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SUMMARY

In linear mixed models, model selection frequently includes the selection of random effects.
Two versions of the Akaike information criterion (AIC) have been used, based either on the
marginal or on the conditional distribution. We show that the marginal AIC is no longer an
asymptotically unbiased estimator of the Akaike information, and in fact favours smaller models
without random effects. For the conditional AIC, we show that ignoring estimation uncertainty
in the random effects covariance matrix, as is common practice, induces a bias that leads to the
selection of any random effect not predicted to be exactly zero. We derive an analytic represen-
tation of a corrected version of the conditional AIC, which avoids the high computational cost
and imprecision of available numerical approximations. An implementation in an R package is
provided. All theoretical results are illustrated in simulation studies, and their impact in practice
is investigated in an analysis of childhood malnutrition in Zambia.

Some key words: information criterion, Kullback-Leibler information, model selection, penalized splines, random
effect, variance component

Note: This technical report is a reworked and updated version of Johns Hopkins Univer-
sity, Department of Biostatistics Working Papers, Paper 179 (2009), including new results.

1. INTRODUCTION

Linear mixed models are a powerful inferential tool used in a wide range of statistical areas
from longitudinal data analysis (Laird & Ware, 1982) to penalized spline smoothing (Ruppert
et al., 2003), to functional data analysis (Di et al., 2008). They offer flexibility in modelling and
computationally attractive implementations of complex models for large data sets. The resulting
flexibility and complexity of models make the question of model choice increasingly important.
This includes the selection of random effects, such as those modelling heterogeneity between
subjects, or deviations of a curve from linearity.

We focus on properties of the Akaike information criterion (AIC, Akaike, 1973) for the se-
lection of random effects. The AIC has been argued to be better suited to model selection than
hypothesis testing, is not limited to nested models, and has an approximate justification even
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2 THE AIC IN LINEAR MIXED MODELS

when the candidate models do not contain the true model (Burnham & Anderson, 2002, pp. 36-
37, 65). While tests for random effects or their variances have gained a lot of interest in recent
years (Stram & Lee, 1994; Crainiceanu & Ruppert, 2004; Molenberghs & Verbeke, 2007; Greven
et al., 2008; Scheipl et al., 2008; Giampaoli & Singer, 2009) due to the violation of typical reg-
ularity conditions in linear mixed models, potential implications for information criteria such as
the AIC are often not explicitly addressed (e.g. Robert-Granié et al., 2004; Wager et al., 2007).

In mixed models, an AIC based on the marginal likelihood is typically used (mAIC), which is
returned by standard statistical software. Vaida & Blanchard (2005) propose an AIC derived from
the conditional model formulation (cAIC), with the effective degrees of freedom accounting for
shrinkage in the random effects. In practice, the authors recommend using a plug-in estimator for
the unknown random effects covariance matrix, arguing that the effect is negligible asymptoti-
cally. Liang et al. (2008) propose a corrected cAIC that accounts for the estimation of the variance
parameters. However, for a sample size of n, they require n or even 2n additional model fits to
numerically approximate their cAIC. The use of the corrected cAIC thus is computationally pro-
hibitive in settings with larger sample sizes and number of potential models. For example, our
application on childhood malnutrition with 1600 observations and 64 potential models would re-
quire an estimated 110 days computation time. This makes the approximation proposed by Vaida
& Blanchard (2005) tempting, and their version of the cAIC indeed seems to be used in practice.

In this paper, we study the theoretical properties of both mAIC and cAIC for the selection of
random effects in linear mixed models. We find that the mAIC is a biased estimator of the Akaike
information due to the non-open parameter space and lacking independence between observa-
tions in linear mixed models. In consequence, it favours smaller models without random effects.
For the cAIC, we show that ignoring the uncertainty in the estimate of the random effects covari-
ance matrix induces a very specific bias with an interesting effect on model selection behaviour:
the corresponding cAIC always selects an additional random effect into the model unless that
random effect is predicted to be exactly zero, in which case there is a tie. This behaviour is
independent of the sample size and does not disappear asymptotically. As accounting for the
estimation uncertainty in the covariance matrix is crucial, we derive an analytic representation
of the corrected version of the cAIC proposed by Liang et al. (2008). This formulation avoids the
high computational cost and imprecision inherent in available numerical approximations.

All theoretical results are illustrated in simulation studies, and their impact in practice
is investigated in an analysis of childhood malnutrition in Zambia. Outlines of proofs are
given in the appendix. Detailed proofs, extended simulation and application results as well
as an R package implementing the corrected cAIC are available in a web appendix at
http://www.biostat.jhsph.edu/˜sgreven/research/appendix_AIC.zip.

2. THE AIC IN THE LINEAR MIXED MODEL

2·1. The Linear Mixed Model
In the following, we consider the linear mixed model

y = Xβ + Zb+ ε, (1)

where X and Z are known design matrices of full column ranks p and r, β contains fixed param-
eters, and b and ε are assumed to be independent and normally distributed,(

b
ε

)
∼ N

((
0
0
)
,
(
D 0
0 σ2In

))
,

http://biostats.bepress.com/jhubiostat/paper202



97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

The AIC in Linear Mixed Models 3

In being the n× n identity matrix. Let D∗ = σ−2D, and define the covariance matrix

V := cov(y) = σ2In + ZDZT = σ2(In + ZD∗Z
T ) =: σ2V∗.

Denote by θ∗ the q parameters in D∗, and let θ = (σ2, θ∗) contain all variance parameters. We
suppress dependence of V = V (θ), V∗ = V∗(θ∗), etc. on the parameters when no confusion can
arise. We use hat-notation for estimated quantities, such as V̂ = V (θ̂). We interchangeably use
the notation θ̂ or θ̂(y) etc. when emphasizing the dependance on the data y.

Inference in model (1) is usually based on the implied marginal likelihood, integrating over
the random effects. For a given θ, the fixed effects β and the random effects b can be estimated
and predicted by the best linear unbiased estimator and predictor, respectively:

β̂ =
(
XTV −1X

)−1
XTV −1y =

(
XTV −1

∗ X
)−1

XTV −1
∗ y,

b̂ = DZTV −1(y −Xβ̂) = D∗Z
TV −1
∗ (y −Xβ̂), (2)

where β̂ is also the maximum likelihood (ML) estimator. The profile log-likelihood for all vari-
ance parameters θ, profiling out over β, is, up to a constant,

l(θ) = log f(y | θ, β̂(θ)) = −1
2

log{det(V )} − 1
2

(y −Xβ̂)TV −1(y −Xβ̂). (3)

The corresponding restricted log-likelihood for θ is up to a constant (Harville, 1974)

`(θ) = log f(AT y | θ) = −1
2

log{det(V )} − 1
2

log{det(XTV −1X)} − 1
2

(y −Xβ̂)TV −1(y −Xβ̂),
(4)

where AT y are n− p linearly independent error contrasts with E(AT y) = 0.
In our examples, we focus on two special linear mixed models. One of the simplest linear

mixed models is the random intercept model, used to account for variability between sampling
units such as subjects or clusters. This model is written on the observational level as

yij = xTijβ + bi + εij , j = 1, . . . , Ji, i = 1, . . . , I, (5)

with I the number of clusters and Ji the number of observations from cluster i. Appropriate
stacking gives a matrix-vector formulation as in (1).

The second case is penalized spline smoothing. Consider univariate smoothing

yi = m(xi) + εi, i = 1, . . . , n, (6)

where m(·) is an unknown smooth function. m(·) is modeled using splines, such as truncated
polynomials

m(x) =
d∑
j=0

βjx
j +

K∑
j=1

bj(x− κj)d+

for some d ∈ N0 and K ∈ N, where κ1 < · · · < κK are K knots, and (u)d+ = ud if u > 0 and
= 0 else. To avoid overfitting and knot-dependence, and to impose smoothness on the estimated
function, one considers the penalized least squares criterion

min
β,b
‖y −Xβ − Zb‖2 +

1
λ
bT b, (7)

where β = (β0, . . . , βd), b = (b1, . . . , bK), and X and Z contain the rows (1, xi, . . . , xdi ) and
((xi − κ1)d+, . . . , (xi − κK)d+), i = 1, . . . , n, respectively. This formulation penalizes deviations
from a dth degree polynomial, e.g. linearity if d = 1.

Hosted by The Berkeley Electronic Press



145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

4 THE AIC IN LINEAR MIXED MODELS

The smoothing parameter λ controls the trade-off between fit to the data and smoothness. As
(7) is equivalent to determination of the best linear unbiased estimator and predictor for β and
b in the linear mixed model (1) with D = τ2IK and fixed variance τ2 = λσ2 (Brumback et al.,
1999; Ruppert et al., 2003), the mixed model formulation can be used to estimate λ as τ2/σ2.
In this framework, fixed effects model the subspace of polynomials of degree d, while random
effects model any deviation. In our examples, we use a similar mixed model representation for
B-splines with a difference penalty (Eilers & Marx, 1996; Fahrmeir et al., 2004).

2·2. The Akaike Information Criterion
We now recapitulate the definition of the AIC. Suppose that y = (y1, . . . , yn) is a vector of

observations, generated from a true underlying distribution with joint density g(·), and that
fψ(·) = f(· | ψ) is a family of approximating models with unknown parameters ψ ∈ Ψ. The
Kullback-Leibler divergence is defined as

K(fψ, g) =
∫

log
(
g(z)
fψ(z)

)
g(z)dz = Ez[log{g(z)} − log{fψ(z)}], (8)

where Ez denotes the expectation with regard to the distribution of another realization z.
K(fψ, g) can be viewed as a measure of distance between g(·) and fψ(·).

In practice, ψ is estimated by the ML estimator ψ̂(y) based on data y independent of z, and one
would like to minimize Ey{K(f

ψ̂(y)
, g)}, or equivalently−2Ey(Ez[log{f

ψ̂(y)
(z)}]). This Akaike

information, or twice the expected relative Kullback-Leibler distance, is a predictive quantity,
depending on independent replications z and y. The maximized log-likelihood log{f

ψ̂(y)
(y)} can

be used for estimation of it, but is biased, as it only depends on y. Denote by ψK the parameter
vector which minimizes the Kullback-Leibler distance in (8). Then, an unbiased estimator is

−2 log{f
ψ̂(y)

(y)}+ 2Ey[log{f
ψ̂(y)

(y)} − log{fψK
(y)}] + Ey(2Ez[log{fψK

(z)} − log{f
ψ̂(y)

(z)}]).

In standard settings, certain regularity conditions are fulfilled, including the following. First,
the parameter space for ψ, up to a change of coordinates, is Ψ = Rk, with k the number of
estimable parameters in ψ. Second, observations y1, . . . , yn are independent and identically
distributed. If one further assumes that fψK

(·) = g(·), such that consistency ensures conver-
gence of ψ̂(y) to ψK , standard asymptotic theory gives an asymptotic χ2

k distribution for both
2Ez[log{fψK

(z)} − log{f
ψ̂(y)

(z)}] and 2[log{f
ψ̂(y)

(y)} − log{fψK
(y)}]. Then,

AIC = −2 log{f(y | ψ̂(y))} + 2k

is asymptotically unbiased for the Akaike information. Minimizing the AIC over a set of pos-
sible, nested or non-nested, models can thus be seen as minimizing the average distance of an
approximating model to the underlying truth.

2·3. The AIC in the Linear Mixed Model
In the linear mixed model, we focus on model selection for the random effects b. Examples

include the selection of a random intercept in (5), or of a random effect modelling deviations
of m(·) from a low-order polynomial in (6). For ease of presentation, we focus on the asymp-
totic versions of the marginal and conventional conditional AIC criteria. Analogous results hold
straightforwardly for the finite sample versions (Sugiura, 1978; Vaida & Blanchard, 2005).

For extension of the AIC to the linear mixed model, two different approaches exist. The first
approach uses the marginal likelihood arising from the marginal model y ∼ N(Xβ, V ). The

http://biostats.bepress.com/jhubiostat/paper202
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The AIC in Linear Mixed Models 5

number of parameters in this model is p+ q + 1. The marginal AIC (mAIC) is then defined as

mAIC = −2 log{f(y | β̂, θ̂)}+ 2(p+ q + 1), (9)

where f(y | β̂, θ̂) is the maximized marginal likelihood. For restricted maximum likelihood
(REML) estimation, the maximized restricted likelihood f(AT y | θ̂) is used, and the number of
parameters is q + 1.

Use of the marginal likelihood implies that in the definition of the AIC, the two independent
replications z and y arising from the true underlying distribution do not share the same random
effects. This is appropriate, for example, in a longitudinal study with subject-specific random
effects, where interest is in the fixed (population) effects. However, the marginal AIC is typically
used for model selection in all contexts in the linear mixed model, as it is routinely returned by
statistical software, such as R lme() or SAS PROC MIXED.

Vaida & Blanchard (2005) argue that a second approach based on the likelihood for the con-
ditional model y | b ∼ N(Xβ + Zb, σ2In) is more appropriate when the focus is on random
effects shared by z and y. For example, in penalized spline smoothing, random effects are used
as a tool to model the non-linear part of an underlying smooth function common to z and y.

In this setting, the Akaike information is replaced by the conditional Akaike information,

cAI = −2Ey,b(Ez|b[log{f(z | θ̂(y), b̂(y))}]) = −
∫

2 log{f(z | θ̂(y), b̂(y))}g(z | b)g(y, b)dzdydb,

where g(y, b) = g(y | b)g(b) is the joint distribution of y and b.
For the case where D∗ and thus θ∗ is known, Vaida & Blanchard (2005) show that an asymp-

totically unbiased estimator of cAI is their conditional AIC (cAIC),

cAIC = −2 log f(y | β̂, b̂, θ̂) + 2(ρ+ 1), where

log f(y | β̂, b̂, θ̂) = −1
2
n log(2π)− 1

2
n log(σ̂2)− 1

2σ̂2
(y −Xβ̂ − Zb̂)T (y −Xβ̂ − Zb̂)

is the conditional log-likelihood for y, conditioning on b as well as on β and θ, evaluated at the
estimated or predicted quantities (β̂, b̂, θ̂) based on ML or REML estimation, and

ρ = tr
{(

XTX XTZ
ZTX ZTZ +D−1

∗

)−1(
XTX XTZ
ZTX ZTZ

)}
(10)

is the trace of the hat matrix projecting y onto ŷ = Xβ̂ + Zb̂. Vaida & Blanchard (2005) note
the connection of the effective degrees of freedom ρ, which lie between those of a linear model
without b, and those of a linear model with fixed effects b, to the effective degrees of freedom
known from smoothing (p. 53, Hastie & Tibshirani, 1990; Hodges & Sargent, 2001).

Vaida and Blanchard assume thatD∗ and thus θ∗ is known. In practice, they recommend using
the cAIC with estimated D∗ when it is unknown, argueing that the difference between estimated
ρ̂ and true ρ is negligible asymptotically. We call this the conventional cAIC in the following.

Liang et al. (2008) propose a corrected cAIC that takes into account the estimation of θ. For
known error variance σ2, they replace the effective degrees of freedom by

Φ0 =
n∑
i=1

∂ŷi
∂yi

= tr
(
∂ŷ

∂y

)
. (11)

Hosted by The Berkeley Electronic Press
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6 THE AIC IN LINEAR MIXED MODELS

For known θ∗, Φ0 reduces to the effective degrees of freedom ρ. In an accompanying technical
report, they extend the idea to the case when σ2 has to be estimated. Then,

Φ1 =
σ̃2

σ̂2
tr
(
∂ŷ

∂y

)
+ σ̃2(ŷ − y)T

∂σ̂−2

∂y
+

1
2
σ̃4 tr

(
∂2σ̂−2

∂y∂yT

)
, (12)

is substituted for the total number of parameters ρ+ 1. σ̃2 is the unknown true error variance
and has to be replaced by an estimate, such as σ̂2 based on ML or REML estimation. (11) and
(12) involve derivatives of estimated or predicted quantities with respect to the data, for which
Liang et al. (2008) do not provide closed form expressions. They propose numerical approxima-
tions based on small disturbances of the observed data. However, the implementation requires
n and 2n additional model fits for evaluating (11) and (12), respectively. As a consequence, the
evaluation of the corrected cAIC quickly becomes prohibitive for moderate sample sizes n. In
their simulation, Liang et al. (2008) conclude that the estimated effective degrees of freedom are
similar between corrected and conventional cAIC, which matches Vaida and Blanchard’s recom-
mendation to use the estimated effective degrees of freedom ρ̂.

3. THE MARGINAL AIC

In this section, we show that the marginal AIC is no longer an unbiased estimator of the Akaike
information under the marginal model. This is due to the fact that a) the parameter space for the
marginal model is not a transformation of Rk due to the restrictions on the variance parameters,
and b) observations in the linear mixed model are not independent due to the correlation induced
by the random effects. The resulting bias in the marginal AIC is closely related to results for the
distribution of (restricted) likelihood ratio tests for variance components in linear mixed models
(Crainiceanu & Ruppert, 2004).

We focus on the model with one unknown variance component and maximum likelihood esti-
mation for simplicity. It is straightforward to see that analogous arguments hold for more com-
plex models and for the restricted log-likelihood. We have the following result.

THEOREM 1. Consider the linear mixed model (1) with one unknown random effects variance
component, D = τ2Σ with Σ known. Then, the marginal Akaike Information Criterion (mAIC)
defined in (9) is positively biased for the Akaike information,

Ey(mAIC) > −2Ey(Ez[log{f
ψ̂(y)

(z)}]),

where fψ(·) = f(· | ψ) denotes the marginal likelihood with ψ = (βT , σ2, λ)T , λ = τ2/σ2. The
bias is dependent on the true unknown τ2, and does not vanish asymptotically if τ2 = 0.

All proof outlines are in the appendix, and detailed proofs can be found in the web appendix.
Compared to an unbiased criterion, the mAIC favours smaller models excluding random effects.

Using the mAIC to compare two nested models with τ2 = 0 (linear model, M1) and τ2 ≥ 0
(linear mixed model, M2) in the notation of Theorem 1, is closely related to testing for a random
effects variance. The mAIC selects the larger model M2 iff

−2 log{f
ψ̂(y)

(y)}+ 2(p+ 2) < −2 log{fψ̄(y)(y)}+ 2(p+ 1)

⇔ 2 log{f
ψ̂(y)

(y)} − 2 log{fψ̄(y)(y)} > 2,

where bar-notation indicates estimation under the restriction λ = τ2/σ2 = 0. Thus, a compari-
son of the mAIC is equivalent to a likelihood ratio test with the critical value 2. In standard cases,
when the log-likelihood ratio is asymptotically χ2

1-distributed, the nominal level of such a test

http://biostats.bepress.com/jhubiostat/paper202
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The AIC in Linear Mixed Models 7

would be approximately 0.157. However, for variance component testing, where the distribution
has a point mass at zero, such a nominal level can be far smaller than 0.05.

Our result is related to findings by Hughes & King (2003), who propose a one-sided AIC for
settings with inequality-constrained parameters. However, they assume independent and identi-
cally distributed responses, and their result is thus not applicable in most linear mixed models.
Even in the independent and identically distributed case, their AIC is only unbiased if all inequal-
ity constrained parameters lie on the boundary of the parameter space.

4. THE CONDITIONAL AIC

4·1. The Conventional cAIC

We now investigate the theoretical properties of the conventional cAIC, which substitutes
D̂∗ = D(θ̂∗) for the unknown D∗ in the calculation of the effective degrees of freedom ρ, and
does not account for the resulting estimation uncertainty. For ease of presentation, we focus on
the case of one unknown variance component, D = τ2Σ with Σ known. The following theorem
characterizes the behaviour of the conventional cAIC for the selection of random effects.

THEOREM 2. Consider the two models

M1 : y = Xβ + ε, M2 : y = Xβ + Zb+ ε, (b, ε) ∼ N (0,diag(τ2Σ, σ2In)),

with known Σ, but unknown τ2. For the conventional cAIC with estimated ρ̂,

τ̂2 > 0 ⇔ cAIC(M1) > cAIC(M2) and τ̂2 = 0 ⇔ cAIC(M1) = cAIC(M2).

Thus, the conventional cAIC always chooses the inclusion of the random effect b into the model,
unless b is predicted to be exactly zero (τ̂2 = 0), in which case the cAIC does not distinguish
between the two models. This is in contrast with the AIC, say in the linear model, where a
regression coefficient estimated to be zero would still be counted in the number of estimable
parameters k. The conventional cAIC does not distinguish when a random effect that is predicted
to be small, but not exactly zero, should be included in the model. Remark 1 in the web appendix
shows that the gist of this result carries over also to more complex models.

This built-in preference of the conventional cAIC for larger models has an intuitive expla-
nation. If one were to use the maximized log-likelihood for model selection, the choice would
always be the largest model under consideration. This over-optimism in the model fit is due to
the parameters being estimated from the same y that is the argument of the log-likelihood. The
AIC, on the other hand, is a predictive quantity and corrects this bias using a suitable bias correc-
tion term. However, the conventional cAIC estimates the bias correction term again from y. In a
sense, it does not sufficiently correct, resulting in a similar preference for lager models.

4·2. The Corrected cAIC

The corrected cAIC of Liang et al. (2008) remedies the problems of the conventional cAIC.
However, the available numerical approximation, similarly to other predictive criteria such as
cross validation, can be computationally prohibitive. We derive an analytic representation with
an efficient implementation. We focus on an analytic representation of Φ0. A representation of
Φ1 could be obtained along the same lines, but would be lengthy and cumbersome, whereas
simulations in Section 5 show the close agreement between Φ1 and Φ0 + 1 for model selection.

Denote the parameter space for θ∗ = (θ∗,1, . . . , θ∗,q) by Θ ⊆ Rq. Denote by θ̂∗ the maximum
likelihood or restricted maximum likelihood estimator of θ∗.

Hosted by The Berkeley Electronic Press
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8 THE AIC IN LINEAR MIXED MODELS

THEOREM 3. For the conditional AIC in the linear mixed model (1) with unknown θ, the bias
correction term (11) can be written as

Φ0 = ρ̂+
s∑
j=1

eTj B̂
−1
∗ Ĝ∗Â∗Ŵ∗,jÂ∗y,

where we assume that after potential reordering, we can write θ∗ = (θTs , θ
T
t , θ

T
q−s−t)

T

for some 0 ≤ s ≤ q, 0 ≤ t ≤ q − s, such that Θ = {θ∗|θs ∈ Θs ⊆ Rs, θt ∈ [0,∞)t, θq−s−t ∈
F (θs, θt) ⊂ Rq−s−t}, θ̂s lies in the interior of Θs, F (θs, 0) = 0 for all θs, and
(θ̂Tt , θ̂

T
q−s−t)

T = 0. Furthermore, ej denotes the s× 1 unit vector for component j, A∗ =
V −1
∗ − V −1

∗ X(XTV −1
∗ X)−1XTV −1

∗ , W∗,j = ∂
∂θ∗,j

V∗, U∗,jl = ∂2

∂θ∗,l∂θ∗,j
V∗, j, l = 1, . . . , s, are

n× n matrices, the jth row of the s× n matrix G∗, j = 1, . . . , s, is 2{(yTA∗y)yTA∗W∗,jA∗ −
(yTA∗W∗,jA∗y)yTA∗}, and B∗ is the negative definite s× s Hessian matrix for θs with jlth
entry

bjl − yTA∗W∗,jA∗yyTA∗W∗,lA∗y − yT (A∗U∗,jlA∗ − 2A∗W∗,lA∗W∗,jA∗)yyTA∗y,

where bjl = {(yTA∗y)2 tr(U∗,jlA∗ −W∗,jA∗W∗,lA∗)/(n− p)} for restricted maximum like-
lihood estimation, and bjl = {(yTA∗y)2 tr(U∗,jlV −1

∗ −W∗,jV −1
∗ W∗,lV

−1
∗ )/n} for maximum

likelihood estimation, j, l = 1, . . . , s.

To give an intuition for the assumptions in Theorem 3, consider the case of a block-diagonal
D∗ with blocks

1
σ2

(
τ2

1 τ12

τ12 τ
2
2

)
=
(
λ1 λ12

λ12 λ2

)
,

such as in a random intercept and random slope model. We need a partition of the parameter
space, similarly to Self & Liang (1987); Stram & Lee (1994), to account for potential parame-
ters on the boundary of the parameter space. After potential reordering, either a) λ̂1 = λ̂2 = 0
b) λ̂1 > 0, λ̂2 = 0, or c) λ̂1 > 0, λ̂2 > 0; λ2 = 0 also implies λ12 = 0. Thus, we can write
θ∗ = (λ1, λ2, λ12)T = (θTs , θ

T
t , θ

T
q−s−t)

T , with a) s = 0, t = 2 and q − s− t = 1, (λ̂1, λ̂2) =
(0, 0) ∈ [0,∞)2 and F (0, 0) = 0 = λ̂12; b) s = 1, t = 1 and q − s− t = 1, λ̂1 in the interior
of [0,∞), λ̂2 = 0 ∈ [0,∞) and F (λ1, 0) = 0 = λ̂12 for all λ1; c) s = 3, t = q − s− t = 0,
θ̂s = (λ̂1, λ̂2, λ̂12)T in the interior of Θs, which restricts θs to ensure positive semi-definiteness
of D. Analogous considerations hold for larger blocks.

As ρ̂ = n− tr(Â∗) are the estimated effective degrees of freedom from the conventional cAIC,
the second term is a correction term for estimation of the unknown θ∗. The Φ0 is equal to the Φ0

one would obtain in the reduced model where (θt, θq−s−t) = 0 is known. In an implementation,
the cAIC can thus be computed in a suitable sub-model. In determining a suitable sub-model,
increases of maximized likelihoods should be used in addition to parameter estimates due to
numerical imprecisions. We give an implementation as an R package in the web appendix.

Typically, W∗,j and U∗,jl can be derived explicitly. For example, if D∗ is block-diagonal with
blocks τ2

j Σj and known Σj , such that θ∗ = (θ∗,1, . . . , θ∗,q) = (λ1, . . . , λq) = (τ2
1 , . . . , τ

2
q )/σ2,

we haveW∗,j = ZjΣjZ
T
j , and U∗,jl = 0n×n, j, l = 1, . . . q, where Zj denotes the corresponding

columns of Z. Furthermore, using the Woodbury formula, we can write V −1
∗ = In − Z(ZTZ +

D−1
∗ )−1ZT , and thus only r × r and s× s matrices need to be inverted to compute Φ0.
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The AIC in Linear Mixed Models 9

5. SIMULATIONS

5·1. Penalized Spline Smoothing
To illustrate our theoretical findings, we conduct a simulation study covering several settings.

For penalized spline smoothing, we concentrate on univariate scatterplot smoothing (6). We con-
sider the following three classes of non-linear functions:

m1(x) = 1 + x+ 2d(0.3− x)2,

m2(x) = 1 + x+ d(log(0.1 + 5x)− x),
m3(x) = 1 + x+ 0.3d(cos(0.5π + 2πx)− 2x).

For each function, increasing values of d correspond to increased non-linearity and thus a higher
signal-to-noise ratio. We consider the sequence d = 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, see the web ap-
pendix for a graphical display of the resulting functions. For d = 0, all functions reduce to a
linear model in x. We set the error variance to σ2 = 1, choose x equidistantly from the interval
[0, 1], and use a sequence of sample sizes n = 30, 50, 100, 200.

For each setting and function, 1000 data sets are generated, and linear and non-linear models
fitted to the data based on both ML and REML estimation. The nonparametric effects are specified
using cubic B-splines with ten inner knots and second order difference penalty. The mixed model
representation from Section 2·1 yields a mixed model with a fixed linear effect in x, and random
effects modelling the deviation from this linear effect.

To assess the performance of mAIC and cAIC in model selection, we compute the frequency
of selecting the more complex, non-linear model for each value of d. For the conditional AIC,
we consider the conventional as well as the corrected variants. For the latter, we compare the
exact formula for Φ0 developed in Section 4 and the numerical approximations for Φ0 and Φ1

suggested in Liang et al. (2008), where we insert σ̂2 for the true variance σ̃2 in the latter. We
intrinsically decide on the simpler, linear model whenever the cAICs of both models conincide.
Results for function m1 and sample sizes n = 30 and n = 100 are shown in Figure 1 (a), com-
plete results can be found in the web appendix.

The conventional cAIC leads to the largest proportion of decisions for the non-linear model
under either ML or REML estimation. This agrees with our theoretical findings that this cAIC will
always select the non-linear model when the estimated variance is positive. Under a truly linear
effect (d = 0), the proportion of false decisions for the non-linear model consequently equals the
probability of a positive variance estimate, derived previously in Crainiceanu et al. (2003). The
corrected cAIC no longer shows this deficiency in any of its variants. In fact, Fig. 1 (a) indicates
that the model choice performances of the corrected cAICs are almost indistinguishable and lie
between those for the conventional cAIC and the mAIC. Indeed, Φ0 + 1 and Φ1 are very close to
each other, and estimation uncertainty in the error variance thus seems to be largely ignorable.

The main difference between the analytic and the numeric corrected cAIC lies in computa-
tion times. The corrected cAIC involving second derivatives requires 18 seconds per model for
n = 30, 46 seconds for n = 100, and 480 seconds for n = 500, while the analytic version is
available almost instantaneously. The small differences observed between the analytic and the
numeric version of Φ0, especially for small values d, are due to occasional failure of the numeric
computation. In these cases, spurious values in the range of 100s or even negative values may
occur for Φ0. Most cases of differing model choice decisions between numeric and analytic cAIC
are due to small underestimations of Φ0 in the numeric version, causing the cAIC to favour the
more complex model although the variance has been estimated to be zero.

In Section 3, we discussed that the probability of selecting a truly zero parameter, analogous
to a significance level for the AIC, converges to 0.157 in standard cases. In consequence, the AIC
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10 THE AIC IN LINEAR MIXED MODELS

is commonly perceived as selecting rather too many than too few variables. For the mAIC, this
perception would be misleading, as the corresponding probability is much lower. Conversely, the
probability can be more than 35% for the conventional cAIC. Only the corrected cAIC is close to
the behavior expected from linear models.

For functions m2 and m3 as well as n = 50 and n = 200, the qualitative findings completely
agree with the results presented, and are therefore deferred to the web appendix.

5·2. Random Intercept Model
We consider the balanced random intercept model (5) with Ji = J for all i. The random inter-

cepts bi are assumed to be independent N(0, d) variables such that the variance d = τ2 is again
a measure of the signal-to-noise ratio. We set σ2 = 1 and β0 = 0 and consider varying random
effects variances d = τ2 = 0, 0.1, 0.2, 0.4, 0.6, 0.8, cluster sizes J = 3, 6, 9, 12 and numbers of
clusters I = 10, 20, 40, 80. All other settings remain the same as in the previous subsection.

Exemplarily for 20 clusters and 3 or 6 observations per cluster, Fig. 1 (b) displays the propor-
tion of simulation replications where the larger random effects model was preferred. The curves
are qualitatively similar to the ones for the penalized splines in Fig. 1 (a), with three main dif-
ferences. First, the selection frequency of the larger model increases faster, due to the different
meaning of the signal-to-noise ratio d. Second, the selection frequency of the larger model for
d = 0 is larger for the random intercept case, both for conventional cAIC as well as mAIC. This
is owing to the larger proportion of positive τ̂2 estimates for a true value of τ2 = 0, 1/2 asymp-
totically compared to about 1/3 for the penalized spline case (Stram & Lee, 1994; Crainiceanu
& Ruppert, 2004). In contrast, the corrected cAIC has very comparable levels for both cases. And
third, the numerical difficulties in approximating the second derivatives in Φ1 are worse than for
the penalized spline case. Several replications now yield very large or even negative degrees of
freedom. As an ad hoc correction, we exclude all results with negative degrees of freedom, and
those exceeding a certain threshold, chosen as 20 in case of Fig. 1 (b). Still, some deviations
remain. Numerical problems are most pronounced for larger τ2 values, where it is more likely
that a single outlier has a large impact on the estimation of σ2. These numerical problems are, of
course, not present for the analytic form of the corrected cAIC.

6. CASE STUDY: CHILDHOOD MALNUTRITION IN ZAMBIA

6·1. Background
One of the most urgent and challenging problems in developing countries is malnutrition of

large parts of the population, and in particular childhood malnutrition. To monitor the develop-
ments in malnutrition, regular demographic and health surveys (DHS) are conducted by Macro
International in cooperation with the world health organization (WHO), and made publicly avail-
able at www.measuredhs.com. In the following, we show how the theoretical results derived
for cAIC and mAIC affect the selection of sensible models for the analysis of childhood mal-
nutrition based on a subsample of 1,600 observations chosen randomly from the 1992 Zambia
Demographic and Health Survey (Gaisie et al., 1993). Our considerations are based on models
developed previously in Kandala et al. (2001).

Malnutrition is generally assessed by comparing anthropometric indicators such as weight
with a reference population, accounting for age. We focus on chronic undernutrition (stunting)
as measured by insufficient height for age. The dependent variable in our regression models is
the Z-score, zscorei = (cheight i −m)/s, where cheight i denotes the height of the ith child,
m is the median height of children of the same age from a reference population, and s is the
corresponding standard deviation. Available covariate information includes categorical variables

http://biostats.bepress.com/jhubiostat/paper202
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The AIC in Linear Mixed Models 11

(gender of the child, education of the mother, employment status of the mother), continuous
covariates (cfeed = duration of breastfeeding in months, cage = age of the child in months,
mage = age of the mother, mheight = height of the mother, mbmi = body mass index of the
mother) and a spatial factor variable that represents the residential district. The web appendix
gives more details on the covariates.

We are interested in determining a model that approximates the true data generating mecha-
nism, i.e. a model that contains the essential features driving childhood malnutrition. Our focus
is on determining the best model from a set of flexible candidate models. Information criteria
such as the AIC are considered more appropriate than significance testing (Burnham & Ander-
son, 2002, pp. 36-37) in such a setting. In the following, we focus on the selection of linear versus
nonlinear functions for the continuous covariates, and of presence versus absence of a random
spatial cluster effect, both corresponding to the selection of random effects. We do not focus on
the selection of fixed effects, and thus include parametric effects for the categorical covariates
without selection. We compare the performance of the marginal and conditional AIC. As compu-
tation time (an estimated 110 days) for the numerical approximations is prohibitive for our large
sample size and model space, only the analytic representation of the corrected conditional cAIC
is considered (60 minutes for all 64 models).

6·2. Univariate Smoothing
As a first illustration, we consider the univariate smoothing problem (6) for the zscore y,

and the height of the mother x. The function m(·) is modeled using B-splines with ten knots
and second order difference penalty. To decide whether nonlinear modelling is required, we
estimate the mixed model corresponding to (6) based on ML or REML and compare it to a linear
model. For REML estimation, a slightly non-linear curve with corresponding positive variance is
estimated (see Figure 2 (a)), while the variance is estimated to be zero for ML estimation. The
mAIC chooses the simpler model for either (M1: 4542.6 (linear) versus M2: 4544.6 (non-linear)
for ML). As expected, the cAIC always gives the same value (4542.6) for either model in the
case of ML estimation. As predicted from Theorem 2, the conventional cAIC chooses the more
complex model (M1: 4542.6 versus M2: 4541.6) for REML estimation. In contrast, the corrected
cAIC appropriately incorporates uncertainty in estimating the degrees of freedom and decides on
the simpler model (M1: 4542.6 versus M2: 4543.2).

6·3. Additive Mixed Model
In a more realistic scenario, we consider additive mixed models. The full model contains

nonparametric effects for all continuous covariates and a district-specific random intercept,

zscorei = xTi β +m1(cagei) +m2(cfeedi) +m3(magei) +m4(mbmii) +m5(mheighti) + bsi + εi.

The nonparametric functions m1, . . . ,m5 are specified as before, and we consider model selec-
tion between linear and non-linear effects. The spatial heterogeneity is captured in the district-
specific random intercept bsi , where si denotes the region observation i pertains to. The bsi are
assumed to be independent and identically distributed Gaussian, and model selection addresses
the question of spatial heterogeneity. We focus on the selection of random effects, and include
fixed parametric effects of all categorical and binary covariates, contained in xTi β, in all models.

These choices give 64 possible models overall. Table 1 contains cAIC and mAIC values for
the eight best-fitting models for ML and REML estimation, with a complete table in the web
appendix. Minimal AIC values in each column are bolded. The eight models correspond to all
possible combinations of linear and non-linear modelling for age, height, and body mass index
of the mother, and have identical conventional and corrected cAIC values for both ML and REML
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12 THE AIC IN LINEAR MIXED MODELS

estimation. The corresponding estimated curves, given in the web appendix, show that these
effects are estimated to be linear.

The effects of the age of the child and the duration of breastfeeding are estimated to be non-
linear using either ML or REML estimation (Fig. 2 (b)). The age effect indicates a steady decline
from a relatively well-nourished level immediately after birth to more severe malnutrition later
on. The increase for older ages is in fact related to a change in the reference standard used to
determine the Z-score. The nonlinear effect of the duration of breastfeeding shows the beneficial
effect of longer breastfeeding for the first 10 to 20 months, and a saturation of the effect for
longer durations. The mAIC and all versions of the cAIC agree on model 14 as the best fitting
model, including nonparametric effects for the age of the child and duration of breastfeeding,
and a district-specific random intercept (visualized in the web appendix).

7. DISCUSSION

The class of model choice questions considered in this paper is of relevance for a wide range of
models. In addition to linear mixed models for longitudinal data and penalized spline smoothing,
considered as examples in this paper, surface estimation, varying coefficient models, or spatial
models yield similar model choice questions that can be formulated in terms of the selection
of random effects (Ruppert et al., 2003; Fahrmeir et al., 2004). Linear mixed models have also
been used in other statistical areas, such as functional data analysis (Di et al., 2008, Greven et
al., 2009), where the choice of the number of functional principal components corresponds to the
selection of random effects. While we do not specifically focus on the selection of fixed effects in
linear mixed models, we expect the corrected conditional AIC to also perform well in this setting.

In the future, it would be of interest to extend our results to generalized linear mixed models.
Another interesting question is the relevance of our findings for other criteria used for model
selection in mixed models, such as the Bayesian information criterion (BIC, Schwarz, 1978).

APPENDIX 1
Proofs of main results

We give outlines of all proofs here; detailed proofs can be found in a web appendix at
http://www.biostat.jhsph.edu/˜sgreven/research/appendix_AIC.zip.

Proof of Theorem 1. We can expand 2[log{f bψ(y)(y)} − log{fψK
(y)}] into two contributions from

σ2 and β, which as usual converge in distribution to χ2
1 and χ2

p variables, and a third contribu-
tion from λ, which is studied by Crainiceanu & Ruppert (2004). They show that if λ̃ = 0, this term
has a point mass at zero and a second mixture component smaller or equal than χ2

1. Analogously,
2Ez[log{fψK

(z)} − log{f bψ(y)(z)}] can be expanded. Overall, the expectations with respect to y of the

respective sums are smaller than p+ 2 and depend on the true λ̃, with the resulting bias in the mAIC not
vanishing asymptotically for λ̃ = 0. �

For the proof of Theorem 2, we need the following Lemma.

LEMMA 1. In the linear mixed model (1) with D = τ2Σ, let θ̂ and b̂ be the ML estimator and the best
linear unbiased predictor for θ and b, respectively. Then, with P∗ = In −X(XTV −1

∗ X)−1XTV −1
∗ , the

conditional log-likelihood allows the representation

log{f(y | β̂, b̂, θ̂)} = −1
2
n log(2π)− 1

2
n log

(
yT P̂∗

T
V̂∗

−1
P̂∗y

n

)
− 1

2
tr
(
V̂∗

−1)
.
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The AIC in Linear Mixed Models 13

The corresponding quantity when REML estimation is used is

log{f(y | β̂, b̂, θ̂)} = −1
2
n log(2π)− 1

2
n log

(
yT P̂∗

T
V̂∗

−1
P̂∗y

n− p

)
− 1

2
tr
(
P̂∗

T
V̂∗

−1
P̂∗
)
.

Proof of Lemma 1. Let λ = τ2/σ2 and consider REML estimation. We either have λ̂ = 0, or the
derivative of the profile restricted log-likelihood at λ̂ is zero, giving

(n− p)y
T P̂∗

T
V̂∗

−1
ZΣZT V̂∗

−1
P̂∗y

yT P̂∗
T
V̂∗

−1
P̂∗y

= tr(P̂∗ZΣZT V̂∗
−1

).

The result follows making additional use of equation (2) and σ̂2 = (y −Xβ̂)T (y −Xβ̂ − Zb̂)/(n− p).
The result for ML estimation follows analogously using the profile log-likelihood (3). �

Proof of Theorem 2. For λ̂ = 0, equality of the cAICs follows directly. For λ̂ > 0 and REML estima-
tion, we make use of Lemma 1 in the representation of the cAIC. The fact that log(x) + 1/x is a strictly
monotonic increasing function for x > 1 allows us to link the inequality cAIC(M1) < cAIC(M2) to the
inequality `(λ̂) ≥ `(0) for the restricted profile log-likelihood `(λ), which is true by definition. We addi-
tionally use the spectral representation of `(λ) as well as of PT∗ V

−1
∗ P∗ in Crainiceanu & Ruppert (2004),

and equation (5) in Liang et al. (2008). This gives us cAIC(M1) < cAIC(M2), and overall, the stated
equivalence follows. The result for ML estimation is derived analogously, additionally using an inequality
for the eigenvalues of the sum of two matrices (Theorem 1 in Thompson & Freede, 1971). �

Proof of Theorem 3. We can write ŷ = y − V̂ −1
∗ P̂∗y, and thus

Φ0 = tr
(
∂ŷ

∂y

)
= tr

[
In − V̂ −1

∗ P̂∗ −
q∑
j=1

∂

∂θ∗,j

{
V̂ −1
∗ P̂∗

}
y

{
d

dy
θ̂∗,j(y)

}]
.

It is ∂/(∂θ∗,j)(V −1
∗ P∗) = −A∗W∗,jA∗ for all j. We can show that ∂/(∂yi)θ̂∗,j = 0, for all i and j = s+

1, . . . , q. Using the score equation, and as (θ∗,1, . . . , θ∗,s) is in the interior of Θs, the restricted maximum
likelihood estimator of θ∗ fulfills

0 ≡ hj(θ̂∗(y), y) := tr(P̂∗Ŵ∗,j V̂
−1
∗ )− (n− p)y

T P̂T∗ V̂
−1
∗ Ŵ∗,j V̂

−1
∗ P̂∗y

yT P̂T∗ V̂
−1
∗ P̂∗y

, j = 1, . . . , s.

The result follows from

d

dy
θ̂s(y) = −

[
∂

∂θ∗,l
hj(θ̂∗(y), y)

]−1

j,l=1,...,s

∂

∂y
h(θ̂∗(y), y),

where ∂
∂yh(θ̂∗(y), y) includes rows ∂

∂yhj(θ̂∗(y), y), j = 1, . . . , s, as well as lengthy matrix algebra, not-

ing that the Hessian in the first s components of the profile restricted log-likelihood at θ̂∗(y) is negative
definite, and thus invertible. The result for ML estimation follows analogously. �
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FIGURES 15

Fig. 1. Proportion of simulation replications where the
more complex model was favoured by the AIC: (a) for pe-
nalized spline smoothing with function m1(·) and sample
sizes n = 30 and n = 100, and (b) for a random intercept
model with twenty clusters and cluster sizes J = 3 and
J = 6 (· – · – conventional cAIC, – – – corrected cAIC with
numerically approximated Φ0, - - - corrected cAIC with
numerically approximated Φ1, — corrected cAIC with an-

alytic Φ0, · · · mAIC).
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16 FIGURES

Fig. 2. Results from the analysis of the Zambia data. (a)
Univariate smoothing: estimated linear (dotted line) and
non-linear effects of the age of the mother on the Z-score
for both ML (dashed line) and REML (solid line) estimation.
(b) Additive mixed model: selected estimated non-linear
effects in the full model, and estimated linear effects in the
simplest model without random effects, for both ML and

REML estimation.
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FIGURES 17

Table 1. cAIC and mAIC for the eight best-fitting additive mixed models for the Zambia data.
The first column contains a model identification number, the following six columns indicate non-
linear (+) versus linear (−) modelling of continuous covariate effects and presence (+) versus
absence (−) of a district-specific random intercept. In each column, the models with minimal
AIC are marked in bold. A complete table is in the web appendix.

ML REML

conventional corrected conventional corrected

cfeed cage mage mheight mbmi district cAIC cAIC mAIC cAIC cAIC mAIC

14 + + – – – + 4064.2 4068.1 4088.6 4064.2 4068.0 4111.3

34 + + + – – + 4064.2 4068.1 4090.6 4064.2 4068.0 4113.3

36 + + – + – + 4064.2 4068.1 4090.6 4064.2 4068.0 4113.3

38 + + – – + + 4064.2 4068.1 4090.6 4064.2 4068.0 4113.3

54 + + + + – + 4064.2 4068.1 4092.6 4064.2 4068.0 4115.3

56 + + + – + + 4064.2 4068.1 4092.6 4064.2 4068.0 4115.3

58 + + – + + + 4064.2 4068.1 4092.6 4064.2 4068.0 4115.3

64 + + + + + + 4064.2 4068.1 4094.6 4064.2 4068.0 4117.3

Hosted by The Berkeley Electronic Press


	11-24-2009
	On the Behaviour of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models
	Sonja Greven
	Thomas Kneib
	Suggested Citation


	tmp.1259076472.pdf.83OjB

