
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Extending Marginal Structural Models through
Local, Penalized, and Additive Learning

Daniel Rubin∗ Mark J. van der Laan†

∗Division of Biostatistics, School of Public Health, University of California, Berkeley,
daniel.rubin@fda.hhs.gov
†Division of Biostatistics, School of Public Health, University of California, Berkeley,

laan@berkeley.edu
This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper212

Copyright c©2006 by the authors.



Extending Marginal Structural Models through
Local, Penalized, and Additive Learning

Daniel Rubin and Mark J. van der Laan

Abstract

Marginal structural models (MSMs) allow one to form causal inferences from
data, by specifying a relationship between a treatment and the marginal distri-
bution of a corresponding counterfactual outcome. Following their introduction
in Robins (1997), MSMs have typically been fit after assuming a semiparamet-
ric model, and then estimating a finite dimensional parameter. van der Laan and
Dudoit (2003) proposed to instead view MSM fitting not as a task of semipara-
metric parameter estimation, but of nonparametric function approximation. They
introduced a class of causal effect estimators based on mapping loss functions
suitable for the unavailable counterfactual data to those suitable for the data actu-
ally observed, and then applying what has been known in nonparametric statistics
as empirical risk minimization, or global learning.

However, it has long been recognized in the statistical learning community that
global learning is only one of several paradigms for estimator construction. Build-
ing upon van der Laan and Dudoit’s work, we show how marginal structural mod-
els for causal effects can be extended through the alternative techniques of local,
penalized, and additive learning. We discuss how these new methods can of-
ten be implemented by simply adding observation weights to existing algorithms,
demonstrate the gains made possible by these extended MSMs through simula-
tion results, and conclude that nonparametric function estimation methods can be
fruitfully applied for making causal inferences.



1 Introduction

Marginal structural models (MSMs) were introduced by Robins (1997) as tools for

drawing causal inferences from data. Let A ⊂ IRd denote a set of possible treatments

that can be given to subjects. Let Ya denote the outcome or response for a subject

that would have occured if, possibly contrary to fact, treatment a ∈ A had been

administered. When studying how treatment a ∈ A affects the outcome Ya, we would

ideally observe for every subject,

X = (W, {Ya : a ∈ A}), (1)

for W a vector of baseline covariates. However, suppose that only a single random

treatment A ∈ A is actually given to each subject. Hence, consider the scenario in

which the observed data on a subject is,

O = (W,A, YA), (2)

and we have collected an i.i.d. sample {Oi}ni=1 representing data on n subjects. An

MSM can be used to estimate features of the marginal distributions of the counter-

factual responses {Ya : a ∈ A}, and consequently to analyze the causal effect of a

subject’s treatment on their outcome. The necessity for MSMs arises because when

the covariates W influence both the treatment and outcome, the distribution of Ya

does not necessarily equal the conditional distribution of {YA|A = a}. Knowledge of

this more traditional object of study would merely provide information concerning the

association of treatment a ∈ A with the subject responses.

Estimation of causal effects cannot be done with observational data unless a vital

assumption is made. The key requirement is that enough baseline covariates W are

collected so that there is no unmeasured confounding. This is taken to mean that the

treatment and set of counterfactual responses are conditionally independent given the

covariates, written formally as,

{A ⊥ {Ya : a ∈ A}|W}. (3)

The assumption (3) will be satisfied in a randomized trial, or any situation where treat-

ment is randomly assigned to subjects, with the randomizing mechanism depending

only on the baseline covariates W . From a temporal standpoint, we can safely assume
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that there is no unmeasured confounding if the baseline covariates are first measured,

and treatment is then assigned before any additional knowledge concerning the sub-

ject’s potential outcome is available. In general, there is no way to empirically verify

from the observed data {Oi}ni=1 whether (3) holds. This difficulty has made causal

inference somewhat controversial with observational data, where there may be no way

to tell if enough covariates have been collected to ensure that there is no unmeasured

confounding.

Assuming that (3) holds, an MSM places restrictions on a function ψ mapping the

treatment a to a feature of the marginal distribution of Ya. Examples of such possible

functions are,

ψ1(a) = E[Ya],

ψ2(a) = FYa(y) = P (Ya ≤ y),

ψ3(a) = F−1
Ya

(τ ) = sup{y : FYa(y) ≤ τ},

ψ4(a) = P (Ya = 1),

ψ5(a) = I(P (Ya = 1) ≥ 1

2
),

ψ6(a)(·) = FYa(·),

ψ7(a)(·) = fYa(·) = F ′
Ya

(·). (4)

Note that ψ1, ..., ψ5 map treatment a to a real number summarizing the distribution of

Ya. ψ1, ψ2, and ψ3 respectively map a to the mean of Ya, the CDF of Ya at a fixed point

y, and the τ -quantile of Ya. ψ4 is of interest with dichotomous responses Ya ∈ {0, 1}
indicating success or failure, and maps a ∈ A to the success probability corresponding

to this treatment. ψ5 is also of use with dichotomous responses, when there is interest

in classifying which treatments will lead to success or failure, as it maps treatment a

to the Bayes classification of Ya. ψ6 and ψ7 are more complicated because they map

a ∈ A to entire functions related to the distribution of Ya, instead of a single real-valued

functional of this distribution. These two choices of ψ respectively relate treatment a

to the CDF and density function of the counterfactual response Ya.

In fact, MSMs can be used to model features of the conditional distribution {Ya|V },
for V a subset of the covariates W . They can also be utilized to examine causal effects

in longitudinal studies, where the treatment A is adjusted according to past treatment

and subject history. For expositional purposes, we will not focus on these more complex
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marginal structural models.

In this paper we will further restrict attention to the case where the treatmentA is a

continuous random variable, with g(A|W ) denoting the conditional density of A given

W . This has not been the usual setting when applying MSMs for causal inference,

where treatment has typically been taken to be categorical or ordinal, and warrants

explanation. Our restriction to continuous A in this work is meant to elucidate the

gains made possible by viewing estimation of ψ as an exercise in nonparametric function

approximation, rather than in semiparametric parameter estimation. There are myriad

situations with randomized or observational data where learning the causal effect of a

continuous treatment A could be of interest, when intervention on A is possible, such

as treatment representing a continuous drug dosage. The examination of continuous

treatments could also be worthwhile in many previously studied cases where treatment

was discretized prior to analysis, but in fact treatment measurements with greater

precision were available.

As originally conceived, an MSM will specify a functional form for ψ(·) such as

ψ(a) = ψ(a|β), parameterized by an unknown β ∈ IRp. Determination of β from the

observed data {Oi}ni=1 then becomes a problem of semiparametric estimation, and pro-

cedures have been developed for this purpose for a wide class of MSMs, as summarized

in van der Laan and Robins (2002). Once β is estimated with β̂, the estimate of the

function ψ becomes ψ̂(a) = ψ(a|β̂). Although MSMs have been associated with semi-

parametric models, as a matter of notation we will refer to any estimates of such causal

parameters ψ(·) as fits to marginal structural models.

van der Laan and Dudoit (2003) proposed to nonparametrically estimate the types

of functions ψ(·) previously described, through what they termed loss based estimation,

to be described in section 2. Instead of parameterizing ψ(·) by a Euclidean β ∈ IRp,

van der Laan and Dudoit’s estimation techniques relied on mapping loss functions that

would have been used with the complete data {Xi}ni=1 to those suitable with only the

observed data {Oi}ni=1. Using these mapped loss functions, the approach essentially

reduces to what has been termed empirical risk minimization in the statistical learning

literature. The present paper can be viewed as an extension of this work.

It is well known in the statistical learning community that empirical risk minimiza-

tion is only one of several broad classes of techniques for estimator construction. In

an overview of nonparametric regression, Györfi et al. (2002) make the distinction be-

3
Hosted by The Berkeley Electronic Press



tween what they term the “four related paradigms” of local averaging, local modeling,

global modeling, and penalized modeling. While van der Laan and Dudoit’s empiri-

cal risk minimization approach to function approximation falls into the framework of

global modeling, their idea of replacing a complete data loss function with an observed

data loss function can be applied to alternative learning paradigms. In section 3 we

propose methods to fit general ψ(·) through local learning, penalized learning, and

additive learning. We will present simulation results demonstrating the gains available

from using these new procedures for nonparametric function estimation, and discuss

how these methods can often be implemented by adding observation weights to existing

algorithms. We conclude in section 4 by briefly noting how the local, penalized, and

additive learning techniques based on the loss function replacement ideas described in

section 3 are not limited to the causal inference setting, but can be applied to estimation

problems with general types of incomplete data.

2 MSMs, Global Learning, and Cross-Validation

For many causal parameters ψ(·), the quality of an approximation ψ̂(·) can be quantified

by the magnitude of a risk function,

R(ψ̂) = E[L(X, ψ̂)] = E[

∫

A
µ(a)l(Ya, ψ̂(a))da].

Here l(Ya, ψ̂(a)) ∈ IR defines the loss incurred by ψ̂(a) in predicting some feature

of the counterfactual response Ya. The loss function L(X, ψ̂) simply integrates these

counterfactual losses across the set of treatments, and the risk of ψ̂(·) is defined by the

expected value of the loss function. In this formulation, µ : A → IR is a user-supplied

weight function, meant to specify regions of A where the precision of ψ̂(·) is given

increased or decreased importance.

For the causal parameters ψ1, ..., ψ7 as in (4), natural values for the losses l(Ya, ψ̂(a))
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can be given by,

l1(Ya, ψ̂(a)) = |Ya − ψ̂(a)|2,

l2(Ya, ψ̂(a)) = |I(Ya ≤ y)− ψ̂(a)|2,

l3(Ya, ψ̂(a)) = |Ya − ψ̂(a)|+ (2τ − 1)|Ya − ψ̂(a)|,

l4(Ya, ψ̂(a)) = −Ya log(ψ̂a)− (1− Ya) log(1 − ψ̂(a)),

l5,1(Ya, ψ̂(a)) = I(Ya 6= ψ̂(a)), l5,2(Ya, ψ̂(a)) = max(1− (2Ya − 1)ψ̂(a), 0),

l6(Ya, ψ̂a(·)) =

∫
|I(Ya ≤ y)− ψ̂a(y)|2dy,

l7,1(Ya, ψ̂a(·)) = − log ψ̂a(Ya), l7,2(Ya, ψ̂a(·)) =

∫
ψ̂2
a(y)dy − 2ψ̂a(Ya). (5)

Most of these losses should be recognized immediately. Here l1 is the usual squared error

loss function for prediction of Ya, l2 measures the squared error for prediction of the

indicator I(Ya ≤ y), l3 gives the standard loss function for predicting the τ -quantile for

Ya, and l4 gives the well known cross-entropy loss for prediction of a binary response.

l5,1 is the misclassification loss function, returning a loss of one if the prediction of

binary Ya is misclassified, and zero loss otherwise. The support vector machine loss

function l5,2 has recently generated a great deal of interest for use in classification

problems, and both classification losses l5,1 and l5,2 have as their risk minimizers the

Bayes classifier ψ5(a). The loss l6 simply gives an integrated version of l2. l7,1 and

l7,2 provide the negative log-likelihood and least squares loss for estimators ψ̂(a)(·)
of the density of Ya, the latter introduced in Rudemo (1982). Choosing candidate

density estimators ψ̂(a)(·) to minimize risks E[l7,1(Ya, ψ̂(a)(·))] and E[l7,2(Ya, ψ̂(a)(·))]
will respectively result in the estimators minimizing the Kullbach-Leibler divergence

and integrated squared distance from the true density function of the counterfactual

response Ya.

Before considering estimation of a causal parameter ψ(·) from the observed data

{Oi}ni=1, we will first mention how the problem could be solved if the counterfactual data

{Xi}ni=1 were available. Given a (possibly infinite) collection Ψ of candidate estimators

for ψ(·), we would ideally want to choose the estimator ψn having the smallest risk, or

ψn = argmin{ψ̂∈Ψ}R(ψ̂).

Unfortunately, such a ψn could never be used in practice. Even with the counterfactual

data {Xi}ni=1, the risk function would depend on the unknown data generating distribu-

5
Hosted by The Berkeley Electronic Press



tion, and could not be evaluated. Empirical risk minimization attacks this problem by

noting that the risk of ψ̂ is the expected value of L(X, ψ̂), which can be approximated

by the empirical mean 1
n

∑n
i=1 L(Xi, ψ̂). The resulting estimator then becomes,

ψn = argmin{ψ̂∈Ψ}
1

n

n∑

i=1

L(Xi, ψ̂). (6)

For example, suppose that we are interested in estimating ψ(·) : a→ E[Ya]. With

the set of candidates given by,

Ψp = {ψ̂(·) : ψ̂(a) =

p∑

j=0

βja
j}, (7)

we could use the loss l(Ya, ψ̂(a)) = |Ya − ψ̂(a)|2 when attempting to make the best

polynomial fit to ψ(·) of degree p. Whenever the causal parameter ψ(·) can be rep-

resented by a basis expansion, a common technique is to consider candidate sets Ψp

consisting of linear combinations of the first p functions in this expansion.

Clearly, there is a bias-variance type tradeoff as the size of the candidate set Ψ grows.

When introducing more candidates to Ψ, we decrease the risk of the risk minimizer,

but curtail our ability to uniformly control the differences across Ψ between the true

and empirical risks. The size of the candidate set Ψ is frequently increased as the

sample size n grows. Because this empirical risk minimization approach selects among

candidates that attempt to approximate the causal parameter ψ(·) as a function of the

entire treatment set A, this estimator ψn is occasionally also said to have been built

from global modeling or global learning (as opposed to local learning, to be described

in the subsequent section).

When only the observed data {Oi}ni=1 is available, the empirical risk minimizer (6)

cannot be used. If we could somehow find an observed data loss function L?(O, ψ̂)

having the same expected value as L(X, ψ̂), then its expected value would equal the

risk. Just as 1
n

∑n
i=1 L(Xi, ψ̂) would be an empirical estimate of the risk, so would

1
n

∑n
i=1 L

?(Oi, ψ̂), and we could use the estimator,

ψn = argminψ̂∈Ψ

1

n

n∑

i=1

L?(Oi, ψ̂). (8)

Unfortunately, such an observed data loss function L?(O, ψ̂) will generally not be

an explicit function of the observed data O and the candidate ψ̂, but will depend on
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nuisance parameters that themselves must be estimated from the data. For instance,

we will consider the observed data loss function,

L?(O,ψ|g) =
µ(A)

g(A|W )
l(YA, ψ(A)). (9)

The nuisance parameter involved in this observed data loss function is g(·|W ), the

conditional density function of the treatmentA given the baseline covariatesW . Hence,

to evaluate the loss function and estimate ψn as in (8), we would first have to perform

conditional density estimation. If E[L(X, ψ̂)] is finite and there exists an ε > 0 such

that the identifiability condition

µ(a) > 0 implies g(a|W ) > ε with probability one (10)

holds, we see that indeed,

E[L?(O, ψ̂|g)] = E[E[L?(O, ψ̂|g)|X]]

= E[E[L?(O, ψ̂|g)|W, {Ya : a ∈ A}]]

= E[

∫

A

µ(a)

g(a|W )
l(Ya, ψ̂(a))g(a|W )da]

= E[

∫

A
µ(a)l(Ya, ψ̂(a))da]

= E[L(X, ψ̂)]. (11)

Note that the loss function L?(O, ψ̂|g) is attractive from a computational stand-

point, because it is simply a weighted version of l(YA, ψ̂(A)). µ(A) weighs l(Ya, ψ̂(A))

to account for the importance of ψ̂(·) being accurate when evaluated at the observed

treatment A, while weighing by the inverse density of treatment 1
g(A|W )

adjusts for the

confounding of A and YA present in the baseline covariates W . Whenever software is

available to minimize 1
n

∑n
i=1 l(YA, ψ̂(A)), and can be made to take observation weights,

the estimator in (8) can be immediately implemented once the conditional treatment

density g is fit with ĝ.

Rather than constructing a single empirical risk minimizer based on a candidate

set Ψ, van der Laan and Dudoit (2003) considered the sieve-based approach of nesting

candidate sets Ψ1 ⊂ Ψ2 ⊂ ..., constructing an empirical risk estimator ψn,p for many

values of p based on the observed data loss function and candidate set Ψp, and then

selecting among these estimators with a certain form of cross-validation. For instance,
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if using the Ψp giving degree p polynomials as in (7), then cross-validation would be

used to select the degree p of the desired polynomial fit.

Just as empirical risk minimization depends on an observed data loss function

L?(O, ψ̂) having the same expectation as L(X, ψ̂), so does van der Laan and Dudoit’s

version of cross-validation, and in fact the two procedures are closely related. Their

cross-validation technique amounts to splitting the data into two groups (possibly re-

peated over several folds), using a training set for constructing a set of candidates Ψ,

and using a validation set to choose among this Ψ with empirical risk minimization

based on L?(O, ψ̂). Formally, if P̂ is an empirical probability mass function putting

mass 1
n

on {Oi}ni=1, ψk(P̂ ) denotes the estimator produced by the kth estimation proce-

dure when fed data {Oi}ni=1, and L?(O, ψ̂|ĝ) is the estimated observed data loss function

as in (9), then the cross-validation procedure would work as follows.

P̂ (o) =
1

n

n∑

i=1

I(Oi = o) is the empirical probability mass function (PMF),

{Bi}ni=1 ∈ {0, 1}n is a random vector indicating the training and validation samples,

P̂B,0(o) =
1∑n

i=1(1−Bi)

n∑

i=1

I(Oi = o,Bi = 0) is the training sample empirical PMF,

P̂B,1(o) =
1∑n
i=1 Bi

n∑

i=1

I(Oi = o,Bi = 1) is the validation sample empirical PMF,

k̂ = argmin1≤k≤KEB

∫
L?(o, ψk(P̂B,0)|ĝ)dP̂B,1(o),

ψ̂ = ψk̂(P̂ ) is the estimator selected by cross-validation. (12)

In a method they termed their loss based estimation approach, van der Laan and

Dudoit introduced general ways of mapping full data loss functions L(X, ψ̂) into ob-

served data loss functions L?(O, ψ̂) having the same expectation, of which (9) is a

special case. We should note that (9) is not the optimal observed data loss function

in terms of either efficiency or robustness. However, it will suffice for our purposes of

showing how such an observed data loss function L?(O, ψ̂) can be used for causal infer-

ence with local, penalized, and additive modeling. The fact that the observed data loss

function L?(O, ψ̂|g) in (9) is simply a weighted version of l(YA, ψ̂(A)) will also come in

handy, when implementing the estimation procedures to be described in the sequel.
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3 MSMs Using Alternative Learning Paradigms

While the observed data loss function L?(O, ψ̂|g) can be used for empirical risk mini-

mization as in (8), it can also be used for other types of estimator construction. Hastie

et al. (2001) mentions that,

The variety of nonparametric regression techniques or learning methods fall

into a number of different classes depending on the nature of the restrictions

imposed. These classes are not distinct, and indeed some methods fall into

several classes.

Empirical risk minimization, or global learning, is simply one of these different classes

of learning methods. In this section we describe local, penalized, and additive learn-

ing, which are motivated by different considerations, and how the observed data loss

function L?(O, ψ̂|g) can also be exploited when using these classes of learning tools to

estimate causal parameters.

3.1 Local Learning

One popular technique for forming estimators is based on trying to locally approximate

a function of interest. That is, rather than the global learning approach of attempting

to select the closest ψ̂(·) to ψ(·) from a candidate set Ψ, we could estimate ψ(a0) by

only considering candidates in Ψ that well approximate ψ(·) in a neighborhood of a0.

Local estimators generally start with a candidate set Ψ that is somewhat smaller than

would be used in the global learning approach. For example, when estimating the

counterfactual mean process ψ : a→Median(Ya) we could consider the candidate set,

Ψ = {ψ : ψ(a) = β0 + β1a}, (13)

consisting of linear functions of the treatment. Although we might not expect ψ(·) to

be globally well approximated by a linear function, the first order Taylor expansion

ψ(a) ' ψ(a0) + (a− a0)ψ
′(a0) (14)

suggests that the causal parameter ψ(·) might behave like a member of Ψ in a neigh-

borhood of treatment a0 ∈ A. An overview of local modeling is provided in Fan and

Gijbels (1996).
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Local learning often depends on a kernel function Kh : IR → IR+, with bandwidth

a h, chosen so that Kh(‖a − a0‖) becomes large if treatment a is far from a0. For

example,

K1,h(x) =
1√
2πh

exp(− 1

2h2
x2),

K2,h(x) = I(|x| ≤ h),

K3,h(x) =
3

4
(1 − x2

h2
)I(|x| ≤ h),

K4,h(x) = (1− |x|
3

h3
)I(|x| ≤ h),

define the Gaussian, box, Epanechnikov, and tri-cube kernels commonly used in smooth-

ing applications. If the counterfactual data {Xi}ni=1 were available, we could image

locally approximating a causal parameter ψ(·) in a neighborhood of a0 ∈ A with,

ψn,a0 = argmin{ψ̂∈Ψ}
1

n

n∑

i=1

∫

A
µ(a)l(Ya,i, ψ̂(a))Kh(‖a− a0‖)da,

resulting in the estimator,

ψn(a) = ψn,a(a). (15)

Such an estimator attempts to find the candidate ψ̂ ∈ Ψ minimizing the locally

weighted risk,

Ra0(ψ̂) = E[

∫

A
µ(a)l(Ya, ψ̂(a))Kh(‖a− a0‖)da], (16)

and for each a0 ∈ A selects the candidate ψn,a0 via empirical risk minimization. By

adding the kernel weight Kh(‖a− a0‖) to the integrand in the loss function, we more

heavily weigh losses l(Ya, ψ̂(a)) for treatments a close to a0. The bandwidth h calibrates

the size of the neighborhood over which we hope to locally approximate the causal

parameter ψ(·). As is well known, changing this bandwidth results in a bias-variance

tradeoff, and h would typically be chosen with cross-validation.

When only having access to the observed data {Oi}ni=1, computing the estimator

(15) is impossible. But just as we can construct empirical risk estimators with the

surrogate loss function L?(O, ψ̂|g) defined in (9), we can form local empirical risk

estimators at a0 ∈ A through weighing this loss function by Kh(‖A − a0‖). That

is, it can be shown as in (11) that L?(O, ψ̂|g)Kh(‖A− a0‖) is unbiased for the locally

weighted risk defined Ra0(ψ̂) defined in (16). The observed data analog to the complete

data estimator of (15) is to first estimate the nuisance parameter g with ĝ, and then
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choose the candidate ψn,a0 ∈ A minimizing the locally weighted empirical risk. This

gives,

ψn,a0(·) = argminψ̂∈Ψ

1

n

n∑

i=1

Kh(‖Ai − a0‖)L?(Oi, ψ̂|ĝ)

= argminψ̂∈Ψ

1

n

n∑

i=1

µ(Ai)

ĝ(Ai|Wi)
l(YAi, ψ̂(Ai))Kh(‖Ai − a0‖),

resulting in the estimator ψn(a) = ψn,a(a). If a software routine exists to minimize

the local empirical risk 1
n

∑n
i=1 l(YA,i, ψ̂(Ai))Kh(‖Ai − a0‖), and accepts observation

weights, this estimator ψn can be conveniently computed by adding observation weights
µ(Ai)

ĝ(Ai|Wi)
to the existing algorithm. The bandwidth h indexes a class of estimators,

and could be selected with van der Laan and Dudoit’s observed data cross-validation

method (12), described in the previous section.

To illustrate the local learning of a causal parameter, we ran a simulation based

on n = 200 observations. We considered estimating the function ψ(·) : A = [0, 1] →
Median(Ya). We chose µ(a) = 1 as our weight function, which gave no extra weight to

any region of counterfactuals in the fitting process. The observed data was generated

according to,

W ∼ U(0, 1) for U(0, 1) the uniform distribution on [0, 1],

A ∼ β(
1

2
+W,

3

2
−W ) for β(a, b) the Beta distribution with shapes a and b,

Ya ∼ ψ(a) +W − 1 + β(2, 2). (17)

Indeed, one can verify that ψ(a) = E[Ya] = Median(Ya). We considered the four

choices of the causal parameter,

ψ(a) = sin(15a),

ψ(a) = a,

ψ(a) = 4(a− 1

2
)2,

ψ(a) = I(a >
1

2
),

giving an oscillating, linear, quadratic, and step function. We estimated these ψ(·) with

the median regression loss function l(Ya, ψ̂(a)) = |Ya− ψ̂(a)| corresponding to l3 in (5)

with τ = 1
2
. We then attempted to form locally linear approximations to the median
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function ψ(·). We estimated the conditional density function g(·|W ) with ĝ(·|W ) based

on the hare() function in the polspline R package, which fit a hazard regression model

using linear splines. For implementing this median regression, we merely had to add

observation weights µ(Ai)
ĝ(Ai|Wi)

to the rq() function in the R quantreg package, which

could be used to find the linear function minimizing the empirical absolute deviation

1
n

∑n
i=1 |YA − β0 − β1A|. Our fits were based on using a Gaussian kernel, and fixed

bandwidth h = 1
10

. The results in Figure 1 suggest that the local procedure is indeed

able to smoothly fit causal median curves ψ(·) of various shapes.

3.2 Penalized Learning

If minimizing empirical risk over a set of candidates Ψ that is in some sense too large,

one cannot ensure that the risks E[L(X, ψ̂)] will be well approximated by their empirical

versions 1
n

∑n
i=1 L(Xi, ψ̂) uniformly over ψ̂ ∈ Ψ. We will then possess no guarantee that

the empirical risk minimizer will be a decent estimate of the parameter of interest.

A tremendous amount of work in empirical process theory has been directed toward

specifying exactly which function classes Ψ are “too large” in learning problems, and

the “size” of Ψ can often be controlled through restricting its Vapnik-Chernovenkis

dimension. An alternative approach is to continue using a large candidate set Ψ, such

as

Ψ = {ψ : ψ maps A to IR, and has two continuous derivatives}, (18)

but also penalize the empirical risk by the complexity of ψ̂ ∈ Ψ.

Such penalization depends on a penalty functional J : Ψ → IR+. When using the

candidate set Ψ defined in (18), a common approach in many smoothing problems is to

penalize the complexity of ψ̂ by the curvature of the function, which can be quantified

through,

J(ψ̂) =

∫

A
{ψ̂′′(a)}2da. (19)

If the counterfactual data {Xi}ni=1 were available, we could then estimate the causal

parameter ψ(·) with,

ψn = argminψ̂∈Ψ

1

n

n∑

i=1

L(Xi, ψ̂) + λJ(ψ̂). (20)

Here λ ≥ 0 is a smoothing parameter, used to specify the tradeoff between empirical

risk and complexity penalization for a candidate ψ̂. When λ = 0, ψn(·) can be any
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function minimizing empirical risk. When λ = ∞, ψn(·) must be a linear function of

the treatment, because a nonzero second derivative will imply an infinite penalty. As

noted by Hastie et al. (2001), these choices of λ lead to estimators ψn that “vary from

very rough to very smooth, and the hope is that λ ∈ (0,∞) indexes an interesting class

of functions in between.” This smoothing parameter λ would generally be chosen with

cross-validation. Greater detail on penalized modeling can be found in Wahba (1990).

With only the observed data {Oi}ni=1, we could not hope to directly evaluate the pe-

nalized empirical risk 1
n

∑n
i=1 L(Xi, ψ̂)+λJ(ψ̂). But as with the global and local learn-

ing approaches to function approximation previously discussed, we can tackle the prob-

lem by using the observed data loss function L?(O, ψ̂|g). Because 1
n

∑n
i=1 L

?(Oi, ψ̂|g)+

λJ(ψ̂) is unbiased for the penalized empirical risk, it is a natural estimate of this

quantity. After fitting the nuisance parameter g with ĝ based on conditional den-

sity estimation, we could then perform penalized learning with the observed data by

forming the estimator,

ψn = argminψ̂∈Ψ

1

n

n∑

i=1

L?(Oi, ψ̂|ĝ) + λJ(ψ̂)

= argminψ̂∈Ψ

1

n

n∑

i=1

µ(Ai)

ĝ(Ai|Wi)
l(YA,i, ψ̂(Ai)) + λJ(ψ̂). (21)

As with local learning, the smoothing parameter λ can be selected with van der Laan

and Dudoit’s observed data cross-validation scheme, given in (12).

Even if Ψ is an infinite dimensional function space as in (18), an elegant feature of

penalized learning is that the estimator ψn can often be easily computed. When using

the squared error loss l(YA, ψ̂(A)) = |YA − ψ̂(A)|2, the estimator ψn becomes a natural

cubic spline with knots at the observed treatments (A1, ..., An). As with the global and

local learning estimators, the penalized learning estimator of ψ can often be trivially

implemented if existing software routines can minimize 1
n

∑n
i=1 l(YA, ψ̂(A)) + λJ(ψ̂)

over ψ̂ ∈ Ψ, and can take observation weights µ(Ai)
ĝ(Ai|Wi)

.

To demonstrate the potential benefits of penalized learning in causal inference

problems, we again generated n = 200 observations according to (17), this time

attempting to estimate the parameter ψ(a) = E[Ya] = sin(15a). As in the pre-

vious subsection, we estimated the nuisance parameter g(·|W ) with the hare() R

function. The estimator ψn defined in (21) was based on the squared error loss

l(YA, ψ̂(A)) = |YA− ψ̂(A)|2. We were able implement ψn by adding the relevant obser-
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vation weights to the smooth.spline() function in R, which also chose the smoothing

parameter λ.

From Figure 2, we see that the penalized learning procedure accurately fit the

causal parameter ψ(·). However, in this same simulation we also estimated ψ(·) with

a global learning approach, based on minimizing empirical risk over candidate sets Ψ

containing polynomials of degree up to four. Even though penalized learning led to

accurate curve fitting, these attempts at globally approximating ψ(·) failed, as shown in

Figure 3. While van der Laan and Dudoit considered using L?(O, ψ̂|g) for sieve-based

empirical risk minimization, these results seem to demonstrate the potential benefits

of also considering estimators built from this observed data loss function in a different

way.

3.3 Additive Learning

While our previous simulations have focused on a univariate a ∈ A ⊂ IR, in many

studies there will be an interest in a multivariate treatment,

a = (a1, ..., ad) ∈ A = A1 × ...×Ad ⊂ IRd. (22)

For even moderate treatment dimension d, we may be plagued by the “curse of dimen-

sionality” when trying to learn a causal function such as ψ : a→ E[Ya]. Often the only

way out is to make assumptions concerning the structure of the multivariate function of

interest. While the most traditional approach to approximating multivariate functions

has been to make a linear fit, a more flexible technique is to assume an additive model,

as discussed in Hastie and Tibshirani (1990). Such a model would imply that,

ψ(a) = α+

d∑

j=1

ψj(aj). (23)

The constant α will not be identifiable unless the additive components ψj(·) are some-

how centered. A convenient choice is to center such that E[ψj(Aj)] = 0. The set of

candidates can then be written as,

Ψ = {ψ̂ : ψ̂(a) = α+
d∑

j=1

ψ̂j(aj), E[ψ̂j(Aj)] = 0}.

A popular approach to fitting additive models is known as backfitting, in which

each of the additive components ψj(·) are iteratively fit with univariate smoothing.
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The essential idea is that if fits to the intercept α and ψk(·), k 6= j have already been

made, then estimation of ψ(·) has been reduced to estimation of the univariate ψj(·).
This component could then be fit with the natural cubic spline resulting from penalized

estimation, as discussed in section 3.2. For J(·) the penalty functional of (19), and ĝ

an estimate of the nuisance parameter g involved in the observed data loss function

(9), the backfitting algorithm can be written as follows, adapted from Algorithm 9.1

of Hastie et al. (2001).

1. Initialize ψn,j(·) = 0, αn = argmin
α∈IR

1

n

n∑

i=1

L?(Oi, α|ĝ)

2. Cycle: j=1,2,... ,d,1,... until convergence of αn and the functions ψn,1, ..., ψn,d

ψn,j ← argmin{ψ̂j: Aj→IR}
1

n

n∑

i=1

L?(Oi, αn +
∑

k 6=j

ψn,k + ψ̂j|ĝ) + λjJ(ψ̂j)

ψn,j ← ψn,j −
1

n

n∑

i=1

ψn,j(Ai,j)

αn ← argmin
α∈IR

1

n

n∑

i=1

L?(Oi, α +
d∑

j=1

ψn,j|ĝ) (24)

Here λ1, ...λd are smoothing parameters, and could be chosen with the observed data

cross-validation method as in (12). As with local and penalized estimation of causal

parameters, this procedure could often be implemented by adding observation weights

to existing procedures. Suppose that ψ(·) was not necessarily a causal parameter,

but simply predicted some feature of the observed response YA from the multivariate

treatment A. For ψ(·) minimizing the risk E[l(YA, ψ(A))], we could imagine studying

the association between the treatment and outcome by fitting an additive model for

ψ(·). If centering the additive components so that ψj(Aj) has mean zero, then (24)

could be implemented by adding observation weights µ(Ai)
ĝ(Ai|Wi)

to an existing backfitting

routine.

4 Learning in General Incomplete Data Structures

While we have focused on fitting marginal structural models, van der Laan and Dudoit’s

approach to empirical risk minimization with mapped loss functions was originally de-

veloped in greater generality. They in fact discussed how their approach could apply to

global learning with right censored data, and other types of incomplete data structures.

15
Hosted by The Berkeley Electronic Press



Abstracting from the causal inference setting thus far described, consider a situation

whereO represents the observed data, whileX represents the unobserved complete data

that we would have preferred to measure. Whenever a function L(X, ψ̂) could have been

used with the complete data X to measure the loss incurred by a candidate estimator

ψ̂, van der Laan and Dudoit considered performing empirical risk minimization using a

surrogate loss function L?(O, ψ̂), having the property that E[L?(O, ψ̂)] = E[L(X, ψ̂)].

They described an explicit construction of a class of such surrogate loss functions suit-

able for the observed data O, applicable in incomplete data structures satisfying what

has been known as coarsening at random following Heitjan and Rubin (1991) and Gill

et al. (1997). The construction was based on the doubly robust mapping defined in van

der Laan and Robins (2002), and the mapping of the full data loss function L(X, ψ̂)

to the observed data loss function L?(O, ψ̂|g) in (9) is a special case of this approach.

An observed data loss function L?(O, ψ̂) of this form will generally depend on nuisance

parameters that must themselves be estimated from the data, just as (9) depends on

the unknown conditional density g.

The alternative learning paradigms described in this section can also apply to gen-

eral incomplete data structures, when based on a loss function L?(O, ψ̂) having the

same expectation as L(X, ψ̂). Note that the penalized estimator (20) is essentially

defined by the class Ψ of candidates and the full data loss function L(X, ψ̂). For con-

structing the observed data analog as in (21), the modus operandi is to simply replace

L(X, ψ̂) everywhere in the algorithm with L?(O, ψ̂|ĝ). Clearly, the local and additive

observed data estimators of the previous section are also essentially based on using full

data procedures with weighted versions of the losses l(YA, ψ̂). After forming L?(O, ψ̂|ĝ)
for general incomplete data structures based on van der Laan and Dudoit’s mappings,

we expect that using this observed data loss function for local, penalized, and additive

learning should often be a fairly straightforward task.

5 Discussion

In many areas of statistics, there are well known tradeoffs involved in moving from

semiparametric modeling to nonparametric function approximation. When attempting

to perform causal inference, nonparametric estimators generally require a larger number

of observations for reliable results, can be more burdensome from a computational
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standpoint, and cannot always be used in a simple manner to test the null hypothesis

of no treatment effect. However, the function approximation approach can compensate

for these deficiencies by relying on fewer assumptions, and capturing finer structure

of the causal function of interest. Suppose that one hopes to use the fit of the causal

parameter ψ : A → IR to intervene on a continuous univariate treatment A ∈ A.

The simulation results of section 3 seem to suggest plotting a smooth fit of ψ(·) may

sometimes transmit more information about the causal effect of treatment than could

an estimated β̂ ∈ IRd parameterizing a statistical model.

If taking the nonparametric route to causal inference, the present work demonstrates

how the loss function replacement methodology of van der Laan and Dudoit can be

combined with function approximation paradigms developed in the statistical learning

community, to greatly expand the toolbox of available estimators.
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Figure 1: These plots show the results of locally linear median regression using the
observed data loss function L?(O, ψ̂|ĝ). The fits are based on n = 200 observations,
and a Gaussian kernel with a bandwidth of h = 1/10. The solid black lines represent
the true median functions, and the dashed red lines represent the fitted functions. The
local procedure is able to fit curves of varying shapes, as the four plots correspond to
the median of counterfactual response Ya behaving as a linear, oscillating, quadratic,
and step function of the treatment a ∈ A = [0, 1].
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Figure 2: The penalized learning procedure, based on n = 200 observations and the
observed data loss function L?(O, ψ̂|ĝ), accurately fits the oscillating function ψ : a→
E[Ya]. The solid black line represents the true counterfactual mean function, while the
dashed red line represents the fitted function.
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Figure 3: The global modeling procedures, based on n = 200 observations and the
observed data loss function L?(O, ψ̂|ĝ), fail to accurately fit the oscillating function
ψ : a→ E[Ya]. The solid black lines represent the true counterfactual mean functions,
while the dashed red lines represent the fitted functions. The four plots represent
attempts to globally model the counterfactual mean function with polynomials of higher
degree, extending up to degree four.
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