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Summary
A marker's capacity to predict risk of a disease depends on disease prevalence in the target
population and its classification accuracy, i.e. its ability to discriminate diseased subjects from
non-diseased subjects. The latter is often considered an intrinsic property of the marker; it is
independent of disease prevalence and hence more likely to be similar across populations than risk
prediction measures. In this paper, we are interested in evaluating the population-specific
performance of a risk prediction marker in terms of positive predictive value (PPV) and negative
predictive value (NPV) at given thresholds, when samples are available from the target population
as well as from another population. A default strategy is to estimate PPV and NPV using samples
from the target population only. However, when the marker's classification accuracy as
characterized by a specific point on the receiver operating characteristics (ROC) curve is similar
across populations, borrowing information across populations allows increased efficiency in
estimating PPV and NPV. We develop estimators that optimally combine information across
populations. We apply this methodology to a cross-sectional study where we evaluate PCA3 as a
risk prediction marker for prostate cancer among subjects with or without previous negative
biopsy.
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1. Introduction
The two most commonly used criteria for biomarker evaluation are classification accuracy
and risk prediction capability. Classification accuracy, typically characterized by sensitivity,
specificity, and ROC curve (Pepe, 2003), measures the probability that a subject's disease
status is correctly identified based on a biomarker. Risk prediction measures, on the other
hand, assess how well a marker can inform treatment options based on predicted risk of
disease. Among others, two measures often used are positive predictive value (PPV) and
negative predictive value (NPV) (Leisenring et al., 2000; Moskowitz and Pepe, 2004, 2006;
Steinberg et al., 2008). It is well known that sensitivity, specificity, and ROC curve are
intrinsic properties of a test while PPV and NPV depend on both classification accuracy and
the external factor, i.e. disease prevalence. However, there has been no method that utilizes
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this property to gain efficiency in estimating PPVs and NPVs in populations of different
disease prevalence when data suggest common intrinsic classification accuracy across
populations, as in the application below that motivated this paper.

PCA3, a prostate-specific noncoding mRNA overexpressed in prostate tumors, has been
proposed as a risk prediction marker for prostate cancer. In a preliminary cross-sectional
study, data were collected from 576 men immediately prior to their prostate biopsy which
was scheduled mainly due to elevated PSA (Deras et al., 2006). About half of the subjects
had previous negative biopsy and the rest did not. The disease outcome is the prostate cancer
status diagnosed by the biopsy. Based on these data, urologists are interested in evaluating
PCA3's risk prediction performance in terms of PPV and NPV in the population of subjects
who had had previous biopsy and the population of subjects who had not had previous
biopsy. In particular the data suggested that PPV at PCA3=60, which is approximately 0.75
in the initial biopsy population could be used as a threshold for recommendation of prostate
biopsy, and that NPV at PCA3=20, which is approximately 0.85 in the repeat biopsy
population, to recommend against prostate biopsy. These thresholds were recommended by
study urologists based on the fact that most prostate cancers are indolent and the fact that
prostate cancer prevalence in the initial biopsy population is about 44%, and in the repeat
biopsy population the prevalence is much lower around 27%. The difference in prevalence is
due to the fact that larger tumors are likely to be detected in the initial biopsy and that most
prostate cancer patients were detected from their initial biopsy.

Figure 1(a) shows the density functions of log(PCA3) conditional on disease status within
the initial and repeat biopsy populations, while Figure 1(b) shows the empirical ROC curves
in the two populations. Interestingly, although the distributions of PCA3 conditional on
disease status appear to differ between the two populations (e.g., Wilcoxon rank sum test
applied to the non-cancer groups has a p-value 0.043), the two ROC curves appear similar to
each other: the test of equal area under the curve has a p-value of 0.66. Existence of
scenarios where the ROC curve is similar between different sources is not hard to picture,
considering the fact that the ROC curve characterizes the comparison of diseased individuals
and non-diseased individuals with respect to their relative ranks rather than actual values.
For example, it is common that assays from different clinical centers could have different
distributions due to many instrumental and specimen handling factors, leading to some
location-scale shifts of the test results across clinical centers yet not changing the
classification performance.

One major reason in favor of calculating PPV/NPV separately from each target population is
that there are standard formulas for PPV/NPV for a single population as shown in the
Method section, but there is no existing method for combining data across populations for
estimating PPV/NPV based on the assumption of common classification accuracy, unless
one uses stronger assumptions, e.g. a location shift modeled by a population effect indicator
in the marker distributions conditional on disease status. The objective of the analysis
described in this paper is to develop a statistical method for estimating population-specific
PPV and NPV using the ROC curve as a bridge between populations when data strongly
suggest the same classification accuracy across populations. This requires the assumption
that relative ranks between diseased and non-diseased are the same across populations.
Making assumptions based on rank is not uncommon in statistical literature due to the
increased robustness compared to making parametric assumptions on marker distribution.
Examples include the Friedman test (Friedman, 1937) and Quade test (Quade, 1979) in
randomized block design. The procedure proposed in this paper can be thought of as an
expansion of these nonparametric methods to PPV/NPV estimation, rather than a simple
hypothesis test of equality of rank means. Combining information non-parametrically has a
long history. For example, Mantel and Haenszel (1959) combined odds ratios across strata.
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In our example, it is desirable to have a method that relies only on the similar rank
distribution assumption and does not require explicit modeling e.g. the location-scale shift
effects on the marker distribution conditional on disease status.

The settings in which the proposed procedure will be useful assume that any “interaction”
effect of biomarker and population in terms of discriminating diseased from non-diseased
individuals is negligible. That is, the difference in the marker's discriminatory power
between populations is minimal. This assumption should always be checked. When
interaction is substantial, results from any of the above methods combining information
across populations, include the method proposed in this paper, will be less interpretable and
the estimation should be done for each population. The main motivation of this paper is to
provide a non-parametric method for combining classification information across
population/strata when the combined estimation is desired and justified.

While cross-sectional samples and cohort samples are usually collected in the late phases of
biomarker studies, a case-control sampling design is most often used in the early phase of
biomarker development (Pepe et al., 2001). In Section 2, we start by considering a case-
control design and investigate cross-sectional and cohort designs later in Section 3. We
present simulation studies in Section 4 and detailed analyses of the PCA3 example in
Section 5. Finally we provide concluding remarks in Section 6.

2. Methods in Case-Control Design
Let D be a binary disease status and let Y be a continuous biomarker of interest. Suppose
samples are available from two populations, the target population where PPV and/or NPV
are of interest, and another population we call the auxiliary population. In the prostate
cancer example, the repeat biopsy population serves as the auxiliary population when we are
interested in estimating PPV and/or NPV in the initial biopsy population, and the initial
biopsy population would serve as the auxiliary population when we are interested in
estimating PPV/NPV in the repeat biopsy population. We use subscript D and D ̄ to indicate
diseased and non-diseased status, and use superscript to indicate the auxiliary population.
Let Y, YD, and YD ̄ be the marker measured for a random subject, a case, and a control

respectively from the target population, and let  indicate the corresponding
quantities in the auxiliary population. Let S(y) = P(Y > y) denote the survival function for Y;

SD, SD ̄ denote the survival functions for YD and YD ̄;  denote the survival functions

for  and . Suppose we apply a binary classification rule to the target population such that
compared to a given threshold, a subject is classified as diseased if his marker value is
greater than the threshold and non-diseased otherwise. Then the ROC curve is the plot of
true positive rate versus false positive rate for a series of thresholds, and it can be expressed

as . Similarly, let ROC* be the corresponding ROC curve in the

auxiliary population. We have . Throughout this manuscript we
assume larger marker values are associated with higher risks of disease.

Next we explore methods for estimating PPV(y) = P(D = 1 Y > y). Results for NPV are
omitted since they are easy to derive by exploiting the symmetry between the two: NPV(y) =
P(D = 0 Y ≤ y) can be represented as PPV(−y) when D is replace by 1 − D and Y replaced
by Y.
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Let ρ indicate disease prevalence in the target population, which we assume initially to be
known. By an application of Bayes' theorem, PPV can be written as a function of ρ, SD ̄, and
SD:

(1)

Writing y as  and using the definition of the ROC curve, PPV can be represented as
a function of ρ, SD ̄, and ROC{SD ̄(y)}:

(2)

Suppose we sample nD cases {YD1, …, YDnD} and nD ̄ controls {YD ̄1, …, YD ̄nD ̄} from the

target population and  cases  and  controls  from the
auxiliary population. The default strategy for estimating PPV(y) is to estimate SD ̄(y) and

SD(y) empirically with  and  and enter them
into (1). Denote this estimator . This estimator is asymptotically equivalent to

estimating SD ̄(y) with  and estimating ROC{SD ̄(y)} empirically with

, and entering them into (2), since

, where the approximation is exact when y is one of
the data points in the sample from the target population.

2.1. Proposed Estimator
If, in addition, we have ROC(t) = ROC*(t) for t = SD ̄(y), that is, the sensitivity
corresponding to the specificity 1 - SD ̄(y) is constant across the two populations, we can then
estimate ROC(t) at t = SD ̄(y) using samples from both populations. Let  and 
be the empirical ROC from the target and auxiliary population respectively, the common
ROC(t) at t = SD ̄(y) can be estimated as a weighted average of the two

, where  and w indicates the weight given to
the empirical ROC estimate from the target population.

Entering  and  into (2), the weighted estimator for PPV(y) is
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where w = 1 corresponds to estimating PPV using samples from the target population only.
Under the equal classification accuracy assumption, the asymptotic unbiasedness of the
ROC and consequently that of the PPV estimators are invariant to the choice of w.

Let fD and fD ̄ be density functions of the marker for diseased and nondiseased individuals
respectively in the target population. In Theorem 1 of Appendix A, we show that under the

assumption of equal sensitivity at specificity 1 − SD ̄(y),  is
asymptotically normally distributed with zero mean and a variance term that is a function of
w, ρ, SD(y), SD ̄(y) and the density ratio fD(y)/fD ̄(y). Interestingly, since the asymptotic
variance of  as shown in (4) is a quadratic and convex function of w, an optimal w
that minimizes it can be uniquely determined, as presented in equation (5) of Appendix A.
Moreover, observe that the asymptotic variance term (4) can be written as the product of two
terms, one free of w and the other free of ρ. Consequently the asymptotic relative efficiency
of any two estimators with specific weights is independent of the disease prevalence. In
other words the optimal w is the same for all ρ. As shown in Appendix A, the optimal w is

always less than 1. It converges to 1 when  or when . This is
anticipated intuitively since  is less precise than  under these scenarios and we
want to put more weight on the latter.

2.2. Alternative Estimator
Earlier we proposed estimating the specificity at a given threshold y empirically using data
from the target population, and estimating the corresponding sensitivity using data from both
populations. Alternatively, we can start from the other direction. That is, we could estimate
the sensitivity at y empirically using data from the target population, and estimate the
corresponding specificity using data from both populations. We call this estimator

, where

.

Asymptotic theory for this estimator and the optimal w for minimizing asymptotic variance
are established in Theorems 3 and 4 of Appendix A. Again, the optimal w is always less than
1 and independent of ρ. Interestingly, through simple algebra, it can be shown that the
minimum asymptotic variance achievable by  and  are equivalent.
Consequently, as far as variance is concerned, asymptotically it does not matter whether we
use sensitivity at the given specificity as the bridge between populations or the other way
around. We evaluate finite sample performance of the two estimators through simulation
studies.

2.3. Imperfect Disease Prevalence Estimate
So far we have assumed that the disease prevalence is known. Sometimes this is reasonable,
for example, if we obtain ρ from a population disease registry such as SEER
(http://seer.cancer.gov/), its value essentially can be treated as known due to the large
sample size involved. Alternatively a disease prevalence estimate ρ̂ might be derived from a
pilot cross-sectional study, like in our PCA3 application. Under such circumstances, the
asymptotic variance of  and  computed in Sections 2.1 and 2.2 could be
easily modified to incorporate the variability in ρ̂ as shown in Theorem 5 of Appendix A.
Suppose we estimate sample prevalence from a pilot cohort study and apply it to the
estimate of PPV based on the case-control sample, then the asymptotic variance of  or
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 will equal to their asymptotic variance given ‘true’ ρ plus an extra term due to the
estimation of ρ. From Theorem 5, it can be easily seen that the optimal weights are invariant
to the extra variability introduced, and are the same as those in equations (5) and (7) where
the disease prevalence is considered to be known. The efficiency of the optimal estimator
relative to the default estimator is expected to decrease as variability in the disease
prevalence estimator increases due to a dampening effect.

2.4. Robustness
The estimators proposed in Sections 2.1 and 2.2 gain precision by assuming equality

between ROC{SD ̄(y)} and ROC*{SD ̄(y)} or between  and , it is
important to be aware of the magnitude of the bias in  or  when the
corresponding assumptions are violated.

Let δ = ROC*{t} − ROC(t) for t = SD ̄(y) and let . As
shown in Theorems 6 and 7 of Appendix B, the asymptotic bias of  can be represented
as a monotone increasing function of (1 − w)δ, and the asymptotic bias of  is a
monotone increasing function of (1 − w)η.

In practice, researchers might be able to guess a suitable the range for δ or η based on
experience. Alternatively, an interval of δ or η consistent with the data can be derived at, say
95% confidence level. Then the asymptotic bias of the proposed estimator can be calculated,
and combined with the reduction in variance to determine the “worst-case” impact on the
mean squared error. Conversely, given a range of tolerable bias in  or ,
we can derive the corresponding tolerable range for δ or η.

2.5. Weight Determination and Variance Estimation

We propose two approaches for determining the optimal weight w for computing  or
 and subsequently estimating variance of the weighted estimators. The first approach

is based on the closed-form formula for w as presented in (5) and (7) in Appendix A for
minimizing asymptotic variance of the weighted estimators under equal classification
accuracy condition. Equations (6) and (7) involve a density ratio fD/fD ̄, which would be
difficult to estimate without making any parametric assumption about the marker
distribution. We thus propose to assume normality of Y in the target population conditional
on disease status and then compute (6) and (7) based on estimated distribution parameters.
In practice, if we could transform data such that the normality assumption is not grossly
violated, then we expect that the weight estimated assuming normality would be a good
approximation to the true entity. Note that since the choice of w will affect only efficiency of
the estimator but not its consistency, robustness to deviation from normality is not a big
issue for weight determination. Given selected w, one could apply asymptotic formula (4)
and (5) based on normality assumption for estimation of variance. However, here deviation
from normality could potentially bias the variance estimation and invalidate the inference.
Therefore, we recommend instead using bootstrap resampling to estimate variance of the
weighted estimator after the optimal w is obtained through the asymptotic formula. The
resampling scheme will be chosen to reflect sampling design.

Validity of the above approach for determining w relies on the equal classification accuracy
assumption. In practice, a researcher's choice of approaches for weight determination and
variance estimation depends on the problem investigated and reflects how strong one's belief
is about the equal classification accuracy assumption and how heavily one is concerned
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about the possible bias under the violation of this assumption. There are scenarios where the
equal classification accuracy is expected to hold where the approach described above is best
suited. For example, consider a medical test performed at two different labs. It is not
uncommon to assume that the lab difference leads to a location-scale shift in distribution of
the test results but does not change the ranks of diseased versus non-disease, and thus a
common ROC curve exists. In other scenarios where the equal classification accuracy
assumption is built largely upon statistical tests rather than prior knowledge about the
underlying biological mechanism, as in our PCA3 application, researchers might want to be
conservative in terms of controlling possible bias while improving efficiency.

With an objective of maintaining a balance between bias and variance, here we propose a
second bootstrap-based approach for determining w. Specifically, we generate a bootstrap
set based on the observed dataset and implement a grid search algorithm to examine a series
of candidate w values. In our simulation studies and application, a grid size of 0.01 is used.
For each w, we estimate the bootstrap variance of the weighted estimators. At the same time,
to account for possible deviation from the equal classification accuracy assumption, we also
compute a ‘bias’ or penalty term as the difference between means of the weighted estimators
over the bootstrap distribution and the default estimator based on the original data. A
weighted estimator with minimum ‘pseudo mean squared error’ (PMSE), which is defined
as the sum of the squared penalty and bootstrap variance, can then be selected out of all
possible w values and between  and . Note that here we use the same set of
bootstrap samples for choosing w and for variance estimation. Doing so ignores the
variability due to estimation of w. Conceptually, a more complicated bootstrap procedure
could be implemented to account for the variability in estimating w. However, it appears that
given practical sample size, ignoring the contribution to variability due to estimating w has
minimal impact on the inference, as shown by the satisfactory coverage of the weighted
estimators in simulation studies. We thus adopt this simpler bootstrap procedure instead of
going for more complicated procedure.

3. Estimation in Cross-sectional or Cohort Design
The estimators we developed in Section 2 for case-control design is directly applicable to
prospective sampling design. Consider the setting where n individuals in the target
populations are randomly sampled, among which nD subjects are diseased. Then disease
prevalence in the target population can be estimated by ρ̂ = nD/n, while estimators ŜD(y) and
ŜD ̄(y) are computed in the same way as in Section 2. As demonstrated in Appendix C, here ρ̂
is uncorrelated with ŜD(y) or ŜD ̄(y), considering the fact that ŜD(y) and ŜD ̄(y) are estimated
from the conditional distributions of marker given disease status, while ρ̂ is a function only
of disease status data. Consequently, the asymptotic properties of  and 
are the same as those presented in Theorem 5.

4. Simulation
We conduct simulation studies to investigate the performance of the weighted estimators
developed in earlier sections, using a case-control design. Assuming

(3)

Our goal is to estimate PPV(y) in the target population. In the simulation, equal number of
samples are obtained from the target population and from the auxiliary population, and
within each population equal number of cases and controls are sampled. We study the
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setting where ρ = 0.4, close to that of the initial biopsy population in the PCA3 example.
Results are presented for y being the 90th percentile within controls, w varying from 0.1 to
0.9, and total sample size of either 500 or 1000. Results are based on 1000 Monte-Carlo
simulations with bootstrap sample size 250.

First we assume ρ is known. Table 1 shows that both  and  have minimal
biases. Asymptotic variances under a series of w are fairly close to the corresponding finite
sample variances. Large efficiency gain can be achieved by borrowing information across
populations compared to the default strategy. Wald confidence intervals (CI) based on
bootstrap variance estimate have coverage close to nominal level assuming logit of the
estimators are normally distributed.

Also presented are the results when we assume disease prevalence in the target population is
estimated from a pilot cohort study with sample size 250 or 500 respectively for a follow-up
case-control study of sample size 500 or 1000 (Table 2). Again the proposed estimators have
good performances. The efficiency of the proposed estimators relative to the default
estimator is smaller with imperfect disease prevalence estimate compared to that given
perfect disease prevalence.

Next we examine the performance of the weighted estimators when weight is selected by
assuming a normal marker distribution conditional on disease status or through the bias-
penalized bootstrap procedure. With marker distributions following (3), we study the
efficiency of  and  relative to  as well as their coverage property.
Table 3 presents efficiency of the weighted estimator relative to the default estimator for
varying disease prevalence in the target population, ρ = {0.1, 0.3, 0.5, 0.7, 0.9}, and varying
threshold y corresponding to v = 1 − SD ̄(y) = {0.1, 0.3, 0.5, 0.7, 0.9}, SD(y) = {0.989, 0.936,

0.841, 0.682, 0.389}, for . It appears that weight selected under
normality assumption achieves the optimal efficiency in general. The efficiency gain is
similar between  and . The weight selected by the bias-penalized bootstrap
procedure achieves smaller but still sizable efficiency compared to the model-based
procedure assuming equal classification accuracy. This is not surprising considering that the
penalty terms adopted by the bootstrap procedure essentially ‘shrink’ the weighted estimator
towards the default estimator. Table 4 shows coverage of 95% Wald CI based on bootstrap
estimated variance for the weighted estimators, assuming normality of the logit-transformed
estimator. Both procedures of weight selection have satisfactory coverage.

We also investigate robustness of the weighted estimators to violation of the common
classification accuracy assumption. We simulate data from two populations with difference
in ROC curves:

. Again, varying ρ, {0.1, 0.3, 0.5, 0.7, 0.9}, and thresholds y
corresponding to v = 1 − SD ̄(y) = {0.1, 0.3, 0.5, 0.7, 0.9} and SD(y) = {0.989, 0.936, 0.841,
0.682, 0.389} in the target population are considered. In the auxiliary population,
corresponding to the same set of specificity as in the target population, values of  are
{0.995, 0.966, 0.903, 0.781, 0.507} respectively, while corresponding to the same set of

sensitivity as in the target population, values of  are {0.163, 0.411, 0.618, 0.795,
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0.943} respectively. Results of relative bias for PPV estimators with weights selected by
normal model or by bootstrap are presented in Table 5 as a function of v and ρ, where ρ is
assumed to be known. Note that overall by including the extra penalty term, estimators with
weights selected by penalized bootstrap have much smaller bias compared to the estimators
with weights selected assuming normality under equal classification accuracy assumption.
When weights are determined parametrically, the magnitude of bias for  relative
to  tends to be larger when y is at the lower end of its distribution and smaller when
y is at the upper end of its distribution. Intuitively this makes sense considering that bias in

 and  relates to the difference between sensitivity at given specificity and the
difference between specificity at given sensitivity respectively. For two unequal ROC
curves, the horizontal difference tends to be smaller than the vertical difference at the lower
end of the curve, i.e. where the ROC curve is steeper, which corresponds to large y; whereas
the order of the horizontal and vertical distance reverses at the upper end of the ROC curve
where the ROC curve is flatter and y is small. When the bias-penalized bootstrap procedure
is used for weight selection, the bias is similar between  and .

5. Application to PCA3 Study
In the PCA3 study (Deras et al., 2006), information was collected for 267 subjects from the
initial biopsy population and another 269 different subjects from the repeat biopsy
population. As mentioned in the Introduction, researchers are interested in evaluating
PCA3's ability to identify high risk subjects in the initial biopsy population and its ability to
identify low risk subjects in the repeat biopsy population. PPV(60) and NPV(20) were
chosen as the measures to evaluate.

Define  to be the weighted estimator for NPV using specificity at a particular
sensitivity as the bridge between populations and let  be the alternative estimator
where sensitivity at a particular specificity is used as the bridge. To evaluate validity of
assumptions for , ,  and  respectively, tests are
conducted using bootstrap variance estimates for equivalence between the two populations
with respect to (i) sensitivity corresponding to 1-specificity = SD ̄(60), (ii) specificity
corresponding to sensitivity = SD(60), (iii) specificity corresponding to sensitivity = SD(20),
and (iv) sensitivity corresponding to 1-specificity = SD ̄(20). With respect to these four
measures, point estimates in the initial and repeat biopsy populations are (i) {0.314, 0.236},
(ii) {0.081, 0.132}, (iii) {0.730, 0.764}, and (iv) {0.503, 0.487} respectively. None of the
test results are significant. P-values are 0.433, 0.315, 0.665, 0.864 respectively.

While the equal classification accuracy assumption appears plausible from the data, without
a better understanding of the potential biological mechanism behind it, we decide to be
conservative and apply the bias-penalized bootstrap method of weight selection for
robustness against possible difference in classification accuracy between the two
populations. We investigate performance of the four estimators over a series of w varying
from 0 to 1. Variance and bias of the weighted estimators are computed based on 2,000
bootstrap samples, where individuals are sampled separately from each population. Ratio of
PMSE for default estimator versus weighted estimators is plotted as function of w (Figure
2). The optimal weights that minimize PMSE for estimating PPV and NPV are identified.
Observe that  is slightly more efficient compared to  at optimal
weights.  and  have similar optimal efficiency, with the latter slightly
better.
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Results comparing  and  at their optimal weights and corresponding
default estimators are presented in Table 6. For both PPV(60) and NPV(20), the weighted
estimate and the default estimate are fairly similar to each other. In terms of variance,
efficiency gain based on the weighted estimator is around 38% for PPV(60) and 93% for
NPV(20). This is not surprising, considering that in the initial biopsy population the
numbers of cases and controls are more balanced and there is more variability due to the
disease prevalence estimate (since ρ is closer to 0.5). The PMSE of the default estimator
exceeds that of the weighted estimator by around 20% for PPV(60) and 78% for NPV(20).

Next we study robustness of  and  at their optimal weights to
violation from the equal classification accuracy assumption. Figure 3 shows how large the
difference in 1-specificity corresponding to sensitivity = SD(60) needs to be between the two
populations to cause 5% (relative bias) over- or under-estimation in PPV(60). Also
displayed is the required difference in sensitivity corresponding to 1-specificity = SD ̄(20), in
order to cause 5% over- or under-estimation in NPV(20). Note that for PPV(60) to be over-
or under-estimated by 5% using the optimally weighted estimator, 1-specificity
corresponding to sensitivity = SD(60) needs to be smaller by 0.13 or larger by 0.14 in the
repeat biopsy population compared to the initial biopsy population. These correspond to zero
and 91.6 percentiles in the distribution of the 1-specificity differences constructed by
bootstrap resampling. Consequently, it is unlikely that the optimally-weighted estimator can
lead to 5% over-estimation in PPV(60), although there is some chance that PPV(60) might
be under-estimated. On the other hand, for NPV(20) to be over- or under-estimated by 5%
by the optimally-weighted estimator, sensitivity corresponding to 1-specificity = SD ̄(20)
needs to be larger by 0.16 or smaller by 0.18 in the initial biopsy population than the repeat
biopsy population. These correspond to 99.0 and 1.7 percentiles in the bootstrap distribution
of the sensitivity difference. Therefore, it is highly unlikely that the optimally-weighted
NPV(20) estimator can lead to 5% over- or under-estimation. The weighted estimators seem
to be fairly robust in this example.

To get a more conservative view of the bias-variance trade-off in our example. We
entertained the “worst-case” bias defined as the boundary of the 95% CI for difference in
classification accuracy between the two populations. We look at upward or downward bias
in the weighted PPV/NPV estimators separately. Suppose the true predictive values are
over-estimated by weighting. Weighting leads to 25.7% and 15.5% decreases in PMSE for
estimating PPV(60) and NPV(20) respectively. If the true predictive values are under-
estimated, weighting leads to a 4.0% drop in PMSE for estimating NPV(20), and a 21.3%
increase in PMSE for estimating PPV(60). These results further press our point that the
weighted estimator is desirable in the PCA3 example especially for estimating NPV(20) in
terms of reducing mean squared error.

We also try the model-based procedure for weight selection assuming normality of
log(PCA3) conditional on disease status. Smaller optimal weights are selected compared to
bias-penalized bootstrap weight selection (w = 0.60 for  and w = 0.49 for ).
Corresponding PPV(60) and NPV(20) estimates are 0.73 (95% CI: 0.62-0.82) and 0.85
(95% CI: 0.74-0.91) respectively, with 70% and 93% efficiency gain compared to default
estimator based on bootstrap variance. While the model-based procedure appears to be more
efficient compared to the bias-penalized procedure for estimating PPV(60), the
corresponding estimators are further away from the default estimators as expected.

Finally, to illustrate application of our methodology to a case-control design, we generated a
case-control sample from the PCA3 data. Results are shown in the online Supplementary
Material. Again, substantial efficiency gain could potentially be achieved through weighting.

Huang et al. Page 10

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://biostats.bepress.com/uwbiostat/paper339



6. Concluding Remarks
In this paper we proposed more efficient estimators for population-specific PPV and NPV,
when samples are available from both the target population and an auxiliary population
which share similar classification accuracy as measured by particular points on the ROC
curve. Note that even if accuracy of the marker might depend on other variables, which are
distributed differently across populations, our method will still work as long as the marginal
classification accuracy is similar between the two populations. Our proposed estimators
assign weights to samples from each population. We propose two methods for weight
selection to maximize estimation efficiency. The one based on asymptotic variance formula
and normality assumption is easy to implement and more efficient when the assumptions
hold exactly. The bias-penalized bootstrap method for weight selection provides a more
robust alternative against possible violation of the common classification accuracy
assumption, although it does lose quite a bit of efficiency relative to the correctly specified
model based procedure.

In theory, the common classification accuracy assumption holds in the following scenario.
Suppose cases and controls in the auxiliary population after some monotone transformation
g, follow the same distributions as cases and controls in the target population, then

, which implies the
equivalence between the ROC curves. This holds because

, i.e., ROC is the cdf of SD ̄(YD), the ‘placement’
of YD among the control distribution (Pepe and Cai, 2004). Here the population indicator is a
confounder in evaluating classification accuracy of the marker; the threshold of marker
value to achieve a given specificity is different across populations but the sensitivity
corresponding to a given specificity remains the same (Janes and Pepe, 2008a,b). Our
methods provide a way to adjust for the confounding effect of population with a goal of
estimating population-specific predictive values. In practice, whether classification accuracy
of a biomarker is similar across populations can be explored using the data. And we can
further conduct tests for equal classification accuracy as we did in the PCA3 example. This
is analogous to a test of the interaction between marker and covariate in a standard
regression setting to rule out the possibility that the covariate (in our setting the population
indicator) would affect the marker's discriminatory performance. We should also work
closely with scientists to decide whether a reasonable true difference in ROC curves would
lead to intolerable bias.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
Proofs of all results that are not given explicitly in the text are available in the
supplementary material.
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Appendix A: Asymptotic variance of the weighted PPV estimators
Here we present asymptotic theory for the proposed estimator defined in Sections 2.1 and
2.2. We assume the following conditions hold:

i.
the distribution functions of YD, YD ̄, , and  are differentiable with density

functions fD, fD ̄, , and  respectively,

ii.
as , and . This implies

, and

, i.e. the ratio of the sample sizes from the two
populations converges to a constant, and the proportion of diseased in each
population converges to a population-specific constant.

Consistency of  and  follow from the Continuous Mapping Theorem.

Theorem 1

 is asymptotically normally distributed with mean zero and
variance

(4)

where VD ̄(y) = SD ̄(y) {1 − SD ̄(y)}, VD(y) = SD(y) {1 − SD(y)},

Note that when w = 1, Σw reduces to A11VD ̄(y) + A22VD(y)/λ, the asymptotic variance of the
default estimator .

Observe that Σw is a quadratic function of w, which is convex since A22 > 0. In addition, Σw
can be written as the product of [ρ(1 − ρ)/{ρSD(y) + (1 − ρ)SD ̄(y)}2]2 and another term that
is free of ρ.

Theorem 2

Asymptotic variance of  is minimized when
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(5)

Since A12 < 0, the optimal w is always less than 1.

Theorem 3

 is asymptotically normally distributed with mean zero and
variance

(6)

Theorem 4

Asymptotic variance of  is minimized when

(7)

The optimal w is always less than 1.

Theorem 5
Suppose we use sample prevalence ρ̂ derived from a pilot cohort study with sample size nc,
such that var (ρ̂) = σ2/nc, and suppose nc/nD ̄ → ξ as nD ̄ → ∞. Then compared to known ρ,

the asymptotic variance of  as nD ̄ → ∞ increases by a term

Same for the asymptotic variance of .

Appendix B: Asymptotic Bias of the Weighted PPV estimators

Theorems 6 and 7 present the asymptotic bias of  and  as a function of the
difference in sensitivity between the two populations with specificity fixed at 1 − SD ̄(y) and
the difference in specificity between the two populations with sensitivity fixed at SD(y). The
derivation is presented in the supplementary material.
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Theorem 6

Let δ = ROC*{t} − ROC(t) for t = SD ̄(y). The asymptotic bias of  is monotonically
increasing in (1 − w)δ, and equals

(8)

On the other hand, to cause an asymptotic bias r (such that |r| is smaller than or equal to the
maximum possible asymptotic bias that can be achieved) in terms of PPV, according to (8),
we have

(9)

where

Theorem 7

Let , the asymptotic bias of  equals

(10)

On the other hand, to cause an asymptotic bias r (such that |r| is smaller than or equal to the
maximum possible asymptotic bias that can be achieved) in terms of PPV, according to (10),
we have

(11)

where

Appendix C: Proof for cross-sectional or cohort study
Suppose we randomly sample n observations Y, D from the target population. Calculating

, and
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Let D = (D1, D2, …, Dn), then

where holds since
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Fig. 1.
(a) Distribution of log(PCA3) conditional on disease status within the initial and repeat
biopsy populations based on the pilot cohort study, (b) Empirical ROC curves for PCA3
within the initial and the repeat biopsy populations based on the pilot cohort study.
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Fig. 2.
Ratio of PMSE for the default estimator versus the weighted estimator of (a) PPV(60) and
(b) NPV(20) as functions of weight.
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Fig. 3.
Difference in classification accuracy between the two populations to achieve 5% over- or
under-estimation (relative bias) in PPV(60) and NPV(20). The black arrowheads are
sensitivities in the initial population corresponding to 1-specificity = SD ̄(20), in order to
cause 5% over- or under-estimation in NPV(20) of the repeat biopsy population; the grey
arrowheads are 1-specificities in the repeat biopsy population corresponding to sensitivity =
SD(60), in order to cause 5% over- or under-estimation in PPV(60) of the initial biopsy
population.
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Table 6

Comparison of the two strategies for estimating PPV and NPV. Here Bias* is the difference between the
weighted estimate and the default estimate; Efficiency† is the ratio of variance of the default estimator (  or

) vs variance of the weighted estimator; Efficiency* is the ratio of PMSE of the default estimator (  or
) to PMSE of the weighted estimator.

PPV
~

(60)
PPV.A^w(60)

NPV
~

(20)
NPV.A^w(20)

Weight 1 0.87 1 0.52

Est (95% CI) 0.77 (0.62, 0.88) 0.76 (0.63, 0.85) 0.86 (0.69, 0.94) 0.85 (0.74, 0.92)

Bias* 0.0012 −0.020 0.004 −0.008

Variance 0.0044 0.0032 0.0037 0.0019

PMSE 0.0044 0.0036 0.0038 0.0020

Efficiency† 1.00 1.38 1.00 1.93

Efficiency* 1.00 1.22 1.00 1.87
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