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Redefining CpG Islands Using a Hidden Markov Models

Hao Wu, Brian Caffo, Harris A. Jaffee, Andrew P. Feinberg, and Rafael A. Irizarry∗

June 10, 2009

Abstract

The DNA of most vertebrates is depleted in CpG dinucleotides; C followed by a

G in the 5’ to 3’ direction. CpGs are the target for DNA methylation, a chemical

modification of cytosine (C) heritable during cell division and the most well character-

ized epigenetic mechanism. The remaining CpGs tend to cluster in regions referred to

as CpG islands (CGI). Knowing CGI locations is important because they mark func-

tionally relevant epigenetic loci in development and disease. For various mammals,

including human, a readily available and widely used list of CGI is available from the

UCSC Genome Browser. This list was derived using algorithms that search for re-

gions satisfying a definition of CGI proposed by Gardiner-Garden and Frommer more

than 20 years ago. Recent findings, enabled by advances in technology that permit

direct measurement of epigenetic endpoints at a whole-genome scale, motive the need

to adapt the current CGI definition. In this paper we propose a procedure, guided

by hidden Markov models, that permits an extensible approach to detecting CGI. The

main advantage of our approach over others is that it summarized the evidence for

CGI status as probability scores. This provides flexibility in the definition of a CGI

and facilitates the creation of CGI lists for other species. The utility of this approach

is demonstrated by generating the first CGI lists for invertebrates, and the fact that we
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can create CGI lists that substantially increases overlap with recently discovered epi-

genetic marks. A CGI list and the probability scores, as a function of genome location,

for each specie are available at http://www.rafalab.org.

1. INTRODUCTION

DNA methylation is a type of chemical modification of DNA that can be inherited without

changing the DNA sequence. This type of heritable mechanism is referred to as epigenetic

inheritance. DNA methylation involves the addition of a methyl group to DNA and typically

occurs at a C followed, in the 5’ to 3’ direction, by a G. Biologist refer to this dinucleotide

as a CpG, where the p implies the 5’ to 3’ direction. Figure 1A is a simplified illustration of

how DNA methylation is maintained during cell division. DNA methylation is of particular

interest because it is involved in gene regulation. It affects the transcription of genes in two

ways. First, the methylation of DNA can impede the binding of transcriptional proteins to

the gene, thus blocking transcription. Second, methylated DNA may be bound by proteins

that start a series of chemical events that result in the formation of compact DNA that

readers it inactive. Note that although two cell types in an organism have the same genome,

their methylation pattern can be different (Figure 1B). The fact that DNA Methylation is

heritable makes it the most prominent mechanism used by differentiated cells to pass tissue

specific transcription patterns to daughter cells in cell division. Therefore, DNA methylation

is regarded as the “fifth base” of the genome and is of great interest to biologists.

[FIGURE 1 AROUND HERE]

The DNA of most vertebrates is depleted in CpG dinucleotides. The remaining CpGs tend

to cluster in regions referred to as CpG islands (CGI) (Figure 2). Interest in CGI grew when

it was demonstrated that, in vertebrates, they are enriched in regions of the genome involved

in gene transcription referred to as promoters (Bird 1986). Furthermore, many investigators

have observed altered DNA methylation of CGI in development and cancer (Feinberg 2007).

Irizarry, Ladd-Acosta, Wen, Wu, Montano, Onyango, Cui, Gabo, Rongione, Webster, Ji,
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Potash, Sabunciyan and Feinberg (2008) recently demonstrated that CGI shores, defined

as regions within 2,000 bases pairs but not inside CGI, are useful predictors for genomic

locations that are differentially methylated across different tissues and between cancer and

normal samples.

[FIGURE 2 AROUND HERE]

A specific example of the need for knowledge of CGI locations is their use in the construc-

tion of high-throughput assays. The traditional technique for measuring DNA methylation,

bisulfite modification-based sequencing, is labor intensive and not suitable for genome wide

studies. New molecular biology techniques, along with the use of microarrays or second gen-

eration sequencing technologies, has made high throughput unbiased methylation profiling

feasible. However, whole-genome assays are too costly for most research groups. Knowledge

of CGI locations provide manufacturers a way to construct cost-effective products that focus

on regions known to be associated with important epigenetic events (Agilent 2008; Meissner

et al. 2008).

Although existing CGI lists have been widely used, comprehensive measurements of

methylation, enabled by recent advances in technology, demonstrate that the current defi-

nition needs to be improved. Furthermore, the current definition was developed for humans

and interest in measuring DNA methylation in other organisms motivate the need for a more

general definition. In Section 2 we describe existing approaches to detecting CGI and point

out their limitations. In Section 3 we motivate the need for a new approach and the statis-

tical model that we use to redefine the concept of a CGI. In Section 4 we present the model.

In Section 5 we describe improvements over existing approaches obtained from fitting our

model. Finally, in Section 6 we summarize our findings.

2. PREVIOUS WORK

A formal definition of a CGI was provided by Gardiner-Garden and Frommer (1987). A CGI

is defined as a region of at least 200 base pairs, with the proportion of Gs or Cs, referred
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to as GC-content, greater than 50%, and observed to expected CpG ratio (O/E) greater

than 0.6. The observed to expected ratio is calculated by dividing the proportion of CpG

dinucleotides in the region by what is expected by chance when bases are assumed to be

independent outcomes of a multinomial distribution. The formula currently used is

O/E =
#CpG/N

#C/N ×#G/N

with N the number of base pairs in the segment under consideration. Various computer

algorithms have been developed that efficiently scan the genome for regions satisfying the

definition. The most widely used CGI list is based on this definition and is hosted by the

UCSC Genome Browser (Kent et al. 2002). However, this definition is somewhat arbitrary,

because the choice of the cut-offs has a great influence on what is considered an island.

The cut-off choice was likely derived from exploratory data analysis (Gardiner-Garden and

Frommer 1987, Figure 1), but neither a biological argument nor a formal statistical motiva-

tion was used.

Alternative algorithmic definitions have been proposed. For example, Takai and Jones

(2002) considered slightly different cut-offs and demonstrated that by using a minimum

length of 500 base pairs (bp), a minimum GC-content of 55%, and a minimum O/E of

0.65, the enrichment for promoter regions of genes was largely not affected. However, most

undesirable Alu-repetitive elements were excluded from the UCSC Genome Browser’s CGI

list. Repetitive elements are sequences that appear over and over again on the genome. The

Alu sequences appears more than 1,000,000 times. These are not associated with Epigenetic

marks but some satisfy the CGI definition. Therefore, we rather exclude them. However,

Alu sequences are easily identified and can be filtered without altering the CGI definition.

Glass et al. (2007) described a completely different algorithm. For every CpG they

recorded the length of a segment needed to cover the nearest 27 CpGs. They then observed

that, for certain species, a histogram of these lengths shows a bimodal distribution. The

histogram was used to select a cut-off and regions associated with the first mode are defined

as CpG “clusters” (their terminology for CGI). However, both these alternative definitions

4

http://biostats.bepress.com/jhubiostat/paper199



also depend on cut-offs based on a difficult to interpret scale.

Because we assume that the underlying structure of the genome includes unobserved

states (CGI and baseline), which are presumed to be correlated along the genome (see

for example Figure 2), Hidden Markov Models (HMMs) are a natural method to consider.

Churchill (1989) introduced the use of HMM to sequence analysis. More recently, HMMs

have been effectively used to partition genomes into segments of similar stochastic structure

(Muri 1998; Nicolas, Bize, Muri, Hoebeke, Rodolphe, Ehrlich, Prum and Bessières 2002; Boys

and Henderson 2004, for example). In these approaches, the hidden state is assumed to be

a homogeneous first order Markov chain. The distribution of the observed base at location

t, conditioned on the hidden state, is a heterogeneous first order Markov chain. States

are then inferred from the base-to-base transitions observed in the genome in question.

In the examples cited above, this approach is effectively used to discover heterogeneities

in the genome of bacteria (Nicolas et al. 2002) and to segment these genomes (Boys and

Henderson 2004).

In general, HMMs have been extensively used in sequence analysis to discover functional

elements in various genomes. In a seminal book on the topic, Durbin (1998) proposes the

use of HMMs for the task of detecting CGIs. Specifically, eight states are assumed: the four

nucleotides in each of the two states (CGI and baseline). Regions for which the state (HMM

or baseline) is predetermined (using the current definition) are used to estimate the transition

probabilities. With the transition probabilities in place and a sequence of dinucleotides, CGI

and baseline states can be predicted by fitting an HMM.

3. MOTIVATION

Recent advances in technology have enabled high-throughput measurement of epigenetic

events, such as differentially methylated regions (DMRs) across tissue types. Newly available

data has motivated the need for a more flexible CGI definition. For example, we examined

data published by Irizarry et al. (2008) and found many DMRs not associated with CGIs

but that were nevertheless in the shores of CpG-enriched sequences. For example, one DMR
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reported by Irizarry et al. (2008) was within 1, 000 bp of a CpG cluster not currently defined

as a CGI (Figure 3a). Furthermore, this region coincides with a gene promoter. Despite

coinciding with two functional elements associated with CGI, this region meets only two of

the three criteria of the formal definition: O/E is only 0.5. Therefore this region is not in the

Genome Browser list of CGI. Visual inspection of the base composition around other DMRs

not associated with CGI demonstrated that this was a general problem (data not shown).

[FIGURE 3 AROUND HERE]

None of the existing competing algorithms solve this problem. By focusing only on

promoters of known genes, we find that the definition proposed by Takai and Jones (2002),

although successfully filters out more undesirable repetitive regions, results in even less

sensitivity for functional epigenetic elements. Furthermore, the Genome Browser list was

filtered to remove repeats, which is a viable solution that does not involve changing to a

more restrictive definition. The algorithm described by Glass et al. (2007) has limitations

as well. A specific problems is that several smaller clusters agglomarate into larger ones

(Figure 3b shows an example). As a consequence, relatively long stretches of CpG depleted

regions are included in the CGI. Furthermore, the 27 CpG requirement results in a list that

leaves out many shorter CpG clusters that are associated with DMRs. For example, the CGI

described above (Figure 3a), is excluded.

Similarly, more statistically based approached have limitations. Although the model pro-

posed by Durbin (1998) serves as an elegant illustration, implementing the approach has not

yielded a practical method for genome-wide identification of CGI. To elaborate, note that the

typical HMM approach in sequence analysis models the transitions between bases directly.

When applied to CGIs, the fundamental difference between the two states must therefore

be the transition from C to G, with islands having a bigger transition probability. However,

below we demonstrate that for this approach to fit the data, we would have to include much

more than two hidden states, due to the variability in base composition observed in most

genomes. Moreover, in our experience, the level of complexity required by an HMM, applied
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to the individual bases, impedes the development of a procedure useful for the creation of

CGI lists.

If CGIs are simply a cluster of CpGs, then a procedure that scans through the genome

searching for regions with larger than expected CpG rates would suffice. However, the

evolutionary theory for CpG islands motivates a more sophisticated approach. Briefly, the

human genome is depleted of CpG because the mutation rate for this specific dinucleotide

is higher than others (Venter et al. 2001). CGIs are believed to be the result of certain

segments of the genome being somewhat protected from the mechanism that leads to this

mutation. This is a possible explanation for the association of CGI and locations relevant

to development. This evolutionary argument, based on differing mutation rates, suggest

that the fundamental property that defines a CGI is not the CpG density per se but the

CpG density conditioned on GC-content. This is because regions that originally had high

GC-content had more CpG dinucleotides which, even unprotected, resulted in relatively high

CpG counts. Gardiner-Garden and Frommer’s definition, based on the observed to expected

ratio as opposed to just the number of CpG, agrees with the above described theory. Our

data exploration, described below, supports and builds on this approach.

We divided the human genome into non-overlapping segments of length 256 bases after

removing the Alu-repetitive-elements. Figure 4 shows a histogram of the CpG rates of these

segments. This figure does not provide a clear cut-off, based on CpG rates, for distinguishing

CGI from baseline. However, if we stratify the segments by GC-content (Figure 5), distinct

bi-modal distributions of CpG rates are observed. The two modes support the existence of

two states: CGI and baseline. The fact that the center of the two modes increases with

GC-content implies that we should consider rates of CpG counts to the GC content of the

bin. That is, we consider the number of CpGs relative to a quantity measuring the number

of opportunities for CpGs, similar to considering the number of events is relative to the size

of the risk set in survival analysis. Note that the O/E concept of Gardiner-Garden and

Frommer, is a clever and simple method for adhering to this principal.
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Our data exploration revealed another interesting characteristic of the genome. Figure

6A shows GC-content for a representative region of the genome (with no repetitive elements).

Note that there appears two states for GC-content as well. Figure 6B shows a density plot of

GC-content for the entire genome, with mixture components obtained from fitting a HMM,

described in detail in Section 4. In Section 4 we describe the relevance of this characteristic

in our approach to defining islands.

Figures 2 and 5 support the claim that CpGs are clustered and that there are two

states of O/E. Therefore, a two-state hidden Markov model is a natural method to consider.

However, modeling the emission probability at a single location is complicated because GC-

content, needed to compute O/E, varies widely across the genome, as seen in Figure 6.

Another complication is that the distribution of CpG counts at a single location is somewhat

complicated, because outcomes from consecutive locations are not independent. For example,

it is impossible to have two consecutive CpGs. In Section 4 we described a procedure,

motivated by hidden Markov models, that overcomes the described problems of existing

approaches and the difficulties of modeling sequence data directly. By modeling CpG counts

in small bins instead of base-to-base transitions, the complexity of the emission model is

greatly reduced. The models are therefore relatively simple and can be fitted without cut-off

choices which facilitated the extension to species for which CpG islands have never been

reported.

4. MODEL

For any given genome, we assumed that each chromosome is divided into three states: Alu-

repetitive elements, baseline and CGI. Because the locations of the Alu repetitive elements

are well characterized, they are inherently not of interest for the current statistical problem

and therefore such regions were removed. Hence we characterize the problem as that of a

semi-Hidden Markov Model, with a known state for Alu repetitive elements. Our analysis

then considers the two-state chain conditional on being in a non-Alu repetitive state.

We followed the basic statistical concepts first used by Churchill (1989), described by
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Durbin (1998) and used by bioinformatic tools such as MEME (Bailey, Williams, Misleh

and Li 2006), MAST (Bailey 1998), and BLAST (Altschul, Gish, Miller, Myers and Lipman

1990). The foundation of these tools is the stochastic modeling of bases in the genome.

We denoted B(t) the base at genomic location t, pb(t) the probability of B(t) = b for

b = A, T, G, C, and pCG(t) the probability of being CpG at location t. The depletion of CpG

implies that the probability of a C at time t followed by a G is less likely than would be

predicted by chance under independence: pCG(t) < pC(t)× pG(t + 1). We have argued that

a useful model for detection of CGI needs two states to describe changes in pC(t), pG(t), and

pCG(t). However, we have specified three parameters for each genomic location t, resulting

in an over-determined system. Placing parsimonious modeling assumptions on the chain of

bases that imply in a two-state stochastic process for the chain of CpGs would result in

undue complexity. Instead, we describe and motivate simple assumptions that permitted

the derivation of a useful model from the general model described above.

We first divided the non-Alu regions into non-overlapping segments of length L bp. For

the results shown here we used L = 16. This choice is justified in Section 4.2. We denoted

NC(s), NG(s), and NCG(s) as the number of C, G, and CpG in segment s, and Y (s) the

hidden state for segment s with states: Y (s) = 1 as CGI and Y (s) = 0 as baseline.

We base the data generating process with a hierarchical model that we subsequently fit

using direct estimates in a iterative stepped approach rather than a complex joint numerical

evaluation with MCMC or equivalent. The most complex portion of the model involves a

model for the CG-content counts, NC(s) + NG(s). We require a model that adheres to the

following: i. it must account for jumps in CG content of roughly the same height that define

CGI, ii. slowly varying trends must also be accounted for iii. fitting must be reasonably fast

and able to accommodate the large size of the data.

The lowest level of the hierarchy specifies that the proportion of GC content in segment

s, {NC(s) + NG(s)}/L, follows a Hidden Markov model with a non-zero conditional mean,

p(s), and latent Markov process, X(s) representing the hidden state for segment s with

states: X(s) = 1 as high GC-count regions and X(s) = 0 as baseline. We presume that
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X(s) is a stationary first order Markov chain with invariant probabilities πi = Pr{X(s) = i},

say, and two by two transition matrix P . For this approach we use a normal approximation

and do not force a binomial variance. This gives us added flexibility in the model though

requires {NC(s) + NG(s)}/L to lie away from the 0 and 1 boundaries for the distributional

assumptions to be valid. However, this is well indicated by the data.

Let {Sj} be the collection of segments defined by a constant latent state. That is:

S1 = {1, . . . ,M1} where M1 is the smallest index so that X(M1) 6= X(M1 − 1), S2 =

{M1 + 1, . . . ,M2} where M2 > M1 is the smallest index so that X(M2) 6= X(M2 − 1) and so

on. This process divides the segments into regions of low or high GC-content.

The hidden Markov models accounts for auto-correlation and fast variation in the chain

of GC content. However, there is clearly a component of slow variation in the GC content

within segments of similar type (Figure 6) that must be accounted for. We presume the

following model on the conditional mean p(s)

p(s) | s ∈ Sj and X(Mj) = i ∼ Normal{ci + f(s), σ2}

where
∫

s
f(s) = 0 represents smooth deviations while the additive constant ci represents

jumps in the CG content defined by the HMM.

Finally, we assumed, conditioned on {p(s)} and Y (s) = i we assume a HMM model on

NCG(s) with Poisson emission probabilities with conditional means

ai × L× pC(s)× pG(s) = ai × L× 1

4
p(s)2.

Here we are making the parsimony assumption that pC(s) = pG(s) = 1
2
p(s). This assumption,

though perhaps aggressive if the bin sizes are small, is biologically well motivated. Further,

the Poisson assumption is motivated in the next section. Note that the parameters a1 and

a0 can be interpreted as the O/E for the CGI and baseline regions respectively.

4.1 Motivation for Poisson Model

An important model assumption is that the number of CpG occurrences in a segment of the

genome approximately follows a Poisson distribution. Note that the counts are not binomial
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because one can not have two CpGs in a row. We termed the distribution non-consecutive

binomial and proved that, asymptotically, we obtain the same results as if the counts were

based on independent Bernoulli trials. Detailed proof can be found at supplemental materi-

als.

We examined the small sample properties of a our random variable using simulations.

Figure 8 shows the mass function of a non-consecutive binomial and Poisson are similar for

different L and p values.

[FIGURE 8 AROUND HERE]

4.2 Choosing the segment length

The Poisson approximation, described in Section 4.1, requires L to be “large”. However,

there is a trade-off in that smaller values of L provide better resolution for the edges of

CGI. In this section we present a simulation and data-motivated rationale for choosing this

parameter.

Our simulations showed that the approximation was appropriate for length larger than

L = 8 (Figure 8). We further assessed the performance on real data by creating CGI lists

as described in Section 5 for the human genome using segment lengths of L = 8, 16, and 32.

The resulting lists were similar: 96% of the bases in the L = 8 CGIs were in the L = 16

CGIs, 98% of bases in the L = 16 CGIs were in L = 8 CGIs, and 93% of bases in the L = 32

CGIs were in the L = 16 CGIs. However, only 83% of the bases in the L = 16 CGIs were

in L = 32 CGIs. Visual inspection revealed that the reason for this were various instances

where smaller proximal L = 16 CGIs were engulfed into a larger L = 32 CGI. Finally, we

created validation plots based on the association of CGI with epigenetic marks for each length

as described in Section 5 for each length; L = 16 showed the best performance. Therefore

L = 16 was used throughout this manuscript and we recommend its use in practice. However,

we emphasize that for future applications, because of the computational shortcuts proposed,

performing a similar sensitivity analysis on this parameter can be easily done.
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4.3 Parameter estimation

We used an iterative stepped approach to fit the posited hierarchical model. The benefits

of this strategy are many and most notably include the ability to use existing software for

fitting, as well as making the computational problem of fitting the model feasible. Moreover,

by fitting the model in stages, we thus obtain values based on the most direct evidence. This

provides some robustness against model misspecification. However, this approach comes at

the cost of theoretical continuity and perhaps leads to understating uncertainty in parameter

estimates.

A difficult problem is the assumption of a non-zero conditional for the HMM on {NC(s)+

NG(s)}/L. Typically HMM algorithms presume a detrended signal. To address this concern

we use an iterative algorithm. To start the iterative algorithm we assume f(s) = 0. The

standard forward-backward algorithm, as described by Rabiner (1989), was applied to the

GC-content data: {NC(s) + NG(s)}/L. This algorithms provides estimates for the for con-

ditional means for each states, i.e. c0 and c1, as well as posterior probabilities for each state

for each segment s. The posterior probabilities were thresholded to obtain a binary (0 or 1)

estimate X̂(s) of X(s). Then for each segment we subtract the means from observed values

to obtain the residuals:

r(s) = {NC(s) + NG(s)}/L− c
1−X̂(s)
0 c

X̂(s)
1

We then estimate f(s) by applying a smoother to r(s). Specifically, we used a moving

weighted average with weights obtained from Tukey’s biweight kernel with a window size

of 5 segments (80 bases). We then iterated the process. Namely we subtract the smooth

estimate, say f̂(s), from the observed GC-content and apply the forward-backward algorithm

to {NC(s) + NG(s)}/L− f̂(s) and repeat the above procedure until convergence.

The use of HMMs and this iterated scheme, as opposed to a complete maximum likelihood

solution, for example, is motivated by HMMs established applicability to sequence data, the

availability of robust fitting algorithms and the satisfactory performance we have seen on

the data. Moreover, as stated above, we have placed a high emphasis utilizing methods that
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can be easily implemented and use the most direct information available. Convergence is

usually obtained quickly, in five iteration or so.

The result of this algorithm is a smoothed estimate of p(s) that accommodates change

points from regions of high CG content and a slowly varying trend. By iterating these steps,

we mirror a blocked maximization procedure, such as is common in back-fitting and related

procedures. At convergence a smoothed estimate of f is obtained as well as estimates for

the ci terms, which represent local constant increases or decreases in CG content.

With the estimate of p(s) in hand, estimating the HMM on NCG is much simpler. Since

we assume

NCG(s)|Y (s) = i ∼ Poission(ai × L× 1

4
p(s)2),

the HMM can be fitted with standard forward-backward algorithm with EM. The result will

give estimates for a1, a0 and posterior probabilities for Y (s). Now we have state probabilities

for the two latent Markov chains, one defining ares of high CG content, and one defining

areas of high CpG content. Here, the areas of CpG content correctly accounts for the number

of opportunities for CpG, rather than looking at the raw number in isolation. We estimate

the posterior probabilities of being a CGI state, i.e. Y (s) = 1, for each segment s. We also

obtain the posterior probabilities of being in a high GC-content state, i.e. X(s) = 1, for

each segment s. Because the forward-backward algorithm calculates these quantities, they

are readily available. We can then estimate the states for X and Y using these posteriors.

5. RESULTS

Our main motivation for the development of a new CGI definition was the fact that recently

discovered epigenetic marks were not associated with CGI based on the current definition

but were associated with CpG-enriched regions. Specifically, many DMRs not associated

with existing CGI lists, were in CpG shores. Below we describe how CGI lists based on the

results of fitting the HMMs, described in Section 4, improve coverage of these locations. We

compare our list, which we refer to as the model-based CGI, to CGI lists provided by the

UCSC Genome Browser (Kent et al. 2002), denoted as Genome Browser CGI, and the Glass
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et al. CGI (Glass et al. 2007).

We created a CGI list by considering regions of locations with posterior probability greater

than 0.5. We also found that the CGIs that coincided with regions of baseline GC-content

were not associated with epigenetic marks (data not shown) and therefore we filtered these

regions. Table 1 shows the joint distribution of the observed posteriors for X and Y . Note,

that the majority of locations with evidence of CGI state, occur when the genome is in the

high GC-content state.

[TABLE 1 AROUND HERE]

This CGI list covered 95% of the DMRs reported by Irizarry et al. (2008). This is a

dramatic increase from the 81% covered by the Genome Browser CGIs and the 86% covered

by the Glass et al. CGIs. This improvement was made possible by the flexibility to control

specificity. Note that the number of CGIs produced with a posterior probability cut-off of

0.50 was 144,228 and the number in the Genome Browser list is 28,226. To compare lists

of similar specificity we created model-based CGI lists with posterior probability cut-offs

ranging from 0.50 to 0.999 for the human and mouse genomes. We compared the association

of each list with two functional elements: gene promoters and DMRs.

Because the Genome Browser CGIs are mostly annotated on the non-repetitive region, we

filtered regions with more than 35% repetitive bases from all lists to make results comparable.

To assess sensitivity we computed the percentage of DMRs within 2,000 bases of a CGI. We

also performed comparisons similar to those previously used to assess CGI lists. Namely, we

compared the percent of gene promoters covered by CGIs for human and mouse, as done by

Takai and Jones (2002) and Glass et al. (2007). To assess specificity in a comparable way

for the three approaches, we computed the total number of bases covered by each CGI list.

Figure 9 shows plots of sensitivity versus specificity.

Glass et al. CGIs overlap with a larger percentage than Genome Browser CGIs (66.6%

versus 58.2%). However, to achieve this gain in sensitivity, twice as many bases are used.

The ability to control specificity with the model-based CGIs demonstrates that only slight
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improvements over the Genome Browser CGIs are possible at the same specificity level (Fig-

ure 9). In contrast, a substantial improvement was achieved by the model-based approach

in the overlap with the DMRs. Using a probability cut-off of 0.999 the total lengths of the

model-based CGIs (21.3 Mbp), was comparable to the total length of the Genome Browser

CGIs (21.1 Mbp), but the overlap with DMR increased from 81% to 86%. A cut-off of 0.975

made the model-based CGIs (41.7 Mbp) comparable in size to the Glass et al. CGIs (41.1

Mbp) but the the overlap with DMR increased from 86% to 91%.

Another advantage of our approach is that we can easily fit the HMMs to genomes of other

species. We fitted the model to 12 species: H. sapiens (human), P. troglodytes (chimpanzee),

M. musculus (mouse), B. taurus (cow), C. familiaris (dog), G. gallus (chicken), A. mellifera

(bee), D. melanogaster (fruit fly), C. elegans (worm), A. thaliana (Arabidopsis), E. Coli and

S. cerevisiae (yeast). CGI have only been reported for vertebrates. We therefore tested for

the presence of CGI by computing a likelihood ratio comparing a model with two states to

a model with one state. Of the 12 species we tested, only the unicellular organisms, i.e.

yeast and E. Coli, did not have significant evidence in favor of the presence of CGI. We

are therefore reporting the first CGI lists for bee, worm, and fruit fly. Previous approaches

were not successful because the required cut-offs for these species are very different than for

humans. This is demonstrated by examining the fitted a0 and a1 parameters. Note that

these can be interpreted as the average O/E in the baseline and CGI regions respectively.

[TABLE 2 AROUND HERE]

[FIGURE 9 AROUND HERE]

6. DISCUSSION

We have proposed a procedure for building CGI lists based on HMMs. The main motivation

for the development of a new approach was the observation that many DMRs were near

regions of high CpG density that did not meet the current definition nor any of the alterna-

tive definitions. Our new approach greatly improved the overlap with known DMRs. The
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improvements achieved with our approach was mainly due to the data-driven nature of the

procedure. Many of the CpG dense regions were left out by algorithmic approaches, because

they did not satisfy a predetermined rule. Re-running these algorithms with different cut-offs

is no easy task. However, generating CGI lists with different cut-off for the HMM-generated

posteriors probabilities is trivial.

Figure 10 shows GC-content versus O/E for the model-based human CGI list. The

red horizontal and vertical lines are from Gardiner-Garden and Frommer CGI definition

(GC content>50%, O/E>0.6). Based on the current definition only the points above the

horizontal line and to the right of the vertical line are CGIs. Various of the model based

CGI do not satisfy the original definition. A histogram of the lengths of model-based CGIs

shows many model-based islands are smaller than the formal definition’s requirement of 200

bases (Figure 10b ). These figures demonstrate how the added flexibility permits shorter

regions with slightly lower O/E.

Our probability-based estimates have units that are interpretable across species. Thus,

in a sense, we have transformed the problem onto a standardized scale which will facilitate

discussion of thresholding definitions. Because of this, fitting the model to the genomes of

other species was simple - no additional user input or algorithmic tweaking was required. To

demonstrate this, we fitted the model to the genome of 12 species.

In addition to providing CGI information for these species in isolation, it led to some

interesting scientific findings when compared across specifies within taxonomic and evolu-

tionary classes. Strong evidence for the presence of CGI was found for all multi-cellular

organisms. The estimated model parameters confirmed that vertebrates are CpG depleted

in their baseline level. Invertebrates were not CpG depleted in their baseline levels but

showed higher than expected levels in the CGI. Arabidopsis was somewhere in between. Ev-

idence of methylation has been reported for species for which we found evidence of CGI. The

fruit fly had the weakest evidence for the presence of CGI. Interestingly, only small amounts

of methylation are detected for this organism (Lyko, Ramsahoye and Jaenisch 2000).

A promising application of the newly defined CGIs is the creation of efficient DNA methy-
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lation arrays or enrichment schemes for second generation sequencing. For example, we can

construct microarrays that tile only CGI shores. Note that if the current Genome Browser

definition will miss out on a substantial number of DMRs. Furthermore, it would be possible

to construct this array for any species for which the genome has been sequenced. Further-

more, the ability to control specificity will permit us to deal with different array densities.
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Figure 1: Cartoon illustrating how DNA methylation is inherited in cell division on how it

could be involved in tissue differentiation. A) The fact that the complement of a CpG is

also a CpG facilitates the the inheritance mechanism. The cartoon illustrates how, during

Mitotic cell division, DNA methylation is inherited. B) This cartoon illustrates how two

cells can have the same genomic sequence but a different methylation pattern.

Table 1: Joint distribution of posterior probabilities for X (GC content) and Y (CpG rate)

on Human hg18 genome. Numbers in each cell are the percentages of bins with posterior

probabilities fall in a category. For example, there are 64.3% bins with both probabilites

between 0 and 0.1.

Post. prob. for CpG rate

Post. prob. for GC content (0,0.1] (0.1,0.5] (0.5,0.9] (0.9,1] total

(0,0.1] 64.3 2.5 0.7 0.4 67.9

(0.1,0.5] 1.6 0.1 0.0 0.0 1.7

(0.5,0.9] 1.6 0.1 0.0 0.0 1.7

(0.9,1] 23.0 1.9 1.2 2.6 28.7

total 90.5 4.6 1.9 3.0 100
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Figure 2: A genomic region of 40,000 bases from chromosome 1 is shown. The ticks on the

x-axis represent CpG locations. The points represent CpG rates in segments of length 256

bases The curve is the results of a kernel smoother of the points. Approximately 20% of

the genome are Cs and 20% are Gs. Thus we expect about 4% of dinucleotides to be CpG.

However, most points are well below rates 4% with two clusters well above 4%. The latter

are CpG islands.
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Figure 3: The observed to expected ratio (green) and percentage of G+C (orange) are shown

for two regions of the human genome. CpG clusters are denoted with bars along the bottom

or top of the plot. A) For a region covering the 5’ end of CLSTN3 a CpG dense region that

is not in current CGI list is denoted by the lime green bar at the bottom. B) The top (pink)

bar denotes one of Glass et al. CGI that engulfs three Genome Browser CGIs (denoted with

purple bars at end). The regions between the Genome Browser CGI have low observed to

expected ratio.
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Figure 4: Histogram of CpG rates in non-overlapping genomic segments of length 256 bases.
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Figure 5: Histogram of CpG rates in genomic segments of length 256 bases, as in Figure 4,

but stratified by GC-content. The GC-content strata is shown on top of each histogram.

24

http://biostats.bepress.com/jhubiostat/paper199



A

●
●

●
●

●

●
●
●

●●
●
●
●

●

●

●
●
●●
●
●●●

●●
●
●
●
●●
●●
●
●●●●●●

●●●
●
●
●
●

●
●
●
●

●
●●
●
●●●●

●●
●●●

●

●●●
●

●
●
●

●●

●

●
●

●

●
●
●●
●
●
●

●

●
●●●●●

●●

●
●
●●●●●

●
●

●●
●
●●
●

●

●●
●
●●●●

●
●
●
●●
●●●●●

●
●●●●●●●

●
●●
●
●●●

●●●●●●●●
●●

●

●
●●

●
●
●

●

●
●
●

●●

●
●●●

●●●●●●●
●
●●
●●
●●●●

●
●
●●
●●
●●
●

●●

●
●
●
●●●

●

●
●●
●
●
●

●●●
●●●

●●
●●●●

●

●
●
●●

●

●

●
●

●

●●
●●●●●●

●

●

●●●●
●
●

●
●
●

●

●

●●●
●
●
●

150520000 150540000 150560000 150580000

0.
2

0.
4

0.
6

chr1

G
C

 c
on

te
nt

B

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

D
en

si
ty

Figure 6: GC-content plots. A) A region with no Alu-repeats was divided into non-

overlapping segments of length 256 bases. The points are the GC-content of each segment.

The curve is the results of a kernel smoother of the points. B) The solid line is density plot

for GC-content for the 256 base segments from all non-Alu-repetitive regions. A HMM (de-

scribed in Section 4) was fitted to the entire genome and the dashed lines show the density

plot for segments from the two states.
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Figure 7: Histograms of posterior probabilities obtained from the hidden Markov model. A)

CGI B) GC-content.
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Figure 8: Pmf’s for NCBin(L, p) and Poisson(Lp) are similar when L is large and p is

small.
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Figure 9: ROC-like plots showing the sensitivity versus total length for different CGI lists

(used as a measure of specificity). The sensitivity is defined as the percentage of functional

elements associated to CGI. The four figures are for different functional elements. (a) Human

(HG18) transcription start sites (TSS), (b) human (HG18) unknown sequence tag found using

sequencing, (c) human (HG18) differentially methylated (DMR) and (d) mouse (MM8) TSS,

respectively.
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Table 2: In the HMM the parameters a0 and a1 represent the average observed to expected

ratios in the baseline and island regions. The table below shows the estimated parameters

in twelve species.

a0 a1

Human 0.15 0.54

Chimp 0.16 0.54

Mouse 0.14 0.44

Cow 0.17 0.49

Dog 0.16 0.62

Chicken 0.18 0.68

Bee 0.77 1.51

Fruit fly 0.84 0.90

Worm 0.83 1.28

Arabidopsis 0.49 0.92

Yeast 0.76 0.77

E. coli 1.12 1.12
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Figure 10: Statistical characteristics of model-based CGI list for Human (HG18). (A) GC

content versus O/E. The red vertical and horizontal lines represent the cut-offs used by the

Gardiner-Garden and Frommer definition: O/E>0.6, GC content>0.5. (B) Histogram of

CGI lengths. The vertical line is at the minimum length requirement of Gardiner-Garden

and Frommer CGI definition (200bp)
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