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Multiple Tests of Association with Biological
Annotation Metadata

Sandrine Dudoit, Sunduz Keles, and Mark J. van der Laan

Abstract

We propose a general and formal statistical framework for the multiple tests of
associations between known fixed features of a genome and unknown parameters
of the distribution of variable features of this genome in a population of inter-
est. The known fixed gene-annotation profiles, corresponding to the fixed features
of the genome, may concern Gene Ontology (GO) annotation, pathway member-
ship, regulation by particular transcription factors, nucleotide sequences, or pro-
tein sequences. The unknown gene-parameter profiles, corresponding to the vari-
able features of the genome, may be, for example, regression coefficients relating
genome-wide transcript levels or DNA copy numbers to possibly censored bio-
logical and clinical outcomes and covariates. A generic question of great interest
in current genomic research, regarding the detection of associations between bio-
logical annotation metadata and genome-wide expression measures, may then be
translated into the multiple tests of hypotheses concerning association measures
between gene-annotation and gene-parameter profiles. A general and rigorous
formulation of the statistical inference question allows us to apply the multiple
testing methodology developed in Dudoit and van der Laan (2006) and related ar-
ticles, to control a broad class of Type I error rates, in testing problems involving
general data generating distributions (with arbitrary dependence structures among
variables), null hypotheses, and test statistics. Resampling-based single-step and
stepwise multiple testing procedures, that take into account the joint distribution
of the test statistics, are provided to control Type I error rates defined as tail prob-
abilities for arbitrary functions of the numbers of false positives and rejected hy-
potheses.

The proposed statistical and computational methods are illustrated using the acute
lymphoblastic leukemia (ALL) microarray dataset of Chiaretti et al. (2004), with



the aim of relating GO annotation to differential gene expression between B-cell
ALL with the BCR/ABL fusion and cytogenetically normal NEG B-cell ALL.
The sensitivity of the identified lists of GO terms to the choice of association
parameter between GO annotation and differential gene expression demonstrates
the importance of translating the biological question in terms of suitable gene-
annotation profiles, gene-parameter profiles, and association measures. In partic-
ular, the results show the limitations of binary gene-parameter profiles of differ-
ential expression indicators, which are still the norm for combined GO annotation
and microarray data analyses. Procedures based on such binary gene-parameter
profiles tend to be conservative and lack robustness with respect to the estimator
for the set of differentially expressed genes.

WWW companion: www.stat.berkeley.edu/∼sandrine/Docs/Papers/DFF06/DFF.html
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1 Introduction

1.1 Motivation

Experimental data, such as microarray gene expression measures, gain much
in relevance from their association with biological annotation metadata, i.e.,
data on data, such as, GenBank sequences, Gene Ontology terms, KEGG path-
ways, and PubMed abstracts. A challenging and fascinating area of research
for statisticians concerns the development of methods for relating experimental
data to the wealth of metadata available publicly on the WWW. This includes
accessing and pre-processing the data, making inference from these data, and
summarizing and interpreting the results.

In this context, an important class of statistical problems involves testing for
associations between known fixed features of a genome and unknown parameters
of the distribution of variable features of this genome in a population of interest.
Here, features of a genome are said to be fixed, if they remain constant among
population units. In contrast, variable features are allowed to differ among
population units. Fixed features typically consist of gene annotation metadata,
that reflect current knowledge on gene properties, such as, nucleotide and protein
sequences, regulation, and function. Variable features often consist of gene
expression measures, that reflect cellular type and/or state under particular
conditions. The fixed and variable features define, respectively, gene-annotation
profiles and gene-parameter profiles; the parameter of interest then corresponds
to measures of association between known gene-annotation profiles and unknown
gene-parameter profiles.

For instance, for the yeast Saccharomyces cerevisiae (in short, S. cerevisiae),
one may be interested in detecting associations between the vector of mean tran-
script (i.e., mRNA) levels for all (approximately 6,500) genes under heat-shock
conditions and Gene Ontology (GO) annotation for these genes. The reader is
referred to the Gene Ontology Consortium website (www.geneontology.org)
and to Section 4, below, for more information on gene ontologies, and to the
Saccharomyces Genome Database (SGD) website (www.yeastgenome.org), for
details on S. cerevisiae. In this example, the population of interest may consist
of all heat-shocked yeast cells from well-defined cultures of a particular strain of
S. cerevisiae (e.g., strain S288C). For each of the three gene ontologies (BP, CC,
and MF, as described in Section 4.1), each gene is annotated with a fixed set of
GO terms (i.e., this set is constant across population units for a given version of
the GO Database). Thus, for each GO term, one may define a gene-annotation
profile as a known, fixed binary vector indicating for each gene whether it is
annotated or not with the particular GO term. The transcript levels, however,
vary among population units and the gene-parameter profile, i.e., the vector
of genome-wide mean transcript levels in the population of heat-shocked yeast
cells, is unknown and may be estimated, for example, from a microarray exper-
iment involving a sample of yeast cells from the population. The association
parameter of interest, between GO annotation and transcript levels, is then a
vector of association measures (e.g., two-sample t-statistics) between the known
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binary gene-annotation profiles and the unknown continuous gene-parameter
profile.

Similar inference questions arise in many other contexts and involve a vari-
ety of definitions for the gene-annotation profiles, the gene-parameter profiles,
and the association parameters of interest. For example, in cancer microarray
studies, one may seek associations between GO gene-annotation profiles and
a gene-parameter profile of regression coefficients relating (censored) patient
survival data to genome-wide transcript levels or DNA copy numbers. Further-
more, gene-annotation profiles need not be binary or even polychotomous, and
may correspond to pathway membership, regulation by particular transcription
factors, nucleotide sequences, and protein sequences.

Note that, for the sake of illustration, we focus on gene-level features. How-
ever, our proposed methodology is generic and may be applied to other types of
features, such as those concerning gene isoforms and proteins. For instance, as
in alternative splicing microarray analysis, one may collect data at the finer level
of gene isoforms, where one gene may have multiple isoforms (Blanchette et al.,
2005). In this context, isoform-parameter profiles may refer to the distribution
of isoform microarray expression measures in a well-defined population, while
isoform-annotation profiles may consist of intron/exon counts/lengths/nucleotide
distributions. One may also consider protein-level features, where, for example,
protein-parameter profiles correspond to antibody microarray expression mea-
sures and protein-annotation profiles refer to protein function, domain struc-
ture, and post-translational modification (e.g., from Swiss-Prot; www.expasy.
org/spro).

1.2 Contrast with other approaches

Existing approaches for tests of association with biological annotation meta-
data focus primarily on relating microarray gene expression measures and GO
annotation. Relevant articles and software packages include: FatiGO from
the BABELOMICS suite (Al-Shahrour et al. (2004, 2005); www.babelomics.org);
GOstat (Beissbarth and Speed (2004); gostat.wehi.edu.au); Ontologizer
(Grossmann et al. (2006); www.charite.de/ch/medgen/ontologizer); McCar-
roll et al. (2004); GSEA-P (Mootha et al. (2003), Subramanian et al. (2005);
www.broad.mit.edu/gsea/doc/doc_index.html); Tian et al. (2005). Methods
proposed thus far suffer from a number of limitations, related, to a large extent,
to the absence of a clear and precise statement of the statistical inference ques-
tion. As a result, the analyses often lack statistical rigor and tend to be ad hoc
and dataset-specific.

One of our main contributions is the systematic and precise translation of
a general class of biological questions into a corresponding class of multiple
hypothesis testing problems. A key step in this process is the proper defini-
tion of the gene-annotation profiles, gene-parameter profiles, and association
parameters of interest. This general formulation then allows us to apply the
multiple testing methodology developed in Dudoit and van der Laan (2006) and
related articles (Birkner et al., 2005; Dudoit et al., 2004a,b; Keleş et al., 2004;
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van der Laan et al., 2004a,b, 2005; van der Laan and Hubbard, 2005; Pollard
et al., 2005a,b; Pollard and van der Laan, 2004; Rubin et al., 2005), to con-
trol a broad class of Type I error rates, defined as generalized tail probabilities
(gTP), gTP (q, g) = Pr(g(Vn, Rn) > q), for arbitrary functions g(Vn, Rn) of the
numbers of false positives Vn and rejected hypotheses Rn.

We wish to emphasize the crucial and often ignored distinction between:
(i) the definition of a parameter of interest, measuring the association between
gene-annotation and gene-parameter profiles, i.e., the statistical formulation of
the biological question; (ii) making inferences, i.e., deriving estimators of and
testing hypotheses concerning this parameter, based on a sample drawn from
the population under consideration. Most methods proposed to date focus on
(ii), without providing a clear statement of the question being answered in (i),
that is, various estimation and testing approaches are proposed for an undefined
parameter of interest.

Due to its general and rigorous statistical framework, our approach to mul-
tiple tests of association with biological annotation metadata differs in a num-
ber of important ways from current approaches, such as those developed for
inference with Gene Ontology metadata and implemented in the software pack-
ages listed on the “Gene Ontology Tools” webpage (www.geneontology.org/
GO.tools.shtml).

1. General gene-annotation profiles. Existing approaches typically consider
binary gene-annotation profiles, e.g., vectors of indicators of GO term an-
notation. Our general definition of gene-annotation profiles allows con-
sideration of arbitrary qualitative and quantitative fixed features of a
genome, e.g., membership of genes to any number of pathways or clusters,
intron/exon counts/lengths/nucleotide distributions, mean transcript lev-
els.

2. General gene-parameter profiles. Existing approaches typically consider
binary gene-parameter profiles, e.g., vectors of indicators of differential
expression. Our general definition of gene-parameter profiles allows con-
sideration of a much broader class of testing problems, concerning arbi-
trary qualitative and quantitative parameters, such as differences in mean
expression levels or regression coefficients relating expression levels to clin-
ical outcomes.

3. Estimated gene-parameter profiles. Existing approaches typically assume
known gene-parameter profiles. For example, the list of differentially ex-
pressed genes from a microarray experiment is usually treated as known
and fixed in subsequent analyses with GO, while in fact it corresponds to
an unknown and estimated parameter. Distinguishing between the defini-
tion of a parameter and inference concerning this parameter, as in Section
3, provides a more rigorous and general formulation of the statistical ques-
tion.

4. General tests of association. Common approaches to tests of associa-
tion with GO annotation are typically limited to tests of independence in

5
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2 × 2 contingency tables (e.g., based on the hypergeometric distribution,
Fisher’s exact test). As in Table 2, rows correspond to gene annotation
with a given GO term (fixed binary gene-annotation profile) and columns
to an“interesting”gene property, such as differential expression (treated as
a fixed binary gene-parameter profile). The approach proposed in Section
3 allows consideration of a broader class of biological testing problems,
while properly accounting for the fact that gene-parameter profiles are
usually unknown and replaced by a random (i.e., data-driven) estimator.

1.3 Outline

This article proposes a general and formal statistical framework for multiple tests
of association with biological annotation metadata, using the multiple testing
methodology of Dudoit and van der Laan (2006) and related articles.

Section 2 provides an introduction to multiple hypothesis testing. Section
3 presents the proposed statistical framework for multiples tests of association
with biological annotation metadata and discusses in detail the main compo-
nents of the inference problem, namely, the gene-annotation profiles, the gene-
parameter profiles, and the association parameters. Multiple testing procedures
for tests of association between gene-annotation profiles and gene-parameter
profiles are outlined. Section 4 gives an overview of the Gene Ontology (GO)
and R software for analyzing GO annotation metadata (e.g., for assembling GO
gene-annotation profiles). The proposed statistical and computational meth-
ods are illustrated in Section 5, using the acute lymphoblastic leukemia (ALL)
microarray dataset of Chiaretti et al. (2004), with the aim of relating GO anno-
tation to differential gene expression between B-cell ALL with the BCR/ABL
fusion and cytogenetically normal NEG B-cell ALL. Finally, Section 6 summa-
rizes our findings and outlines ongoing work.

2 Overview of multiple hypothesis testing

This section introduces a general statistical framework for multiple hypothesis
testing and summarizes in turn the main ingredients of a multiple testing prob-
lem, including: the data generating distribution; the parameters of interest; the
null and alternative hypotheses; the test statistics; rejection regions (i.e., cut-
offs) for the test statistics; Type I and Type II errors; Type I error rates and
power; the test statistics null distribution; multiple testing procedures; adjusted
p-values.

The reader is referred to our earlier articles and book for further detail on the
multiple testing methodology, its software implementation, and its application
to a variety of testing problems in biomedical and genomic research (Birkner
et al., 2005; Dudoit and van der Laan, 2006; Dudoit et al., 2004a,b; Keleş et al.,
2004; van der Laan et al., 2004a,b, 2005; van der Laan and Hubbard, 2005;
Pollard et al., 2005a,b; Pollard and van der Laan, 2004; Rubin et al., 2005).
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2.1 Null and alternative hypotheses

Hypothesis testing is concerned with using observed data to make decisions re-
garding properties of (i.e., hypotheses for) the unknown data generating distri-
bution.

Let Xn ≡ {Xi : 1, . . . , n} denote a random sample of n independent and iden-
tically distributed (i.i.d.) random variables from a data generating distribution
P , i.e., Xi

i.i.d.∼ P , i = 1, . . . , n. Suppose that the data generating distribution
P is an element of a particular statistical model M, i.e., a set of possibly non-
parametric distributions, P ∈ M. Let Pn denote the corresponding empirical
distribution, which places probability 1/n on each realization of X.

In order to cover a broad class of testing problems, specify M pairs of null
and alternative hypotheses in terms of a collection ofM submodels, M(m) ⊆ M,
m = 1, . . . ,M , for the data generating distribution P . The M null hypotheses
and corresponding alternative hypotheses are defined as

H0(m) ≡ I(P ∈ M(m)) and H1(m) ≡ I(P /∈ M(m)), (1)

respectively. Here, I(·) is the indicator function, equaling one if the condition in
parentheses is true and zero otherwise.

In many testing problems, the submodels concern parameters, i.e., functions
Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M) of the data generating distribution P , and
each null hypothesis may refer to a single parameter, ψ(m) = Ψ(P )(m) ∈ IR.

This general submodel representation covers tests of means, quantiles, cor-
relation coefficients, and regression coefficients in linear and non-linear models
(e.g., logistic, survival, time-series, and dose-response models).

Let H0 = H0(P ) ≡ {m : H0(m) = 1} and H1 = H1(P ) ≡ Hc
0(P ) = {m :

H1(m) = 1} denote, respectively, the sets of h0 ≡ |H0| true null hypotheses and
h1 ≡ |H1| = M − h0 false null hypotheses, i.e., true positives.

2.2 Test statistics and rejection regions

The goal of a multiple testing procedure (MTP) is to accurately estimate, i.e.,
reject, the set H1 of true positives, while probabilistically controlling false posi-
tives.

The decisions to reject or not the null hypotheses are based on an M–
vector of test statistics, Tn = (Tn(m) : m = 1, . . . ,M), that are functions
Tn(m) = T (m;Xn) of the data Xn. A broad class of testing problems may be
addressed using difference statistics and t-statistics (Equations (20) and (21),
respectively). Denote the typically unknown (finite sample) joint distribution of
the test statistics Tn by Qn = Qn(P ).

A MTP provides rejection regions Cn(m), i.e., sets of values for each test
statistic Tn(m) that lead to the decision to reject the corresponding null hy-
pothesis H0(m), m = 1, . . . ,M . In other words, a MTP produces a random
(i.e., data-driven) subset Rn of rejected hypotheses that estimates the set H1

of true positives,

Rn ≡ {m : Tn(m) ∈ Cn(m)} = {m : H0(m) is rejected}. (2)

7
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2.3 Errors in multiple hypothesis testing

2.3.1 Type I and Type II errors

In any testing situation, two types of errors can be committed: a false positive,
or Type I error, is committed by rejecting a true null hypothesis (Rn∩H0), and
a false negative, or Type II error, is committed when the test procedure fails to
reject a false null hypothesis (i.e., a true positive) (Rc

n ∩H1).
The main decisions and errors in a multiple testing problem are summarized

in Table 1, below, where the numbers of rejected hypotheses, Type I errors, and
Type II errors are defined as

Rn ≡ |Rn| =
M∑

m=1

I(Tn(m) ∈ Cn(m)), (3)

Vn ≡ |Rn ∩H0| =
∑

m∈H0

I(Tn(m) ∈ Cn(m)),

and Un ≡ |Rc
n ∩H1| =

∑
m∈H1

I(Tn(m) /∈ Cn(m)),

respectively. Note that both Un and Vn depend on the unknown data generating
distribution P through the unknown set of true null hypotheses H0 = H0(P ).
Therefore, the numbers h0 = |H0| and h1 = |H1| = M − h0 of true and false
null hypotheses are unknown parameters, the number of rejected hypotheses Rn

is an observable random variable, and the entries in the body of the table, Un,
h1 − Un, Vn, and h0 − Vn, are unobservable random variables (that depend on
the unknown data generating distribution P through H0(P )).

Ideally, one would like to simultaneously minimize both the number of Type
I errors and the number of Type II errors. Unfortunately, this is not feasible
and one seeks a trade-off between the two types of errors. A standard approach
is to specify an acceptable level α for a suitably defined Type I error rate and
derive testing procedures, i.e., rejection regions, that aim to minimize a Type II
error rate, i.e., maximize power, within the class of tests with Type I error rate
at most α.

2.3.2 Type I error rates and power

When testing multiple hypotheses, there are many possible definitions for the
Type I error rate and power of a test procedure. Accordingly, we define a Type
I error rate as an arbitrary parameter θn = θ(FVn,Rn) of the joint distribution
FVn,Rn of the numbers of Type I errors Vn = |Rn ∩H0| and rejected hypotheses
Rn. Likewise, power may be defined as a parameter ϑn = ϑ(FUn,Rn

) of the
joint distribution FUn,Rn

of the numbers of Type II errors Un = |Rc
n ∩H1| and

rejected hypotheses Rn.
Type I error rates of particular interest are generalized tail probability (gTP)

error rates,
gTP (q, g) ≡ Pr(g(Vn, Rn) > q), (4)

8
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and generalized expected value (gEV) error rates,

gEV (g) ≡ E[g(Vn, Rn)], (5)

for arbitrary functions g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn and user-supplied bounds q.

Generalized tail probability error rates include as special cases the following
commonly-used Type I error rates.

• The generalized family-wise error rate (gFWER), corresponding to g(v, r) =
v and q ∈ {0, . . . , (h0 − 1)}, is the probability of at least (q + 1) Type I
errors,

gFWER(q) ≡ Pr(Vn > q) = 1 − FVn(q). (6)

When q = 0, the gFWER reduces to the usual family-wise error rate
(FWER), controlled by the classical Bonferroni procedure.

• The tail probability for the proportion of false positives (TPPFP) among
the rejected hypotheses, corresponding to g(v, r) = v/r and q ∈ (0, 1), is
defined as

TPPFP (q) ≡ Pr

(
Vn

Rn
> q

)
= 1 − FVn/Rn

(q), (7)

with the convention that Vn/Rn ≡ 0 if Rn = 0.

The generalized expected value error rate for g = v/r corresponds to the false
discovery rate (FDR), i.e., the expected proportion of false positives among the
rejected hypotheses,

FDR ≡ E

[
Vn

Rn

]
=

∫
qdFVn/Rn

(q), (8)

again with the convention that Vn/Rn ≡ 0 if Rn = 0.

2.4 Test statistics null distribution

As discussed in Section 3.4, below, a key feature of our proposed multiple testing
procedures is the test statistics null distribution used to obtain rejection regions
(i.e., cut-offs) for the test statistics, confidence regions for the parameters of
interest, and adjusted p-values. Indeed, whether testing single or multiple hy-
potheses, one needs the (joint) distribution of the test statistics in order to derive
a procedure that probabilistically controls Type I errors. In practice, however,
the true distribution Qn(P ) of the test statistics is unknown and replaced by
a null distribution Q0. The choice of a suitable null distribution is crucial, in
order to ensure that (finite sample or asymptotic) control of the Type I error
rate under the assumed null distribution does indeed provide the desired control
under the true distribution.

9
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2.5 Multiple testing procedures

Having identified a suitable test statistics null distribution Q0 (or estimator
thereof, Q0n), there remains the main task of specifying rejection regions Cn(m)
for each null hypothesis H0(m). As detailed in Dudoit and van der Laan (2006)
and as summarized in Section 3.4, below, we have developed resampling-based
single-step and stepwise multiple testing procedures for controlling a broad class
of Type I error rates, in testing problems involving general data generating
distributions (with arbitrary dependence structures among variables), null hy-
potheses (defined in terms of submodels for the data generating distribution),
and test statistics (e.g., t-statistics, χ2-statistics, F -statistics). Procedures that
take into account the joint distribution of the test statistics are provided to
control Type I error rates defined as tail probabilities and expected values for
arbitrary functions g(Vn, Rn) of the numbers of false positives Vn and rejected
hypotheses Rn.

2.6 Adjusted p-values

As in the case of single hypothesis testing, one can report the results of a multiple
testing procedure in terms of the following quantities: rejection regions for the
test statistics, confidence regions for the parameters of interest, and adjusted
p-values.

Adjusted p-values, for the test of multiple hypotheses, are defined as straight-
forward extensions of unadjusted p-values, for the test of individual hypotheses.
Consider any multiple testing procedure Rn(α) = R(Tn, Q0, α), with rejection
regions Cn(m;α) = C(m;Tn, Q0, α). Then, the adjusted p-value for null hypoth-
esis H0(m) is defined as

P̃0n(m) ≡ inf {α ∈ [0, 1] : Reject H0(m) at nominal MTP level α} (9)
= inf {α ∈ [0, 1] : m ∈ Rn(α)}
= inf {α ∈ [0, 1] : Tn(m) ∈ Cn(m;α)} , m = 1, . . . ,M.

That is, P̃0n(m) is the smallest nominal Type I error level (e.g., gFWER,
TPPFP, or FDR) of the multiple hypothesis testing procedure at which one would
reject H0(m), given Tn.

For example, the adjusted p-values for the classical FWER-controlling marginal
Bonferroni procedure are P̃0n(m) = min(MP0n(m), 1). Adjusted p-values for
FWER-controlling joint single-step common-cut-off maxT Procedure 1 are given
in Equation (25).

As in single hypothesis tests, the smaller the adjusted p-value P̃0n(m), the
stronger the evidence against the corresponding null hypothesis H0(m). Specif-
ically, for a multiple test at nominal Type I error level α, one has two equivalent
representations for the set of rejected hypotheses, in terms of rejection regions
for the test statistics and in terms of adjusted p-values,

Rn(α) = {m : Tn(m) ∈ Cn(m;α)} = {m : P̃0n(m) ≤ α}. (10)
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Reporting the results of a MTP in terms of adjusted p-values, as opposed to
only rejection or not of the null hypotheses, offers several advantages.

• Adjusted p-values can be defined for any Type I error rate (e.g., gFWER,
TPPFP, or FDR).

• They reflect the strength of the evidence against each null hypothesis in
terms of the Type I error rate for the entire MTP.

• They are flexible summaries of a MTP, in the sense that results are sup-
plied for all Type I error levels α, i.e., the level α need not be chosen ahead
of time.

• They provide convenient benchmarks to compare different MTPs, whereby
smaller adjusted p-values indicate a less conservative procedure.

• Plots of sorted adjusted p-values allow investigators to examine sets of re-
jected hypotheses associated with various Type I error rates (e.g., gFWER,
TPPFP, or FDR) and nominal levels α. Such plots provide tools to de-
cide on an appropriate combination of number of rejected hypotheses and
tolerable false positive rate for a particular experiment and available re-
sources.

3 Statistical framework for multiple tests of as-
sociation with biological annotation metadata

Sections 3.1 – 3.3 introduce the main components of our approach to multiple
tests of association with biological annotation metadata, namely: the gene-
annotation profiles A, the gene-parameter profiles λ, and the association mea-
sures ψ = ρ(A, λ) between gene-annotation and gene-parameter profiles. We
stress that the choice of a suitable association parameter ψ is perhaps the most
important and hardest aspect of the inference problem, as this parameter rep-
resents the statistical translation of the biological question of interest. Once
the association parameter ψ is appropriately and precisely defined, one can rely
on a variety of statistical methods to estimate and test hypotheses concerning
this parameter. Section 3.4 describes how the multiple testing methodology of
Dudoit and van der Laan (2006) and related articles may be used to detect
associations between gene-annotation and gene-parameter profiles.

Note that, for the sake of illustration, we focus on gene-level features. How-
ever, as mentioned in Section 1.1, the methodology is generic and may be applied
to other types of features, such as those concerning gene isoforms and proteins.

3.1 Gene-annotation profiles

Gene-annotation profiles refer to features of a genome that are assumed to be
known and constant among units in a population of interest. Such features
typically consist of gene annotation metadata, that reflect current knowledge

11

Hosted by The Berkeley Electronic Press



on gene properties, such as, nucleotide and protein sequences, regulation, and
function.

Specifically, let A = (A(g,m) : g = 1, . . . , G; m = 1, . . . ,M) denote a G ×
M gene-annotation matrix, providing data on M features for G genes in an
organism of interest. Thus, row A(g, ·) ≡ (A(g,m) : m = 1, . . . ,M) denotes
an M–dimensional gene-specific feature vector for the gth gene, g = 1, . . . , G,
and column A(·,m) ≡ (A(g,m) : g = 1, . . . , G) denotes a G–dimensional gene-
annotation profile for the mth feature, m = 1, . . . ,M .

In many applications, the element A(g,m) is a binary indicator, coding
the YES/NO answer to the mth question, among a collection of M ques-
tions, one may ask about gene g. For example, A(g,m) could indicate whether
gene g is annotated with a particular GO term m, among M terms in one of
the three ontologies (BP, CC, or MF), i.e., whether gene g is an element of
the node corresponding to the mth term in the GO directed acyclic graph
(DAG). Other gene-annotation profiles of interest may refer to intron/exon
counts/lengths/nucleotide distributions, gene pathway membership (e.g., from
the Kyoto Encyclopedia of Genes and Genomes, KEGG; www.genome.ad.jp/
kegg), or gene regulation by particular transcription factors. Regarding tran-
scription regulation, one could use data from the Transcription Factor DataBase
(TRANSFAC; www.gene-regulation.com) to generate gene-annotation pro-
files as follows. For a given transcription factor binding motif, a binary gene-
annotation profile could consist of indicators for the presence or absence of the
motif in the upstream control region of each gene. A continuous gene-annotation
profile could be based on the position weight matrix of the binding motif.

Note that the aforementioned features are only fixed in time for a given
version/release of the corresponding database(s), i.e., such biological data are
constantly evolving as our knowledge of the roles of genes and proteins is accu-
mulating and changing. The dynamic nature of biological annotation metadata
is an important issue in terms of software design (Section 4.2; Gentleman et al.
(2005)). Note also that the gene-annotation profiles are not restricted to be
binary or even polychotomous and, in particular, could be continuous gene-
parameter profiles, suitably estimated from previous studies.

The main point, regarding the formulation of the statistical inference ques-
tion, is that gene-annotation profiles are known and constant among population
units.

3.2 Gene-parameter profiles

Gene-parameter profiles are generally unknown and concern the distribution
of variable features of a genome in a well-defined population. Gene-specific
variables of interest reflect cellular type and/or state under particular conditions
and include microarray measures of transcript levels and comparative genomic
hybridization (CGH) measures of DNA copy numbers.

Specifically, let X be a J–dimensional random vector, containing G gene-
specific random variables (X(g) : g = 1, . . . , G). In addition to the G gene-
specific variables, X may include various biological and clinical covariates (e.g.,
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age, sex, treatment, timepoint) and outcomes (e.g., survival time, response to
treatment, tumor class). Let P denote the data generating distribution for the
random J–vector X and suppose that P belongs to a (possibly non-parametric)
model M.

Let the parameter mapping Λ : M → IRG define a G–dimensional gene-
parameter profile, Λ(P ) = λ = (λ(g) : g = 1, . . . , G), where each λ(g) =
Λ(P )(g) ∈ IR is a gene-specific real-valued parameter. For example, λ(g) could
be the mean expression measure E[X(g)] of gene g or a regression coefficient in
a model relating an outcome component of X to the expression measure X(g)
of gene g, g = 1, . . . , G.

While gene-annotation profiles are known and fixed, gene-parameter pro-
files are typically unknown and need to be estimated, e.g., from a microarray
experiment involving a sample of population units. The sample is assumed to
consist of n independent and identically distributed (i.i.d.) copies of X ∼ P ,
Xn = {Xi : 1, . . . , n}, corresponding to n randomly sampled population units.

3.3 Association measures for gene-annotation and gene-
parameter profiles

Let the parameter mapping Ψ : M → IRM specify an M–dimensional associa-
tion parameter vector,

Ψ(P ) = ψ = (ψ(m) : m = 1, . . . ,M) ≡ ρ(A,Λ(P )), (11)

defined in terms of an association measure ρ : IRG×M ×IRG → IRM , known fixed
gene-annotation profiles A, and an unknown gene-parameter profile λ = Λ(P ).

The choice of a suitable association parameter is subject matter-dependent
and requires careful consideration. For instance, for Gene Ontology annotation,
it is desirable that the association parameter reflect the structure of the GO di-
rected acyclic graph (Section 4.1). In principle, the dimension of the association
parameter vector ψ could differ from the number M of features under consid-
eration. In addition, one could accommodate several gene-parameter profiles
λ.

The various quantities in the inference problem are summarized in Figure 1;
examples of association parameters are given next and in Section 5.

3.3.1 Univariate association measures

In the simplest case, one could define the M association parameters univariately,
i.e., define ψ(m) based only on the mth gene-annotation profile A(·,m), m =
1, . . . ,M . Specifically, for the mth feature, let

Ψ(P )(m) = ψ(m) ≡ ρm(A(·,m),Λ(P )), (12)

where ρm : IRG × IRG → IR provides a measure of association (e.g., correla-
tion coefficient) between the G–dimensional gene-annotation profile A(·,m) and
gene-parameter profile λ = Λ(P ). In many situations, the same association

13

Hosted by The Berkeley Electronic Press



measure ρm may be used for each of the M features.

Continuous gene-annotation profiles and continuous gene-parameter profiles.
For continuous gene-annotation and gene-parameter profiles, one may use as
association measure the Pearson correlation coefficient between two G–vectors.
That is,

ψ(m) =

∑G
g=1(A(g,m) − Ā(m))(λ(g) − λ̄)√∑G

g=1(A(g,m) − Ā(m))2
√∑G

g=1(λ(g) − λ̄)2
, (13)

where Ā(m) ≡ ∑
g A(g,m)/G and λ̄ ≡ ∑

g λ(g)/G denote, respectively, the
averages of the G components of the gene-annotation profile A(·,m) and gene-
parameter profile λ.

Binary gene-annotation profiles and binary gene-parameter profiles. For binary
gene-annotation and gene-parameter profiles, one may build 2 × 2 contingency
Table 2 and use as association measure the χ2-statistic (or corresponding p-
value) for the test of independence of rows and columns. That is,

ψ(m) =
G(g00(m)g11(m) − g01(m)g10(m))2

(g00(m) + g01(m))(g00(m) + g10(m))(g11(m) + g01(m))(g11(m) + g10(m))
,

(14)
where gkk′(m) ≡ ∑

g I(A(g,m) = k)I(λ(g) = k′), k, k′ ∈ {0, 1}. Note that in
this context the χ2-statistic ψ(m) is a parameter, i.e., it is a function of the
data generating distribution P , via the gene-parameter profile λ = Λ(P ), and
is unknown and constant among population units.

Binary gene-annotation profiles. For binary gene-annotation profiles, one may
consider association parameter vectors of the form

ψ = A�λ. (15)

That is, the association parameter for the mth feature is the sum,

ψ(m) =
G∑

g=1

A(g,m)λ(g) =
G∑

g=1

I(A(g,m) = 1)λ(g),

of the parameters λ(g) for genes g that have the property of interest, i.e., such
that A(g,m) = 1. Such an association parameter is considered by Tian et al.
(2005), to relate continuous microarray differential expression gene-parameter
profiles to binary pathway gene-annotation profiles. The following standardized
association parameters (corresponding to association measures based on two-
sample t-statistics) may also be considered,

ψ(m) =
λ̄1(m) − λ̄0(m)√
v[λ]1(m)
A1(m) + v[λ]0(m)

A0(m)

, (16)
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where, for themth feature, Ak(m) ≡ ∑
g I(A(g,m) = k), λ̄k(m) ≡ ∑

g I(A(g,m) =
k)λ(g)/Ak(m), and v[λ]k(m) ≡ ∑

g I(A(g,m) = k)(λ(g) − λ̄k(m))2/Ak(m) de-
note, respectively, the numbers, averages, and variances of annotated (k = 1)
and unannotated (k = 0) gene-parameters λ(g).

In commonly-encountered combined GO annotation and microarray data
analyses, a binary gene-parameter profile could indicate whether genes are differ-
entially expressed or not in two populations of cells, a continuous gene-parameter
profile could consist of coefficients for the regression of a (censored) clinical out-
come on gene expression measures, and binary gene-annotation profiles could
denote whether genes are annotated or not with particular GO terms (Section
5; Al-Shahrour et al. (2004, 2005); Beissbarth and Speed (2004); Grossmann
et al. (2006)).

3.3.2 Multivariate association measures

More generally, the mth association parameter could be based on the entire
gene-annotation matrix A or a subset of columns thereof, that is, Ψ(P )(m) =
ψ(m) ≡ ρm(A,Λ(P )), for an association measure ρm : IRG×M × IRG → IR.
Association parameters of interest include: linear combinations of association
parameters for several features, partial correlation coefficients, χ2-statistics for
higher-dimensional contingency tables (e.g., with one dimension corresponding
to a gene-parameter profile λ and other dimensions to several gene-annotation
profiles A(·,m)), (contrasts of) regression coefficients of a gene-parameter profile
λ on several gene-annotation profiles A(·,m).

In the case of Gene Ontology annotation, the association parameter ψ should
preferably reflect the structure of the GO directed acyclic graph, by taking into
account, for instance, annotation information for ancestor (i.e., less specific) or
offspring (i.e., more specific) terms (Section 4.1). Specifically, let P(m) denote
the set of (immediate) parents of a term m. As the genes annotated by the
child term m are subsets of the genes annotated by the parent terms P(m),
then A(g,m) = 1 implies A(g, p) = 1 for p ∈ P(m).

Following the causal inference literature (van der Laan, 2006; van der Laan
and Robins, 2003), an association parameter of interest for GO term m is the
marginal causal effect parameter, defined as

ψ(m) = E[E[λ|A(·,m) = 1, A(·,P(m))]] − E[E[λ|A(·,m) = 0, A(·,P(m))]],
(17)

where A(·,P(m)) denotes the submatrix of gene-annotation profiles for parent
terms P(m) and the expected values are defined with respect to the empirical
distribution of {(A(g,m), A(g,P(m)), λ(g)) : g = 1, . . . , G}.

In the special case of binary gene-parameter profiles (for differential expres-
sion), the so-called parent-child method of Grossmann et al. (2006) takes into
account the structure of the GO DAG by testing for associations between gene-
annotation and gene-parameter profiles using hypergeometric p-values computed
conditionally on the annotation status of parent terms.
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One could also consider Boolean combinations of annotation indicators for
multiple features, that is, a transformed gene-annotation matrix whose columns
are Boolean combinations of the columns of the original gene-annotation matrix.
Such an approach would be particularly relevant in the context of transcription
regulation, where individual features correspond to single transcription factor
binding motifs and Boolean combinations to binding modules for multiple tran-
scription factors.

3.4 Multiple hypothesis testing

3.4.1 Null and alternative hypotheses

Certain biological annotation metadata analyses may involve the two-sided tests
of the M null hypotheses of no association between the gene-annotation profiles
A(·,m) and a gene-parameter profile λ, i.e., tests of

H0(m) ≡ I(ψ(m) = ψ0(m)) vs. H1(m) ≡ I(ψ(m) �= ψ0(m)). (18)

Other analyses may call for the one-sided tests of

H0(m) ≡ I(ψ(m) ≤ ψ0(m)) vs. H1(m) ≡ I(ψ(m) > ψ0(m)). (19)

The M–vector ψ0 = (ψ0(m) : m = 1, . . . ,M), of null values for the asso-
ciation parameter ψ, is determined by the biological question. For example, if
ψ(m) = ρm(A(·,m), λ) is the Pearson correlation coefficient between the gene-
annotation profile A(·,m) and the gene-parameter profile λ, then one may set
ψ0(m) = 0.

Note that in many situations, the same association measure ρm is used for
each of the M features and one only has a single, common null value ψ0(m).

3.4.2 Test statistics

As in Chapter 1 of Dudoit and van der Laan (2006), consider the general situa-
tion where, given a random sample Xn from the data generating distribution P ,
one has an asymptotically linear estimator ψn = Ψ̂(Pn) of the association param-
eter vector ψ = Ψ(P ), with M–dimensional vector influence curve IC(X | P ).
Let Σ̂(Pn) = σn = (σn(m,m′) : m,m′ = 1, . . . ,M) denote a consistent estima-
tor of the covariance matrix Σ(P ) = σ = (σ(m,m′) : m,m′ = 1, . . . ,M) of the
vector influence curve IC(X | P ). For example, σn could be a bootstrap-based
estimator of the covariance matrix σ or could be computed from an estimator
ICn(X) of the influence curve IC(X | P ).

Each null hypothesis H0(m) may then be tested using a (unstandardized)
difference statistic,

Tn(m) ≡ √
n (ψn(m) − ψ0(m)) , (20)

or a (standardized) t-statistic,

Tn(m) ≡ √
n
ψn(m) − ψ0(m)√

σn(m,m)
. (21)
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Let Qn = Qn(P ) denote the typically unknown (finite sample) joint distribution
of the M–vector of test statistics Tn = (Tn(m) : m = 1, . . . ,M), under the data
generating distribution P .

A broad range of association parameters ψ and corresponding estimators ψn

satisfy the above conditions. In particular, suppose λn = Λ̂(Pn) is an asymp-
totically linear estimator of the gene-parameter profile λ = Λ(P ), based on a
random sample Xn from P . Let ψn ≡ ρ(A, λn) denote the corresponding resub-
stitution, or plug-in, estimator of the association parameter vector ψ = ρ(A, λ).
Then, if the function ρ(A, λ) is differentiable with respect to λ, the resubstitu-
tion estimator ψn is also asymptotically linear. One can therefore handle tests
where the gene-parameter profiles λ are (functions of) means, variances, correla-
tion coefficients, and regression coefficients, and where the association measures
ρ are correlation coefficients, two-sample t-statistics, and χ2-statistics. Exam-
ples are provided in Section 5, in the context of tests of association between
differential gene expression in ALL and GO annotation.

Certain testing problems may call for other test statistics Tn, such as F -
statistics, χ2-statistics, and likelihood ratio statistics.

3.4.3 Test statistics null distribution

As detailed in Chapter 2 of Dudoit and van der Laan (2006), a key feature of
our proposed multiple testing procedures is the test statistics null distribution
(rather than data generating null distribution) used to obtain rejection regions
(i.e., cut-offs) for the test statistics, confidence regions for the parameters of
interest, and adjusted p-values. In practice, the true distribution Qn(P ) of the
test statistics Tn is unknown and replaced by a null distribution Q0. The choice
of a suitable null distribution is crucial, in order to ensure that (finite sample or
asymptotic) control of the Type I error rate under the assumed null distribution
does indeed provide the desired control under the true distribution. This issue
is particularly relevant for large-scale testing problems, such as those involving
gene annotation metadata, which concern high-dimensional multivariate distri-
butions, with complex and unknown dependence structures among variables.

Chapter 2 of Dudoit and van der Laan (2006) provides a general charac-
terization for a proper test statistics null distribution, in terms of null dom-
ination conditions for the joint distribution of the H0–specific test statistics
(Tn(m) : m ∈ H0). This general characterization leads to the explicit proposal
of two test statistics null distributions Q0 = Q0(P ): the asymptotic distribution
of the vector of null value shifted and scaled test statistics and the asymptotic
distribution of the vector of null quantile-transformed test statistics.

Specifically, the original null distribution of Dudoit et al. (2004b), van der
Laan et al. (2004b), and Pollard and van der Laan (2004) is defined as the
asymptotic distribution of the M–vector Zn of null value shifted and scaled test
statistics,

Zn(m) ≡
√

min
(

1,
τ0(m)

V ar[Tn(m)]

)
(Tn(m) − E[Tn(m)]) + λ0(m), (22)
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where λ0(m) and τ0(m) are, respectively, user-supplied upper bounds for the
means and variances of the H0–specific test statistics. In this construction, the
location null values λ0(m) are chosen such that the joint distribution of (Zn(m) :
m ∈ H0) is asymptotically stochastically greater than that of (Tn(m) : m ∈ H0).
The scale null values τ0(m) are chosen to prevent a degenerate limit for the
false null hypotheses (m ∈ H1); an important issue for power considerations.
For a broad class of testing problems, such as the test of single-parameter null
hypotheses using t-statistics (Equation (21)), the null values are λ0(m) = 0
and τ0(m) = 1 and the null distribution is an M–variate Gaussian distribution,
with mean vector zero and covariance matrix equal to the correlation matrix
of the vector influence curve. That is, Q0 = N(0, σ∗), where σ∗ = Σ∗(P ) ≡
Cor[IC(X|P )]. For testing the equality of K population mean vectors using
F -statistics, the null values are λ0(m) = 1 and τ0(m) = 2/(K − 1), under the
assumption of equal variances in the different populations.

The second and most recent proposal of van der Laan and Hubbard (2005)
is defined as the asymptotic distribution of the M–vector Zn of null quantile-
transformed test statistics,

Zn(m) ≡ Q̇−1
0,mQn,m(Tn(m)), (23)

where Q̇0,m are user-supplied marginal test statistics null distributions that sat-
isfy the marginal null domination condition lim infn Q̇−1

0,mQn,m(z) ≥ z. This
latest proposal has the advantage that the marginal test statistics null distribu-
tions may be set to the optimal, i.e., most powerful, null distributions one would
use in single hypothesis testing (e.g., permutation null distributions, Gaussian
or other parametric null distributions).

In practice, the test statistics null distribution Q0 = Q0(P ) is unknown,
as it depends on the unknown data generating distribution P . Resampling
procedures are provided to conveniently obtain consistent estimators of the null
distribution and the corresponding test statistic cut-offs, parameter confidence
regions, and adjusted p-values.

We stress the generality of the aforementioned test statistics null distribu-
tions: Type I error control does not rely on restrictive assumptions such as
subset pivotality and holds for general data generating distributions (with arbi-
trary dependence structures among variables), null hypotheses (defined in terms
of submodels for the data generating distribution), and test statistics (e.g., t-
statistics, χ2-statistics, F -statistics).

3.4.4 Multiple testing procedures

Having identified a suitable test statistics null distribution Q0 (or estimator
thereof, Q0n), there remains the main task of specifying rejection regions (i.e.,
cut-offs) for the test statistics, confidence regions for the parameters of in-
terest, and adjusted p-values. One can apply the multiple testing method-
ology developed in Dudoit and van der Laan (2006) and related articles to
control a broad class of Type I error rates, defined as generalized tail prob-
abilities, gTP (q, g) = Pr(g(Vn, Rn) > q), and generalized expected values,
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gEV (g) = E[g(Vn, Rn)], for arbitrary functions g(Vn, Rn) of the numbers of
false positives Vn and rejected hypotheses Rn.

An overview of available MTPs is provided in Chapter 3 of Dudoit and
van der Laan (2006). Core methodological Chapters 4 – 8 discuss the following
main approaches for deriving rejection regions.

Chapter 4. Single-step common-cut-off and common-quantile procedures for
controlling general Type I error rates θ(FVn

), defined as arbitrary param-
eters of the distribution of the number of Type I errors Vn (Dudoit et al.,
2004b; Pollard and van der Laan, 2004). Error rates of the form θ(FVn)
include the generalized family-wise error rate, gFWER(q) = 1−FVn

(q) =
Pr(Vn > q).

Chapter 5. Step-down common-cut-off (maxT) and common-quantile (minP)
procedures for controlling the family-wise error rate, FWER = gFWER(0) =
1 − FVn

(0) = Pr(Vn > 0) (van der Laan et al., 2004b).

Chapter 6. Augmentation multiple testing procedures (AMTP) for controlling
generalized tail probability error rates, gTP (q, g) = Pr(g(Vn, Rn) > q), for
arbitrary functions g(Vn, Rn) of the numbers of false positives Vn and
rejected hypotheses Rn, based on an initial gFWER-controlling procedure
(Dudoit et al., 2004a; van der Laan et al., 2004a). Error rates treated in
detail include the gFWER, with g(v, r) = v, and TPPFP, with g(v, r) =
v/r.

Chapter 7. Resampling-based empirical Bayes procedures for controlling gen-
eralized tail probability error rates. The special case of TPPFP control is
discussed in detail in van der Laan et al. (2005).

These multiple testing procedures are implemented in the Bioconductor R
package multtest (Pollard et al. (2005b); www.bioconductor.org).

3.4.5 FWER-controlling single-step common-cut-off maxT procedure

For the purpose of illustration, we focus on control of the family-wise error rate,
using the single-step maxT procedure, a common-cut-off procedure exploiting
the joint distribution of the test statistics. We rely on the bootstrap to yield
a consistent estimator Q0n of the null value shifted and scaled test statistics
null distribution Q0 and corresponding single-step maxT cut-offs and adjusted
p-values. The method is summarized below for convenience; details are given in
Chapter 4 of Dudoit and van der Laan (2006) and in Dudoit et al. (2004b).

Procedure 1 [Single-step common-cut-off maxT procedure] Given an
M–variate test statistics null distribution Q0, the single-step common-cut-off
maxT procedure is based on the distribution of the maximum test statistic
maxm Z(m), for a random M–vector Z = (Z(m) : m = 1, . . . ,M) ∼ Q0. For
controlling the FWER at nominal level α ∈ [0, 1], the common cut-off c(Q0, α)
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is defined as the (1 − α)–quantile of the distribution of maxm Z(m), that is,

c(Q0, α) ≡ inf
{
z : PrQ0

(
max

m
Z(m) ≤ z

)
≥ (1 − α)

}
. (24)

The adjusted p-value p̃0n(m) for null hypothesis H0(m) is the probability, under
Q0, that maxm Z(m) exceeds the corresponding observed test statistic tn(m),
that is,

p̃0n(m) = PrQ0

(
max

m
Z(m) ≥ tn(m)

)
, m = 1, . . . ,M. (25)

Procedure 2 [Bootstrap-based single-step common-cut-off maxT
procedure]

1. Given B (non-parametric or model-based) bootstrap samples of the data
Xn, obtain an M × B matrix of test statistics, TB

n =
(
TB

n (m, b)
)
, with

rows corresponding to the M null hypotheses and columns to the B boot-
strap samples.

2. Compute row means and variances of the matrix TB
n , to yield estimates

of the means, E[Tn(m)], and variances, V ar[Tn(m)], of the test statistics
under the true data generating distribution P . That is, compute

E[TB
n (m, ·)] ≡ 1

B

B∑
b=1

TB
n (m, b)

and V ar[TB
n (m, ·)] ≡ 1

B

B∑
b=1

(TB
n (m, b) − E[TB

n (m, ·)])2.

3. Obtain an M × B matrix, ZB
n =

(
ZB

n (m, b)
)
, of null value shifted and

scaled bootstrap statistics ZB
n (m, b), by row-shifting and scaling the ma-

trix TB
n using the bootstrap estimates of E[Tn(m)] and V ar[Tn(m)] and

the user-supplied null values λ0(m) and τ0(m). That is,

ZB
n (m, b) ≡

√
min

(
1,

τ0(m)
V ar[TB

n (m, ·)]
)(

TB
n (m, b)−E[TB

n (m, ·)]
)
+λ0(m).

(26)
For t-statistics defined as in Equation (21), the null values are λ0(m) = 0
and τ0(m) = 1.

4. Estimate the null distribution Q0 by the empirical distribution Q0n of
the B columns of matrix ZB

n .
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5. Compute the maximum statistic, maxm ZB
n (m, b), b = 1, . . . , B, for each

bootstrap dataset, i.e., each column of the matrix ZB
n .

6. For controlling the FWER at nominal level α ∈ [0, 1], the bootstrap
single-step maxT common cut-off c(Q0n, α) is defined as the (1 − α)–
quantile of the empirical distribution of the B maxima {maxm ZB

n (m, b) :
b = 1, . . . , B}, that is,

c(Q0n, α) ≡ inf

{
z :

1
B

B∑
b=1

I
(
max

m
ZB

n (m, b) ≤ z
)
≥ (1 − α)

}
. (27)

7. The bootstrap single-step maxT adjusted p-value p̃0n(m) for null hypoth-
esis H0(m) is the proportion of maxima {maxm ZB

n (m, b) : b = 1, . . . , B}
that exceed the corresponding observed test statistic tn(m), that is,

p̃0n(m) =
1
B

B∑
b=1

I
(
max

m
ZB

n (m, b) ≥ tn(m)
)
, m = 1, . . . ,M. (28)

4 The Gene Ontology

4.1 Overview of the Gene Ontology

The Gene Ontology (GO) Consortium (www.geneontology.org) provides on-
tologies, i.e., structured and controlled vocabularies, to describe gene prod-
ucts in terms of their associated biological processes, cellular components, and
molecular functions. The ontologies specify terminologies and relationships
among terms. They are organism-independent and can be applied even as
our knowledge of the roles of genes and proteins is accumulating and chang-
ing. The GO Consortium and other organizations supply mappings between
GO terms and genes in various organisms. Detailed documentation is available
in the “Gene Ontology Documentation” webpage (www.geneontology.org/GO.
contents.doc.html).

4.1.1 The three gene ontologies: BP, CC, and MF

The GO Consortium provides three ontologies, each consisting of a structured
network of terms describing gene products.

• Biological Process (BP or P). The Biological Process ontology refers to se-
ries of biological events that are accomplished by one or more ordered as-
semblies of molecular functions. Examples of broad BP terms are cellular
physiological process (GO:0050875) and signal transduction (GO:0007165);
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examples of more specific BP terms are pyrimidine base metabolism (GO:0006206)
and alpha-glucoside transport (GO:0000017).

• Cellular Component (CC or C). The Cellular Component ontology refers
to subcellular structures, with the proviso that the components be part
of some larger object, which may be an anatomical structure (e.g., rough
endoplasmic reticulum (GO:0005791), nucleus (GO:0005634)) or a gene
product group (e.g., ribosome (GO:0005840)).

• Molecular Function (MF or F). The Molecular Function ontology refers
to tasks or activities performed by individual (or assembled complexes
of) gene products. Examples of broad MF terms are catalytic activity
(GO:0003824), transporter activity (GO:0005215), and binding (GO:0005488);
examples of narrower MF terms are adenylate cyclase activity (GO:0004016)
and Toll binding (GO:0005121).

A gene product may be used in one or more biological processes, may be
associated with one or more cellular components, and may have one or more
molecular functions.

Example: Gene product ABL1 HUMAN. The Homo sapiens gene product
Splice Isoform IA of Proto-oncogene tyrosine-protein kinase ABL1 (ABL1 HUMAN)
can be described by the following terms in each of the three gene ontolo-
gies (AmiGO browser; Last updated 2006-02-14; www.godatabase.org/cgi-bin/
amigo/go.cgi?view=details&search_constraint=gp&session_id=6973b1139030258&gp=
P00519).

• Biological Process: regulation of progression through cell cycle (GO:0000074);
S-phase-specific transcription in mitotic cell cycle (GO:0000115); mis-
match repair (GO:0006298); regulation of transcription, DNA-dependent
(GO:0006355); DNA damage response, signal transduction resulting in
induction of apoptosis (GO:0008630).

• Cellular Component: nucleus (GO:0005634).

• Molecular Function: DNA binding (GO:0003677); protein-tyrosine kinase
activity (GO:0004713); protein binding (GO:0005515).

4.1.2 GO directed acyclic graphs

For each of the three gene ontologies, GO terms are organized in a directed
acyclic graph (DAG), where a directed graph has one-way edges and an acyclic
graph has no path starting and ending at the same vertex. Each GO term is
associated with a single vertex, or node, in the DAG. The words term, node,
and vertex, may therefore be used interchangeably.

For a given GO term, an ancestor refers to a less specialized term; an off-
spring refers to a more specialized term. A parent is an immediate/direct ances-
tor of a term; a child is an immediate/direct offspring of a term. A root node has
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no parents, i.e., no incoming edges; a leaf node has no children, i.e., no outgoing
edges. In a DAG, a child may have several parents.

Every GO term must obey the so-called true path rule: if a (child) term de-
scribes a gene product, then all its immediate parent and more distant ancestor
terms must also apply to the gene product.

The DAG structure of GO terms and corresponding true path rule are ger-
mane to the definition of a suitable association measure between gene-annotation
profiles and gene-parameter profiles (Section 3.3). Furthermore, as discussed in
Sections 4.2 – 4.5, in the context of Bioconductor annotation software, the true
path rule is also relevant when assembling gene-annotation matrices.

4.1.3 GO software tools

Many software tools have been developed to deal with GO annotation metadata.
The“Gene Ontology Tools”webpage (www.geneontology.org/GO.tools.shtml)
provides a list of consortium and non-consortium software for searching and
browsing the three gene ontologies, for annotating genes and gene products
using GO, and for combined GO and gene expression microarray data analysis.

For instance, the AmiGO browser (www.godatabase.org) allows: searching for
a GO term and viewing all gene products annotated with this term; searching for
a gene product and viewing all its associated GO terms; browsing the ontologies
to view relationships among terms and gene products annotated with a given
term.

The QuickGO browser (www.ebi.ac.uk/ego), developed by the European
Bioinformatics Institute (EBI), also permits searches and graphical displays of
the Gene Ontology by GO term, GO term identifier (ID), gene product, and
other identifiers.

Software packages developed as part of the Bioconductor Project are dis-
cussed in Sections 4.2 – 4.5.

Example: GO term protein-tyrosine kinase activity. To get a sense of the
information provided by the GO Consortium, consider the Molecular Function
ontology and the GO term protein-tyrosine kinase activity, with GO term ID
GO:0004713.

Go to the AmiGO browser (www.godatabase.org), enter the GO term ID
GO:0004713 in the Search GO box, select Exact Match, select Terms, and click
on the Submit Query button. There are two main options for displaying in-
formation on a GO term: a “tree view” and a “graphical view”. Click on the
small tree-like icon (top-left corner of the table) to display the tree view with
all ancestors (i.e., less specific terms) of the GO term protein-tyrosine kinase
activity. Click on the Graphical View button to display the portion of the MF
DAG corresponding to the GO term. Additional information may be obtained
by clicking on the hyperlinked text protein-tyrosine kinase activity.

The GO term protein-tyrosine kinase activity has one (immediate) parent,
protein kinase activity (GO:0004672), which itself has two parents, kinase ac-
tivity (GO:0016301) and phosphotransferase activity, alcohol group as acceptor
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(GO:0016773). Altogether, the term protein-tyrosine kinase activity has 7 an-
cestors. According to the true path rule, any gene annotated with the GO
term protein-tyrosine kinase activity should also be annotated with all of its
less specific ancestor terms.

The portion of the MF DAG for the GO term protein-tyrosine kinase activity
is displayed in Figures 2 and 3 using, respectively, the AmiGO and QuickGO
browsers (note the different ordering of nodes in these two representations: for
AmiGO, the offspring nodes are at the top of the graph, while for QuickGO, they
are at the bottom of the graph).

4.1.4 GO gene-annotation matrices

For each of the three gene ontologies, one may define a G ×M binary gene-
annotation matrix A, indicating for each gene g whether it is annotated or not
with each GO term m,

A(g,m) ≡
{

1, if gene g is annotated with GO term m

0, otherwise
, (29)

g = 1, . . . , G, m = 1, . . . ,M.

Section 4.5 provides sample R code for assembling GO gene-annotation ma-
trices using Bioconductor annotation metadata packages.

As detailed in Section 3, detecting associations between GO annotation and
other interesting features of a genome may be viewed as the multiple tests of the
null hypotheses of no association between a gene-parameter profile λ = Λ(P ) and
gene-annotation profiles A(·,m). The multiple testing methodology proposed in
Dudoit and van der Laan (2006) and related articles is well-suited to handle
the complex and unknown dependence structure among test statistics implied
by the DAG structure of GO terms. The methods are illustrated in Section
5, for tests of association between differential gene expression in ALL and GO
annotation.

4.2 Overview of R and Bioconductor software for GO an-
notation metadata analysis

As discussed in Gentleman et al. (2005), the Bioconductor Project (www.bioconductor.
org) provides R packages for accessing and performing statistical inference with
GO annotation metadata. The packages include: a general annotation soft-
ware package (annotate); packages for graph theoretical analyses (e.g., graph,
Rgraphviz); a GO-specific metadata package for navigating the three GO DAGs
(GO); an Entrez Gene1-specific metadata package, providing bi-directional map-
pings between Entrez Gene IDs and GO term IDs (humanLLMappings; www.
ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene); various Affymetrix chip-specific

1N.B. The LocusLink database has been superseded by the Entrez Gene database.
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metadata packages, providing bi-directional mappings between Affymetrix probe2

IDs and GO term IDs (e.g., hu6800, hgu95av2; www.affymetrix.com); a package
for annotating and generating HTML reports for Affymetrix chip data (annaffy).

Bioconductor metadata packages are updated regularly to reflect the evolv-
ing nature of biological annotation metadata; it is therefore crucial to keep
track of version numbers. For information on Bioconductor software, please
consult the “Documentation” (www.bioconductor.org/docs) and “Workshops”
(www.bioconductor.org/workshops) sections of the Bioconductor Project web-
site, in addition to the standard R help facilities (e.g., help function, manuals,
etc.).

In order to run through the examples below, one needs to install and load
the following Bioconductor packages: annotate, GO, hgu95av2. The annotation
metadata used in the examples correspond to the following package versions.

> library(annotate)
> library(GO)
> library(hgu95av2)
>
> packageDescription("annotate")$Version
[1] "1.8.0"
> packageDescription("GO")$Version
[1] "1.10.0"
> packageDescription("hgu95av2")$Version
[1] "1.10.0"

Accessing and analyzing annotation metadata from databases such as Gen-
Bank (www.ncbi.nlm.nih.gov/Genbank), GO (www.geneontology.org), and
PubMed (www.pubmed.gov), presupposes the ability to perform the following
essential bookkeeping task: mapping between different identifiers (ID) for a
given gene/probe. Bioconductor annotation metadata packages consist of en-
vironment objects that provide key-value mappings between different sets of
gene/probe identifiers.

For instance, in the hgu95av2 annotation metadata package, for the Affymetrix
chip series HG-U95Av2, the hgu95av2PMID environment provides mappings
from Affymetrix probe IDs (keys) to PubMed IDs (values); similarly, the hgu95av2GO
environment provides mappings from Affymetrix probe IDs (keys) to GO term
IDs (values).

Example: Affymetrix probe ID 1635_at. As of Version 1.10.0 of the
hgu95av2 package, the Affymetrix probe with ID 1635_at corresponds to the
gene with symbol ABL1 and long name v-abl Abelson murine leukemia vi-
ral oncogene homolog 1, located on the long arm of chromosome 9. This
probe maps to one GenBank accession number, one Entrez Gene ID, 14 distinct
GO term IDs, and 160 distinct PubMed IDs.

2N.B. In the context of Affymetrix oligonucleotide chips, we use the shorter term probe
to refer to a probe-pair-set, i.e., a collection of perfect match (PM) and mismatch (MM)
probe-pairs that map to a particular gene.
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> probe <- "1635_at"
> get(probe, env=hgu95av2SYMBOL)
[1] "ABL1"
> get(probe, env=hgu95av2GENENAME)
[1] "v-abl Abelson murine leukemia viral oncogene homolog 1"
> get(probe, env=hgu95av2MAP)
[1] "9q34.1"
> get(probe, env=hgu95av2ACCNUM)
[1] "U07563"
> get(probe, env=hgu95av2LOCUSID )
[1] 25
> unique(names(get(probe, env=hgu95av2GO)))
[1] "GO:0000074" "GO:0000115" "GO:0000166" "GO:0003677" "GO:0004713"
[6] "GO:0005515" "GO:0005524" "GO:0005634" "GO:0006298" "GO:0006355"
[11] "GO:0006468" "GO:0007242" "GO:0008630" "GO:0016740"
> length(get(probe, env=hgu95av2PMID))
[1] 160

The remainder of this section gives a brief overview of two main types of
Bioconductor annotation metadata packages: the GO package (Section 4.3) and
the hgu95av2 package for the Affymetrix chip series HG-U95Av2 (Section 4.4).
Section 4.5 illustrates how these two packages may be used to assemble a GO
gene-annotation matrix.

4.3 The GO annotation metadata package

The GO package provides environment objects containing key-value pairs for
mappings between GO term IDs, GO terms, GO term ancestors, GO term
parents, GO term children, GO term offspring, and Entrez Gene IDs. The GO()
command lists all environments available in the GO package.

> GO()

Quality control information for GO
Date built: Created: Fri Sep 30 03:02:24 2005

Mappings found for non-probe based rda files:
GOALLLOCUSID found 9556
GOBPANCESTOR found 9888
GOBPCHILDREN found 4989
GOBPOFFSPRING found 4989
GOBPPARENTS found 9888
GOCCANCESTOR found 1612
GOCCCHILDREN found 578
GOCCOFFSPRING found 578
GOCCPARENTS found 1612
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GOLOCUSID2GO found 70818
GOLOCUSID found 8017
GOMFANCESTOR found 7334
GOMFCHILDREN found 1403
GOMFOFFSPRING found 1403
GOMFPARENTS found 7334
GOOBSOLETE found 1032
GOTERM found 18834

For information on any of the GO environments, use the help function,
e.g., help(GOTERM) or ? GOBPPARENTS. For instance, the environment GOTERM
provides mappings from GO term IDs (keys) to GO terms (values); the environ-
ments GOBPPARENTS, GOCCPARENTS, and GOMFPARENTS, provide ontology-specific
mappings from GO term IDs (keys) to GO term parent IDs (values). The en-
vironments GOALLLOCUSID, GOLOCUSID2GO, and GOLOCUSID, provide mappings
between GO term IDs and Entrez Gene IDs and are used in Section 4.5, below,
to assemble an Entrez Gene ID-by-GO term ID gene-annotation matrix for the
MF gene ontology.

Example: GO term ID GO:0004713. Let us use the GO package to obtain in-
formation on (all) ancestors, the (immediate) parents, the (immediate) children,
and (all) offspring of the term corresponding to the GO term ID GO:0004713.

> ## List all GO IDs
> GOID <- ls(env = GOTERM)
> length(GOID)
[1] 18834
> GOID[1:10]
[1] "GO:0000001" "GO:0000002" "GO:0000003" "GO:0000004" "GO:0000006"
[6] "GO:0000007" "GO:0000009" "GO:0000010" "GO:0000011" "GO:0000012"
>
> ## Get information on GO term corresponding to GO ID GO:0004713
> GOID <- "GO:0004713"
> term <- get(GOID,env=GOTERM)
> class(term)
[1] "GOTerms"
attr(,"package")
[1] "annotate"
> slotNames(term)
[1] "GOID" "Term" "Synonym" "Secondary" "Definition"
[6] "Ontology"
> term
GOID = GO:0004713
Term = protein-tyrosine kinase activity
Synonym = protein tyrosine kinase activity
Definition = Catalysis of the reaction: ATP + a protein tyrosine = ADP
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+ protein tyrosine phosphate.
Ontology = MF
>
> ## Get GO IDs of parents
> parents <- get(GOID,env=GOMFPARENTS)
> parents

isa
"GO:0004672"
> mget(parents,env=GOTERM)
$"GO:0004672"
GOID = GO:0004672
Term = protein kinase activity
Definition = Catalysis of the transfer of a phosphate group, usually

from ATP, to a protein substrate.
Ontology = MF

>
> ## Get GO IDs of ancestors
> ancestors <- get(GOID,env=GOMFANCESTOR)
> ancestors
[1] "all" "GO:0003674" "GO:0003824" "GO:0016740" "GO:0016772"
[6] "GO:0016773" "GO:0016301" "GO:0004672"
>
> ## Get GO IDs of children
> children <- get(GOID,env=GOMFCHILDREN)
> children
[1] "GO:0004714" "GO:0004715" "GO:0004716"
>
> ## Get GO IDs of offspring
> offspring <- get(GOID,env=GOMFOFFSPRING)
> offspring
[1] "GO:0004714" "GO:0004715" "GO:0004716" "GO:0005020" "GO:0005021"
[6] "GO:0005023" "GO:0005010" "GO:0005011" "GO:0005017" "GO:0005003"
[11] "GO:0005006" "GO:0005007" "GO:0005008" "GO:0005009" "GO:0008288"
[16] "GO:0005018" "GO:0005019" "GO:0005004" "GO:0005005" "GO:0008313"
[21] "GO:0004718"

As already noted in the example on p. 23 and Figures 2 and 3, the term
corresponding to the GO term ID GO:0004713 is protein-tyrosine kinase activity,
in the Molecular Function ontology. It has one (immediate) parent term, protein
kinase activity.
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4.4 Affymetrix chip-specific annotation metadata pack-
ages: The hgu95av2 package

The Bioconductor Project provides Affymetrix chip-specific annotation meta-
data packages for the main chip series for the human, mouse, rat, and other
genomes, e.g., HU-6800, HG-U133, HG-U95, MG-U74, and RG-U34 series.
These packages, built using the infrastructure package AnnBuilder, contain en-
vironment objects for mappings between Affymetrix probe IDs and other types
of gene/probe identifiers.

Note that analogous packages are not supplied for two-color spotted microar-
rays, as there is no standard microarray design for this type of platform and
specialized annotation metadata packages may have to be created for each mi-
croarray facility (e.g., using AnnBuilder). Once annotation metadata packages
are available to provide mappings between different sets of gene/probe identi-
fiers, the tools in annotate and related packages may be used in a similar manner
for any type of microarray platform.

Consider the hgu95av2 package, for the Affymetrix chip series HG-U95Av2.
This package provides the following environments.

> ? hgu95av2
> hgu95av2()

Quality control information for hgu95av2
Date built: Created: Tue Oct 4 21:31:35 2005

Number of probes: 12625
Probe number missmatch: None
Probe missmatch: None
Mappings found for probe based rda files:

hgu95av2ACCNUM found 12625 of 12625
hgu95av2CHRLOC found 11673 of 12625
hgu95av2CHR found 12145 of 12625
hgu95av2ENZYME found 1886 of 12625
hgu95av2GENENAME found 11418 of 12625
hgu95av2GO found 9942 of 12625
hgu95av2LOCUSID found 12203 of 12625
hgu95av2MAP found 12109 of 12625
hgu95av2OMIM found 9881 of 12625
hgu95av2PATH found 3928 of 12625
hgu95av2PMID found 12086 of 12625
hgu95av2REFSEQ found 12008 of 12625
hgu95av2SUMFUNC found 0 of 12625
hgu95av2SYMBOL found 12159 of 12625
hgu95av2UNIGENE found 12118 of 12625

Mappings found for non-probe based rda files:
hgu95av2CHRLENGTHS found 25
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hgu95av2ENZYME2PROBE found 643
hgu95av2GO2ALLPROBES found 5480
hgu95av2GO2PROBE found 3890
hgu95av2ORGANISM found 1
hgu95av2PATH2PROBE found 155
hgu95av2PFAM found 10439
hgu95av2PMID2PROBE found 98214
hgu95av2PROSITE found 8249

For more information on any of these environments, use the help function,
e.g., help(hgu95av2GO) or ? hgu95av2GO. We focus on the three environments
related to GO: hgu95av2GO, hgu95av2GO2ALLPROBES, and hgu95av2GO2PROBE.
The HG-U95Av2 chip contains 12,625 probes (keys in the hgu95av2GO environ-
ment), with the first 10 Affymetrix probe IDs listed below.

> ## List all Affymetrix IDs
> AffyID <- ls(env = hgu95av2GO)
> length(AffyID)
[1] 12625
> AffyID[1:10]
[1] "1000_at" "1001_at" "1002_f_at" "1003_s_at" "1004_at" "1005_at"
[7] "1006_at" "1007_s_at" "1008_f_at" "1009_at"

4.4.1 Probes-to-most specific GO terms mappings: The hgu95av2GO
environment

The hgu95av2GO environment contains key-value pairs for the mappings from
Affymetrix probe IDs (keys) to GO term IDs (values). Each Affymetrix probe
ID is mapped to a list of one or more elements, where each element corresponds
to a particular GO term and is itself a list of the following three elements.

• "GOID": A GO term ID corresponding to the Affymetrix probe ID (key).

• "Evidence": A code for the evidence supporting the association of the
GO term to the Affymetrix probe.

• "Ontology": An abbreviation for the name of the ontology to which the
GO term belongs: BP (Biological Process), CC (Cellular Component), or
MF (Molecular Function).

Note that only the directly associated terms or most specific terms (i.e., not
their less specific ancestor terms) a probe is annotated with are returned as val-
ues in hgu95av2GO. The GO package (Section 4.3) may be used to obtain more
information on the GO term IDs, e.g., GO term, (all) ancestors, (immediate)
parents, (immediate) children, and (all) offspring.

Example: GO terms directly associated with Affymetrix probe ID
1635_at. Let us obtain GO annotation information for the probe with Affymetrix
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ID 1635_at, corresponding to the ABL1 gene. The code below shows that probe
1635_at is directly annotated with 14 distinct GO terms (the same GO term
ID may be returned multiple times with a different evidence code). As already
noted in the example on p. 22, one of these terms, with GO term ID GO:0004713,
is protein-tyrosine kinase activity, in the Molecular Function ontology.

> probe <- "1635_at"
> probe2GO <- get(probe, env = hgu95av2GO)
> length(probe2GO)
[1] 14
> unique(names(probe2GO))
[1] "GO:0000074" "GO:0000115" "GO:0000166" "GO:0003677" "GO:0004713"
[6] "GO:0005515" "GO:0005524" "GO:0005634" "GO:0006298" "GO:0006355"
[11] "GO:0006468" "GO:0007242" "GO:0008630" "GO:0016740"
> probe2GO[[5]]
$GOID
[1] "GO:0004713"

$Evidence
[1] "TAS"

$Ontology
[1] "MF"

> get(probe2GO[[5]]$GOID, env=GOTERM)
GOID = GO:0004713
Term = protein-tyrosine kinase activity
Synonym = protein tyrosine kinase activity
Definition = Catalysis of the reaction: ATP + a protein tyrosine = ADP

+ protein tyrosine phosphate.
Ontology = MF

The hgu95av2GO environment (and analogous environments for other chip
series) may be used to assemble an Affymetrix probe ID-by-GO term ID gene-
annotation matrix, row by row. This may entail, however, a number of data
processing steps. Firstly, only the most specific terms a probe is annotated
with are returned as values in hgu95av2GO. One therefore needs to add all an-
cestor (less specific) terms in order to comply with the true path rule. Sec-
ondly, several probes may correspond to the same gene, i.e., several Affymetrix
probe IDs may map to the same Entrez Gene ID according to the environment
hgu95av2LOCUSID. Thirdly, the hgu95av2GO environment returns GO terms for
all three gene ontologies at once. One may need to separate terms according to
membership in the BP, CC, and MF ontologies (e.g., using the GOTERM environ-
ment from the GO package).

Alternately, one may assemble an Affymetrix probe ID-by-GO term ID gene-
annotation matrix, column by column, using the hgu95av2GO2ALLPROBES envi-
ronment described below.
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4.4.2 GO terms-to-directly annotated probes mappings: The hgu95av2GO2PROBE
environment

The hgu95av2GO2PROBE environment provides key-value pairs for the mappings
from GO term IDs (keys) to Affymetrix probe IDs (values). Values are vectors
of length one or greater depending on whether a given GO term ID is mapped
to one or more Affymetrix probe IDs. The value names are evidence codes for
the GO term IDs.

Note that the probes a particular GO term is mapped to are only those as-
sociated directly with the GO term (vs. indirectly via its immediate children or
more distant offspring). For a list of all probes associated directly or indirectly
with a particular GO term, one may use the hgu95av2GO2ALLPROBES environ-
ment.

Example: Affymetrix probes directly associated with GO term ID
GO:0004713. In the following example, 205 distinct Affymetrix probe IDs are as-
sociated directly with the GO term protein-tyrosine kinase activity (GO:0004713).
The Affymetrix probe IDs include 1635_at, corresponding to the ABL1 gene.

> GOID <- "GO:0004713"
> GO2Probes <- get(GOID, env = hgu95av2GO2PROBE)
> length(unique(GO2Probes))
[1] 205
> GO2Probes[1:10]

<NA> <NA> <NA> <NA> <NA> TAS
"1635_at" "1636_g_at" "1656_s_at" "2040_s_at" "2041_i_at" "39730_at"

IEA IEA IEA TAS
"1084_at" "35162_s_at" "1564_at" "854_at"

> is.element("1635_at", GO2Probes)
[1] TRUE

4.4.3 GO terms-to-all annotated probes mappings: The hgu95av2GO2ALLPROBES
environment

The hgu95av2GO2ALLPROBES environment provides key-value pairs for the map-
pings from GO term IDs (keys) to Affymetrix probe IDs (values). Values are
vectors of length one or greater depending on whether a given GO term ID is
mapped to one or more Affymetrix probe IDs. The value names are evidence
codes for the GO term IDs.

Note that, in accordance with the true path rule, the probes a particular
GO term is mapped to are associated either directly with the GO term or in-
directly via any of its immediate children or more distant offspring. The main
difference between the hgu95av2GO2PROBE and hgu95av2GO2ALLPROBES envi-
ronments is that the former considers only the GO term itself, while the later
considers the GO term and any of its descendants. Thus, the Affymetrix probe
IDs returned by hgu95av2GO2PROBE are a subset of the probe IDs returned by

32

http://biostats.bepress.com/ucbbiostat/paper202



hgu95av2GO2ALLPROBES.

Example: Affymetrix probes directly or indirectly associated with
GO term ID GO:0004713. In the following example, 319 distinct Affymetrix
probe IDs (some with multiple evidence codes) are associated either directly or
indirectly with the GO term ID GO:0004713. This list of 319 Affymetrix probe
IDs indeed includes the list of 205 probe IDs associated directly with the term
GO:0004713.

> GOID <- "GO:0004713"
> GO2AllProbes <- get(GOID, env = hgu95av2GO2ALLPROBES)
> length(GO2AllProbes)
[1] 370
> length(unique(GO2AllProbes))
[1] 319
> sum(is.element(GO2Probes,GO2AllProbes))
[1] 205

The hgu95av2GO2ALLPROBES environment immediately yields an Affymetrix
probe ID-by-GO term ID gene-annotation matrix, column by column. How-
ever, as with the hgu95av2GO environment, a number of data processing steps
may be required, concerning, for example, uniqueness of Entrez Gene IDs and
membership in the BP, CC, and MF ontologies.

4.5 Assembling a GO gene-annotation matrix

This section provides R code for assembling an Entrez Gene ID-by-GO term
ID gene-annotation matrix A, column by column. Specifically, rows correspond
to (unique) Entrez Gene IDs mapping to probes on the HG-U95Av2 chip and
columns to terms in the Molecular Function ontology that map directly or in-
directly to at least 10 Entrez Gene IDs for the HG-U95Av2 chip.

In practice, it may not be desirable to build the full G×M gene-annotation
matrix, as this matrix could potentially be very large and sparse (padded with
zeros). Rather, we assemble a (smaller) gene-annotation list, that provides, for
each GO term ID, a list of Entrez Gene IDs annotated with the GO term.

> ## List all Affymetrix IDs for HG-U95Av2 chip
> AffyID <- ls(env=hgu95av2GO)
> length(AffyID)
[1] 12625
>
> ## Get all unique Entrez Gene IDs for HG-U95Av2 chip
> LLID <- as.character(unique(unlist(mget(AffyID, env=hgu95av2LOCUSID))))
> length(LLID)
[1] 9085
>
> ## Get MF GO IDs
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> GOID <- ls(env=GOTERM)
> O <- unlist(lapply(mget(GOID, env=GOTERM), function(z) z@Ontology))
> table(O)
O
BP CC MF

9888 1612 7334
> MFID <- GOID[O=="MF"]
>
> ## For each MF GO ID, get all Entrez Gene IDs for genes annotated directly or indirectly w
> allMFLLID <- mget(MFID, env=GOALLLOCUSID)
>
> ## For each MF GO ID, get HG-U95Av2-specific Entrez Gene IDs for genes annotated directly
> MFLLID <- lapply(allMFLLID, function(z) intersect(z, LLID))
> numMFLLID <- unlist(lapply(MFLLID, length))
> summary(numMFLLID)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.000 1.000 9.539 1.000 6762.000

>
> ## Retain only MF GO IDs that map to at least 10 Entrez Gene IDs for the HG-U95Av2 chip
> MFAnnotList <- MFLLID[numMFLLID > 9]
> length(MFAnnotList)
[1] 466
> summary(unlist(lapply(MFAnnotList, length)))

Min. 1st Qu. Median Mean 3rd Qu. Max.
10.0 16.0 27.5 132.2 70.0 6762.0

> MFAnnotList[1]
$"GO:0000146"
[1] "4620" "4621" "4624" "4625" "4640" "4643" "4644" "4646" "4647"
[10] "4650" "58498"

>
> ## Get Affymetrix IDs for probes annotated with GO term ID GO:0004713
> is.element("GO:0004713",names(MFAnnotList))
[1] TRUE
> length(MFAnnotList["GO:0004713"][[1]])
[1] 180

5 Tests of association between GO annotation
and differential gene expression in ALL

5.1 Acute lymphoblastic leukemia dataset of Chiaretti et
al. (2004)

Our proposed approach to tests of association with biological annotation meta-
data is illustrated using the acute lymphoblastic leukemia (ALL) microarray
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dataset of Chiaretti et al. (2004) and Gene Ontology (GO) annotation meta-
data.

5.1.1 Bioconductor experimental data R package ALL

The ALL dataset is available in the Bioconductor experimental data R package
ALL (Version 1.0.2, Bioconductor Release 1.7). The main object in this package
is ALL, an instance of the class exprSet. The exprs slot of ALL provides a matrix
of 12,625 Affymetrix expression measures (chip series HG-U95Av2) for each of
128 ALL cell samples. The phenoData slot contains 21 phenotypes, i.e., responses
and covariates, for each of the 128 cell samples. Phenotypes of interest include:
ALL$BT, the type and stage of the cancer, i.e., B-cell ALL or T-cell ALL, of stage
1, 2, 3, or 4; ALL$mol.biol, the molecular class of the cancer, i.e., BCR/ABL,
NEG, ALL1/AF4, E2A/PBX1, p15/p16, or NUP-98.

The expression measures have been obtained using the three-step robust
multichip average (RMA) pre-processing method, implemented in the Biocon-
ductor R package affy (Bolstad et al., 2005), and have been subjected to a base
2 logarithmic transformation. For greater detail on the ALL dataset, please
consult the ALL package documentation.

5.1.2 The BCR/ABL fusion

A number of recent articles have investigated the prognostic relevance of the
BCR/ABL fusion in adult ALL of the B-cell lineage (Gleissner et al., 2002).
The BCR/ABL fusion is the molecular analogue of the Philadelphia chromo-
some, one of the most frequent cytogenetic abnormalities in human leukemias.
This t(9;22) translocation leads to a head-to-tail fusion of the v-abl Abel-
son murine leukemia viral oncogene homolog 1 (ABL1) from chromosome
9 with the 5’ half of the breakpoint cluster region (BCR) on chromosome
22 (Figure 4). The ABL1 proto-oncogene encodes a cytoplasmic and nuclear
protein tyrosine kinase that has been implicated in processes of cell differentia-
tion, cell division, cell adhesion, and stress response. Although the BCR/ABL
fusion protein, encoded by sequences from both the ABL1 and BCR genes, has
been extensively studied, the function of the normal product of the BCR gene is
not clear. The BCR/ABL proto-oncogene has been found to be highly-expressed
in chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) cells
(Mukhopadhyay et al., 2002).

An interesting question is therefore the identification of genes that are dif-
ferentially expressed between B-cell ALL with the BCR/ABL fusion and cyto-
genetically normal NEG B-cell ALL.

In order to address this quesion, we consider the expression measures of the
n = 79 B-cell ALL cell samples (ALL$BT equal to B, B1, B2, B3, or B4), of the
BCR/ABL or NEG molecular types (ALL$mol.biol equal to BCR/ABL or NEG).
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5.1.3 Gene filtering

Many of the genes represented by the 12,625 probes are not expressed in B-cell
lymphocytes. Accordingly, as in von Heydebreck et al. (2004), we only retain
the 2,391 probes that meet the following two criteria: (i) fluorescence intensities
greater than 100 (absolute scale) for at least 25% of the 79 cell samples; (ii)
interquartile range (IQR) of the fluorescence intensities for the 79 cell samples
greater than 0.5 (log base 2 scale).

Furthermore, different probes may correspond to the same gene, i.e., map to
the same Entrez Gene ID, according to the environment hgu95av2LOCUSID from
the hgu95av2 package. In order to obtain one expression measure per gene, we
choose to average the expression measures of multiple probes mapping to the
same gene.

These various pre-processing steps lead to G = 2, 071 genes with unique
Entrez Gene IDs.

5.1.4 Reduced ALL dataset: Genotypes and phenotypes of interest

The combined genotypic and phenotypic data for the n = 79 B-cell ALL cell
samples of the BCR/ABL and NEG molecular types may be summarized by
the set XYn ≡ {(Xi, Yi) : i = 1, . . . , n}, of n pairs of G–dimensional gene
expression profiles Xi = (Xi(g) : g = 1, . . . , G), G = 2, 071, and cancer class
labels Yi ∈ {NEG,BCR/ABL}. Among the n = 79 B-cell ALL cell samples,
there are nBCR/ABL ≡ ∑

i I(Yi = BCR/ABL) = 37 BCR/ABL and nNEG ≡∑
i I(Yi = NEG) = 42 NEG samples.

5.2 Multiple hypothesis testing framework

Our primary question of interest is the identification of genes that are differen-
tially expressed (DE) between BCR/ABL and NEG B-cell ALL. A subsequent
question involves relating differential gene expression to GO annotation.

As detailed below, GO annotation metadata for the filtered list of G = 2, 071
unique genes from the HG-U95Av2 chip may be summarized by binary gene-
annotation profiles.

The gene-parameter profiles of interest concern differential gene expression
between BCR/ABL and NEG B-cell ALL, i.e., the association between microar-
ray gene expression measures and cancer class. Continuous gene-parameter pro-
files of unstandardized and standardized measures of differential expression are
estimated, respectively, by (unstandardized) differences of empirical means and
(standardized) two-sample t-statistics. Binary gene-parameter profiles, indicat-
ing whether genes are differentially expressed or not, are estimated by imposing
cut-off rules on two-sample t-statistics or adjusted p-values.

The following association measures between GO gene-annotation profiles
and DE gene-parameter profiles are considered: two-sample t-statistics for tests
of association between binary GO gene-annotation profiles and continuous DE
gene-parameter profiles; χ2-statistics for tests of association between binary GO
gene-annotation profiles and binary DE gene-parameter profiles.
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Significant associations between differential gene expression and GO anno-
tation are identified by applying FWER-controlling bootstrap-based single-step
maxT Procedure 2.

5.2.1 Gene-annotation profiles

Gene Ontology annotation metadata for the HG-U95Av2 chip series are ob-
tained as described in Sections 4.2 – 4.5, from the following Bioconductor R
packages: the GO-specific metadata package GO (Version 1.10.0, Bioconduc-
tor Release 1.7) and the Affymetrix chip-specific metadata package hgu95av2
(Version 1.10.0, Bioconductor Release 1.7).

For each of the three gene ontologies, binary gene-annotation matrices ABP ,
ACC , and AMF , are assembled for the GO terms annotating at least 10 of the
G = 2, 071 filtered genes (sample R code provided in Section 4.5). Specifically,
for gene ontology o ∈ {BP,CC,MF}, Ao = (Ao(g,m) : g = 1, . . . , G; m =
1, . . . ,Mo) is a G×Mo matrix, with element Ao(g,m) indicating whether gene
g is annotated or not by GO term m and such that

∑
g Ao(g,m) ≥ 10 for each

termm. The numbers of terms considered in each gene ontology areMBP = 367,
MCC = 81, and MMF = 185.

5.2.2 Gene-parameter profiles

Definition of gene-parameter profiles Consider a data structure (X,Y ) ∼
P , where X = (X(g) : g = 1, . . . , G) is a G = 2, 071–dimensional vector
of microarray gene expression measures and Y ∈ {NEG,BCR/ABL} is a
cancer class label. Let πk ≡ Pr(Y = k) denote the proportion of cancers
of class k ∈ {NEG,BCR/ABL}. Define conditional G–dimensional mean
vectors and G × G covariance matrices for the expression measures of class
k ∈ {NEG,BCR/ABL} cancers by

µk ≡ E[X|Y = k] and σk ≡ Cov[X|Y = k],

respectively.
Gene-parameter profiles, concerning differential gene expression between BCR/ABL

and NEG B-cell ALL, may be specified in various ways. Continuous DE gene-
parameter profiles may be defined in terms of the following unstandardized and
standardized measures of differential gene expression between BCR/ABL and
NEG B-cell ALL,

λd(g) ≡ µBCR/ABL(g) − µNEG(g) (30)

and λt(g) ≡ µBCR/ABL(g) − µNEG(g)√
σBCR/ABL(g,g)

πBCR/ABL
+ σNEG(g,g)

πNEG

.

Absolute values of λd(g) and λt(g) may be used for measuring two-sided differ-
ential expression, i.e., either over- or under-expression in BCR/ABL compared
to NEG B-cell ALL.
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Binary DE gene-parameter profiles may be defined in terms of indicators for
two-sided and one-sided differential expression.

λ �=(g) ≡ I(µBCR/ABL(g) �= µNEG(g)) = I(λd(g) �= 0) = I(λt(g) �= 0),(31)
λ+(g) ≡ I(µBCR/ABL(g) > µNEG(g)) = I(λd(g) > 0) = I(λt(g) > 0),

and λ−(g) ≡ I(µBCR/ABL(g) < µNEG(g)) = I(λd(g) < 0) = I(λt(g) < 0).

Estimation of gene-parameter profiles The above DE gene-parameter
profiles may be estimated as follows, based on the dataset XYn of gene ex-
pression measures for the n = 79 B-cell ALL cell samples of the BCR/ABL and
NEG molecular types.

The resubstitution estimators of the continuous gene-parameter profiles of
Equation (30) are based, respectively, on differences of empirical means and
two-sample Welch t-statistics (up to the multiplier 1/

√
n). That is,

λd
n(g) ≡ µBCR/ABL,n(g) − µNEG,n(g) (32)

and λt
n(g) ≡ 1√

n

µBCR/ABL,n(g) − µNEG,n(g)√
σBCR/ABL,n(g,g)

nBCR/ABL
+ σNEG,n(g,g)

nNEG

,

where µk,n(g) ≡ ∑
i I(Yi = k)Xi(g)/nk and σk,n(g, g) ≡ ∑

i I(Yi = k)(Xi(g) −
µk,n(g))2/(nk − 1) denote, respectively, the empirical means and variances of
the gene expression measures for cancers of class k ∈ {NEG,BCR/ABL}.

Estimating the two-sided binary gene-parameter profile λ �= of Equation (31)
involves the two-sided tests of the G null hypotheses H0(g) = I(µBCR/ABL(g) =
µNEG(g)), of no differences in mean gene expression measures between BCR/ABL
and NEG B-cell ALL. Likewise, estimating the one-sided binary gene-parameter
profiles λ+ and λ− involves, respectively, the one-sided tests of the G null hy-
potheses of no over-expression (H0(g) = I(µBCR/ABL(g) ≤ µNEG(g))) and no
under-expression (H0(g) = I(µBCR/ABL(g) ≥ µNEG(g))) in BCR/ABL compared
to NEG B-cell ALL. For single-step common-cut-off maxT Procedure 1, ad-
justed p-values produce the same gene rankings as the test statistics defined in
Equation (32). Simple and naive estimators of the three sets of differentially
expressed genes (i.e., true positives), represented by the gene-parameter profiles
λ �=, λ+, and λ−, are therefore given, respectively, by the sets of genes with the
largest γG values of |λt

n(g)|, λt
n(g), and −λt

n(g). That is,

λ �=n,γG(g) ≡ I

⎛⎝ G∑
g′=1

I(|λt
n(g)| ≥ |λt

n(g′)|) ≥ (1 − γ)G

⎞⎠ , (33)

λ+
n,γG(g) ≡ I

⎛⎝ G∑
g′=1

I(λt
n(g) ≥ λt

n(g′)) ≥ (1 − γ)G

⎞⎠ ,

and λ−n,γG(g) ≡ I

⎛⎝ G∑
g′=1

I(−λt
n(g) ≥ −λt

n(g′)) ≥ (1 − γ)G

⎞⎠ .
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Analogous estimators may also be based on other test statistics, such as unstan-
dardized difference statistics λd

n. More sophisticated estimators, that translate
the proportion γ of rejected hypotheses into a Type I error rate such as the
gFWER, TPPFP, or FDR, could be based on adjusted p-values for the multiple
tests of the G null hypotheses H0(g). For example, one could estimate λ �= by

λ �=n,α(g) ≡ I
(
P̃ �=

0n(g) ≤ α
)
, (34)

where P̃ �=
0n(g) are adjusted p-values for a suitably chosen multiple testing pro-

cedure, such as, FWER-controlling single-step maxT Procedure 1 or a TPPFP-
controlling augmentation multiple testing procedure (Chapter 6, Dudoit and
van der Laan (2006); van der Laan et al. (2004a)). One-sided binary gene-
parameter profiles λ+ and λ− could be estimated likewise.

5.2.3 Association measures for gene-annotation and gene-parameter
profiles

The association between continuous DE gene-parameter profiles, as in Equation
(30), and binary GO gene-annotation profiles may be measured by two-sample
Welch t-statistics (or corresponding p-values). Specifically, given a continuous
G–vector x and a binary G–vector y, define the following association measure,

ρt(x, y) ≡ x̄1 − x̄0√
v[x]1
y1

+ v[x]0
y0

, (35)

where yk ≡ ∑
g I(y(g) = k), x̄k ≡ ∑

g I(y(g) = k)x(g)/yk, and v[x]k ≡ ∑
g I(y(g) =

k)(x(g) − x̄k)2/(yk − 1), k ∈ {0, 1}.
The association between binary DE gene-parameter profiles, as in Equation

(31), and binary GO gene-annotation profiles may be measured by χ2-statistics
(or corresponding p-values) for the test of independence of rows and columns in
a 2× 2 contingency table, such as Table 2. Specifically, given binary G–vectors
x and y, define the following association measure,

ρχ(x, y) ≡ G(g00g11 − g01g10)2

(g00 + g01)(g00 + g10)(g11 + g01)(g11 + g10)
, (36)

where gkk′ ≡ ∑
g I(x(g) = k)I(y(g) = k′), k, k′ ∈ {0, 1}.

Given an association measure3 ρ : IRG×M × IRG → IRM , a G×M GO gene-
annotation matrix A, and a G–dimensional DE gene-parameter profile λ =
Λ(P ), the M–dimensional association parameter vector ψ = Ψ(P ) of primary
interest is defined as

ψ ≡ ρ(A, λ). (37)

3N.B. For ease of notation, ρt and ρχ, defined in Equations (35) and (36) as real-valued
association measures, may also refer loosely to IRM–valued association measures, defined as
ρt(X, y) ≡ (ρt(X(·, m), y) : m = 1, . . . , M) and ρχ(X, y) ≡ (ρχ(X(·, m), y) : m = 1, . . . , M)
for X ∈ IRG×M and y ∈ IRG.
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The corresponding resubstitution estimator ψn = Ψ̂(Pn) is simply obtained by
replacing the gene-parameter profile λ by an estimator thereof λn = Λ̂(Pn), that
is,

ψn ≡ ρ(A, λn). (38)

5.2.4 Null and alternative hypotheses

For the t-statistic-based association measure ρt of Equation (35), the identifica-
tion of GO terms m that are significantly (positively or negatively) associated
with BCR/ABL vs. NEG differential gene expression involves the two-sided
tests of the M null hypotheses H0(m) = I(ψ(m) = ψ0(m)) against the al-
ternative hypotheses H1(m) = I(ψ(m) �= ψ0(m)), with null values ψ0(m) =
0. In some contexts, one may be interested in identifying positive (negative)
associations, i.e., in the one-sided tests of the M null hypotheses H0(m) =
I(ψ(m) ≤ ψ0(m)) (H0(m) = I(ψ(m) ≥ ψ0(m))) against the alternative hy-
potheses H1(m) = I(ψ(m) > ψ0(m)) (H1(m) = I(ψ(m) < ψ0(m))).

For the χ2-statistic-based association measure ρχ of Equation (36), the iden-
tification of GO terms m that are significantly (positively or negatively) associ-
ated with BCR/ABL vs. NEG differential gene expression involves the one-sided
tests of the M null hypotheses H0(m) = I(ψ(m) ≤ ψ0(m)) against the alterna-
tive hypotheses H1(m) = I(ψ(m) > ψ0(m)). A natural choice for the null values
is the mean of the χ2(1)-distribution, ψ0(m) = 1.

5.2.5 Test statistics

One-sided and two-sided tests of null hypotheses concerning any of the asso-
ciation parameters defined above may be based on (unstandardized) difference
statistics Tn(m), defined as in Equation (20).

For one-sided tests, large values of the test statistics Tn(m) provide evidence
against the corresponding null hypotheses H0(m), that is, rejection regions are
of the form Cn(m) = (cn(m),+∞). For two-sided tests, large values of the
absolute test statistics |Tn(m)| provide evidence against the corresponding null
hypotheses H0(m).

5.2.6 Multiple testing procedures

For the purpose of illustration, we focus on control of the family-wise error rate,
using single-step maxT Procedure 1, based on the non-parametric bootstrap
null value shifted test statistics null distribution (null shift values λ0(m) = 0
and no scaling). The main steps are outlined in Procedure 2.

Bootstrap-based single-step maxT adjusted p-values P̃0n(m) are computed
as in Equation (28). Let On(m) denote indices for the ordered adjusted p-values,
so that P̃0n(On(1)) ≤ . . . ≤ P̃0n(On(M)). GO terms with adjusted p-values less
than or equal to α are declared significantly associated with differential gene
expression at nominal FWER level α. That is, the list of GO terms found to be

40

http://biostats.bepress.com/ucbbiostat/paper202



associated with differential gene expression is

Rn(α) = {m : P̃0n(m) ≤ α} = {On(1), . . . , On(Rn(α))},
where Rn(α) ≡ |Rn(α)| denotes the number of identified GO terms.

5.2.7 Summary of testing scenarios

This section summarizes our approach for identifying GO terms associated with
BCR/ABL vs. NEG differential gene expression. For each of the three gene
ontologies (i.e., BP, CC, and MF), we consider the following three types of
testing scenarios, each corresponding to a different association parameter ψ =
ρ(A, λ) for GO annotation and BCR/ABL vs. NEG differential gene expression.
Scenarios MT[t, t] and MT[d, t] are very similar and correspond, respectively, to
continuous gene-parameter profiles of standardized and unstandardized measures
of differential gene expression. In contrast, Scenario MT[�=, χ] corresponds to a
binary gene-parameter profile of differential gene expression indicators.

1. Scenario MT[t, t]: Association parameter ψt,t ≡ ρt(A, |λt|), for
standardized continuous DE gene-parameter profile λt. Consider
the two-sided tests of

Ht,t
0 (m) ≡ I(ψt,t(m) = ψt,t

0 (m)) vs. Ht,t
1 (m) ≡ I(ψt,t(m) �= ψt,t

0 (m)),

where the association parameter vector of interest is defined as ψt,t ≡
ρt(A, |λt|), based on Equations (30) and (35), and the null values are
ψt,t

0 (m) ≡ 0. The continuous DE gene-parameter profile λt is estimated by
λt

n, as in Equation (32), and the association parameter ψt,t is estimated
by the resubstitution estimator ψt,t

n ≡ ρt(A, |λt
n|), as in Equation (38).

The test statistics are defined as (unstandardized) difference statistics,

T t,t
n (m) ≡ √

n(ψt,t
n (m) − ψt,t

0 (m)),

and the null hypotheses Ht,t
0 (m) are rejected for large absolute values of

T t,t
n (m).

2. Scenario MT[d, t]: Association parameter ψd,t ≡ ρt(A, |λd|), for un-
standardized continuous DE gene-parameter profile λd. Consider
the two-sided tests of

Hd,t
0 (m) ≡ I(ψd,t(m) = ψd,t

0 (m)) vs. Hd,t
1 (m) ≡ I(ψd,t(m) �= ψd,t

0 (m)),

where the association parameter vector of interest is defined as ψd,t ≡
ρt(A, |λd|), based on Equations (30) and (35), and the null values are
ψd,t

0 (m) ≡ 0. The continuous DE gene-parameter profile λd is estimated
by λd

n, as in Equation (32), and the association parameter ψd,t is estimated
by the resubstitution estimator ψd,t

n ≡ ρt(A, |λd
n|), as in Equation (38).

The test statistics are defined as (unstandardized) difference statistics,

T d,t
n (m) ≡ √

n(ψd,t
n (m) − ψd,t

0 (m)),
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and the null hypotheses Hd,t
0 (m) are rejected for large absolute values of

T d,t
n (m).

3. Scenario MT[ �=, χ]: Association parameter ψ �=,χ ≡ ρχ(A, λ �=), for
binary DE gene-parameter profile λ �=. Consider the one-sided tests
of

H �=,χ
0 (m) ≡ I(ψ �=,χ(m) ≤ ψ �=,χ

0 (m)) vs. H �=,χ
1 (m) ≡ I(ψ �=,χ(m) > ψ �=,χ

0 (m)),

where the association parameter vector of interest is defined as ψ �=,χ ≡
ρχ(A, λ �=), based on Equations (31) and (36), and the null values are
ψ �=,χ

0 (m) ≡ 1 (the mean of the χ2(1)-distribution). The following two
types of estimators λ �=n are considered for the binary DE gene-parameter
profile λ �=: λ �=n,γG, with numbers of DE genes γG = 20, 50, 100 (Equation
(33)); λ �=n,α, defined in terms of adjusted p-values for FWER-controlling
permutation-based single-step maxT Procedure 1 (B = 1, 000 permuta-
tions of the cancer class labels) and nominal level α = 0.05 (Equation
(34)). Given an estimator λ �=n of λ �=, the association parameter ψ �=,χ is
estimated by the resubstitution estimator ψ �=,χ

n ≡ ρχ(A, λ �=n ), as in Equa-
tion (38). The test statistics are defined as (unstandardized) difference
statistics,

T �=,χ
n (m) ≡ √

n(ψ �=,χ
n (m) − ψ �=,χ

0 (m)),

and the null hypotheses H �=,χ
0 (m) are rejected for large values of T �=,χ

n (m).

For each of the three testing scenarios, the test statistics null value shifted
null distribution Q0 is estimated as in Procedure 2, with B = 5, 000 non-
parametric bootstrap samples of the data XYn and ZB

n (m, b) = TB
n (m, b) −

E[TB
n (m, ·)] (i.e., null shift values λ0(m) = 0 and no scaling). Bootstrap-

based single-step maxT adjusted p-values P̃0n(m) are computed as in Equation
(28) for one-sided testing Scenario MT[�=, χ]. For two-sided testing Scenarios
MT[t, t] and MT[d, t], adjusted p-values are computed based on absolute values
of ZB

n (m, b) and Tn(m).
In what follows, the G–dimensional gene-parameter profiles λ correspond

to the G = 2, 071 genes with unique Entrez Gene IDs, obtained as described
in Section 5.1. For each of the three gene ontologies, binary gene-annotation
matrices are assembled for the GO terms annotating at least 10 of the G = 2, 071
genes of interest: G = 2, 071×MBP = 367 gene-annotation matrix ABP for the
BP ontology, G = 2, 071 ×MCC = 81 gene-annotation matrix ACC for the CC
ontology, and G = 2, 071 ×MMF = 185 gene-annotation matrix AMF for the
MF ontology.

5.3 Results

5.3.1 Differentially expressed genes between BCR/ABL and NEG
B-cell ALL

In order to identify differentially expressed genes between BCR/ABL and NEG
B-cell ALL, two-sided tests of the G null hypotheses H0(g) = I(µBCR/ABL(g) =
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µNEG(g)) are performed using the two-sample t-statistics λt
n(g) of Equation (32)

and FWER-controlling bootstrap-based single-step maxT Procedure 2. Ad-
justed p-values P̃ �=

0n(g) are obtained using the MTP function from the multtest
package (Version 1.8.0, Bioconductor Release 1.7), withB = 5, 000 non-parametric
bootstrap samples and other arguments set to their default values.

Figure 5 displays a normal quantile-quantile plot of the test statistics λt
n(g)

(Panel (a)) and a plot of the sorted bootstrap-based single-step maxT adjusted
p-values P̃ �=

0n(g) (Panel (b)). A handful of genes stand out in terms of their large
absolute test statistics and small adjusted p-values.

For control of the FWER at nominal level α = 0.05, Procedure 2 identifies
16 differentially expressed genes, i.e., 16 genes with P̃ �=

0n(g) ≤ α. Table 3 pro-
vides the test statistics, adjusted p-values, and various identifiers for these 16
genes. A more detailed hyperlinked table is posted on the website companion
(Supplementary Table 1; www.stat.berkeley.edu/~sandrine/Docs/Papers/
DFF06/DFF.html).

Only two of the 16 identified genes have a negative test statistic (MX1 and
TPD52L2), suggesting that most DE genes tend to be over-expressed in cell sam-
ples with the BCR/ABL fusion. The gene showing the most over-expression in
BCR/ABL cell samples, as measured by the t-statistics λt

n, is the ABL1 gene (v-
abl Abelson murine leukemia viral oncogene homolog 1), located on the
long arm of chromosome 9 (9q34.1). As mentioned in Section 5.1, the BCR/ABL
phenotype is indeed defined in terms of the ABL1 gene.

Furthermore, many of the DE genes seem to be related to apoptosis or
oncogenesis. For example, the Kruppel-like factor 9 (KLF9) gene encodes
a transcription factor that binds GC-box elements in gene promoter regions.
The Krüppel-like factor (KLF) family is comprised of highly-related zinc-finger
proteins, that are important components of the eukaryotic cellular transcrip-
tional machinery and that take part in a wide range of cellular functions (e.g.,
cell proliferation, apoptosis, differentiation, and neoplastic transformation). In
particular, KLFs have been linked to various cancers (Kaczynski et al., 2003).
The intron-less gene AHNAK nucleoprotein (desmoyokin) (AHNAK), located on
the long arm of chromosome 11 (11q12.2), encodes an unusually large protein
(≈ 700kDa) that is typically repressed in cell lines derived from human neu-
roblastomas and several other types of tumors (Shtivelman et al., 1992). Yet
another example, the caspase 8, apoptosis-related cysteine peptidase
(CASP8) gene, encodes a key enzyme at the top of the apoptotic cascade and has
been linked to neuroblastoma (Banelli et al., 2002). Likewise, other genes listed
in Table 3, including MX1, FYN, ACTN1, FHL1, and TRAM2, appear to be related
to the molecular biology of cancer. For further detail, the interested reader is
invited to consult Supplementary Table 1 and follow links to PubMed and other
databases.

Our results are in general agreement with those of von Heydebreck et al.
(2004), slight differences being due, most likely, to our preliminary gene filtering,
which involves averaging the expression measures of multiple probes mapping
to the same Entrez Gene ID.
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5.3.2 GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL

Figure 6 displays, for each of the three gene ontologies and each of the three
testing scenarios, plots of the sorted adjusted p-values, P̃0n(On(1)) ≤ . . . ≤
P̃0n(On(M)), for FWER-controlling bootstrap-based single-step maxT Proce-
dure 2 (B = 5, 000 bootstrap samples). The smaller the adjusted p-values, the
less conservative the procedure and the longer the list Rn(α) = {m : P̃0n(m) ≤
α} of identified GO terms at any given nominal Type I error level α. Table 4
summarizes the results in terms of the numbers Rn(α) = |Rn(α)| of GO terms
found to be significantly associated with BCR/ABL vs. NEG differential gene
expression at different nominal FWER levels α.

In general, adjusted p-values tend to be quite large, with only a handful
of GO terms identified as being significantly associated with BCR/ABL vs.
NEG differential gene expression at nominal FWER level α ∈ {0.05, 0.10, 0.20}.
The adjusted p-values for Scenarios MT[t, t] and MT[d, t] (red and blue plot-
ting symbols), corresponding, respectively, to standardized and unstandardized
continuous DE gene-parameter profiles, are similar: for the BP and MF gene on-
tologies, Scenario MT[t, t] seems to be slightly more conservative than Scenario
MT[d, t], however, this does not hold for the CC ontology. Scenario MT[�=, χ],
with four different estimators of the binary DE gene-parameter profile λ �=, tends
to be more conservative than either Scenario MT[t, t] or MT[d, t]. Furthermore,
the choice of parameter γG, for the number of genes called differentially ex-
pressed, can have a substantial impact on the adjusted p-values for Scenario
MT[�=, χ : γG]. There are some indications, especially for the CC ontology,
that larger values of the parameter γG lead to larger numbers of identified GO
terms. Note that for Scenario MT[�=, χ], the p-value-based estimator λ �=n,α, with
α = 0.05, and the naive estimator λ �=n,γG, with γG = 20, yield very similar results
(green and purple plotting symbols). Indeed, when applied to the entire dataset
of n = 79 cell samples, permutation-based single-step maxT Procedure 1 iden-
tifies 20 genes as being differentially expressed between BCR/ABL and NEG
B-cell ALL at nominal FWER level α = 0.05. In other words, λ �=n,0.05 and λ �=n,20

yield the same estimate of the binary gene-parameter profile λ �= for the set of DE
genes. Minor discrepancies between the results of Scenarios MT[�=, χ : α = 0.05]

and MT[�=, χ : γG = 20] are due to the fact that while the estimators λ �=n,0.05

and λ �=n,20 coincide on the full dataset, they may differ on bootstrap samples of
these data.

Next, the three testing scenarios are compared in terms of the contents of the
lists Rn(α) of identified GO terms. Specifically, let On(r) ≡ {On(1), . . . , On(r)}
denote the set of indices corresponding to the r smallest adjusted p-values for
a given gene ontology and testing scenario. Measures of agreement between
testing scenarios are provided by the numbers of common GO terms among
sets of ordered GO terms On(r) of various cardinality r, i.e., by the cardinality
of the intersections between sets On(r) for different testing scenarios. Figure
7 displays plots of numbers of common GO terms for pairs of testing scenar-
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ios. As expected, there is substantial overlap between the GO terms identified
by Scenarios MT[t, t] and MT[d, t] for continuous DE gene-parameter profiles
(blue plotting symbols in top panels). This suggests that, for the ALL dataset,
standardized (λt) and unstandardized (λd) continuous measures of differential
gene expression have similar properties. In contrast, there is much less overlap
between the GO terms identified by Scenario MT[�=, χ], for binary DE gene-
parameter profiles, and either Scenario MT[t, t] or MT[d, t]. For example, for the
MF gene ontology, among the top 10 GO terms On(10) identified by each testing
scenario, 6 are common to Scenarios MT[t, t] and MT[d, t], whereas at most 3
are common to Scenarios MT[t, t] and MT[�=, χ]. Again, note the near perfect
agreement between Scenarios MT[�=, χ : α = 0.05] and MT[�=, χ : γG = 20]
(purple plotting symbols in lower panels). Figure 7 again illustrates the lack of
robustness of Scenario MT[�=, χ : γG] to the choice of parameter γG.

Moreover, examine graphical summaries of the joint distributions of the es-
timated continuous DE gene-parameter profile λt

n and the gene-annotation pro-
files A(·,m) for the top two GO terms m ∈ {On(1), On(2)} identified according
to each testing scenario. Figure 8 displays conditional boxplots of λt

n given
A(·,m), that is, boxplots of the unannotated and annotated estimated gene-
parameter profiles, (λt

n(g) : A(g,m) = 0) and (λt
n(g) : A(g,m) = 1), respec-

tively. While the boxplots reveal clear differences (non-overlapping notches)
between unannotated and annotated profiles for some of the GO terms (e.g.,
MF term GO:0003735), the differences can be subtle for other terms (e.g., MF
term GO:0003924). Not surprisingly, the most extreme differences are seen
with Scenarios MT[t, t] and MT[d, t], and, to a lesser extent, with Scenario
MT[�=, χ : α = 0.05] for the CC ontology. The boxplots again illustrate dif-
ferences between Scenario MT[�=, χ] and either Scenario MT[t, t] or MT[d, t].

Tables 5, 6, and 7 report various p-value-based measures of association be-
tween the estimated DE gene-parameter profiles λt

n and λ �=n,α and the gene-
annotation profiles A(·,m) for the top two GO terms m ∈ {On(1), On(2)} iden-
tified according to each testing scenario, in the BP, CC, and MF gene ontologies,
respectively. The transformation to the [0, 1] p-value scale allows a more direct
comparison of the various testing scenarios. The tables again highlight the dif-
ferences between Scenario MT[�=, χ], for binary DE gene-parameter profiles, and
either Scenario MT[t, t] or MT[d, t], for continuous DE gene-parameter profiles.
As expected, Scenarios MT[t, t] and MT[d, t] tend to identify GO terms with
small p-values P t,t

0n (m) for t-tests of association between estimated continuous
gene-parameter profiles λt

n and gene-annotation profiles A(·,m). In contrast,
and also as expected, Scenario MT[�=, χ] tends to identify GO terms with small
p-values P �=,χ

0n (m) for χ2-tests of association between estimated binary gene-
parameter profiles λ �=n,α and gene-annotation profiles A(·,m). Furthermore, the
tables corroborate our earlier observation that Scenario MT[�=, χ] tends to be
more conservative than either Scenario MT[t, t] or MT[d, t]. Indeed, some of the
GO terms with small p-values P t,t

0n (m) for continuous gene-parameter profiles
have very large p-values P �=,χ

0n (m) for binary gene-parameter profiles (e.g., MF
term GO:0003735 in Table 7). Such terms are likely to be identified by Sce-
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narios MT[t, t] and MT[d, t], but “missed” by Scenario MT[�=, χ]. The converse
phenomenon is not as striking. However, one should keep in mind that Scenario
MT[�=, χ] depends on the choice of estimator for the binary DE gene-parameter
profile λ �=, i.e., on parameters such as α and γG. In particular, with certain val-
ues of α (or γG), binary Scenario MT[�=, χ] may become more similar to either
continuous Scenario MT[t, t] or MT[d, t]. Column A1(m) in Tables 5, 6, and 7
suggests that, compared to Scenario MT[�=, χ], Scenarios MT[t, t] and MT[d, t]
tend to identify GO terms annotating a larger number of genes (this observation
also holds for the top 20 terms identified according to each testing scenario; data
not shown).

Figure 9 displays a scatterplot matrix of the 50 smallest adjusted p-values,
based on Scenario MT[t, t], for each of the three gene ontologies. The plots
indicate that more terms tend to be identified in the BP ontology compared to
either the CC or MF ontologies, and fewer terms tend to be identified in the MF
ontology compared to either the BP or CC ontologies. Note that comparisons
based on adjusted p-values take into account differences in the numbers of tested
hypotheses, MBP = 367, MCC = 81, and MMF = 185, for each ontology.

Tables 8, 9, and 10 list the 20 GO terms with the smallest adjusted p-values
for Scenario MT[t, t], applied to the BP, CC, and MF gene ontologies, respec-
tively. Figures 10, 11, and 12 display portions of the directed acyclic graphs
for the top 20 GO terms in each ontology. The figures suggest that GO terms
associated with BCR/ABL vs. NEG differential gene expression tend to concen-
trate in certain branches of the DAGs, i.e., differential expression is associated
with related properties of gene products. While it is known that many of the
effects of the BCR/ABL fusion are mediated by tyrosine kinase activity, the
MF GO term protein-tyrosine kinase activity (GO:0004713) does not appear to
be significantly associated with differential gene expression between BCR/ABL
and NEG B-cell ALL (adjusted p-value of 0.8890 for Scenario MT[t, t]).

For illustration purposes, we further investigate two of the GO terms from
Tables 8 and 10: GO term anti-apoptosis (GO:0006916), with ninth smallest
adjusted p-value for Scenario MT[t, t] applied to the BP gene ontology, and GO
term structural constituent of ribosome (GO:0003735), with the smallest ad-
justed p-value for Scenario MT[t, t] applied to the MF gene ontology. Tables 11
and 12 list genes directly or indirectly annotated with GO terms GO:0006916
and GO:0003735, respectively. Figure 13 displays mean-difference plots of the
average expression measures in BCR/ABL and NEG cell samples for genes an-
notated with GO terms GO:0006916 and GO:0003735.

Panel (a) in Figure 13 indicates that genes annotated with BP GO term
anti-apoptosis (GO:0006916) tend to be over-expressed in BCR/ABL compared
to NEG cell samples. Among these 21 genes, only SOCS2 is significantly differen-
tially expressed between BCR/ABL and NEG B-cell ALL (nominal FWER level
α = 0.05, Table 3). However, a brief survey of the literature reveals that several
of the genes in Table 11 interact with the BCR/ABL proto-oncogene. For in-
stance, Kirchner et al. (2003) investigate mechanisms for the BCR/ABL-mediated
activation of the transcription factor NF-κB/Rel encoded by the NFKB1 gene.
Their findings suggest that NF-κB/Rel may be a potential target for molecular
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therapies of leukemia. Mukhopadhyay et al. (2002) demonstrate that ectopic
expression of BCR/ABL interferes with the tumor necrosis factor (TNF) sig-
naling pathway through the down-regulation of TNF receptors. The TNF gene
encodes a multifunctional proinflammatory cytokine involved in the regulation
of a wide spectrum of biological processes, including cell proliferation, differen-
tiation, apoptosis, lipid metabolism, and coagulation. The TNF gene has been
implicated in a variety of diseases, including autoimmune diseases, insulin resis-
tance, and cancer.

As seen in Table 12, 22 of the 24 genes annotated with MF GO term struc-
tural constituent of ribosome (GO:0003735) code for ribosomal proteins. Al-
though none of the 24 annotated genes are identified as being significantly dif-
ferentially expressed between BCR/ABL and NEG B-cell ALL (nominal FWER
level α = 0.05, Table 3), Panel (b) in Figure 13 suggests that these genes tend
to be under-expressed in BCR/ABL cell samples.

6 Discussion

We have proposed a general and formal statistical framework for multiple tests
of association with biological annotation metadata. A key component of our ap-
proach is the systematic and precise translation of a generic biological question
into a corresponding multiple hypothesis testing problem, concerning association
measures between known gene-annotation profiles and unknown gene-parameter
profiles. This general and rigorous formulation of the statistical inference ques-
tion allows us to apply the multiple testing methodology developed in Dudoit
and van der Laan (2006) and related articles, to control a broad class of Type I
error rates, in testing problems involving general data generating distributions
(with arbitrary dependence structures among variables), null hypotheses, and
test statistics.

The flexibility of our approach was illustrated using the ALL microarray
dataset of Chiaretti et al. (2004), with the aim of relating GO annotation to dif-
ferential gene expression between BCR/ABL and NEG B-cell ALL. This analysis
demonstrates the importance of selecting a suitable DE gene-parameter profile λ
and measure ρ for the association between this gene-parameter profile and GO
gene-annotation profiles A. Indeed, for the ALL dataset, the choice of gene-
parameter profile for measuring differential expression between BCR/ABL and
NEG B-cell ALL had a large impact on the list of identified GO terms. Test-
ing scenarios based on binary DE gene-parameter profiles (Scenario MT[�=, χ])
tended to be more conservative than scenarios based on continuous DE gene-
parameter profiles (Scenarios MT[t, t] and MT[d, t]), with little overlap between
the lists of identified GO terms. Furthermore, testing scenarios based on binary
gene-parameter profiles were sensitive to the somewhat arbitrary DE/non-DE
gene dichotomization, that is, Scenario MT[�=, χ : γG] lacked robustness with
respect to the choice of parameter γG for the number of genes called differ-
entially expressed according to the estimator λ �=n,γG. In contrast, continuous
gene-parameter profiles based on standardized and unstandardized measures of
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differential gene expression lead to very similar results (Scenarios MT[t, t] and
MT[d, t]).

Our results on the ALL microarray dataset clearly show the limitations of
binary gene-parameter profiles of differential expression indicators, which are
still the norm for combined GO annotation and microarray data analyses. Our
proposed statistical framework, with general definitions for the gene-annotation
and gene-parameter profiles, allows consideration of a much broader class of
inference problems, that extend beyond GO annotation and microarray data
analysis. Gene-annotation profiles may be continuous or polychotomous and
may correspond, for example, to intron/exon counts/lengths/nucleotide distri-
butions, gene pathway membership, or gene regulation by particular transcrip-
tion factors. Likewise, gene-parameter profiles may be continuous or polychoto-
mous and may correspond, for example, to regression coefficients relating possi-
bly censored biological and clinical outcomes to genome-wide transcript levels,
DNA copy numbers, and other covariates.

This first application of our proposed methodology only considered control
of the family-wise error rate using single-step common-cut-off maxT Procedure
1, based on the non-parametric bootstrap null value shifted test statistics null
distribution. Adjusted p-values tended to be quite large, with only a hand-
ful of GO terms identified as being significantly associated with BCR/ABL
vs. NEG differential gene expression. Joint stepwise augmentation and em-
pirical Bayes procedures could be used for control of a broader and more bi-
ologically relevant class of Type I error rates, defined as tail probabilities,
gTP (q, g) = Pr(g(Vn, Rn) > q), for arbitrary functions g(Vn, Rn) of the num-
bers of false positives Vn and rejected hypotheses Rn (Dudoit and van der Laan,
2006; Dudoit et al., 2004a; van der Laan et al., 2004a,b, 2005). Error rates based
on the proportion Vn/Rn of false positives (e.g., TPPFP and FDR) are espe-
cially appealing for large-scale testing problems, compared to error rates based
on the number Vn of false positives (e.g., gFWER), as they do not increase
exponentially with the number M of tested hypotheses. More powerful analy-
ses may also be achieved with the new null quantile-transformed test statistics
null distribution of van der Laan and Hubbard (2005). The multiple testing
methodology developed in Dudoit and van der Laan (2006) and related articles
is particularly well-suited to handle the variety of parameters of interest and
the complex and unknown dependence structures among test statistics (e.g.,
implied by the DAG structure of GO terms) that are likely to be encountered in
these and other high-dimensional inference problems in biomedical and genomic
research.

Ongoing efforts include consideration of more general and biologically per-
tinent multivariate association measures ρ. For instance, for GO annotation
metadata, the association parameter for a given GO term could take into ac-
count the structure of the DAG by considering the gene-annotation profiles of
offspring or ancestor terms. We are also interested in developing better numeri-
cal and graphical methods for representing and interpreting the multiple testing
results, e.g., the lists of GO terms and associated adjusted p-values. Finally,
we are planning on implementing the proposed methods in an R package to be
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released as part of the Bioconductor Project.

Software and website companion

The multiple testing procedures proposed in Dudoit and van der Laan (2006)
and related articles (Birkner et al., 2005; Dudoit et al., 2004a,b; Keleş et al.,
2004; van der Laan et al., 2004a,b, 2005; van der Laan and Hubbard, 2005;
Pollard et al., 2005a,b; Pollard and van der Laan, 2004; Rubin et al., 2005)
are implemented in the R package multtest, released as part of the Bioconduc-
tor Project, an open-source software project for the analysis of biomedical and
genomic data (Pollard et al. (2005b); www.bioconductor.org).

The experimental data (ALL) and annotation metadata (annaffy, annotate,
GO, hgu95av2) packages used in the analysis of Section 5 may also be obtained
from the Bioconductor Project website.

The website companion to this article provides additional tables, figures,
code, and references: www.stat.berkeley.edu/~sandrine/Docs/Papers/DFF06/
DFF.html.
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Table 1: Type I and Type II errors in multiple hypothesis testing. This table sum-
marizes the different types of decisions and errors in multiple hypothesis testing.
The number of rejected hypotheses is Rn ≡ |Rn| =

∑M
m=1 I(Tn(m) ∈ Cn(m)),

the number of Type I errors is Vn ≡ |Rn∩H0| =
∑

m∈H0
I(Tn(m) ∈ Cn(m)), and

the number of Type II errors is Un ≡ |Rc
n ∩H1| =

∑
m∈H1

I(Tn(m) /∈ Cn(m)).

Null hypotheses
non-rejected rejected

true |Rc
n ∩H0| Vn = |Rn ∩H0| h0 = |H0|

(Type I)
Null hypotheses

false Un = |Rc
n ∩H1| |Rn ∩H1| h1 = |H1|

(Type II)

M −Rn Rn = |Rn| M
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Table 2: Association parameters for binary gene-annotation profiles and gene-
parameter profiles. Given a binary gene-annotation profile A(·,m) and a binary
gene-parameter profile λ, one may build a 2 × 2 contingency table, with rows
corresponding to the gene-annotation profile and columns to the gene-parameter
profile. Cell counts are defined as gkk′(m) ≡ ∑

g I(A(g,m) = k)I(λ(g) = k′),
k, k′ ∈ {0, 1}. For instance, g11(m) corresponds to the number of genes scored
as one for both the gene-annotation profile and the gene-parameter profile, i.e.,
the number of genes possessing both features of interest.

Gene-parameter profile, λ
1 0

Gene- 1 g11(m) = g10(m) = A1(m) =

annotation
PG

g=1 A(g, m)λ(g)
PG

g=1 A(g, m)(1 − λ(g))
PG

g=1 A(g, m)

profile,
A(·, m) 0 g01(m) = g00(m) = A0(m) =

PG
g=1(1 − A(g, m))λ(g)

PG
g=1(1 − A(g, m))(1 − λ(g))

PG
g=1(1 − A(g, m))

Gλ̄ =
PG

g=1 λ(g) G(1 − λ̄) =
PG

g=1(1 − λ(g)) G
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Table 3: Differentially expressed genes between BCR/ABL and
NEG B-cell ALL. This table provides the Affymetrix probe IDs,
Entrez Gene IDs (hgu95av2LOCUSID environment in hgu95av2
package), gene symbols (hgu95av2SYMBOL environment), gene
names (hgu95av2GENENAME environment), test statistics λt

n(g)
(Equation (32)), and adjusted p-values P̃ �=

0n(g) (Equation (28)) for
the 16 genes found to be significantly differentially expressed be-
tween BCR/ABL and NEG B-cell ALL, at nominal FWER level
α = 0.05, according to bootstrap-based single-step maxT Proce-
dure 2, with two-sample t-statistics λt

n(g) and B = 5, 000 bootstrap
samples. A more detailed hyperlinked table, including information
on gene function, chromosomal location, links to GenBank, Entrez
Gene, NCBI Map Viewer, UniGene, PubMed, AmiGO, and KEGG,
is provided on the website companion (Supplementary Table 1).

Probe ID Entrez Gene ID Symbol λt
n(g) P̃ �=

0n(g)
1635_at 25 ABL1 8.44 0
v-abl Abelson murine leukemia viral oncogene homolog 1

40202_at 687 KLF9 6.33 0
Kruppel-like factor 9

37027_at 79026 AHNAK 5.71 0.0014
AHNAK nucleoprotein (desmoyokin)

39837_s_at 168544 ZNF467 5.45 0.0034
zinc finger protein 467

33774_at 841 CASP8 5.29 0.0042
caspase 8, apoptosis-related cysteine peptidase

37014_at 4599 MX1 -5.23 0.0050
myxovirus (influenza virus) resistance 1,

interferon-inducible protein p78 (mouse)

2039_s_at 2534 FYN 5.21 0.0050
FYN oncogene related to SRC, FGR, YES

39329_at 87 ACTN1 4.97 0.0096
actinin, alpha 1

32542_at 2273 FHL1 4.96 0.0102
four and a half LIM domains 1

40051_at 9697 TRAM2 4.59 0.0268
translocation associated membrane protein 2

38032_at 9900 SV2A 4.54 0.0308
synaptic vesicle glycoprotein 2A

39319_at 3937 LCP2 4.50 0.0346
lymphocyte cytosolic protein 2

(SH2 domain containing leukocyte protein of 76kDa)

33232_at 1396 CRIP1 4.46 0.0368
cysteine-rich protein 1 (intestinal)

Continued on next page ...
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... continued from previous page

Probe ID Entrez Gene ID Symbol λt
n(g) P̃ �=

0n(g)
36591_at 7277 TUBA1 4.37 0.0444
tubulin, alpha 1 (testis specific)

38994_at 8835 SOCS2 4.35 0.0466
suppressor of cytokine signaling 2

40076_at 7165 TPD52L2 -4.33 0.0480
tumor protein D52-like 2
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Table 4: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL. This table reports, for each of the three gene
ontologies and each of the three testing scenarios, the numbers Rn(α) = |Rn(α)|
of GO terms found to be significantly associated with BCR/ABL vs. NEG dif-
ferential gene expression at different nominal FWER levels α.

Nominal FWER level, α
0.05 0.10 0.20 0.05 0.10 0.20 0.05 0.10 0.20

MT[t, t] 2 6 14 3 4 5 1 1 3
MT[d, t] 1 5 16 3 5 7 1 2 4

MT[ �=, χ : α = 0.05] 0 3 5 0 0 0 1 1 1
MT[ �=, χ : γG = 20] 0 0 0 0 0 0 1 1 1
MT[ �=, χ : γG = 50] 0 0 1 2 2 2 0 0 0

MT[ �=, χ : γG = 100] 0 0 2 1 1 2 0 0 0

BP CC MF
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Table 5: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, top two BP GO terms. This table provides
association measures between the estimated DE gene-parameter profiles λt

n and
λ �=n,α and the gene-annotation profiles A(·,m) for the top two BP GO terms
m ∈ {On(1), On(2)} identified according to each of the three testing scenarios.
A1(m) ≡ ∑

g A(g,m): Number of genes directly or indirectly annotated with
GO term m (out of G = 2, 071 genes, GOALLLOCUSID environment in GO pack-
age). P t,t

0n (m): Nominal unadjusted p-value for the two-sample t-test comparing
the unannotated and annotated estimated continuous DE gene-parameter pro-
files, (λt

n(g) : A(g,m) = 0) and (λt
n(g) : A(g,m) = 1), respectively (t.test

function from the R stats package, with default argument values). P �=,χ
0n (m):

Unadjusted p-value for the χ2-test of independence between the estimated bi-
nary DE gene-parameter profile λ �=n,α, α = 0.05, and the gene-annotation profile
A(·,m) (chisq.test function from the R stats package, with arguments simu-
late.p.value = TRUE, correct=FALSE). P̃0n(m): Bootstrap-based single-step
maxT adjusted p-value, according to which the top two GO terms are identified
for each testing scenario.

BP

Scenario GO term A1(m) P t,t
0n (m) P �=,χ

0n (m) P̃0n(m)
MT[t, t] GO:0008152 1076 0 0.1704 0.0262

GO:0044237 1045 0 0.1824 0.0428
MT[d, t] GO:0006091 98 0 0.6172 0.0366

GO:0000226 14 0.0018 1 0.0582
MT[�=, χ : α = 0.05] GO:0008361 27 0.0553 0.0035 0.0828

GO:0016049 27 0.0553 0.0010 0.0828
MT[�=, χ : γG = 20] GO:0008361 27 0.0553 0.0020 0.2078

GO:0016049 27 0.0553 0.0020 0.2078
MT[�=, χ : γG = 50] GO:0048522 87 0.0356 0.0120 0.1860

GO:0048518 96 0.0439 0.0145 0.2338
MT[�=, χ : γG = 100] GO:0050793 24 0.0854 0.0175 0.1458

GO:0007155 59 0.0006 0.1109 0.1980
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Table 6: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, top two CC GO terms. Details in Table
5 caption.

CC

Scenario GO term A1(m) P t,t
0n (m) P �=,χ

0n (m) P̃0n(m)
MT[t, t] GO:0005840 25 0 1 0.0056

GO:0030529 77 0 0.6387 0.0138
MT[d, t] GO:0005840 25 0 1 0.0040

GO:0005830 11 0 1 0.0052
MT[�=, χ : α = 0.05] GO:0005578 10 0.0167 0.0775 0.4940

GO:0031012 10 0.0167 0.0815 0.4940
MT[�=, χ : γG = 20] GO:0005578 10 0.0167 0.1069 0.3500

GO:0031012 10 0.0167 0.0975 0.3500
MT[�=, χ : γG = 50] GO:0005576 54 0.0009 1 0.0078

GO:0005615 31 0.0480 0.2509 0.0078
MT[�=, χ : γG = 100] GO:0005576 54 0.0009 1 0.0488

GO:0005615 31 0.0480 0.2439 0.1280

Table 7: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, top two MF GO terms. Details in Table
5 caption.

MF

Scenario GO term A1(m) P t,t
0n (m) P �=,χ

0n (m) P̃0n(m)
MT[t, t] GO:0003735 24 0 1 0.0024

GO:0003723 143 0 0.4068 0.1168
MT[d, t] GO:0003735 24 0 1 0.0022

GO:0003723 143 0 0.3968 0.0784
MT[�=, χ : α = 0.05] GO:0004930 10 0.2241 0.0065 0.0366

GO:0003924 34 0.6501 0.0395 0.7046
MT[�=, χ : γG = 20] GO:0004930 10 0.2241 0.0025 0.0168

GO:0003924 34 0.6501 0.0495 0.6210
MT[�=, χ : γG = 50] GO:0004930 10 0.2241 0.0040 0.4108

GO:0030246 22 0.8582 0.1919 0.4794
MT[�=, χ : γG = 100] GO:0005509 69 0.0004 0.1399 0.3140

GO:0004930 10 0.2241 0.0025 0.3262
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Table 8: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, top 20 BP GO terms. This table lists the
20 GO terms with the smallest adjusted p-values for Scenario MT[t, t] applied
to the BP gene ontology. A1(m) ≡ ∑

g A(g,m): Number of genes directly or
indirectly annotated with GO term m (out of G = 2, 071 genes, GOALLLOCUSID
environment in GO package). P̃0n(m): Bootstrap-based single-step maxT ad-
justed p-value for Scenario MT[t, t].

BP, Scenario MT[t, t]

GO term ID GO term A1(m) P̃0n(m)
GO:008152 metabolism 1076 0.0262
GO:044237 cellular metabolism 1045 0.0428
GO:009058 biosynthesis 187 0.0750
GO:044238 primary metabolism 1002 0.0750
GO:044249 cellular biosynthesis 169 0.0862
GO:006091 generation of precursor metabolites 98 0.0928

and energy
GO:019882 antigen presentation 15 0.1098
GO:030333 antigen processing 14 0.1444
GO:006916 anti-apoptosis 21 0.1564
GO:043066 negative regulation of apoptosis 26 0.1692
GO:043069 negative regulation of programmed 26 0.1692

cell death
GO:007154 cell communication 390 0.1754
GO:006457 protein folding 52 0.1910
GO:007165 signal transduction 351 0.1946
GO:000226 microtubule cytoskeleton organization 14 0.2302

and biogenesis
GO:006082 organic acid metabolism 65 0.2538
GO:006163 purine nucleotide metabolism 29 0.2820
GO:007155 cell adhesion 59 0.2822
GO:007028 cytoplasm organization and biogenesis 10 0.2976
GO:019752 carboxylic acid metabolism 63 0.3108
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Table 9: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, top 20 CC GO terms. Details in Table 8
caption.

CC, Scenario MT[t, t]

GO term ID GO term A1(m) P̃0n(m)
GO:0005840 ribosome 25 0.0056
GO:0030529 ribonucleoprotein complex 77 0.0138
GO:0005830 cytosolic ribosome (sensu Eukaryota) 11 0.0144
GO:0043234 protein complex 334 0.0778
GO:0005886 plasma membrane 200 0.1316
GO:0005829 cytosol 78 0.2204
GO:0005737 cytoplasm 578 0.2304
GO:0005887 integral to plasma membrane 125 0.2338
GO:0031226 intrinsic to plasma membrane 125 0.2338
GO:0019866 inner membrane 37 0.2574
GO:0005743 mitochondrial inner membrane 28 0.2636
GO:0005746 mitochondrial electron transport chain 11 0.2692
GO:0000502 proteasome complex (sensu Eukaryota) 26 0.2714
GO:0000323 lytic vacuole 28 0.2866
GO:0005764 lysosome 28 0.2866
GO:0005576 extracellular region 54 0.3130
GO:0005773 vacuole 29 0.3172
GO:0005622 intracellular 1152 0.3350
GO:0043228 non-membrane-bound organelle 218 0.3524
GO:0043232 intracellular non-membrane-bound 218 0.3524

organelle
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Table 10: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, top 20 MF GO terms. Details in Table 8
caption.

MF, Scenario MT[t, t]

GO term ID GO term A1(m) P̃0n(m)
GO:0003735 structural constituent of ribosome 24 0.0024
GO:0003723 RNA binding 143 0.1168
GO:0048037 cofactor binding 11 0.1518
GO:0051082 unfolded protein binding 47 0.2210
GO:0016853 isomerase activity 28 0.2348
GO:0016491 oxidoreductase activity 89 0.3476
GO:0005509 calcium ion binding 69 0.3496
GO:0015399 primary active transporter activity 57 0.4314
GO:0004872 receptor activity 101 0.4518
GO:0004871 signal transducer activity 242 0.4566
GO:0016765 transferase activity, transferring alkyl 10 0.4570

or aryl (other than methyl) groups
GO:0016860 intramolecular oxidoreductase activity 13 0.4636
GO:0016614 oxidoreductase activity, acting on 18 0.4734

CH-OH group of donors
GO:0016616 oxidoreductase activity, acting on 18 0.4734

the CH-OH group of donors,
NAD or NADP as acceptor

GO:0043169 cation binding 230 0.5002
GO:0005489 electron transporter activity 47 0.5420
GO:0005386 carrier activity 73 0.5502
GO:0004888 transmembrane receptor activity 59 0.5690
GO:0003824 catalytic activity 635 0.5826
GO:0003676 nucleic acid binding 449 0.6718
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Table 11: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, BP GO term GO:0006916. This table lists
genes directly or indirectly annotated with GO term anti-apoptosis (out of
G = 2, 071 genes, GOALLLOCUSID environment in GO package). The term anti-
apoptosis (GO:0006916) has the ninth smallest adjusted p-value for Scenario
MT[t, t] applied to the BP gene ontology (Table 8).

BP GO:0006916

Probe ID Symbol Name
1237_at IER3 immediate early response 3

1295_at RELA v-rel reticuloendotheliosis viral oncogene

homolog A, nuclear factor of kappa light

polypeptide gene enhancer in B-cells 3, p65 (avian)

1377_at NFKB1 nuclear factor of kappa light polypeptide

gene enhancer in B-cells 1 (p105)

1564_at AKT1 v-akt murine thymoma viral oncogene homolog 1

1830_s_at TGFB1 transforming growth factor, beta 1

(Camurati-Engelmann disease)

1852_at TNF tumor necrosis factor (TNF superfamily, member 2)

1997_s_at BAX BCL2-associated X protein

277_at MCL1 myeloid cell leukemia sequence 1 (BCL2-related)

31536_at RTN4 reticulon 4

32060_at BNIP2 BCL2/adenovirus E1B 19kDa interacting protein 2

33284_at MPO myeloperoxidase

36578_at BIRC2 baculoviral IAP repeat-containing 2

38578_at TNFRSF7 tumor necrosis factor receptor superfamily, member 7

38771_at HDAC1 histone deacetylase 1

38994_at SOCS2 suppressor of cytokine signaling 2

39097_at SON SON DNA binding protein

39378_at BECN1 beclin 1 (coiled-coil, myosin-like

BCL2 interacting protein)

39436_at BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like

40570_at FOXO1A forkhead box O1A (rhabdomyosarcoma)

595_at TNFAIP3 tumor necrosis factor, alpha-induced protein 3

641_at PSEN1 presenilin 1 (Alzheimer disease 3)
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Table 12: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, MF GO term GO:0003735. This table lists
genes directly or indirectly annotated with GO term structural constituent of
ribosome (out of G = 2, 071 genes, GOALLLOCUSID environment in GO package).
The term structural constituent of ribosome (GO:0003735) has the smallest ad-
justed p-value for Scenario MT[t, t] applied to the MF gene ontology (Table
10).

MF GO:0003735

Probe ID Symbol Name
2016_s_at RPL10 ribosomal protein L10

31511_at RPS9 ribosomal protein S9

31546_at RPL18 ribosomal protein L18

31955_at FAU Finkel-Biskis-Reilly murine sarcoma virus

(FBR-MuSV) ubiquitously expressed (fox derived)

32221_at MRPS18B mitochondrial ribosomal protein S18B

32315_at RPS24 ribosomal protein S24

32394_s_at RPL23 ribosomal protein L23

32433_at RPL15 ribosomal protein L15

32437_at RPS5 ribosomal protein S5

33117_r_at RPS12 ribosomal protein S12

33485_at RPL4 ribosomal protein L4

33614_at RPL18A ribosomal protein L18a

33661_at RPL5 ribosomal protein L5

33668_at RPL12 ribosomal protein L12

33674_at RPL29 ribosomal protein L29

34316_at RPS15A ribosomal protein S15a

36358_at RPL9 ribosomal protein L9

36572_r_at ARL6IP ADP-ribosylation factor-like 6

interacting protein

36786_at RPL10A ribosomal protein L10a

39856_at RPL36AL ribosomal protein L36a-like

39916_r_at RPS15 ribosomal protein S15

41152_f_at RPL36A ribosomal protein L36a

41214_at RPS4Y1 ribosomal protein S4, Y-linked 1

41746_at NHP2L1 NHP2 non-histone chromosome protein

2-like 1 (S. cerevisiae)
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A λ

Gene-annotation profiles, A
Known, fixed G x M matrix

G genes G genes

M features

Gene-parameter profile, λ
Unknown G-vector,

 to be estimated

Data: X1, X2, …, Xn ~ P
Association parameter vector

ψ = (ψ(m): m=1, …, M)
Unknown M-vector, to be estimated

ψ(m) = ρm(A,λ)

Figure 1: Association parameters for gene-annotation profiles and gene-
parameter profiles.
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Figure 2: DAG for MF GO term GO:0004713, AmiGO. Portion of the directed
acyclic graph for the GO term protein-tyrosine kinase activity (GO:0004713),
in the Molecular Function ontology. This display, obtained using the AmiGO
browser (Last updated 2006-02-14; www.godatabase.org), shows the nodes cor-
responding to all (less specific) ancestors of the term protein-tyrosine kinase
activity.
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Figure 3: DAG for MF GO term GO:0004713, QuickGO. Portion of the directed
acyclic graph for the GO term protein-tyrosine kinase activity (GO:0004713), in
the Molecular Function ontology. This display, obtained using the EBI QuickGO
browser (Last updated 2001-03-30 04:29:44.0; www.ebi.ac.uk/ego), shows the
nodes corresponding to all (less specific) ancestors of the term protein-tyrosine
kinase activity.
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Panel (a): t(9;22) translocation

Panel (b): Karyotype

Figure 4: The Philadelphia chromosome and the BCR/ABL fusion. The
BCR/ABL fusion is the molecular analogue of the Philadelphia chromosome.
This t(9;22) translocation leads to a head-to-tail fusion of the v-abl Abel-
son murine leukemia viral oncogene homolog 1 (ABL1) from chromosome
9 with the 5’ half of the breakpoint cluster region (BCR) on chromosome 22.
(Figure obtained from the Genetic Science Learning Center, The University of
Utah; gslc.genetics.utah.edu/units/disorders/karyotype/reciprocal.
cfm).
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Panel (a): Test statistics Panel (b): Adjusted p-values

Figure 5: Differentially expressed genes between BCR/ABL and NEG B-cell
ALL. Panel (a): Normal quantile-quantile plot of two-sample t-statistics λt

n(g).
Panel (b): Plot of sorted bootstrap-based single-step maxT adjusted p-values
P̃ �=

0n(g).
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Figure 6: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, adjusted p-values. Plots of sorted bootstrap-
based single-step maxT adjusted p-values P̃0n(m), for each of the three gene
ontologies and each of the three testing scenarios.
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Figure 7: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, common terms between testing scenarios.
Plots of numbers of common GO terms among sets of ordered GO terms On(r)
of various cardinality r for pairs of testing scenarios. Scenario MT[t, t] is used as
the baseline in the top panels and Scenario MT[�=, χ : α = 0.05], with adjusted
p-value-based estimator λ �=n,α, α = 0.05, for the binary DE gene-parameter pro-
file λ �=, is used as the baseline in the bottom panels. For example, the blue curve
in the top left panel is a plot of |Od,t

n (r)∩Ot,t
n (r)| vs. r for the MF gene ontology,

i.e., of the overlap between the r most significant MF GO terms according to
Scenarios MT[d, t] and MT[t, t].
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Figure 8: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, conditional distribution of λt

n given A. Con-
ditional boxplots of the estimated continuous DE gene-parameter profile λt

n

given the gene-annotation profiles A(·,m) for the top two GO terms m ∈
{On(1), On(2)} identified according to each of the three testing scenarios. Rows
correspond to gene ontologies and columns to testing scenarios. In each panel,
the white and gray boxplots correspond, respectively, to the GO terms with
the smallest and second smallest adjusted p-values; boxplots for unannotated
and annotated estimated gene-parameter profiles, (λt

n(g) : A(g,m) = 0) and
(λt

n(g) : A(g,m) = 1), are labeled as 0 and 1, respectively. Non-overlapping
notches (informally) represent large differences in medians.
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Figure 9: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, comparison of adjusted p-values for the three
gene ontologies. Scatterplot matrix of the 50 smallest adjusted p-values for each
of the three gene ontologies, based on Scenario MT[t, t]. The identity line is
drawn for reference.
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Figure 10: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, DAG for top 20 BP GO terms. Portion
of the directed acyclic graph for the 20 GO terms with the smallest adjusted
p-values for Scenario MT[t, t] applied to the BP gene ontology (AmiGO). Nodes
for the top 20 terms are shaded in turquoise.
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Figure 11: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, DAG for top 20 CC GO terms. Portion
of the directed acyclic graph for the 20 GO terms with the smallest adjusted
p-values for Scenario MT[t, t] applied to the CC gene ontology (AmiGO). Nodes
for the top 20 terms are shaded in turquoise.
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Figure 12: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, DAG for top 20 MF GO terms. Portion
of the directed acyclic graph for the 20 GO terms with the smallest adjusted
p-values for Scenario MT[t, t] applied to the MF gene ontology (AmiGO). Nodes
for the top 20 terms are shaded in turquoise.
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Figure 13: GO terms associated with differential gene expression between
BCR/ABL and NEG B-cell ALL, BP GO term GO:0006916 and MF GO term
GO:0003735. This figure displays mean-difference plots of average expression
measures in BCR/ABL and NEG cell samples, i.e., plots of µBCR/ABL,n(g) −
µNEG,n(g) vs. (µBCR/ABL,n(g) + µNEG,n(g))/2, for genes directly or indirectly
annotated with GO terms GO:0006916 (Panel (a)) and GO:0003735 (Panel (b)).
The term anti-apoptosis (GO:0006916) has the ninth smallest adjusted p-value
for Scenario MT[t, t] applied to the BP gene ontology (Tables 8 and 11) and the
term structural constituent of ribosome (GO:0003735) has the smallest adjusted
p-value for Scenario MT[t, t] applied to the MF gene ontology (Tables 10 and
12).
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