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Causal Effect Models for Intention to Treat
and Realistic Individualized Treatment Rules

Mark J. van der Laan

Abstract

An important class of models in causal inference are the so-called marginal struc-
tural models which model the comparison between counterfactual outcome dis-
tributions corresponding with a static treatment intervention, conditional on user
supplied baseline covariates, based on observing a longitudinal data structure on
a sample of n independent and identically distributed experimental units. Identifi-
cation of a static treatment regimen specific outcome distribution based on obser-
vational data requires beyond the so-called sequential randomization assumption
that each experimental unit has positive probability of following the static treat-
ment regimen. The latter assumption is called the experimental treatment assign-
ment assumption (ETA) (which is parameter specific). In most studies the ETA is
violated for the static treatment interventions to be compared because some of the
static treatment interventions cannot be followed by all experimental units due to
baseline characteristics or due to the occurrence of certain events over time. For
example, the development of side effects to the prescribed drug dose in a cancer
patient, or the development of drug-resistance of an HIV-virus in an HIV-infected
patient following the prescribed drug, describe situations in which a physician
would be forced to stop the assigned treatment regimen.

In this article a generalization of marginal structural models is proposed – called
intention to treat causal effect models – which does not rely on the ETA. The def-
inition of an intention to treat causal effect requires a user-supplied definition of
a time-dependent process keeping track of the possible treatment options for an
experimental unit, and, if that is not available, it may be derived from a fitted treat-
ment mechanism. The proposed intention to treat intervention enforces the static
intervention until the time point at which next treatment does not belong to the set
of possible treatment options, at which point the intervention is stopped. Locally



efficient estimators of the desired intention to treat causal effects are provided.

In addition causal effect models for realistic individualized treatment rules are pre-
sented which always map in the set of possible treatment options and are thereby
also fully identifiable from the data; in particular it is shown that these models
can be chosen to generalize marginal structural models. Analogous to Murphy et
al. (2001), the corresponding locally efficient double robust inverse probability of
treatment weighted estimator is presented.



1 Introduction

Consider a data generating experiment in which the experimental unit results
in the following time-ordered sequential data structure

O = (L(0), A(0), L(1), A(1), . . . , L(T ), A(T ), L(T + 1)),

where A(j) denotes a treatment assignment at time j, L(j) denotes all vari-
ables measured on the experimental unit after A(j−1) and before A(j), and
T + 1 is a fixed or random end-point such as a survival time. We assume
that T + 1 ≤ τ + 1 with probability 1 for a fixed τ . Suppose we observe n
independently and identically distributed copies O1, . . . , On of O. For sim-
plicity, throughout this article, we will treat all random variables as discrete,
but all formulas have natural continuous analogues.

Let R(t) ≡ I(T ≤ t) be a component of L(t), and, we truncate the A and
L process at T so that A(t) = A(min(t, T )), L(t) = L(min(t, T + 1)). In this
manner, we can now also represent the observed longitudinal data structure
O on the experimental unit as a vector of fixed length,

O = (L(0), A(0), L(1), A(1), . . . , L(τ), A(τ), L(τ + 1)),

where we just remind the reader that after time T + 1 the data structure
becomes degenerate in the sense that A(T + j) = A(T ), and L(T + 1 + j) =
L(T + 1) for j = 1, 2, . . ..

Let Y be a real valued function of L, which will denote the outcome of
interest. For example, Y = T+1 might be the survival time T+1, or it might
be an outcome Y (τ+1) of a time-dependent process Y (·) measured at a fixed
time τ + 1. We use the notation L̄(t) ≡ (L(0), . . . , L(t)), but the complete
covariate/outcome and treatment process are also denoted with L = L̄(τ+1)
and A = Ā(τ).
The time-dependent treatment options process: Let A(t) be the sup-
port of the marginal random variable Ā(t) ≡ (A(0), . . . , A(t)), t = 0, . . . , τ .
Let D(t) represent a set of possible treatment options for A(t), given an
experimental unit with history Ā(t− 1), L̄(t)), in the sense that

g0(a(t) | L̄(t), Ā(t−1)) ≡ Pr(A(t) = a(t) | L̄(t), Ā(t−1)) > 0 for a(t) ∈ D(t).

It is assumed that D(t) is a function of L(t): e.g., D(t) could be one of the
components of L(t). If D(t) is not collected in the study, then we propose to
define

D(t) ≡ {a(t) : g0(a(t) | Ā(t− 1), L̄(t)) > α ≥ 0}
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for some α, and if the treatment mechanism g0 is unknown, then one esti-
mates this set by substitution of an estimator gn of g0.

1.1 The causal effect of a static treatment intervention.

The current literature on causal inference provides models and corresponding
methods for estimation of causal effects of static treatment interventions on
an outcome of interest, based on (say) sampling subjects from a particular
population and recording their data over time on treatment assignment, time-
dependent co-variables, and outcomes of interest.

Specifically, marginal structural models (MSM), introduced by Robins
(e.g., Robins (2000a), Robins (2000b)), address the limitations of the tradi-
tional regression approach, and provide a powerful tool for causal inference
in the context of longitudinal data structures. MSM model the dependence
of the distribution of treatment regimen-specific counterfactual outcomes (or
outcome processes) on the treatment regimen. In other words, MSM model
the population distribution of the outcome process that would be observed if
all members of the population were to follow a particular treatment regimen.
The causal effect of a change in treatment is estimated as the difference in
the population distribution of the outcome under the two treatment regimens
being compared. For example, marginal structural models model the mean
outcome under an intervention setting Ā(t) = ā(t) with probability 1, as a
function of ā(t), possibly conditional on user supplied baseline covariates. In-
verse Probability of Treatment weighted (IPTW) estimators, double robust
IPTW estimators, and likelihood based estimators have been proposed for
the unknown causal parameters in the marginal structural model.

These methods aim to produce the results one would establish in a ran-
domized trial randomly assigning the static treatment interventions of inter-
est to a set of randomly sampled members of the population, and enforcing
each subject to fully comply with the assigned static treatment intervention.
As a consequence, identification of causal effects of static treatment interven-
tions based on observational data requires, beyond the sequential randomiza-
tion assumption on the treatment mechanism, also that each member of the
population has a positive probability of following this static treatment inter-
vention: this latter assumption is called the experimental treatment assign-
ment assumption (ETA). In most studies these static treatment interventions
cannot be followed by all sampled subjects due to baseline characteristics or
to the occurrence of certain events over time. For example, the development
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of side effects to the prescribed drug dose in a cancer patient, or the develop-
ment of drug-resistance of an HIV-virus in an HIV-infected patient following
the prescribed drug, describe situations in which a physician would be forced
to stop the assigned treatment regimen. These situations correspond with a
so called violation of the experimental treatment assignment (ETA) assump-
tion. Theoretical or practical violation of the ETA assumption is known to
result in potentially extreme bias in the Inverse-Probability of Treatment
Weighted Estimators (IPTW) of the causal parameters in marginal struc-
tural models, and the full reliance of the likelihood based estimators (and
DR-IPTW estimators) on model assumptions which cannot be tested from
the data (Neugebauer and van der Laan (2005b)). The fact that models
for static treatment interventions and their corresponding estimates aim to
reproduce the results of typically unrealistic randomized trials has also been
a source of philosophical criticism.

1.2 Intention to treat interventions.

In this article we propose a new class of intention to treat causal models
allowing the statistical learning of intention to treat interventions which en-
force the static intervention till the time point t at which the next prescribed
treatment does not fall in the set of possible treatment options D(t + 1), at
which point the intervention is stopped. These causal models and their esti-
mates aim to establish the findings of a randomized trial, applied to the same
population and sample, in which each subject follows the assigned intention
to treat treatment till the time point at which the prescribed treatment does
not belong to the set of possible treatment options. These causal effect of
individualized stopped treatment regimens are now fully identifiable from the
data. As a consequence, we can develop locally efficient estimators of these
causal effects without the need to assume the often unrealistic ETA assump-
tion. In case the ETA assumption holds so that the set of possible treatment
options at time t can be chosen to be equal to the set of all marginally possi-
ble treatments at time t, then our model reduces to the marginal structural
model for static treatment interventions. As a consequence, our model is a
generalization of causal effect models for static treatment interventions re-
lying on the ETA assumption to causal effect models for intention to treat
interventions, which also apply when the ETA assumption is violated.
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1.3 Example

Suppose that we sample subjects from an HIV-infected heavily pre-treated
population which at time 0 experiences a rebound of the virus (defined by a
persistent increase in viral load over the previous months) due to resistance
of the virus to the prescribed drug. Suppose that Y (12) is the CD4-count
measured 12 months later, that the measurements L(t), t = 0, . . . , 12 include
viral load, CD4-count and other time-dependent characteristics of interest,
and let (A(t), t = 0, . . . , 11) be the indicator process which equals zero till the
time point at which the subject switches to another drug, and then jumps
to 1. One might now be interested in estimation of the causal effect of time
till switching on CD4 count at 12 months based on a sample of such heavily
pre-treated patients who are experiencing a rebound of the virus at time 0.
Specifically, we refer to Petersen et al. (2005) for a description of the SCOPE
HIV-cohort, and the interest and relevance of the ”when to switch question”
in the HIV-AIDS research community: In particular, it has been observed
that a drug can still have a significant beneficial effect on a resistant virus
by making it less lethal and/or fit, so that an increase in viral load might
not necessarily imply a decrease in CD4-count. In order to be specific about
the scientific question of interest it is helpful to consider randomized trials
of interest. Firstly, consider the randomized trial in which one randomly
assigns a switching time to each subject. In order to be able to estimate the
mean outcome in the arm in which everybody is supposed to switch at time
t one would need that each patient is able to fully comply with the assigned
switching time t. However, suppose that some people in the population will
develop an opportunistic infection or will experience side effects of the drug
before time t, which make it impossible to still take the drug. Such patients
cannot comply with the assigned switching time. Therefore, due to patients
experiencing events which force them to switch, the causal effect of time
till switch is not identifiable from the data, and, as a consequence, any of
the proposed estimators suffer from potentially serious bias. However, the
mean outcome of CD4 at 12 months under an intention to switch at time t
is defined as the mean outcome of CD4 at 12 months if everybody who does
not experience these events switches at time t, and a person who experiences
an event before time t which forces a switch does switch at that time. This t-
specific intention to treat mean outcome is identifiable, because every subject
has a positive probability of actually following this t-specific intention to treat
regimen. The difference between a t1-specific and t2-specific intention to treat
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mean outcome measures now a causal effect of interest, which, in particular,
represents a comparison between two realistic interventions.

1.4 Realistic Individualized treatment rules.

The lack of identifiability of the counterfactual distribution of the data under
a static treatment intervention is due to the fact that the probability that
one samples an experimental unit for which the static intervention cannot
occur is larger than zero. The stopping of the static intervention at the time
it can no longer be pursued resulted in the intention to treat interventions
which are fully identifiable from the data. Another kind of fully identifiable
intervention is an individualized treatment rule which always assigns treat-
ments (in response to the observed history) which fall in the set of possible
treatment options. The advantage of the latter kind of interventions is that
its corresponding counterfactual distribution does not depend on the treat-
ment mechanism in the study. As a consequence, causal effects comparing
individualized treatment interventions are generalizable, and, in particular, a
model for such causal effects also yields an optimal individualized treatment
rule.

It does require some creativity with regard to proposing an interesting
set of individualized treatment rules. However, it is not hard, analogue to
the intention to treat interventions, to map a static treatment intervention
into a corresponding individualized treatment rule which follows the static
treatment intervention till the experimental unit is forced to switch at which
time point one switches to a particular treatment in the set of treatment
options (e.g., the one closest to the treatment assigned by the static inter-
vention), and one sticks to this treatment till one is forced to switch again,
and so on. In this manner, these individualized treatment rules are indexed
by static treatment regimens, and provide approximations of the intended
static treatment intervention.

Our models for causal effect of individualized treatment rules provides
also an interesting double robust and locally efficient estimator of an op-
timal dynamic treatment regimen among a user supplied class of dynamic
treatment regimens. In particular, this can be viewed as an alternative to
methods for modelling and estimation of optimal dynamic treatment regi-
mens based on a generalization of structural nested models (Robins (1989),
Robins (1997), Robins (2000a) Robins (1994)), as developed in (Murphy
(2003), Robins (2003)). Our proposed model for individualized treatment
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rules builds on and generalizes Murphy et al. (2001), since the latter arti-
cle proposes a model for a single dynamic treatment regimen conditional on
baseline covariates.

1.5 Organization.

In the next section 2 we define the causal inference framework which allows
us to define the causal effects of all kinds of interventions on the data gen-
erating distribution of the data structure O, and, in particular, allows us
to define our wished non-parametric identifiable intention to treat causal ef-
fects. This framework represents a set of assumptions which do not put any
restrictions on the data generating distribution, but are essential for being
able to define and identify the wished causal effect from the data generating
distribution. This causal inference framework states that for each experi-
mental unit there exists intervention specific counterfactuals corresponding
with setting a treatment up till time t, and that the observed data structure
corresponds with observing the treatment regimen up till time t and the cor-
responding treatment specific process. This assumption for all t allows us
now to define the causal effects of a static treatment regimen up till time t, as
well, as the causal effects of dynamic treatment regimens, or, as in our case,
individualized stopped treatment regimens. In addition, the causal inference
framework assumes the sequential randomization assumption, a necessary,
but not sufficient, assumption for identification of the causal effect of a static
treatment intervention on an outcome of interest. In Section 3, given the
causal inference framework, we define the intention to treat counterfactual
processes, and we either assume a model for the conditional mean of the
intention to treat counterfactual outcome, given some user supplied baseline
co-variables, or we define our parameter of interest on the nonparametric
model as the projection of the true intention to treat conditional mean out-
come on the (working) model, where the L2-projection is indexed by a weight
function h. For each h, the efficient (and only) estimating function of the
h-specific parameter in the nonparametric model is a particular (possibly
inefficient) estimating function in the model based parameter.

For pedagogical purpose, in Section 4 we present the intention to treat
causal effect model for the point treatment data structure (W = L(0), A, Y ),
the corresponding h-specific efficient Double Robust Inverse Probability of
Treatment Weighted (DR-IPTW) estimating function, and the correspond-
ing locally efficient double robust estimator. The latter estimator is locally
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efficient, in the sense that its consistency (and asymptotic linearity) relies
on either correct specification of the treatment mechanism P (A = a | W ) or
the regression E(Y | A,W ), and it is efficient if both are correctly specified.
We will also present the likelihood based estimator and the simpler IPTW
estimator, which is a special case of the DR-IPTW estimator.

In the subsequent 3 sections we will present these three types of estima-
tors of this intention to treat causal parameter βh(P ) or β(P ) for the general
longitudinal data structure. Firstly, in Section 5 we present likelihood based
estimators mapping maximum likelihood estimators of the data generating
distribution in the wished parameter estimate, based on a likelihood based
identifiability result for the intention to treat mean outcome. In Section 6
we derive an h-specific Inverse Probability of Treatment Weighted estimating
function, and its corresponding estimator, whose consistency only relies on
consistent estimation of the treatment mechanism. In Section 7 we develop
the h-specific optimal estimating function, and its corresponding locally ef-
ficient estimator. The latter estimator is locally efficient, in the sense that
its consistency (and asymptotic linearity) relies on correct specification of
the treatment mechanism (P (A(t) | Ā(t − 1), L̄(t)) : t), and it is efficient if
the conditional co-variable distributions (P (L(t) | Ā(t− 1), L̄(t− 1)) : t) are
correctly specified as well.

In Section 8 we present the causal model for realistic (and thereby iden-
tifiable) individualized treatment rules, and derive the corresponding locally
efficient double robust inverse probability of treatment weighted estimator.
Finally, Section 9 is devoted to a discussion. Some of the technical proofs
are deferred to an Appendix.

2 Counterfactual Causal Inference Statistical

framework:

In this section, we build on the statistical framework of counterfactuals on
which marginal structural models are based. The framework was introduced
in Neyman (1990), extended to causal effects of time-independent treatments
by Rubin (1978), and further extended to a formal theory of causal infer-
ence for direct and indirect effects of time-varying treatments from experi-
mental and observational longitudinal studies by Robins (1986, 1987). This
causal framework for treatment interventions ā(t) up till time t assumes the
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existence of counterfactuals indexed by static treatment interventions ā(t),
the corresponding link between the observed data and these counterfactuals
(i.e., consistency assumption), and the sequential randomization assumption
(SRA). Our framework below simply assumes the consistency and sequential
randomization assumption for all t. By applying the result in Gill and Robins
(2001), Yu and van der Laan (2002)) for all t, it follows that, by construc-
tion, assuming this consistency and randomization assumptions for all t does
still not put a restriction on the data generating distribution. That is, our
assumptions do not put restrictions on the data generating distributions, but
they do allow us to define the intention to treat causal parameter of interest
as a parameter of the data generating distribution.

Existence of t-specific static treatment counterfactuals: For each t and
each possible ā(t) ∈ A(t), we define

Oā(t) ≡ (Lā(t), Aā(t))

as the data one would have observed on the experimental unit if it would
have been assigned Ā(t) = ā(t). Thus the first t + 1 components of
Aā(t) are set at ā(t), but the subsequent treatment actions are random:
Aā(t)(0) = a(0), . . . , Aā(t)(t) = a(t). It is assumed that for all t and
ā(t) ∈ A(t), we have

Lā(t) = LAā(t)
.

We define X(t) ≡ (Lā(t), Aā(t)) : ā(t) ∈ A(t)) as the collection of treat-
ment specific processes corresponding with setting the first t+ 1 treat-
ment actions, t = 0, . . . , τ . Thus, X(τ) = (Lā : ā) denotes the collec-
tion of counterfactual processes Lā indexed by fully set static treatment
regimens ā = (a(0), . . . , a(τ)).

t-Specific temporal ordering assumption: For each time point t, we as-
sume the usual temporal ordering assumption:

Oā(t)(j) = Oā(min(j−1,t))(j).

This states that the counterfactual data at time j is only affected by
past interventions.

t-Specific Consistency assumption: It is assumed that for all t = 0, . . . , τ

(A,L) = (Ā(t), OĀ(t)) = (AĀ(t), LĀ(t)).
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That is, we can represent O as a missing data structure on the full data
structure X(t) = {Oā(t) : ā(t) ∈ A(t)}, where the missing-ness variable
is Ā(t), t = 0, . . . , τ . In particular, for t = τ , this presents our observed
longitudinal data structure as a missing data structure on a collection
of treatment regimen specific processes X(τ):

O = (A = Ā(τ), L = LA).

t-Specific Sequential Randomization Assumption: For each t, we as-
sume the sequential randomization assumption: for all j = 0, . . . , t

A(j) ⊥ X(t) | Ā(j − 1), L̄(j). (1)

We will refer to this as the strong sequential randomization assumption
(SSRA). This implies, in particular, the typical sequential randomiza-
tion assumption (SRA): for all j = 0, . . . , τ

A(j) ⊥ X(τ) | Ā(j − 1), L̄(j). (2)

That is, at each time-point, conditional on the observed past, the treat-
ment at this time-point is conditionally independent of the full data
X(τ). The latter sequential randomization assumption implies (and
is, in essence, equivalent with) the coarsening at random (CAR) as-
sumption on GĀ|X(τ) for the observed data O w.r.t. full data structure
X(τ). In censored data structures, one frequently assumes coarsening
at random (CAR) (Heitjan and Rubin (1991), Jacobsen and Keiding
(1995), Gill et al. (1997), in increasing generality).

Taking the τ -specific missing data representation of the observed data
structure, it follows that the data generating distribution PFX(τ)0,G0 of O is
indexed by a distribution of X(τ) = (Lā : ā), and the conditional probability
distribution G0(· | X(τ)) of Ā, given X(τ). We will refer to the latter
as the treatment mechanism, and we denote its probability density with
g0(· | X(τ)). By the chronological ordering, and our conventions above, the
τ -specific missing data structure assumption is equivalent with

O = (L(0), A(0), LA(0)(1), A(1), . . . , LĀ(TA−1)(TA), A(TA), LĀ(TA)(TA + 1)).

By our missing data representations for all t, we have A = AĀ, but also
A = Aā(t) for any ā(t) = Ā(t), and, as a consequence, LĀ = Lā(t) for any
ā(t) = Ā(t).
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Identifiability results for static treatment interventions under
the experimental treatment assignment (ETA) assumption: Under
the SRA and the experimental treatment assignment assumption (ETA), it is
possible to identify the treatment-specific counterfactual distributions from
the observed data partial likelihood, through the G-computation formula
(Robins (2000a), Gill and Robins (2001), Yu and van der Laan (2002)).
That is, under the assumption that g(ā | X(τ)) > 0, the SRA allows us to
identify the marginal distribution of Lā, while the SSRA allows us to also
identify the marginal distribution of Oā(t) = (Aā(t), Lā(t)) for any t = 0, . . . , τ .
Specifically, for each t, we have the following t-specific factorization of the
likelihood of O:

dPFX(t),gĀ(t)|X(t)
(O) = QX(t),t(O)gĀ(t)|X(t)(Ā(t) | X(t)),

where

QX(t),t(L̄, Ā(t), A(t+1)) =
t+1∏
j=0

P (L(j) | L̄(j−1), Ā(j−1))P (A(t+1), L(t+2) | L̄(t+1), Ā(t)),

and

gĀ(t)|X(t)(Ā(t) | X(t)) =
t∏

j=0

g(A(t) | Ā(t− 1), L̄(t)).

For a t < τ , we define A(t) = (A(t), . . . , A(τ)) and L(t) = (L(t), . . . , L(τ+1)).
In addition,

P (A(t+1), L(t+2) | L̄(t+1), Ā(t)) ≡
τ∏
t+1

g(A(t) | Ā(t−1), L̄(t))
τ+1∏
t+2

P (L(t) | L̄(t−1), Ā(t−1)).

If we assume SSRA, and the ETA assumption g0(ā(t) | X(t)) > 0 a.e.,
then we have that the probability distribution ofOā(t) is given by the following
likelihood based formula (G-computation formula)

POā(t)
(l̄, a(t+ 1)) = Q0X(t),t(l̄, ā(t), a(t+ 1)).

In other words, by setting Ā(t) = ā(t) in the likelihood factor Q0X(t),t, one
obtains the density of Oā(t). In many applications, as discussed in the in-
troduction, this ā(t)-specific experimental treatment assignment assumption
Pr(g0(ā(t) | X(t)) > 0) = 1 does not hold for lots of static treatment regi-
mens ā(t). In this article we will define causal parameters which are identifi-
able without the need to assume these typically unrealistic ETA-assumptions.
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2.1 The observed data model implied by the causal
inference assumptions

The model for the observed data structure implied by the above consis-
tency assumptions and the strong SRA is nonparametric. As a consequence,
the strong SRA and the consistency assumptions cannot be tested, but
these assumptions provide us with a set of assumptions which provide the
wished causal interpretation of our target parameters, defined below, of
the data generating distribution. Possible data generating distributions are
the elements of the nonparametric structural equation model correspond-
ing with the causal graph implied by the time-ordering: i.e., let L(j) =
gj(L̄(j − 1), Ā(j − 1), U), A(j) = fj(Ā(j − 1), L̄(j), e(j)) for arbitrary deter-
ministic functions fj, gj, an arbitrary random variable U , and an exogenous
random vector e. This nonparametric structural equation model is indeed
a saturated model, and, for all t ∈ {0, 1 . . . , τ}, it satisfies the consistency
assumption and the SRA w.r.t. to the counterfactuals X(t) implied by this
structural equation model (see Pearl, 2001, Gill and Robins (2001), Yu and
van der Laan (2002)).

3 Defining the parameter of interest: Inten-

tion to Treat causal effects

In practice, for many static treatment regimens ā(t) we have g(ā(t) | X(t)) =
0 with positive probability: that is, there exists a subset of our population we
are sampling from for which each member of this subset will not be able to
complete the static treatment regimen ā(t), typically due to the occurrence
of events which make the treatment a(j) at a certain time j ∈ {0, . . . , t} a
completely wrong treatment. That is, in realistic settings we will have to
acknowledge that the set of possible treatments at any point in time can
be different for different subjects and that within a subject the set of pos-
sible treatments can change over time in response to time-dependent mea-
surements. As a consequence, in realistic settings the distribution of static
treatment specific counterfactuals Oā(t) are often not identifiable from the
data. Therefore, we propose a new kind of counterfactuals indexed by static
treatment regimens ā, which we will name intention to treat counterfactuals.
Specifically, for every ā ∈ A, we define the individualized stopped treatment
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specific process

Xd(ā) = (Ld(ā), Ad(ā)) ≡ (Lā(Cā), Aā(Ca)),

where Cā is a counterfactual stopping time defined as

Cā ≡ min{t ∈ {−1, 0, . . . , τ} : a(t+ 1) 6∈ Dā(t+ 1) or t = τ}.

That is, Xd(ā) is the process we would have observed on the subject if the
subject would follow the static treatment ā till the end τ , or till time Cā at
which next time point it corresponds with taking a treatment outside the
set of options Da(Cā + 1). After the stopping time Cā the experimental unit
is subjected to the data generating process applicable in the counterfactual
world in which one has followed ā up till time Cā: that is, it follows its
counterfactual treatment process Aā(t) with t = Cā. In particular, Yd(ā)
denotes the treatment specific outcome of interest. For example, Yd(ā) =
Td(ā) + 1 might be the survival time under treatment regimen d(ā), or it
might be the counterfactual outcome Yd(ā)(τ+1) of a time-dependent process
Yd(ā)(·) measured at a fixed time τ + 1.

3.1 Missing Data Structure on Intention to Treat treat-
ment specific counterfactuals:

It is of interest to understand the information the observed data provides
about these intention to treat counterfactuals. For any ā, we define the
observed

C(ā) ≡ min{t : A(t+ 1) 6= a(t+ 1) or a(t+ 1) 6∈ D(t+ 1) or t = τ}.

Thus C(ā) (if it did not even follow a(0), then it equals -1) is the amount of
time the experimental unit has followed d(ā), where C(ā) ∈ {−1, 0, 1, . . . , τ}.
Consider the indicator

∆(ā) = I(A(C(ā) + 1) 6∈ D(C(ā) + 1) or C(ā) = τ). (3)

We note that, if ∆(ā) = 1, then the experimental unit has followed the
intention to treat treatment regimen d(ā). Formally, we have the following
link between the observed data structure and the intention to treat treatment
specific counterfactuals:

(A,L) = (Ad(ā), Ld(ā)) if ∆(ā) = 1.
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Thus, one could represent the observed data structure O also as

O = (∆(ā),∆(ā)(Ad(ā), Ld(ā)) : ā ∈ A).

That is, for each static treatment regimen ā, we observe if the experimental
unit followed the individualized stopped treatment regimen d(ā), and if it did,
then we observe its corresponding intention to treat counterfactual process.

3.2 Intention to Treat Causal Effect Parameter

Let V ⊂ L(0) be a user supplied set of baseline co-variables. Consider the
model

E0(Yd(ā) | V ) = m(ā, V | β0), (4)

for some parametrization β → m(· | β) and parameter value β0. Let
β(PFX(τ),G) be the parameter of interest defined on the model for the ob-
served data structure O defined by the assumptions above and the model
(4), so that β0 = β(PFX(τ)0,G0) denotes the true parameter value correspond-
ing with the true data generating distribution P0.

We prefer to not assume the model m(· | β), but just use it as a working
model to define a smooth version of E0(Yd(ā) | V ) (see Neugebauer and van der
Laan (2005a)). Specifically, following Neugebauer and van der Laan (2005a),
we define our parameter of interest nonparametrically as

βh(P ) ≡ arg min
β

∑
ā,V

(m(ā, V | β)− EP (Yd(ā) | V ))2h(ā, V ),

where the weight function h is user supplied. Thus in this case, our model is
still nonparametric, but our parameter is defined by a working model m(· | β)
and a weight function h. Note that, if (4) holds at P , then βh(P ) = β(P ) for
all h. It is also of interest to note that βh is a parameter of both the full data
distribution of X(τ) = (Lā : ā ∈ A) and the treatment mechanism GĀ|X .

Remark: In the next sections we will present an IPTW and locally efficient
estimator of βh0 for a given h. The corresponding class of IPTW and locally
efficient estimators of β0 under the assumption that m(· | β) is a correctly
specified model is obtained by letting h be arbitrary.

Before we proceed to derive the efficient influence curve of βh at P0 for
the general longitudinal data structure, and thereby the corresponding locally
efficient estimating function and estimator, we first provide a comprehensive
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analysis of our intention to treat causal effect model for the much simpler
point treatment data structure.

4 Intention to Treat Causal Effect Models for

Point treatment

We observe the chronological data structure O = (W,A, Y ), where W are
baseline-co-variables, A is treatment, and Y is a final outcome. We assume
the usual consistency assumption which states that X = (W, (Ya : a ∈ A)),
and O = (W,A, YA) is a missing data structure on X. In addition, we assume
the randomization assumption which states that A is independent ofX, given
W : g0(a | X) ≡ Pr(A = a | X) = g0(a | W ) = Pr(A = a | W ). Let D ⊂ W
be a set of possible treatment options in the sense that g0(a | W ) > 0 for
a ∈ D.

Intention to Treat Causal Effect: Let V ⊂ W be a user supplied set
of baseline co-variables. Let Yd(a) ≡ Y I(a 6∈ D) + YaI(a ∈ D) and Ad(a) =
aI(a ∈ D) + AI(a 6∈ D). Let (W,Ad(a), Yd(a)) denote the data we would
observe on the experimental unit if it follows the intention to treat treatment
d(a). The parameter of interest is ψ0(a, V ) = Ψ(P0)(a, V ) ≡ EP0(Yd(a) | V ).
Note that this parameter corresponds with the mean outcome one would
observe if one only intervenes (by setting A = a) on the experimental units
for which a is a possible treatment option in the sense that a ∈ D. In
order to deal with the curse of dimensionality, we consider a working model
{m(a, V | β) : β} for ψ0(a, V ), indexed by a Euclidean parameter β. For a
user supplied function h, let

βh(P ) ≡ arg min
β
EP

∑
a

(Ψ(P )(a, V )−m(a, V | β))2 h(a, V ) (5)

Let βh0 = βh(PFX0,G0) be the true parameter value corresponding with the
true data generating distribution P0 = PFX0,G0 . Note that βh is a parameter
of both the full data distribution of X = (W, (Ya : a ∈ A)) and the treatment
mechanism GA|X . We note that, if one is willing to assume that the model
m(· | β) is correctly specified, then βh(P ) = β(P ) does not depend on h, and
each estimator we present for βh in this section is a valid estimator for β.

For any a ∈ A, consider the indicator

∆(a) = I(A = a or a 6∈ D)). (6)
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We note that, if ∆(a) = 1, then the experimental unit has followed treatment
d(a). It is also possible that A = a and a 6∈ D, except if D = {a : g0(a |
W ) > 0}. Formally, we have the following representation of the observed
data in terms of the intention to treat counterfactuals (W,Ad(a), Yd(a)):

O = (W, (∆(a),∆(a)(Ad(a), Yd(a)) : a ∈ A)).

Thus, the observationO = (W,A, Y ) is equivalent with observing the baseline
co-variables W , for each a, observing if the experimental unit followed d(a),
and if it did, then one observes (Ad(a), Yd(a)).

The model for the distribution of O is still nonparametric under the above
assumptions. As a consequence, in this model all regular asymptotically
linear estimators of βh0 at P0 are efficient. We present the efficient influence
curve and the corresponding locally efficient estimator in the last subsection
of this section. In the next three subsections we present three estimators
of βh: likelihood based estimator, inverse probability of treatment weighted
estimator, and the estimator based on the efficient influence curve which we
refer to as the double robust IPTW estimator, which is also locally efficient.

4.1 Likelihood based estimation.

The parameter E(Yd(a) | V ) is identifiable from the observed data distri-
bution under the above stated consistency assumption and randomization
assumption. This is shown by the following result.

Result 1 Consider a joint random variable (X,A) with X = (W, (Ya : a ∈
A)), and assume that g0(A | X) = g0(a | W ). Let D ⊂ W be such that
P (mina∈D g0(a | W ) > 0) = 1. Let (W,A, Y ) = (W,A, YA). Define the
random variable Yd(a) ≡ YAI(a 6∈ D) + Y (a)I(a ∈ D). For any V ⊂ W , we
have

E0(Yd(a) | V ) = E0 (E0(Y | A = a,W )I(a ∈ D) + E(Y | A,W )I(a 6∈ D) | V )

In general, we have that the probability distribution of (W,Ad(a), Yd(a)) at
w, a∗, y is given by

Pd(a)(w, a
∗, y) = PW (w)

{
I(a = a∗)PY |A,W (y | a,W )

}I(a∈D(w))

×
{
g0(a

∗ | w)PY |A,W (y | a∗, w)
}I(a6∈D(w)

.
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One can generate the intention to treat counterfactuals (W,Ad(a), Yd(a)) in
the following straightforward manner. Given the marginal distribution of
W , conditional distribution of A, given W , and the conditional distribution
of Y , given A,W , one generates W,Ad(a), Yd(a) as follows: 1) Generate W
from PW , 2) If a 6∈ D, then generate A from PA|W and set Ad(a) = A, else set
A = Ad(a) = a, 3) Generate Y from PY |W,A(· |W,A) and set Yd(a) = Y .

By applying this data generating experiment to an estimate of the data
generating distribution, one obtains a large sample (Ŵb, Âd(a),b, Ŷd(a),b), b =
1, . . . , B for all a ∈ A, which yields a simulation based estimate of the distri-
bution of (W,Ad(a), Yd(a)). Such an estimate could now also be mapped into

an estimate of βh0 by regressing the simulated Ŷd(a),b on a, V̂b according to the

regression model {m(· | β) : β} using weights h(a, V̂b), a ∈ A, b = 1, . . . , B.
If one is only concerned with estimation of the conditional mean E(Yd(a) |

V ), then it suffices to directly estimate Q0(a,W ) = E0(Y | A = a,W ) with
an estimator Qn, and regress

Qn,d(a)(a,W ) ≡ Qn(a,W )I(a ∈ D) +Qn(A,W )I(a 6∈ D)

on a, V according to the model m(· | β). That is, the likelihood based
estimator of βh0 can be defined as

βn(Qn) = arg min
β

n∑
i=1

∑
a

(
Qn,d(a)(a,Wi)−m(a, Vi | β)

)2
h(a, Vi).

4.2 Inverse Probability of Treatment Weighted Esti-
mation.

The proposed inverse probability of treatment weighted estimator of βh0 is
based on the following result.

Result 2 Let ∆(a) = I(A = a or a 6∈ D). We have

E0(∆(a) | X) = I(a 6∈ D) + I(a ∈ D)g0(a | X)

= g0(a | X)I(a∈D).

We also have for any set of baseline co-variables V ⊂ W

E0(Yd(a) | V ) = E0

(
Y∆(a)

g0(a | X)I(a∈D)
| V

)
.
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Proof: The first statement is trivial. Regarding the second statement we
note that Y∆(a)

g(a|X)I(a∈D) equals

I(a 6∈ D)YA + I(a ∈ D)
I(A = a)

g(a | X)
Ya.

The conditional expectation of the second term, given X, equals I(a ∈ D)Ya.
Thus, the conditional expectation, given W , of Y∆(a)/g(a | X)I(a∈D) equals
the conditional expectation of I(a 6∈ D)YA + I(a ∈ D)Ya = Yd(a), given W ,
which proves the second statement of the result. 2

IPTW-loss based learning of intention to treat causal
effect.

In this subsection we illustrate that we can estimate ψ0(a, V ) ≡ E0(Yd(a) | V )
nonparametrically by using available machine learning/data adaptive regres-
sion algorithms. The above result shows

E0(Yd(a) | V ) = E0

(
Y∆(a)

g0(a | X)I(a∈D)
| V

)
≡ E0 (Yg(a) | V ) .

Thus, for any user supplied function h, we have

ψ0 = arg min
ψ
E0Lh(O,ψ | g0),

where the loss function is defined as

Lh(O,ψ | g) ≡
∑
a∈A

(Yg(a)− ψ(a, V ))2 h(a, V ).

As a consequence, we can estimate ψ0 with the unified loss based estimation
methodology of van der Laan and Dudoit (2003) with the loss function given
by Lh(O,ψ | g) for any choice h. For example, given an estimator gn of
g0, one can estimate ψ0 by data adaptively regressing Ygn,i(a) on a, Vi, with
weights h(a, Vi), a ∈ A, i = 1, . . . , n, using a machine learning algorithm such
as the cross-validated deletion/substitution/addition (CV-DSA) algorithm of
Sinisi and van der Laan (2004).
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Similarly, we can apply the unified loss function based learning approach
to the inverse probability of treatment weighted loss function

Lh(O,ψ | g) ≡
∑
a∈A

∆(a)

g(a | X)I(a∈D)
(Y − ψ(a, V ))2 h(a, V ).

For example, given an estimator gn of g0, one can estimate ψ0 by data adap-
tively regressing Yi on a, Vi, with weights h(a, Vi)∆i(a)/gn(a | Xi)

I(a∈Di),
a ∈ A, i = 1, . . . , n, using a machine learning algorithm.

IPTW estimation of the intention to treat causal effect

Let’s now return to the estimation of the parameter βh0. The above first loss
function implies the following estimator of βh0:

βn = arg min
β

n∑
i=1

∑
a

(Ygn,i(a)−m(a, Vi | β))2 h(a, Vi),

which is a standard weighted least squares regression of (Ygn,i(a) : a) on Vi
for a repeated (over a) measures type data set, where the weights are given
by (h(a, Vi) : a). The second loss function implies the following estimator of
β0h:

βn = arg min
β

n∑
i=1

∑
a

(Yi −m(a, Vi | β))2 h(a, Vi)
∆i(a)

gn(a | Xi)I(a∈D)
.

This is now a standard weighted least squares regression of Yi on a, Vi for a
repeated (across a ∈ A) measures type data set, where the weights are given
by h(a, Vi)∆i(a)/gn(a | Xi)

I(a∈Di).
The latter weighted least squares regression estimator corresponds with

the following IPTW estimating function

Dh(O | β, g) ≡
∑
a∈A

h(a, V )
d

dβ
m(a, V | β)(Y −m(a, V | β))

∆(a)

g(a | X)I(a∈D)

= I(A ∈ D)
h(A, V )

g(A | X)

d

dβ
m(A, V | β)(Y −m(A, V | β))

+
∑
a6∈D

h(a, V )
d

dβ
m(a, V | β)(Y −m(a, V | β))

By Result 2 we have that this IPTW estimating function is unbiased for βh0:

E0Dh(O | β0, g0) = 0.
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Relation to IPTW estimating function for marginal structural model:
We note that in the special case that D = A with probability 1, we have that

Dh(O | β, g) =
h(A, V )

g(A | X)

d

dβ
m(A, V | β)(Y −m(A, V | β))

reduces to the standard IPTW estimating function for a marginal structural
models E(Ya | V ) = m(a, V | β), which is known to be unbiased if indeed the
ETA assumption, infa∈A g(a | W ) > 0, holds.

4.3 The efficient influence curve: DR-IPTW estimat-
ing function

The following result provides the optimal estimating function based on the
efficient infuence curve of βh at P0.

Result 3 Consider the following estimating function:

Dh,DR(β0, g0, Q0) =
∑
a

∆(a)

g0(a | X)I(a∈D)
h(a, V )

d

dβ
m(a, V | β0)(Y −m(a, V | β0))

−
∑
a∈D

(I(A = a)− g0(a | W ))
h(a, V ) d

dβ0
m(a, V | β0)

g0(a | W )
(Q0(a,W )−m(a, V | β0)).

If E(Yd(a) | V ) = m(a, V | β0), then for all functions h

E0Dh,DR(β0, g, Q) = 0 if g = g0 or Q = Q0.

If βh0 = arg minβ E0
∑
a(E0(Yd(a) | V )−m(a, V | β))2h(a, V ), then

E0Dh,DR(βh0, g, Q) = 0 if g = g0 or Q = Q0.

The efficient influence curve of βh at P0 is given by −c(βh0)−1Dh,DR(βh0, g0, Q0).

If P0 is such that E0(Yd(a) | V ) = m(a, V | β0), then β0 does not depend on
h so that Dh,DR yields an estimating function for all functions h.

4.4 Locally efficient double robust IPTW estimator.

Given an estimator gn, Qn of g0, Q0, we can define the estimator βh,n,DR as
the solution of the estimating equation

0 =
n∑
i=1

Dhn,DR(Oi | β, gn, Qn).
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If m(· | β) is linear in β, then this estimating equation is linear in β so that
its solution exists in closed form. This estimator is locally efficient under
regularity conditions, in the sense that it is consistent, asymptotically linear
and efficient if both gn and Qn are consistent, and it remains consistent and
asymptotically linear if only one of these two nuisance parameters is incor-
rectly estimated. In order to avoid technicalities, we propose the bootstrap
method to obtain an estimate of the sampling distribution of βhn,DR and to
construct corresponding confidence intervals.

5 Likelihood based estimation.

Firstly, we present the identifiability result providing the mapping from the
likelihood of O to the distribution of Od(ā) = (Ad(ā), Ld(ā)).

Result 4 We have the following identifiability result:

POd(ā)
(a∗, l) = I(ā∗(ca(l)) = ā(ca(l)))× (7)

τ+1∏
t=0

PL(t)|L̄(t−1,Ā(t−1)(l(t) | l̄(t− 1), ā∗(t− 1))

τ∏
t=c(l)+1

g0(a
∗(t) | ā∗(t− 1), l̄(t))

where ca(l) ≡ min{t ∈ {−1, . . . , τ} : a(t + 1) 6∈ D(l)(t + 1) or t = τ} is the
realization of the stopping time for treatment ā as identified by L = l and ā.

5.1 The likelihood based estimator.

Given a data adaptive fit Qn of QX(τ)0 and gn of gĀ(τ)|X(τ), this identifiability
result, which maps (g0, Q0) into the distribution of Od(ā), implies a substi-
tution estimator βhn(Qn, gn) of βh(P0). This substitution estimator can be
evaluated/approximated with the following Monte-Carlo simulation method.

Generate intention to treat counterfactuals: The density (7) for Od(ā)

implies a simple sequential data generating experiment for generating
many realizations of Od(ā). That is, one generates sequentially from the
conditional co-variable distributions of L(j), given the past, setting the
treatment past equal to ā(j − 1), till the time point j = c at which
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a(c+ 1) 6∈ D(c+ 1) or c = τ . From then on one generates sequentially
both the L as well as the future treatments, still setting the initial
part of the treatment Ā(c) = ā(c). We denote this random variable
with Ôd(ā) to indicate that we are using an estimate of the true data
generating distribution.

Fitting the Intention to Treat Causal Effect Model: One generates a
large collection of Ôd(ā) for a large collection (or all) ā ∈ A. Now, one

fits the model m(ā, V | β) based on these observations (Ŷd(ā),b, āb, V̂b),
b = 1, . . . , B, using h as weight function:

βn ≡ arg min
β

B∑
b=1

(Ŷd(ā),b −m(āb, V̂b | β))2h(āb, V̂b).

The consistency of this estimator will rely on correct estimation of the com-
plete data generating mechanism: i.e., both g0 and Q0 need to be consistently
estimated. In the sequel we will present estimating function based estimators,
which only rely on correct estimation of the treatment mechanism g0.

6 Inverse Probability of Treatment Weighted

Estimation.

The IPTW estimation methodology is based on the following identifiability
result for the intention to treat treatment specific distributions.

Result 5 For any ā, we define the observed

C(ā) ≡ min{t : A(t+ 1) 6= a(t+ 1) or a(t+ 1) 6∈ D(t+ 1) or t = τ}.

Consider the indicator

∆(ā) = I(A(C(ā) + 1) 6∈ D(C(ā) + 1) or C(ā) = τ). (8)

We have

E0(∆(ā) | X(τ)) = g0(ā(C(ā)) | X(τ))

=
C(ā)∏
t=0

P (A(t) = a(t) | Ā(t− 1) = ā(t− 1), L̄(t)),
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where the latter product is defined as 1 if C(ā) = −1. We also have that, for
any set of baseline co-variables V ⊂ L(0),

E0

(
Y∆(ā)

g0(Ā(C(ā)) | X(τ))
| V

)
= E0

(
Yd(ā) | V

)
.

Proof: Firstly, we note that

∆(ā) =
τ∑

c=−1

I(Ā(c) = ā(c), a(c+ 1) 6∈ DA(c+ 1) = Dā(c+ 1), c ≤ Cā(ā)),

where, for simplicity, we define I(a(τ + 1) 6∈ D(τ + 1)) = 1. Here we noted
that DA(c + 1) = Dā(c)(c + 1), and I(c ≤ CĀ(ā)) = I(c ≤ Cā(c)(ā)). In
addition, we noted that at most one of the indicators in the sum can be
equal to 1. Now, take the conditional expectation, given X(τ), which gives

τ∑
c=−1

g0(ā(c) | X(τ))I(a(c+ 1) 6∈ Dā(c+ 1), c ≤ Cā(ā)).

We have that for c < Cā(ā), a(c + 1) ∈ Dā(c + 1), and for c > Cā(ā) the
indicator is 0. Thus, the latter sum equals

g0(ā(Cā(ā)) | X(τ)).

This proves the first statement in the result.
Regarding the second statement, firstly, we note that Y ∆(ā)

g0(ā(C(ā))|X(τ))

equals

τ∑
c=−1

Yā(c)
g0(ā(c) | X(c))

I(Ā(c) = ā(c), a(c+ 1) 6∈ Da(c+ 1), c ≤ Cā(ā)),

where g0(ā(c) | X(c)) is defined as 1 at c = −1. We also used that g0(· |
X(c)) = g0(· | X(τ)). For c = −1, the term equals Yd(ā)I(a(0) 6∈ Da(0), c ≤
Cā(ā)), and we will now show that for the terms with c ≥ 0 the conditional
expectation, given X(c), equals Yd(ā)I(a(c + 1) 6∈ Dā(c + 1), c ≤ Cā(ā)).
Consider the c-specific term for c ≥ 0. We take the conditional expectation,
given X(c) (so that Yā(c) and g0(ā(c) | X(c)) is fixed), which yields

g0(ā(c)|X(c))
g0(ā(c)|X(c))

Yā(c)I(a(c+ 1) 6∈ Dā(c+ 1), c ≤ Cā(ā))

= Yā(c)I(a(c+ 1) 6∈ Dā(c+ 1), c ≤ Cā(ā)).
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We have that for c < Cā(ā), a(c + 1) ∈ Dā(c + 1), and for c > Cā(ā) the
indicator is 0. Thus, the the sum over c ∈ {−1, . . . , τ} of the conditional
expectations of the c-specific term, given X(c), reduces to a single term
corresponding with c = Cā given by

Yā(Cā(ā)) = Yd(ā).

Finally, note that V ⊂ X(c) for all c ≥ 0. This proves the second statement
of the result. 2

In the next subsection we use this result to define a loss function for
the parameter ψ0(ā, V ) ≡ E0(Yd(ā) | V ), which allows us to data adaptively
estimate ψ0 using unified loss based learning. After this subsection, we return
to the estimation of the smooth parameter βh0.

6.1 IPTW-Loss based learning of intention to treat
causal effect.

The above result 5 shows

E(Yd(ā) | V ) = E

(
Y∆(ā)

g0(Ā(C(ā)) | X(τ))
| V

)
≡ E (Yg0(ā) | V ) .

Define ψ0(ā, V ) ≡ E0(Yd(ā) | V ). This shows that for an arbitrary user
supplied function h

ψ0 = arg min
ψ
E0Lh(O,ψ | g0),

where the loss function Lh is given by

Lh(O,ψ | g) ≡
∑
ā∈A

(Yg(ā)− ψ(ā, V ))2 h(ā, V ).

As a consequence, we can estimate ψ0 nonparametricly with the unified loss
based estimation methodology of van der Laan and Dudoit (2003). For ex-
ample, given an estimator gn of g0, one can estimate ψ0 by data adaptively
regressing Ygn,i(ā) on ā, Vi, using a machine learning algorithm, and weights
h(ā, Vi), ā ∈ A, i = 1, . . . , n. For example, we could use the cross-validated
deletion/substitution/addition (CV-DSA) algorithm of Sinisi and van der
Laan (2004).
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Similarly, we can apply the unified loss function based learning approach
to the inverse probability of treatment weighted loss function

Lh(O,ψ | g) ≡
∑
ā∈A

∆(ā)

g(Ā(C(ā)) | X(τ))
(Y − ψ(ā, V ))2 h(ā, V ),

which applies the IPT-weighting to the squared residuals of Y instead of
applying the IPT-weighting to Y directly. In both cases h can be chosen
arbitrary or be replaced by a data adaptive choice.

6.2 IPTW-estimating function for βh.

The first IPTW-loss function implies the following least squares estimator of
βh

βn = arg min
β

n∑
i=1

∑
ā

(Ygn,i(ā)−m(ā, Vi | β))2 h(ā, Vi).

This is a standard weighted least squares regression of (Ygn,i(ā) : ā) on Vi for a
repeated measures type data set, where the weights are given by (h(ā, Vi) : ā),
i = 1, . . . , n. Similarly, the second IPTW-loss function implies the estimator

βn = arg min
β

n∑
i=1

∑
ā

(Yi −m(ā, Vi | β))2 h(ā, Vi)
∆i(ā)

gn(Āi(Ci(ā)) | Xi(τ))
.

This estimator is now a standard weighted least squares regression of (Yi : ā)
on Vi for a repeated measures type data set, where the weights are given by
h(ā, Vi)∆i(ā)/gn(Āi(Ci(ā)) | Xi(τ)), i = 1, . . . , n.

The latter weighted least squares regression corresponds with the follow-
ing h-specific IPTW estimating function:

Dh(O | β, g) ≡
∑
ā∈A

h(ā, V )
d

dβ
m(ā, V | β)(Y −m(ā, V | β))

∆(ā)

g(Ā(C(ā)) | X(τ))
.

By Result 5 we have that this estimating function is unbiased for β0 = βh0:

E0Dh(O | β0, g0) = 0.
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6.3 Determining the followed intention to treat treat-
ment regimens.

In order to implement the above mentioned IPTW estimators of βh0, or,
ψ0 itself, one needs to know the set {ā : ∆(ā) = 1} and the corresponding
stopping times C(ā) for each observed O.
Algorithm for generating followed intention to treat treatments:
Let A1 denote the set of treatment left over during the algorithm, and let E
denote the wished set of treatments with corresponding stopping times. We
initiate A1 = A, and initiate E at the empty set.
Given L(0), set E = E ∪ {(ā,−1) : a(0) 6∈ D(0)}: thus, we add all ā ∈ A1

with a(0) 6∈ D(0), and we set C(ā) = −1.
A1 = A1/{ā ∈ A1 : a(0) 6∈ D(0)}: that is, we delete the selected treatments
from A1.
Given L(0), A(0), L(1), set E = E ∪ {(ā, 0) : ā ∈ A1, a(0) = A(0), a(1) 6∈
D(1)}.
A1 = A1/{ā ∈ A1 : a(0) = A(0), a(1) 6∈ D(1)}.
In general, for j = 0, . . ., given L(0), A(0), . . . , A(j − 1), L(j), set E = E ∪
{(ā, j − 1) : ā ∈ A1, ā(j − 1) = Ā(j − 1), a(j) 6∈ D(j)}.
A1 = A1/{ā ∈ A1 : ā(j − 1) = Ā(j − 1), a(j) 6∈ D(j)}. Proceed till j = τ or
A1 is empty.

7 The optimal estimating function and lo-

cally efficient estimator.

The following result presents the efficient influence curve for βh at P0, and
its corresponding optimal estimating function.

Result 6 Given a working model {m(ā, V | β) : β} for ψ0(ā, V ) = Ψ(P0)(ā, V ) ≡
EP0(Yd(ā) | V ) indexed by a Euclidean parameter β, our parameter of interest
is defined on the nonparametric model for P0 as

βh(P ) ≡ arg min
β
EP

∑
ā

(Ψ(P )(ā, V )−m(ā, V | β))2 h(ā, V ).

Let βh0 = βh(P0) denote the true parameter value. Consider the following
class of estimating functions:

Dh,DR(β0, g0, Q0) ≡ Dh(β0, g0)−Dh(β0, g0, Q0),
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where

Dh(O | β0, g0) =
∑
ā

∆(ā)

g0(Ā(C(ā)) | X(τ))
h(ā, V )

d

dβ0

m(ā, V | β0)(Y −m(ā, V | β0))

D∗
h,t(β0, g0)

=
∑
ā

I(C(ā) ≥ t)
∆(ā)

g0(Ā(C(ā)) | X(τ))
h(ā, V )

d

dβ
m(ā, V | β)(Y −m(ā, V | β0))

t = 0, . . . , τ

Dh(β0, Q0, g0) =
τ∑
t=0

Eg0,Q0(D
∗
h,t(β0, g0) | Ā(t), L̄(t))− Eg0,Q0(D

∗
h,t(β0, g0) | Ā(t− 1), L̄(t)).

Here g0(Ā(τ) | X(τ)) =
∏τ
t=0 g0(A(t) | Ā(t−1), L̄(t)) and Q0(O) =

∏τ+1
t=0 Q(L(t) |

L̄(t− 1), Ā(t− 1)).
We have that the efficient influence curve of βh at P0 is given by

IC∗(O) = −c(βh0)−1Dh,DR(βh0, g0, Q0).

If E(Yd(ā) | V ) = m(ā, V | β0), then for all functions h

E0Dh,DR(β0, g0, Q) = 0 for all Q.

If βh0 = arg minβ E0
∑
a(E0(Yd(ā) | V )−m(ā, V | β))2h(ā, V ), then

E0Dh,DR(βh0, g0, Q) = 0 for all Q.

For the point treatment data structure O = (L(0), A(0), Y ), we have the
following double robustness result:

E0Dh,DR(β0, g, Q) = 0 if either g = g0 or Q = Q0.

We have not been able to establish the double robustness of Dh,DR for time-
dependent treatment processes, and suggest that the wished double robust-
ness might only hold for point treatment. Given an estimator gn, Qn of g0, Q0,
we can define the estimator βhn,DR as the solution of the estimating equation

0 =
n∑
i=1

Dh,DR(Oi | β, gn, Qn).

If m(· | β) is linear in β, then this estimating equation is linear in β so that
its solution exists in closed form. This estimator is locally efficient under

http://biostats.bepress.com/ucbbiostat/paper203



regularity conditions, in the sense that it is consistent, asymptotically linear
and efficient if both gn and Qn are consistent, and it remains consistent
and asymptotically linear if g0 is consistently estimated. In order to avoid
technicalities, we propose the bootstrap method to obtain an estimate of the
sampling distribution of βhn,DR and to construct corresponding confidence
intervals.

8 Causal effect models for realistic individu-

alized treatment rules

Stopping static treatment interventions in response to individual time-dependent
characteristics at the time point in which it cannot be pursued anymore is one
way of defining a realistic intervention whose corresponding counterfactual
distribution can be identified from the data. We named this kind of inter-
vention an intention to treat intervention, and provided models for the effect
of such interventions, and corresponding locally efficient estimators in the
previous sections. An alternative realistic intervention is an individualized
treatment regimen which always assigns a treatment in the set of possible
treatment options. In this section we present a causal effect model for such
individualized treatment interventions, and present the corresponding locally
efficient double robust inverse probability of treatment weighted estimator.

An individualized treatment rule d is a vector-function (d(0), . . . , d(τ)),
where the j-th function, (Ā(j − 1), L̄(j)) → d(j)(Ā(j − 1), L̄(j)), maps the
history at time j into a treatment choice for A(j), j = 0, . . . , τ .

Consistency assumption: We define the full data as the collectionX =
(Lā : ā ∈ A) of counterfactual processes Lā = (Lā(0), . . . , Lā(τ + 1)) indexed
by static treatment interventions varying over the support of the marginal
distribution of A = Ā = (A(0), . . . , A(τ)). We also assume the temporal
ordering assumption, Lā(j) = Lā(j−1)(j), and the consistency assumption
stating that O = (A,LA), which represents the longitudinal observed data
structure O as a missing data structure on X with missing-ness variable A.
Dynamic treatment counterfactuals: Given this standard consistency
assumption, for any rule d, Ld can be defined as Lā with ā = ā(X, d) defined
as the following function of X and the rule d: a(0) = d(0)(L(0)), a(1) =
d(1)(a(0), L̄a(0)(1)), and, in general, a(j) = d(j)(ā(j − 1), L̄ā(j−1)(j)), j =
0, . . . , τ . Thus, given the existence of the random variable X defined as the
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collection of static treatment specific counterfactuals, one can also define
the dynamic treatment regimen specific counterfactuals Ld ≡ Lā(X,d) as a
measurable function of X and the rule d. It is also of interest to note that,
for each experimental unit, the rule d maps into a unique treatment regimen
ā(d,X), but a static treatment intervention ā can correspond with various
individualized treatment rules d: e.g. Lā = Ld1 = Ld2 for two different rules
d1 and d2. If an experimental unit follows rule d, then it follows that dj is,
in fact, only a function of L̄d(j). For the sake of notational convenience, in
that case we will use the notation L̄d(j) → d(j)(L̄d(j)).

Sequential randomization assumption: We will assume the standard
sequential randomization assumption: i.e., for each j = 0, . . . , τ , A(j) is
independent of X, given L̄(j), Ā(j − 1). The data generating distribution of
O will be denoted with P0 = PFX0,g0 , and is indexed by the distribution FX0

of X and the conditional probability distribution, g0(· | X), of Ā, given X.
Realistic dynamic treatment assumption: Let A∗ be a set of dy-

namic treatment regimens so that for any d ∈ A∗ we have

P (d(j)(L̄d(j)) ∈ Dd(j), j = 0, . . . , τ) = 1. (9)

That is, for each possible history at time j under a dynamic treatment reg-
imen d ∈ A∗, the next treatment assigned by this individualized treatment
rule d at time j + 1 is an element of the set Dd(j + 1) of possible treatment
options. This condition on the rule d guarantees that the distribution of Ld is
identifiable by the G-computation formula (Robins (2000a), Gill and Robins
(2001), Yu and van der Laan (2002)):

P (Ld = l) =
τ+1∏
j=0

P (L(j) = l(j) | Ā(j − 1) = d̄(j − 1)(l), L̄(j − 1) = l̄(j − 1)).

where we defined d̄(j − 1)(l) ≡ (d(1)(l(0)), . . . , d(j − 1)(l̄(j − 1)).
Realistic individualized treatment rules indexed by static treat-
ment regimens: Given a static treatment regimen ā, one can define a
dynamic treatment regimen as one which follows the static treatment regi-
men ā till time point t = Cā at which a(t + 1) 6∈ D(t + 1) or t = τ , and
subsequently one proceeds assigning treatments in the set of treatment op-
tions according to a particular user supplied rule. For example, the following
construction describes such a set of dynamic treatment regimens indexed by
static treatment interventions ā. Suppose that the maximal set of treatment
options is S in the sense that D(j) ⊂ S for all j = 0, . . . , τ , with probability
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1. In addition, define a dissimilarity measure between any pair of elements
in S so that for each s ∈ S, we can identify the element in D(j) closest to s.
We could now define the following individualized treatment rule indexed by
a static treatment regimen ā: 1) follow static treatment regimen ā till time
point t = Cā at which a(t+ 1) 6∈ D(t+ 1) or t = τ , 2) if t < τ (that is, it was
not possible to fully comply with ā), then set the next treatment equal to the
element in D(t + 1) closest to a(t + 1), 3) keep this treatment constant till
the time point at which the treatment is not an element of the set of treat-
ment options so that a switch of treatment is required, or till the endpoint
τ , and, if the treatment needs to be switched before τ , then switch again to
the element in the set of treatment options closest to the current treatment,
4) continue in this manner till one reaches the end point τ . Notice, that
this defines an individualized treatment rule as a deterministic function of a
static intervention ā. Therefore, we can denote this set of treatment options
with dā, ā ∈ A.

Causal effect model for realistic individualized treatment rules:
The above standard causal inference assumptions put no restrictions on the
data generating distribution and thereby cannot be tested based on the data.
In particular, the model for the distribution of the data implied by the above
assumptions is still unspecified/nonparametric.

We define the parameter of interest as the conditional mean of Yd, given a
subset V of the baseline covariates L(0), for all d ∈ A∗. In order to deal with
the curse of dimensionality, one can follow two types of approaches. Firstly,
one could assume a model

E0(Yd | V ) = m(d, V | β0) (10)

for some parametrization (d, V ) → m(d, V | β) indexed by a finite dimen-
sional Euclidean parameter β. In this model β(FX) is the parameter of
interest, and β0 = β(FX0) is the true value of this parameter. For example,
if d = dā is a deterministic function of a static treatment intervention, as in
our example above, then we would have

E0(Yd(ā) | V ) = m(ā, V | β0).

Alternatively, if one believes such a model is not realistic, then it is more
honest to define the parameter of interest as

βh(FX) ≡ arg min
β

∑
d,V

(EFX
(Yd | V )−m(d, V | β))2h(d, V ),
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where h is a user supplied (weight) function. If model (10) holds, then
β0h = β0 for all h.

The article Murphy et al. (2001) models E(Yd | V ) for a single rule d as a
parametric function of V , and proposed corresponding double robust locally
efficient estimators. Our model above, on the other hand, models E(Yd | V )
as a function of d and V for d varying over a user supplied class of rules, and
can therefore be viewed as a generalization.

One can map β(FX0) into a corresponding optimal individualized treat-
ment rule within each strata V :

d(FX0)(V ) ≡ arg max
d∈A∗

m(d, V | β0).

Similarly, the nonparametrically defined parameter βh0 can be mapped into a
working model based approximation of the optimal individualized treatment
rule:

dh(FX0)(V ) = argmax
d∈A∗

m(d, V | βh0).

Note that the parameters β(FX) and βh(FX) are parameters of FX . As a
consequence, we can apply the general estimating function methodology as
presented in van der Laan and Robins (2003) to obtain the class of all esti-
mating functions, including the optimal double robust inverse probability of
treatment weighted estimating functions which equals the efficient influence
curve when evaluated at the true parameter values. The general method-
ology involves three steps: 1) identify the class of all full data estimating
functions (formally, the space spanned by the gradients of the path-wise
derivative of the parameter of interest, also called the orthogonal comple-
ment of the nuisance tangent space), 2) construct an inverse probability of
treatment weighted class of estimating functions which are such that the
conditional expectation, given X, maps into the class of full data estimating
functions, 3) map this class of IPTW estimating functions in the so called
double robust IPTW estimating functions by subtracting the projection on
the tangent space spanned by all scores of the treatment mechanism under
the sole model assumption SRA. For details, we refer to Chapter 1 and 2 of
van der Laan and Robins (2003).

Firstly, we need to determine the class of full data estimating functions
one would obtain in the full data model for X. It follows that this class of
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full data estimating functions is given by:∑
d∈A∗

h(d, V )
d

dβ0

m(d, V | β0)(Yd −m(d, V | β0)) : h

 .
In the case that one defines the parameter of interest as βh(FX) ≡ arg minβ

∑
d,V (EFX

(Yd |
V )−m(d, V | β))2h(d, V ), then the only full data estimating function is

∑
d∈A∗

h(d, V )
d

dβ0

m(d, V | β0)(Yd −m(d, V | β0)).

We now need to find a IPTW-estimating function which has the property
that its conditional expectation, given X, maps into the class of full data
estimating functions. We can use

Dh,IPTW (O | g0, β0) =
∑
d∈A∗

I(Ā = d(L̄))

g(Ā | X)
h(d, V )

d

dβ0

m(d, V | β0)(Y−m(d, V | β0)),

where ā = d(L̄) is defined as (a(0) = d0(L(0)), a(1) = d(1)(a(0), L̄(1)), . . . , a(τ) =
(ā(τ − 1), L̄(τ)).

The following result establishes the wished result.

Result 7 Assume that for all individualized treatment rules d ∈ A∗, we have

Pr(g(ā(X, d) | X) > 0) = 1,

where ā(X, d) is the treatment regimen followed by the experimental unit with
full data counterfactuals X if the experimental unit follows rule d: a(0) =
d(0)(L(0)), a(1) = d(1)(L̄a(0)(1)), and, in general, a(j) = d(j)(L̄ā(j−1)(j)),
j = 0, . . . , τ .

We have for all h

E(Dh,IPTW (O | g0, β0) | X) =
∑
d∈A∗

h(d, V )
d

dβ0

m(d, V | β0)(Yd−m(d, V | β0)).

As a consequence, if E(Yd | V ) = m(d, V | β0), then

E0Dh,IPTW (O | g0, β0) = 0 for all h,

and, we always have for all h

E0Dh,IPTW (O | g0, βh0) = 0.
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Proof. Because g(ā(d,X) | X) > 0, the conditional expectation E(Dh,IPTW (g0, β0) |
X) equals∑

ā∈A
∑
d∈A∗ I(ā = d(L̄ā))h(d, V ) d

dβ0
m(d, V | β0)(Yā −m(d, V | β0))

=
∑
d∈A∗

∑
ā∈A I(ā = d(L̄ā))h(d, V ) d

dβ0
m(d, V | β0)(Yd −m(d, V | β0)).

Now, we note that ā = d(L̄ā) is equivalent with the unique solution a(0) =
d(L(0)), a(j) = d(L̄ā(j−1)(j))(j), j = 1, . . . , τ . Thus, the inner

∑
ā∈A reduces

to the single term h(d, V )d/dβ0m(d, V | β0)(Yd −m(d, V | β0)), so that the
conditional expectation reduces to

∑
d∈A∗

h(d, V )
d

dβ0

m(d, V | β0)(Yd −m(d, V | β0)),

which completes the proof. 2

Finally, we map this IPTW estimating function for βh in the efficient
estimating function by subtracting its projection on the tangent space of the
treatment mechanism under SRA. The following result describes this double
robust IPTW estimating function, and thereby the efficient influence curve.
The proof of this result is a direct consequence of Theorem 1.3 and Theorem
1.6 in van der Laan and Robins (2003).

Result 8 The efficient influence curve of βh in the (nonparametric) model
for the data generating distribution P0 at P0 is given by −c(βh0)−1Dh,DR(O |
g0, Q0, βh0), where

Dh,DR(O | g0, Q0, βh0) = Dh,IPTW (O | g0, β0)

−
τ∑
t=0

{
Eg0,Q0(Dh,IPTW (g0, β0) | Ā(t), L̄(t))− Eg0,Q0(Dh,IPTW (g0, β0) | Ā(t− 1), L̄(t))

}

and c(β) ≡ d
dβ
E0Dh,DR(O | g0, Q0, β). If E0(Yd | V ) = m(d, V | β0), then for

all h
E0Dh,DR(O | g,Q, β0) = 0 if g = g0 or Q = Q0.

In general, for all h,

E0Dh,DR(O | g,Q, βh0) = 0 if g = g0 or Q = Q0.
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Double robust locally efficient estimator. Given an estimator (gn, Qn)
of the nuisance parameter (g0, Q0), and a possibly data dependent index hn,
we define the double robust locally efficient estimator as the solution βhn of

0 =
n∑
i=1

Dhn,DR(Oi | gn, Qn, β).

Under regularity conditions, the estimator βhn is consistent and asymptoti-
cally linear if either gn converges to g0 or Qn converges to Q0, and, if both
nuisance parameters are consistently estimated, then βhn is an asymptotically
efficient estimator of βh0. Therefore we call such an estimator βhn locally ef-
ficient. For the formal statement for the asymptotics of this double robust
estimator with the required regularity conditions, we refer to Theorem 2.4
and 2.5 in van der Laan and Robins (2003). In order to avoid technicalities,
for statistical inference we propose the bootstrap method which is known to
be asymptotically valid under the same conditions required to establish the
asymptotic linearity of the double robust estimator βhn,DR.

9 Discussion

Based on our simulation studies (see e.g., Neugebauer and van der Laan
(2005b)), which exposed the potentially severe bias of the IPTW estimators
of causal effects of static treatment interventions due to a practical (i.e.,
relative to sample size) violation of the ETA assumption, we have always
been very concerned with verification of the ETA assumption in our practi-
cal applications. To diagnose the presence and severity of ETA-bias of the
IPTW-estimator we have developed a bootstrap simulation method estimat-
ing the bias due to the practical violation of the ETA-assumption (Wang
et al. (2006)). In essence, this ETA-bias quantifies the lack of finite sample
identifiability of the causal effect of interest. Unfortunately, in many data
sets the bias of the IPTW estimator ETA-bias is a serious concern. Having
diagnosed the impact of the ETA-bias, one is left with the question ”What
to do?”. In the case that the parameter of interest is a causal effect of a
treatment at a single point in time, then the experimental units causing the
ETA-bias can be identified by their baseline covariates. Therefore, one might
decide to simply only estimate the causal effect for the data generating dis-
tribution, conditional on the experimental unit having baseline covariates
for which all treatments have positive probability (e.g., larger than a user
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supplied δ > 0). However, this seemingly sensible and natural approach
does force one to restrict to a sub-distribution which might not be the sub-
distribution of interest, and, it will require throwing away the observations
not drawn from this sub-distribution. Due to the latter forced reduction in
sample size, it does not necessarily follow that the finite sample ETA-bias
shrinks. So, even in the point-treatment case, there does not seem to be a
simple manner to deal with the ETA-bias. In the treatment is time-dependent
this sub-sampling approach fails to be valid because the experimental units
causing ETA-bias are not known at baseline t = 0. Instead, the experimental
units causing the ETA bias will make themselves known during the course
of the study by developing time-dependent covariates which change their set
of treatment options. As a consequence, if the parameter of interest is the
causal effect of a static treatment intervention, then deleting the experimen-
tal units causing ETA-bias correspond with adjusting for variables on the
pathway of our treatment of interest to the outcome of interest, and that
is known to result in non-interpretable parameters. To summarize, static
treatment interventions are typically not realistic, and, as a consequence, are
typically non-identifiable, or, are extremely hard to estimate based on finite
samples. It is this issue which motivated the current article proposing two
classes of causal effect models which are not relying on the ETA assumption,
but restrict attention to interventions for which the data carries information.

The proposed causal effects of intention to treat interventions aim to
approximate the causal effects of static treatment interventions, generalize
them, are always identifiable from the data, and are easier to learn based on
finite samples, while still interpretable. By choosing the realistic individu-
alized treatment rules appropriately the proposed causal effects of realistic
individualized treatment rules also generalize causal effects of static treat-
ment interventions, but are always fully identifiable. In addition, our models
for realistic individualized treatment rules allows the user to supply its own
set of realistic individualized treatment rules to be compared. In this manner,
our models for realistic individualized treatment rules identify the optimal
individualized treatment rule among the user supplied set of realistic indi-
vidualized treatment rules. Both of our proposed causal effect models force
the user to identify for each experimental unit at each point in time a set
of possible treatment options. We believe that this is actually a nice feature
since it forces the practitioner to ask the very questions which are needed to
be able to obtain a collection of identifiable and realistic treatment regimens
from data and to obtain important knowledge from subject matter experts.
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For example, one might need to determine what events for a patient corre-
spond with a reduction of treatment options. If there is not such knowledge
available, then we proposed to learn the treatment mechanism from the data
and map the fitted treatment mechanism in a time-dependent set of possible
treatment options for each experimental unit.

In future research we plan to implement these new methods in order to
analyze various data sets of interest.

APPENDIX

Proof of Result 3.

We will first show the double robustness result for Dh,DR. Firstly, if g = g0,
then the first term has mean zero, and the second term has trivially mean
zero. Consider now the case that Q = Q0. Write the first terms as a sum
of two terms

∑
a ∆(a)/g0(a | W )I(a∈D)S(O) =

∑
a∈D I(A = a)/g0S(O) +∑

a6∈D S(O) for some S, and write the second term as a difference of two
terms as well. This gives:∑

a
I(A=a,a∈D)

g(a|X)
h∗(Y −m) +

∑
a I(a 6∈ D)h∗(Y −m)

−∑a∈D
I(A=a)

g
h∗(Q0 −m) +

∑
a∈D h

∗(Q0(a,W )−m).

The expectation of the sum of the first and the third term equals zero. The
second and fourth term can be written as (use that Q0(a,W ) = E(Ya | W ))∑
a

h∗(a, V )(Y I(a 6∈ D)+YaI(a ∈ D)−m(a, V | β0)) =
∑
a

h∗(a, V )(Yd(a)−m(a, V | β0))

which has mean zero. This proves that E0Dh,DR(β0, g, Q0) = 0.
It remains to derive the efficient influence curve of the nonparametric pa-

rameter βh(P ) and show that it is indeed given by −c(β0)
−1Dh,DR(β0, g0, Q0).

Since our model for the observed data structure O is non-parametric, we
can use the following equivalent formulation of the model and parameter
of interest in terms of the distribution of the observed data. We observe
(W,A, Y ) ∼ P0. Consider a working model {m(a, V | β) : β} for ψ0(a, V ) =
Ψ(P0) ≡ EP0(EP0(Y | A = a,W )I(a ∈ D) + EP0(Y | A,W )I(a 6∈ D) | V ),
indexed by a Euclidean parameter β. Let

βh(P ) ≡ arg min
β
EP

∑
a

(Ψ(P )(a, V )−m(a, V | β))2 h(a, V )
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be the parameter of interest, and let the model for P0 be nonparametric.
We have that βh is exactly the same parameter (of the data generating dis-
tribution) as defined above in terms of intention to treat counterfactuals.
Therefore, the efficient influence curve of βh at P0 in this nonparametric
model is also the efficient influence curve in the model in which we assume
the additional non-identifiable non-testable consistency and randomization
assumption. Let βh0 = βh(P0) denote the true parameter value.

Consider the estimator

βn = arg min
β

n∑
i=1

∑
a

(Yi −m(a, Vi | β))2 h(a, Vi)
∆i(a)

gn(a | Xi)I(a∈Di)
.

We will derive the influence curve of this estimator in the case that gn is a
nonparametric estimator. Because the influence curve of a regular asymp-
totically linear estimator in a saturated model equals the efficient influence
curve, this exercise will result in the wished efficient influence curve.

Derivation of influence curve of nonparametric estima-
tor:

Firstly, we note that βn is the solution of

0 = PnDh(β, gn) ≡
1

n

n∑
i=1

Dh(Oi | β, gn),

where

Dh(O | β, gn) =
∑
a

∆(a)

gn(a | X)I(a∈D)
h(a, V )

d

dβ
m(a, V | β)(Y −m(a, V | β)),

where we use the notation Pf ≡
∫
f(o)dP (0). A standard M -estimator

analysis shows that, in first order, we have

βn − β0 ≈ −c(β0)
−1 {(Pn − P0)Dh(β0, g0) + P0{Dh(β0, gn)−Dh(β0, g0)}} ,

where c(β0) = d
dβ0
P0Dh(β0, g0). So, it remains to determine the influence

curve D1(P0) of the latter term P0{Dh(β0, gn) − Dh(β0, g0)}. Then, the in-
fluence curve of βn is given by:

IC(P0) = −c(β0)
−1 {Dh(β0, g0) +D1(P0)} .
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Derivation of the influence curve D1(P0): We note that

∆(a)

g
I(a∈D)
n

− ∆(a)

g
I(a∈D)
0

= I(a ∈ D, A = a)

(
1

gn
− 1

g0

)

≈ −I(a ∈ D, A = a)
gn − g0

g2
0

.

Thus,

P0(Dh(β0, gn)−Dh(β0, g0)) =

−∑a P0I(A = a, a ∈ D) (gn−g0)(a|W )
g20(a|W )

h∗(a, V )(Y −m(a, V | β)),

where we denote h∗ = hd/dβm. This can be written as:

−PW0

∑
a∈D

(gn − g0)(a | W )

g0(a | W )
h∗(a, V )(Q0(a,W )−m(a, V | β0)).

We have

gn(a | w)− g0(a | w) =
(pn − p0)(a, w)

p0(w)
− p0(a, w)

p2
0(w)

(pn − p0)(w)

=
pn(a, w)

p0(w)
− p0(a, w)

p2
0(w)

pn(w)

=
pn(a, w)

p0(w)
− g0(a | w)

p0(w)
pn(w),

where pn(w) = 1
n

∑
i I(Wi = w), p0(w) = Pr(W = w), pn(a, w) = 1

n

∑
i I(Ai =

a,Wi = w), and p0(a, w) = Pr(A = a,W = w). So −D1i is given by

PW0
∑
a∈D(W )

(
I(Ai=a,Wi=W )

p0(W )
− g0(a|W )

p0(W )
I(Wi = W )

)
h∗(a, V )

(
Q0(a,W )− m0(a,V )

g0(a|W )

)
.

Now, note that for a given function f PW0I(Wi = W )f(W )/p0(W ) =
∑
w I(Wi =

w)f(w) = f(Wi). Thus,

−D1i =
∑
a∈Di

(I(Ai = a)− g0(a | Wi))
h∗(a, Vi)

g0(a | Wi)
(Q0(a,Wi)−m(a, Vi | β0)).

We conclude that the efficient influence curve IC∗(P0) of β(P ) at P0 is given
by:

−c(β0)IC
∗(P0) = Dh(β0, g0, Q0)
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≡ Dh(β0, g0)−D1h(β0, g0, Q0)

≡
∑
a

∆(a)

g0(a | X)I(a∈D)
h(a, V )

d

dβ
m(a, V | β0)(Y −m(a, V | β0))

−
∑
a∈D

(I(A = a)− g0(a | W ))
h∗(a, V )

g0(a | W )
(Q0(a,W )−m(a, V | β0)).

This completes the proof of Result 3.

Proof of result 6.

We will first show the robustness of the unbiasedness of the estimating
function w.r.t. miss-specification of Q: E0Dh,DR(β0, g0, Q) = 0 for all Q.
Firstly, we have E0Dh(β0, g0) = 0. In addition, we have Dh(β0, g0, Q) =∑
t rt(Ā(t), L̄(t))−Eg0(rt | Ā(t−1), L̄(t)) for rt = EQ,g0(D

∗
h,t(Q, g) | Ā(t), L̄(t))

so that each t-specific term has conditional mean zero, given Ā(t), L̄(t) (for
all functions r). This shows that E0Dh,DR(β0, g0, Q) = 0 for all Q.

Derivation of influence curve of nonparametric estima-
tor.

Consider the estimator

βn = arg min
β

n∑
i=1

∑
ā

(Yi −m(ā, Vi | β))2 h(ā, Vi)
∆i(ā)

gn(Āi(Ci(ā)) | Xi(τ))

We will derive the influence curve of this estimator in the case that gn is
a nonparametric estimator. Because the influence curve of a regular asymp-
totically linear estimator in a saturated model equals the efficient influence
curve, this exercise will result in the wished efficient influence curve. In the
sequel, we will use the notation ≈ to indicate a first order approximation:
since all our random variables are discrete and finite, the claimed asymptotic
linearity of the estimator with corresponding influence curve can be fully
formalized. Firstly, we note that βn is the solution of

0 = PnDh(β, gn) = 0,

where

Dh(O | β, gn) =
∑
ā

∆(ā)

gn(C(ā) | X(τ))
h(ā, V )

d

dβ
m(ā, V | β)(Y −m(ā, V | β)).
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In first order we have

βn − β0 = −c(β0)
−1 {(Pn − P0)Dh(β0, g0) + P0{Dh(β0, gn)−Dh(β0, g0)}} ,

where c(β0) = d
dβ0
P0Dh(β0, g0). So, we need to determine the influence curve

D1(P0) of the latter term P0(Dh(β0, gn) − Dh(β0, g0)). Then, the influence
curve of βn is given by:

IC(P0) = −c(β0)
−1 {Dh(β0, g0) +D1(P0)} .

We note that

∆(ā)

gn(Ā(C(ā)) | X(τ))
− ∆(ā)

g0(Ā(C(ā)) | X(τ))
≈ −∆(ā)

(gn − g0)(Ā(C(ā)) | X(τ))

g2
0(Ā(C(ā)) | X(τ))

,

where we remind the reader that this term equals zero if C(ā) = −1, even
when ∆(ā) = 1, since in that case ∆(ā)/g(C(ā) | X(τ)) ≡ 1 for both g = gn
and g = g0.

Thus,

P0(Dh(β0, gn)−Dh(β0, g0)) ≈
−∑ā P0

∆(ā)
g20(Ā(C(ā))|X(τ))

(gn − g0)(Ā(C(ā)) | X(τ))h∗(ā, V )(Y −m(ā, V | β)),

where we denote h∗ = hd/dβm. Let

B(ā, O) ≡ ∆(ā)

g0(Ā(C(ā)) | X(τ))
h∗(ā, V )(Y −m(ā, V | β)).

Then the latter expectation w.r.t. P0 can be rewritten as follows:

−∑ā P0
B(ā,O)

g0(Ā(C(ā))|X(τ))
(gn − g0)(Ā(C(ā)) | X(τ)).

Define gn(a(l + 1, c) | X(τ)) ≡ ∏c
j=l+1 g0(a(j) | ā(j − 1), X(τ)). Now, we

note that

(gn − g0)(ā(c) | X(τ)) =
c∏
j=0

gn(a(j) | ā(j − 1), X(τ))−
c∏
j=0

g0(a(j) | ā(j − 1), X(τ))

=
c∑
l=0

gn(ā(l − 1) | X(τ))(gn − g0)(a(l) | ā(l − 1), X(τ))g0(a(l + 1, c) | X(τ))

≈
c∑
l=0

g0(ā(c) | X(τ))

g0(a(l) | ā(l − 1), X(τ))
(gn − g0)(a(l) | ā(l − 1), X(τ)).
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Substitution of this latter expression with c = C(ā) gives us now:

−∑ā P0B(ā, O)
(∑C(ā)

l=0
(gn−g0)(A(l)|Ā(l−1),X(τ))

g0(A(l)|Ā(l−1),X(τ))

)
.

Let W (l) = (Ā(l − 1), L̄(l)). We have

gn(a(l) | w(l))− g0(a(l) | w(l)) =
(pn − p0)(a(l), w(l))

p0(w(l))
− p0(a(l), w(l))

p2
0(w(l))

(pn − p0)(w(l))

=
pn(a(l), w(l))

p0(w(l))
− p0(a(l), w(l))

p2
0(w(l))

pn(w(l))

=
pn(a(l), w(l))

p0(w(l))
− g0(a(l) | w(l))

pn(w(l))

p0(w(l))
,

where pn(w(l)) = 1
n

∑
i I(Wi(l) = w(l)), pn(a(l), w(l)) = 1

n

∑
i I(Ai(l) =

a(l),Wi(l) = w(l)), p0(w(l)) = P (W (l) = w(l)), and p0(a(l), w(l)) = P (A(l) =
a(l),W (l) = w(l)).

So we obtain

−∑ā P0B(ā, O)
(∑C(ā)

l=0
1

g0(A(l)|W (l))p0(W (l))
(pn(A(l),W (l))− g0(A(l) | W (l))pn(W (l))

)
= − 1

n

∑n
i=1

∑
ā P0B(ā, O)(∑C(ā)

l=0
I(Wi(l)=W (l))

g0(A(l)|W (l))p0(W (l))
(I(Ai(l) = A(l))− g0(A(l) | W (l)))

)
= − 1

n

∑n
i=1

∑
ā

∑τ
l=0 P0B(ā, O)I(l ≤ C(ā))(

I(Wi(l)=W (l))
g0(A(l)|W (l))p0(W (l))

(I(Ai(l) = A(l))− g0(A(l) | W (l)))
)

= − 1
n

∑n
i=1

∑
ā

∑τ
l=0 P0,A(l),W (l)E0 (I(l ≤ C(ā))B(ā, O) | A(l),W (l))(

1
g0(A(l)|W (l))p0(W (l))

(I(Ai(l) = A(l),Wi(l) = W (l))− g0(A(l) | W (l))I(Wi(l) = W (l))
)

= − 1
n

∑n
i=1

∑
ā

∑τ
l=0

∑
a∗(l)

E0 (I(l ≤ C(ā))B(ā, O) | A(l) = a∗(l),Wi(l)) (I(Ai(l) = a∗(l))− g0(a
∗(l) | Wi(l)))

= − 1
n

∑n
i=1

∑
ā

∑τ
l=0

E0 (I(l ≤ C(ā))B(ā, O) | A(l) = Ai(l),Wi(l))− E0 (I(l ≤ C(ā))B(ā, O) | Wi(l))

Thus we can represent −D1(O) as:∑
ā

∑τ
l=0E0 (I(C(ā) ≥ l)B(ā, O) | A(l),W (l))− E0 (I(C(ā) ≥ l)B(ā, O) | W (l))

=
∑τ
l=0

(
E0

(∑
ā I(C(ā) ≥ l) ∆(ā)

g0(Ā(C(ā))|X(τ))
h∗(ā, V )(Y −m(ā, V | β)) | A(l),W (l)

)
−

E0

(∑
ā I(C(ā) ≥ l) ∆(ā)

g0(Ā(C(ā))|X(τ))
h∗(ā, V )(Y −m(ā, V | β)) | W (l)

)
.

So,

−D1(O) =
τ∑
l=0

E0(D
∗
h,l(g0, β) | A(l),W (l))− E0(D

∗
h,l(g0, β0) | W (l)),
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where

D∗
h,l(O | β0, g0) ≡

∑
ā

I(C(ā) ≥ l)
∆(ā)

g0(Ā(C(ā)) | X(τ))
h∗(ā, V )(Y−m(ā, V | β)).

We conclude that the efficient influence curve IC∗(P0) of β(P ) at P0 is
given by:

−c(β0)IC
∗(P0) = Dh(β0, g0, Q0)

= Dh(β0, g0)−Dh(β0, g0, Q0)

≡ Dh(β0, g0)−
τ∑
t=0

E0(D
∗
h,t(β0, g0) | Ā(t), L̄(t))

+
τ∑
t=0

E0(D
∗
h,t(β0, g0) | Ā(t− 1), L̄(t)).

This completes the proof of Result 6.
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