 simulation runs, and in each run three methods were used to fit the mul-

tilevel latent class model, maximum likelihood for Dirichlet model (ML), maximum pairwise

likelihood for Dirichlet model (MPL), and maximum likelihood for simple latent class model

with robust standard errors (ML-S).

First we consider findings for estimation of the measurement models. Figures 1 display

boxplots of estimated β parameters in 1000 runs using 200 clusters. The solid lines in

each figure represent true parameter values. For each method and parameter, estimator

distributions centered closely around true values, exhibited relatively small dispersion, and

included few outliers. The dispersion of MPL was similar to that of ML, suggesting high

relative efficiency of the MPL estimates. The dispersion of ML-S, however, was larger than

that for ML or MPL, implying loss of efficiency by ignoring the within cluster correlation.

As shown in Table 2, the loss in efficiency was about 10-20% on average, and up to 40%

for some parameters. Simulation results using 500 clusters displayed similar patterns, but

with narrower confidence intervals. In summary, the β parameters were well estimated by

both ML and MPL methods based on the Dirichlet model, and the simple latent class model

estimators were consistent, but generally less efficient.

[Figure 1 about here.]

[Table 2 about here.]

Turning to findings relating to the mixing distribution, the distributions of the α pa-

rameter estimates were widely dispersed and exhibited heavy tails (Figure 2). Researchers
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typically will be more interested in conveniently interpreted transformations of the α pa-

rameters, including the population-average class prevalences (α1/α0, ..., αM/α0), the random

effects scale parameter α0 = α1+ ...+αM , and the intra-cluster correlation parameter ρ. Fig-

ure 2 shows that the population-average class prevalences and the intra-cluster correlation

were well estimated, with distributions centering around the true values and having narrow

spreads. Estimates of the scale parameter α0 exhibited substantial variability, as is often

the case for variance components. Finally, MPL estimates for α parameters enjoyed high

finite-sample efficiency compared to ML estimates. In fact, for α parameters, finite sample

performance of the MPL estimates even seemed slightly superior to the ML estimates. The

simple latent class model (ML-S) did not provide information on the scale parameter α0

or intra-cluster correlation ρ. It did estimate the population-average class prevalences π˜∗

consistently.

[Figure 2 about here.]

Table 2 displays standard errors and coverage probabilities of model-based 95% confidence

intervals for the three methods. The simulated standard errors are the sample standard de-

viations of estimates across runs, and thus reflect the underlying uncertainty. The estimated

standard errors are the average of model-based standard errors across simulations, thus indi-

cate the uncertainty estimated by the model. The two sets of standard errors were generally

close to each other for both methods. Coverage probabilities primarily were close to the 95%

nominal value. Standard error agreement and coverage probabilities were worse for the α

parameters than for the β parameters. Finally, Table 2 confirmed high efficiency of the MPL

estimators.

To summarize, our simulation study suggests that both ML and MPL well accomplish

estimation and inference for multilevel latent class models in finite samples.

7. APPLICATION: ANALYSIS OF OBSESSIVE COMPULSIVE DISORDER DATA

We apply the multilevel latent class model to the OCD data described in the Introduction.

Our colleagues identified 8 disorders that often co-occur with OCD: generalized anxiety

18

http://biostats.bepress.com/jhubiostat/paper174



disorder (GAD), separation anxiety disorder (SAD), panic disorder (PD), tics disorder, ma-

jor depressive disorder (MDD), mania disorder, grooming disorders (GrD; trichotillomania,

pathological skin picking), and body dysmorphic disorder (BDD). The analytic aim is to

identify subtypes of OCD based on comorbidity with the 8 disorders. Data for the 706 OCD

cases from 238 families were used for the analysis. The family sizes range from 1 to 10, and

most families contain two to five members.

[Table 3 about here.]

We began by selecting among models with two, three and four classes. Using marginal-

ization techniques presented in Section 3.4, the two-class model was modestly preferred over

a three class model. However, each random subsample contains only 238 subjects, and it

is known that BIC may underestimates the number of classes in such small samples (Yang,

2006). Given that the choice was equivocal, we present the more illustrative three class

model. For the three class model, both ML and MPL methods converged successfully, and

they gave similar results, hence we only report the model fitted by ML (Table 3). Subjects in

the first class were characterized by low prevalence of each comorbid disorder except depres-

sion, which was estimated to occur in rougly a quarter of class members. In the second class

there were moderate prevalences of GAD, SAD, tics, MDD and GrD, in conjunction with

low prevalences of panic disorder and mania. Subjects in the third class were at moderate

to high risk for nearly all disorders. The population average prevalence of the three classes

were estimated as 38%, 32% and 30%, respectively.

The intra-cluster correlation, ρ, was estimated as 0.44 (95% CI: 0.30, 0.59). The odds

ratios of same-class membership between same-cluster members were estimated as 7.0, 7.5,

7.7, respectively for classes 1, 2, and 3, and the estimated odds ratios of different-class

membership for same-cluster members were approximately 0.32. This indicates a moderate

level of heritability for OCD subtypes, such that members of the same family are considerably

more likely to have similar types of OCD comorbidity than subjects from different families.
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We compared results from our Dirichlet model (ML) with those from the ML-V model.

The two models gave similar latent class structure for the measurement model (β estimates),

but the estimated standard errors differed by methods. On average, ML-V based standard

errors were 5-10% larger than those from ML. As to the mixing parts of models (α param-

eters), the two models had different implications. Figure 3 showed the density estimates of

family specific mixing probabilities ui1, ui2, and ui3, from two models. Both models implied

the density shape that have peaks near the boundary (0 or 1) and is flat in the middle.

However, one curious feature of the ML-V is that the mixing probability for class 2, ui2, does

not take any values above 0.702. This phenomenon appears to be due to the inflexibility

of unidimensional factor analysis type structure for modelling dependence in three classes.

More precisely, the two-dimensional mixing probabilities (ui1, ui2), as functions of the unidi-

mensional random effect vi, are restricted to take values only in a one-dimensional subspace

of their domain (the space [0, 1]× [0, 1] subject to the constraint ui1 + ui2 ≤ 1). In contrast,

our Dirichlet model allows uim’s to take values from 0 to 1. The mixing probabilities (ui1, ui2)

are allowed to take any value in the domain.

[Figure 3 about here.]

8. DISCUSSION

Latent class models have proven useful for modeling multiple categorical outcomes in so-

cial sciences and biomedical studies. In such studies multilevel or hierarchical designs are

increasingly common. This paper considered an alternate model to the one proposed by

Vermunt (2003, 2008), employing a Dirichlet mixing distribution. Two methods for model

fitting and inference, ML and MPL, were developed and compared. We also investigated the

consequences of ignoring clustering with a simple latent class model. Our models’ random

effects structure has more straightforward interpretation than those of competing methods,

thus should usefully augment tools available for latent class analysis of clustered data.

Our model has limitations due to the Dirichlet distributional assumption. Subjects within

clusters were treated as exchangeable. The Dirichlet assumption restricts the density of ukm’s
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to be bell-shaped, flat or “U”-shaped, excluding others such as a bimodal shape with two

modes in the middle. Moreover our model assumes ICCs to be the same within each class.

Such assumption may sometimes be questionable, for example, in genetic studies where

different types of relatives may have different heritability. If we are concerned about the

validity of those assumptions, the semiparametric model with MPL estimation (Remark

1c in Section 5) would serve as a robust alternative. In contrast, the ML-V allows the

ICCs to differ, but its normality and unidimensionality assumptions impose restrictions that

may sometimes be undesirable (Section 7). As mentioned in Vermunt (2003), one could

generalize the ML-V model to allow multivariate normal random effects, and this has been

implemented in the MPlus software (Muthén and Muthén, 2007). However, fitting such

models might be computationally intensive because it involves high dimensional integration

(M − 1 dimensional integration for a M -class model). For the OCD data, we fitted a

generalized ML-V model with three classes and two dimensional random effects, and the

findings regarding association structure were very similar to those from the ML-V model

with one dimensional random effects.

There remain issues that would benefit from further research. First, model selection

is complicated by the multilevel structure. Though marginalization provides a workable

solution, simpler criteria would be useful. Second, diagnostics and model checking techniques

are needed. Third, the MLCA model makes the conditional independence assumption. The

clustering is assumed to affect only the mixing model, not the measurement model. Models

allowing dependence in family members’ tendency to report specific items, and not only their

class memberships, are needed to address this. Finally, it would be of interest to develop

multilevel latent class regression models that incorporate covariates in subpopulation mixing

distribution.

APPENDIX A. MORE INSIGHTS INTO MULTILEVEL LATENT CLASS MODEL
WITH DIRICHLET MIXING DISTRIBUTION

Proposition 2. The following results hold under MLCA model (3):
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1. E(uim) = αm
α0

, var(uim) =
αm(α0 − αm)
α2

0(α0 + 1)
, cov(uim, uiq) = − αmαq

α2
0(α0 + 1)

;

2. Pr(ηij = m |u˜i) = uim, var{I(ηij = m) |u˜i} = uim(1− uim);

Pr(ηij = m) = αm
α0

, var{I(ηij = m)} =
αm(α0 − αm)

α2
0

;

3. cor{I(ηij = m), I(ηik = m)} = 1
α0 + 1,

cor{I(ηij = m), I(ηik = q)} = − 1
α0 + 1 ·

√
αmαq

(α0 − αm)(α0 − αq)
;

4. OR{I(ηij = m), I(ηik = m)} =
(αm + 1)(α0 − αm + 1)

αm(α0 − αm)
,

OR{I(ηij = m), I(ηik = q)} = 1− 1 + α0

(α0 − αm + 1)(α0 − αq + 1)
.

5. Pr(ηij = m, ηik = m) =
αm(αm + 1)
α0(α0 + 1)

, Pr(ηij = m, ηik = q) =
αmαq

α0(α0 + 1)

Result 2 implies that in the population, the average (marginal) prevalence of classes is

(α1/α0, α2/α0, ..., αM/α0). In contrast, (ui1, ui2, ..., uiM) is cluster specific (conditional) class

prevalence. Result 5 gives the joint distribution of latent class membership for any two

subjects in the same cluster, which is useful for the pairwise likelihood approach.

APPENDIX B. SOME DETAILS OF THE EM ALGORITHM

Lemma 1: Let z˜ = (z1, ..., zM) ∼ Dirichlet(γ1, ..., γM) and define γ0 =
∑

m γm. Then (i)

E(zm) =
γm
γ0

; (ii) E[ log(zm) ] = DΓ(γm)−DΓ(γ0), where DΓ(x) := d
dx

log{Γ(x)}.

Proposition 3: The following results hold for the EM algorithm defined in Section 3.1:

1. [u˜i | η˜i ; β(h), α(h) ] ∼ Dirichlet(α
(h)
1 + q

(i)
1 , ..., α

(h)
M + q

(i)
M );

2. u˜i ⊥ Y˜ i | η˜i;
3. E[ log(uim)|Y˜ i, η˜i; β(h), α(h) ] = DΓ(α

(h)
m + q

(i)
m )−DΓ(

∑
m α

(h)
m + ni);

4. E[uim|Y˜ i, η˜i; β(h), α(h) ] =
α(h)
m + q(i)

m∑
m α

(h)
m + ni

Lemma 1 can be proved by direct calculation using properties of the Dirichlet distri-

bution. Result 1 in Proposition 3 can be derived by Bayes’ rule and the conjugacy of the

Dirichlet distribution to the multinomial distribution. Result 2 follows from the formulation

of multilevel latent class model. Results 3 and 4 follows immediately from Lemma 1.
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APPENDIX C. DETAILS ON ESTIMATING THE OBSERVED FISHER
INFORMATION

As stated in Section 3.3, we use formulas in Oakes (1999) to obtain the observed information

matrix. Specifically, we plug in the parameter estimates in the final EM iteration θ̂ = (β̂, α̂),

i.e,
∂2 log L(θ)

∂θ ∂θ′
|θ=θ̂ =

[
∂2Q(θ;ψ)

∂θ ∂θ′
+
∂2Q(θ;ψ)

∂θ ∂ψ′

]
|θ=θ̂,ψ=θ̂ . (A.1)

The first term on the right hand side of the equation above is relatively easy to obtain.

After the EM algorithm converges, we can carry out one more E-step and obtain the second

derivatives of the Q function evaluated at the final iteration. It is generally hard to obtain

an analytic form for the second term. Instead, we calculate it by numerical derivatives, i.e,

using the formula,

∂2Q(θ;ψ)

∂θ ∂ψ′ |θ=θ̂,ψ=θ̂ ≈

[
∂Q(θ;ψ)
∂θ

− ∂Q(θ;ψ+∆ψ)
∂θ

]
∆ψ

|θ=θ̂,ψ=θ̂ . (A.2)

In practice, we can choose ∆ψ to be a small number, such as 10−5. One can also use iterative

algorithm, i.e, choose a ∆ψ at first, then decrease until the estimated derivatives stabilize.

To summarize, the algorithm to estimate the observed Fisher information is as follows.

1. Use the EM algorithm until it converges. Denote the parameter estimates in the last

iteration θ̂final;

2. Perform one more EM step and obtain ∂Q(θ;θ̂final)
∂θ

|θ=θ̂final and ∂2Q(θ;θ̂final)
∂θ ∂θ′ |θ=θ̂final using

formulas in Section 3.1. The latter is the first term in equation (A.1);

3. Choose a small number ∆ψ, and carry out EM-steps to obtain the first order derivatives

∂Q(θ;θ̂final+∆ψ)
∂θ

|θ=θ̂final . Use (A.2) to estimate the second term in equation (A.1);

4. Obtain the observed Fisher information by equation (A.1).

APPENDIX D. PROOF OF PROPOSITION 1

Sketch of Proof: (1). Since the simple latent class model is the marginalization of the

semiparametric model, f(Y˜ ij) =
∑

m πmPr(Yijk = yk|ηij = m) is the true likelihood (with
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true parameter values β and π∗) contributed by the jth subject of the ith cluster. Under

typical regularity conditions, its derivatives with respective to β and π are unbiased. By

additivity of expectations, this would lead to the unbiasedness of the score functions of the

likelihood from the simple latent class model.

(2) and (3). Since the score functions of the simple likelihood are unbiased, one can

immediately obtain the consistency and asymptotic normality based on estimating functions

theory (e.g, in van der Vaart, 2000), when the number of clusters goes to infinity and the

cluster size is fixed.
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Figure 1: Boxplot of measurement model estimates using 200 clusters: β parameters. The
first row displays estimates for class 1 parameters, and the second row shows class 2 param-
eters. The five columns correspond to 5 items. Methods 1, 2 and 3 correspond to “ML”,
“MPL”, and “ML-S”, respectively. The solid lines are true parameter values.
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Figure 2: Mixing distribution model estimates: α parameters. The first row displays results
using 200 clusters, and the second row shows results using 500 clusters. The four columns
correspond to α1,α2, α0 (scale parameter), ρ (intra-cluster correlation) and α1/α0 (average
class 1 prevalence), respectively. Methods 1 and 2 correspond to ”ML”, and ”MPL” for
the Dirichlet model, while method 3 corresponds to the ”ML-S” for the simple latent class
model.
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Figure 3: Density estimates for class mixing random effects ui = (ui1, ui2, ui3) from both the
ML-V model and our Dirichlet MLCA model for OCD data. The three rows correspond to
estimated density for random mixing probabilities of class 1, 2, and 3, respectively.
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Table 1: Ratio of computational complexity: comparing ML to MPL.
cluster size (J) number of classes (M)

2 3 4 5 6
2 1.00 1.00 1.00 1.00 1.00
3 0.70 1.00 1.30 1.70 2.00
4 0.70 1.50 2.70 4.20 6.00
5 0.80 2.70 6.40 12.50 21.60
6 1.10 5.40 17.10 41.70 86.40
7 1.50 11.60 48.80 148.80 370.30
8 2.30 26.00 146.30 558.00 1666.30
9 3.60 60.80 455.10 2170.10 7776.00
10 5.70 145.80 1456.40 8680.60 37324.80
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Table 2: Standard errors and coverage probabilities for methods “ML”, “MPL” and “ML-S”
using 200 clusters. “ML” and “MPL” are ML and MPL estimates from the Dirichlet model,
while “ML-S” stands for ML estimates from the simple latent class model. “simu. SE”
means empirical standard errors across simulations, “est. SE” means model-based standard
errors, and “cov. prob” means coverage probabilities (%) for model based 95% nominal
confidence intervals.

Method Class SE & α α
α0

β

cov. prob. item 1 item 2 item 3 item 4 item 5
ML Class 1 simu. SE 1.90 0.08 0.37 0.19 0.34 0.77 0.22

est. SE 1.96 0.08 0.36 0.19 0.32 0.69 0.22
cov. prob. 92.0 92.2 95.2 96.6 95.6 93.4 95.0

Class 2 simu. SE 2.85 0.08 0.19 0.14 0.26 0.15 0.18
est. SE 3.17 0.08 0.19 0.14 0.23 0.16 0.18

cov. prob. 90.8 92.2 95.6 95.6 93.6 96.0 94.0
MPL Class 1 simu. SE 0.87 0.08 0.37 0.19 0.33 0.86 0.23

est. SE 1.08 0.09 0.40 0.20 0.36 0.83 0.24
cov. prob. 95.4 95.8 95.4 95.8 95.6 94.0 96.2

Class 2 simu. SE 1.40 0.08 0.18 0.14 0.19 0.15 0.18
est. SE 1.69 0.09 0.20 0.15 0.20 0.17 0.19

cov. prob. 95.6 95.8 96.4 96.6 95.4 97.0 95.0
ML-S Class 1 simu. SE - 0.09 0.52 0.20 0.37 1.03 0.24

est. SE - 0.10 0.43 0.20 0.38 0.90 0.26
cov. prob. - 93.8 95.6 95.0 96.2 93.0 95.8

Class 2 simu. SE - 0.09 0.20 0.15 0.20 0.16 0.19
est. SE - 0.10 0.22 0.16 0.21 0.17 0.20

cov. prob. - 93.8 95.0 96.0 94.8 96.4 95.4
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Table 3: Model fitting for OCD data using ML. (MPL results are similar and thus are
omitted.) “est.” means the point estimates for conditional probabilities of reporting a certain
disorder given the subject belongs to a certain class.

Class 1 Class 2 Class 3
est. 95% CI est. 95% CI est. 95% CI

GAD 0.12 (0.05, 0.25) 0.56 (0.42, 0.69) 0.67 (0.57, 0.76)
SAD 0.11 (0.05, 0.20) 0.26 (0.17, 0.37) 0.41 (0.33, 0.50)
Panic 0.10 (0.06, 0.17) 0.03 (0.00, 0.21) 0.48 (0.38, 0.59)
Tics 0.13 (0.07, 0.23) 0.41 (0.30, 0.52) 0.27 (0.20, 0.35)
MDD 0.27 (0.20, 0.36) 0.23 (0.15, 0.35) 0.68 (0.56, 0.77)
Man 0.03 (0.01, 0.09) 0.00 (0.00, 0.00) 0.19 (0.13, 0.27)
GrD 0.16 (0.08, 0.28) 0.48 (0.37, 0.59) 0.59 (0.50, 0.68)
BDD 0.06 (0.02, 0.13) 0.16 (0.09, 0.26) 0.53 (0.43, 0.63)
α 0.49 (0.25, 0.96) 0.40 (0.19, 0.86) 0.38 (0.20, 0.71)

average prev. 0.38 (0.27, 0.52) 0.32 (0.20, 0.46) 0.30 (0.22, 0.39)
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