


7.2 BOS results

Due to differences between the dataset we used and that analyzed by Titman and Sharples (2010), model

parameter estimates are similar but not identical to that of Titman and Sharples (2010). Both sets of MLEs

were evidently unique, based on numeric investigations with different starting values. Estimates and 95%

confidence intervals for the rate, emission, and intensity parameters on their original scales (i.e., rates,

emission and initial probabilities) are shown in Web Appendix Table 2.

The first passage distribution for BOS development, depicted in Figure 4A, shows that about 30% of

those starting in healthy state 11 will have transitioned into the disease state after 1 year and over 60%

after 4 years. The rate of entry into the diseased states declines with time since transplant; disease rates are

initially 35-40% and drop to 15% per year after 5 years (Figure 4B). The rates of returning to the healthy

state from the BOS state also decline with time spent in the BOS state. Among those in BOS state 21 at time

t0, the rate of reversion to the heathy state 11 is initially 6%, but drops to 1.6% after a year.

Functionals of the disease process are shown in Figure 4 along with delta-method based confidence

intervals. The cumulative probabilities of death conditional on starting in healthy state 11 versus BOS state

21 at t0, is shown in Figure 4C. By 2 years post diagnosis, 15% of those initially healthy will have died. For

individuals in BOS state 21 at time t0, nearly 30% have died by one year, and 65% by five years. Mortality

rates in individuals in healthy state 11 at t0 are 9% per year at 1 year and increase slowly thereafter (Figure

4D). The increase in mortality appears solely attributable to those who transition to BOS status because

mortality rates prior to BOS remain close to zero. After transitioning to BOS state 21, mortality rates jump

dramatically (> 50% per year), and then drop to 20% after one year. The very high initial mortality rates

are probably attributable to individuals with rapidly progressing versions of the disease.

15

Hosted by The Berkeley Electronic Press



Figure 4: A. Cumulative probability of having transitioned to BOS state at least once, conditional on being

in 11 at t0. B. Disease rate conditional on being in healthy state 11 at t0. C. Cumulative probability of

death. C. Mortality rate per year, as a function of state at t0. In all figures the shaded regions represent 95%

point-wise confidence intervals for the estimates. This figure appears in color in the electronic version of

this article.

8 Discussion

Multistate disease processes observed in the panel data setting pose challenges for analysis. The widely-

used approach of assuming standard CTMCs leads to models that are unrealistic for processes with duration-

dependent sojourn distributions. Assuming a latent CTMC framework accommodates duration-dependent

sojourn distributions but yields tractable likelihoods. These models also offer interpretative advantages, as

functionals describing the process are computable analytically.

Our EM algorithm provides an efficient and robust method of obtaining MLEs and standard errors of

latent parameter estimates. The method considerably outperformed other optimization approaches, includ-

ing those implemented in the R package msm (Jackson, 2011), Nelder-Mead, and BFGS. Our method also

performed favorably relative to the EM of Bureau et al. (2003), despite our complete data space yielding a
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higher fraction of missing information. Another alternative optimization method is implementing Newton-

Raphson on the observed data likelihood (Lystig and Hughes, 2002). However, each Newton-Raphson step

requires calculation of the observed data score and information matrix, necessitating computations similar to

first and second moments of complete data sufficient statistics. On balance, it is likely the relatively compu-

tationally expensive information calculation outweighs a faster rate of convergence in the Newton-Raphson

method relative to our EM algorithm.

The utility of latent CTMC models lies in their ability to approximate functionals of disease processes

from generic sojourn time distributions. Our simulation studies focused on sojourn distributions with in-

creasing or decreasing hazard functions, but latent CTMCa can also approximate non-monotonic hazards

(Aalen, 1995). The quality of approximation depends on the number of latent states in the model, the data

generating scenario, and time. Since latent CTMCmodels imply that sojourn time distributions have asymp-

totically constant hazard functions, substantial bias can result if the data-generating sojourn distribution has

an increasing hazard. In these cases, caution should be applied to interpretation of hazard latent CTMC

estimates outside of near-range time points.

Latent CTMC models appear to offer particular advantages for discretely observed reversible disease

processes. However, performance of panel data estimates of disease process functionals differed from fully

observed counterparts, based on models assuming the same number of latent states per disease state. Not

surprisingly, estimates based on panel observations were much more variable. We also observed relatively

more bias in panel data estimates of hazard and CDFs from the decreasing but not increasing hazard sojourn

distributions. We suspect this bias would be reduced if observations were initially more frequent. Those

designing panel studies would be well served to investigate variance and bias with their own simulations

prior to committing to an observation schedule. This is especially important given that observations that are

too distantly spaced may limit the estimability of latent model parameters (Bladt and Sorensen, 2005).

We also investigated the frequentist properties of interval estimates of functionals based on delta-method

standard errors. Delta-method standard errors on average represented 92% of the true variability of the

estimates, but performance varied by model, functional, time, and data generating distribution. Models

with more latent states generally yielded better delta-method standard error estimates, which, along with

reduced estimate bias, led to better coverage properties of nominal 95% confidence intervals. Given that

latent CTMCmodels approximate generic data-generating distributions, robust variance estimates in the EM

algorithm context may yield more valid standard errors (Elashoff and Ryan, 2004). Ultimately, the validity

of delta-method standard errors assumes the uniqueness of latent parameter MLEs. In their absence, we

recommend applying a non-parametric bootstrap. The computation time required would not be prohibitive

given the increased efficiency of our fitting algorithm.

In the frequentist setting, the major weakness of latent CTMCmodels is that latent model parameters are

potentially non-identifiable. Despite their relatively parsimonious representation, Coxian PH models of a

given dimension may have multiple intensity matrices that imply the same sojourn time distribution (He and

Zhang, 2007). HMMs based on discretely observed CTCMs with measurement error also may not be fully

identifiable (Rosychuk and Thompson, 2004). Non-identifiable latent CTMC parameters will often still have

unique disease process functional estimates. However, lack of identifiability not only affects standard error

estimates of functionals but also complicates model selection, including choice of the number of latent states.

Titman and Sharples (2010) describe a likelihood ratio test of exponential sojourn distributions that requires

special adjustments for non-identifiable ΛΛΛ parameters under the null hypothesis. Use of the Akaike and

Bayesian information criteria to compare non-nested models requires that we know the number of estimable
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model parameters. The increased efficiency of our fitting algorithm suggests that it may be practical to

evaluate models using k-fold cross validation with a goodness of fit statistic measuring prediction error

(Titman and Sharples, 2008).

Our focus has been on frequentist estimation. Bayesian methods also have a strong appeal in this setting

(Bladt et al., 2003). Sensible priors may yield identifiable latent parameters, and posterior distributions pro-

vide uncertainty estimates for model functionals. Further, model selection may be possible using reversible

jump MCMC (Green, 1995). McGrory et al. (2009) have implemented Bayesian model selection for PH

models of length of hospital stay, and their approach might be scaled to apply to more general latent CTMC

models.

9 Conclusion

Latent CTMCs provide a flexible means of describing discretely observed multistate disease processes with

duration-dependent sojourn distributions. They have especial value for discretely observed processes with

reversible transitions, for which few compelling analysis approaches exist. Our EM method provides an

efficient and robust way to fit these models in a frequentist setting. We hope our results will encourage the

wider use of latent CTMCs in the analysis of clinical studies.
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Appendix for

Fitting and Interpreting Continuous-Time Latent Markov Models
for Panel Data

by Jane M. Lange and Vladimir N. Minin

Appendix A: Complete data score and Hessian

Note: All vectors are assumed to be column vectors unless otherwise noted.

CTMC parameters

The CTMC log-likelihood component is in the curved exponential family, with natural parameters
log(λij) and

∑

i �=j λij corresponding to sufficient statistics nT (i, j) and dT (i). Individual level

baseline covariates wh are added via log(λhij) = β
T
ijw

h, where h denotes the individual and wh and
βij are p-dimensional vectors corresponding to p covariates. For convenience, we list the intensity
parameters {log(λij) : i, j ∈ S; i  = j} as a q-dimensional vector ψ, indexing each i, j pair in ψ by
u. This allows us to derive the score and information for all intensity parameters simultaneously,
which is particularly useful if one assumes the same covariate effect for more than one transition
intensity. Using the notation i[u] and j[u] to yield the i and j corresponding to u, the uth entry of
the vector score function for ψ is

l̇(ψ)[u] = nT (i[u], j[u])− dT (i[u]) exp (ψ[u]) .

The Hessian matrix for ψ is diagonal with non-zero entries

l̈(ψ)[u, u] = −dT (i[u]) exp (ψ[u]) .

The score function when the rate matrix is parameterized with covariates w is given by

l̇(β|wh) = ∇ψ(β)T l̇{ψ(β)},

where ∇ψ(β)T is the p × q matrix whose m,u entry corresponds to ∂ψ[u]
∂β[m] . The Hessian matrix in

the presence of covariates is

l̈(β|wh)[j,m] = −

q
∑

u=1

∂ψ[u]

∂β[j]

∂ψ[u]

∂β[m]
dT (i[u]) exp (ψ[u]) .

In matrix form, this can be written as

l̈(β|wh) = ∇ψ(β)T (∇ψ(β)) ◦D,

where D is a q × p matrix with each column consisting of column vector v, such that entries
v[u] = −exp(ψ[u])dT (i[u]) , and ◦ refers to the Hadamard (element-wise) product. Both the score
and Hessian are additive across subjects, so the total score and Hessian are obtained by summing
over corresponding subject-specific quantities.
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Initial and Emission distributions parameters

We limit our attention to the score and Hessian for the emission distribution, as the initial distri-
bution is analogous. For a single subject,
OT (i) = {OT (i, 1), . . . , OT (i, r)} ∼ Multinomial{ei, N(i)}, where N(i) =

∑r
j=1OT (i, j) and

ei = {e(i, 1), . . . , e(i, r)}. Sufficient statistics include the r − 1 length vector

oi[−1] = {oT (i, 2), ..., oT (i, r)}. The natural parameters are
{

ηij = log
(

e(i,j)
e(i,1)

)

: j = 2, ..., r
}

. In the

absence of covariates, the score function for the parameters ηi = (ηi2, ..., ηir) is

l̇(ηi) = oi[−1] −N(i)ei[−1],

where ei[−1] = {e(i, 2), ...e(i, r)} is a r − 1 length vector of emission probabilities written in terms
of ηi.

Subject-level covariates wh
i are added to the model via ηhij = γT

ijw
h
i , where h indexes the

individual. Let γi = (γi2, . . . ,γir) be the vector of all p covariate parameters. The score is

l̇(γi|w
h) = ∇ηi(γi)

T {oi[−1] −Niei[−1])},

where ∇ηi(γi)
T is the p × (r − 1) matrix of partial derivatives of ηi with respect to γi and ei[−1])

is written in terms of γi. The Hessian matrix in the absence of covariates is given by

l̈(ηi) = −Cov(oi[−1]).

With covariates, the Hessian matrix is given by

l̈(γi|w
h) = −

{

∇ηi(γi)
T Cov(oi[−1])∇(ηi(γi)

}

.

As before, the total score and Hessian are obtained by summing over the corresponding subject-
specific quantitites.

Appendix B: Recursions for hidden Markov models

Throughout, we abbreviate x1, . . . , xk by x1:k and o1, . . . ok by o1:k.

Forward and backward probabilities

Forward probabilities are defined as αk(u) = P(o1:k, Xk = u) and backward probabilities as βk(u) =
P(ok+1:n|Xk = u). When the last time coincides with the time of absorption, Y, the forward and
backward probabilities are defined as before, with the exception that βk(u) = ∂

∂y
P(ok+1:n, Y <

y|Xk = u) and αn(u) = ∂
∂y

P(ok+1:n, Y < y), Forward and backward probabilities are calculated
through recursive formulae of ?.

2
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Filtering and conditional likelihood calculations

Filtering probabilities, P(Xk = j|o1:k) and the conditional observed data likelihood P(Ok = ok|o1:k−1)
are related to modified forward probabilities, ak(j) = P(Xk = j, Ok = ok|o1:k−1). That is, P(Ok =

ok|o1:k−1) =
∑

j∈S ak(j), and P(Xk = j|o1:k) =
ak(j)∑
l∈S ak(l)

. The modified forward probabilities can

be calculated recursively. Initialize

a1(j) = P(O1 = o1, X1 = x1) = e(x1, o1)π(x1),

and the recursion is

ak+1(j) =
∑

i∈S

ak(i)
∑

l ak(l)
e(xk+1, ok+1)Pij(tk+1 − tk).

Recursive smoothing for first moments of complete data sufficient statistics

First moment calculations define entries of sk(xk, xk+1) as values of complete data sufficient statistics
(section 2.4.1) on the interval Tk = [tk, tk+1], conditional on xk and xk+1. Thus, sk(xk, xk+1) is
defined as E[dTk

|Xk = xk, Xk+1 = xk+1] for entries corresponding to dT (i); as E[nTk
(i, j)|Xk =

xk, Xk+1 = xk+1] for nT (i, j); 0 for zi; and as I(Xk+1 = i, Ok+1 = j) for oT (i, j). Initial values for
the function tk(x1:k) are set at t1(x1) = 0 for entries corresponding to dT (i) and nT (i, j); I(X1 = i)
for zi; and I(X1 = i, O1 = j) for oT (i, j).

Recursive smoothing for second moments of complete data sufficient statistics

The recursive smoothing method to obtain second and cross moments of complete data sufficient
statistics conditional on the entirety of a subject’s observed data, o, proceeds with a similar frame-
work and terminology as for first moments (Section 3.2.3.) First, we recursively define a functional
that corresponds to E[S[t1, tk]S[t1, tk]

T |x1:k], the second moments of complete sufficient statistics
on the interval [t1, tk], conditional on x1:k. Next, we define the recursive updates of the auxiliary
function, τk(xk). Finally, we compute the auxiliary function updates for t1, . . . , tn, enabling us to
calculate the target quantity E[S[t1, tn]S[t1, tn]

T |o1:n].

The recursive definition of E[S[t1, tk+1]S[t1, tk+1]
T |x1:k+1] involves not only

E[S[t1, tk]S[t1, tk]
T |x1:k] but also the first moment, E[S[t1, tk]|x1:k]. Thus it makes sense to consider

jointly the first and second moments of complete data sufficient statistics conditional on x1:k. We
define the joint recursive function of latent states as

t(x1:k+1) =
{

t(1)(x1:k+1), t
(2)(x1:k+1)

}

,

where
t(1)(x1:k+1) = E[S[t1, tk+1]|x1:k+1]

= t(1)(x1:k) + E[S[tk, tk+1]|xk, xk+1]

3
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and

t(2)(x1:k+1) = E[S[t1, tk+1]S[t1, tk+1]
T |x1:k+1]

= t(2)(x1:k) + E[S[tk, tk+1]|xk, xk+1]t
(1)(x1:k)

T + t(1)(x1:k)E[S[tk, tk+1]|xk, xk+1]
T

+ E[S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1].

The first component is identical to first moment recursive function (eq. (3) in the main text); the
second corresponds to second and cross moments of complete data sufficient statistics conditional
on latent states x1:k. The calculation of t(2)(x1:k+1) follows from the conditional independence of
S[tl, tl+1] and S[tj , tj+1] given the endpoints xl, xl+1, xj , xj+1 and the fact that E(XY ) = E(X)E(Y )
if X and Y are independent. We assign the function

sk(xk, xk+1) =
{

s
(1)
k (xk, xk+1), s

(2)
k (xk, xk+1)

}

=
{

E [S[tk, tk+1]|xk, xk+1] ,E
[

S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1

]}

.

The specific values of t
(1)
1 (x1) and s

(1)
k (xk, xk+1) for latent CTMC sufficient statistics were provided

previously. Appendix Table 1 summarizes specific details of s
(2)
k (xk, xk+1) and t

(2)
1 (x1) for all pairs

of latent CTMC complete data sufficient statistics.

The auxiliary functions likewise have two components corresponding to first and second mo-
ments: τ (xk) =

{

τ (1)(xk), τ
(2)(xk)
}

. The updates for τ (xk) follow from a multivariate version of

eq. (4) in the main text. The τ (1)(xk) component is defined as in eq. (4). The τ (2)(xk) component
is defined recursively as

τ
(2)
k+1(xk+1) = P(ok+1|o1:k)

−1

{

∑

xk

[τ (2)(xk) + τ
(1)
k (xk)s

(1)
k (xk, xk+1)

T

+ s
(1)
k (xk, xk+1)τ

(1)
k (xk)

T + P(Xk = xk|o1:k)E[S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1]]

× e(xk+1, ok+1)Pxkxk+1
(tk+1 − tk)

}

.

The final recursion allows us to calculate E[t
(2)
n (x1:n)|o1:k] =

∑

xn∈X
τ
(2)
n (xn), giving us the expected

value of second moments of complete data sufficient statistics conditional on the observed data.

Table 1: Definition of s
(2)
k (xk, xk+1) and t

(2)
1 (x1) for second moment calculations.

Statistics s(2)(xk, xk+1) t
(2)
1 (x1)

dT (i), dT (j) E[dTk
(i)dTk

(j)|xk, xk+1] 0

dT (i), nT (j,m) E[dTk
(i)nTk

(j,m)|xk, xk+1] 0

dT (i), oT (j,m) E[dTk
(i)I(Xk+1 = j, Ok+1 = m)|xk, xk+1] 0

nT (i, l), nT (j,m) E[nTk
(i, l)nTk

(j,m)|xk, xk+1] 0

oT (j,m), oT (l, r) I(Xk+1 = j, Ok+1 = m,Xk+1 = l, Ok+1 = r) I(X1 = j, O1 = m,X1 = l, O1 = r)
nT (i, l), oT (l, r) E[nTk

(i, l)I(Xk+1 = l, Ok+1 = r)|xk, xk+1]
zi, zm 0 I(X1 = i)I(X1 = m)
zi, oT (j,m) 0 I(X1 = i)I(X1 = j, O1 = m)
nT (j,m), zi 0 0

dT (j), zi 0 0
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Appendix C: Differentiated joint moments of transitions and state

occupancy durations with known absorption times

We assume that the CTMC has one absorbing state g. Differentiated joint moments in the presence
of known absorption times rely on the fact that if an individual is absorbed at time t, transitions to
g occur only once and no time is spent in g. These joint moments formulae use the joint moments
defined in Section 3.2.1, which we refer to as Mij(t)[a, b] = E[nt(i, j)I(X0 = a)|Xt = b];
Hi(t)[a, b] = E[dt(i)I(Xt = b)|X0 = a]; Uijlm(t)[a, c] = E[nt(i, j)nt(l,m)I(Xt = c)|X0 = a];
Wij(t)[a, c] = E[dt(i)dt(j)I(Xt = c)|X0 = a]; and Vilm(t)[a, c] = E[dt(i)nt(l,m))I(Xt = c)|X0 = a].

When the complete-data statistic of interest is S = dt(i), the differentiated joint moment is
given by

∂

∂y
E[dt(i)I(Y < t)|X0 = a] = I(i �= g)

∑

c�=g

Hi(t)[a, c]λcg.

When S = dt(i)dt(j), the differentiated joint expectation is identical, except I(i �= g) is replaced by
I(i, j �= g), and Hi(t)[a, c] is replaced by the duration cross moment Wij(t)[a, c].

For S = nt(i, j), the differentiated joint expectation is

∂

∂y
E[nt(i, j)I(Y < y)|X0 = a] = I(i, j �= k)

∑

c�=k

Mij(t)[a, c]λck + I(i �= k, j = k)Pai(t)λik.

For S = nt(i, j)nt(l,m) the differentiated joint expectation is given by

∂

∂y
E[nt(i, j)nt(l,m)I(Y < y)|X0 = a] = I(i, j, l,m �= g)

∑

c�=g

Uijlm(t)[a, c]λcg

+ I(i, l,m �= g, j = g)Mlm(t)[a, i]λig + I(i, j, l �= g,m = g)Mij(t)[a, l]λlg

+ I(i, l �= g, i = l, j = m = g)Pai(t)λig.

For S = nt(l,m)dt(i), the differentiated joint expectation is given by

∂

∂y
E[dt(i)nt(l,m)I(Y < y)|X0 = a] = I(i, j, l, �= g)

∑

c�=g

Vilm(t)[a, c]λcg+I(i, l �= g,m = g)Hi(t)[a, l]λlm.

Appendix D: Delta method standard errors of disease process func-

tionals

Suppose ψ is a p×1 vector of latent model parameters with MLE ψ̂, and F (ψ, t) is a one-dimensional
functional. Let ∇F (ψ̂, t) be the p × 1 gradient of F (ψ, t) with respect to ψ evaluated at ψ̂. The
asymptotic distribution of the functional estimates F (ψ̂, t) is normal with mean F (ψ, t) and an
approximate covariance matrix given by

Cov(F (ψ̂, t)) = ∇F (ψ̂, t)T Cov(ψ̂, t)∇F (ψ̂, t).
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Functionals such as CDFs, hazard functions, and transition probabilities involve the matrix expo-
nential; thus we require the derivative of exp(Λ(ψ)t) with respect to entries of ψ. These derivative
involve similar integrals as first moments of occupancy durations and transition counts (Section
3.2.1) and are computed with similar methods(?). For example, consider the functional Pij(t,ψ) =

exp (Λ(ψ)t). Then
∂ Pij(t,ψ)
∂ψ[k] is the i, j entry of the matrix given by

∫ t

0 e
Λ(ψ)τBψ[k]e

Λ(ψ)(t−τ)dτ ,

where Bψ[k] = {Bψ[k](i, j)} and Bψ[k](i, j) =
∂λij(ψ)
∂ψ[k]

.
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Table 2: Maximum likelihood estimates of BOS model intensity rates, emission probabilities, and
initial probabilities.

.
Transition

Intensity rates i j Point estimate 95% CI

11 12 0.39 0.11 1.42
11 21 0.39 0.27 0.56
11 3 0.01 0 0.29
12 21 0.14 0.09 0.23
12 3 0.004 0.00017 0.11
21 11 0.06 0.01 0.31
21 22 3.12 0.97 9.99
21 3 0.73 0.27 1.94
22 11 0.02 0.004 0.06
22 3 0.19 0.15 0.23

Emission e(Healthy,BOS) Double lung 0.076 0.042 0.133
Heart lung 0.018 0.01 0.031

e(BOS,Healthy) 0.011 0.004 0.028
Initial Distribution π(BOS1) Heart-lung 0.061 0.035 0.103

Double lung 0.043 0.014 0.124

6

Hosted by The Berkeley Electronic Press



Figure 1: Ratio of average delta-method standard errors to the empirical standard errors of the
estimates from simulated data. Models II and III fit survival data with Coxian PH models with 2
and 3 transient states, respectively; Model IV fits discretely observed data from a 2-state reversible
model assuming sojourn distributions analogous to model II.
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