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Abstract

Multistate models are used to characterize disease processes within an individual. Clinical studies

often observe the disease status of individuals at discrete time points, making exact times of transitions

between disease states unknown. Such panel data pose considerable modeling challenges. Assuming the

disease process progresses according a standard continuous-time Markov chain (CTMC) yields tractable

likelihoods, but the assumption of exponential sojourn time distributions is typically unrealistic. More

flexible semi-Markov models permit generic sojourn distributions yet yield intractable likelihoods for

panel data in the presence of reversible transitions. One attractive alternative is to assume that the dis-

ease process is characterized by an underlying latent CTMC, with multiple latent states mapping to

each disease state. These models retain analytic tractability due to the CTMC framework but allow for

flexible, duration-dependent disease state sojourn distributions. We have developed a robust and effi-

cient expectation-maximization (EM) algorithm in this context. Our complete data state space consists

of the observed data and the underlying latent trajectory, yielding computationally efficient expectation

and maximization steps. Our algorithm outperforms alternative methods measured in terms of time to

convergence and robustness. We also examine the frequentist performance of latent CTMC point and

interval estimates of disease process functionals based on simulated data. The performance of estimates

depends on time, functional, and data-generating scenario. Finally, we illustrate the interpretive power

of latent CTMC models for describing disease processes on a data-set of lung transplant patients. We

hope our work will encourage wider use of these models in the biomedical setting.
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1 Introduction

Disease processes refer to the natural history of a disease within an individual. These histories can be con-

ceptualized as consisting of sojourns in discrete states that individuals pass through according to progressive

or reversible transitions; the final transition is to the absorbing state, death. Discrete-space continuous-time

multistate models are useful in describing these processes. Examples include models of HIV (Guihenneuc-

Jouyaux et al., 2000), HSV-2 (Crespi et al., 2005), and multiple sclerosis (Mandel, 2010). These models

allow one to characterize sojourn time distributions in each state, predict disease and mortality rates based

on an individual’s covariates and history, and describe population level patterns such as disease state preva-

lence.

Fully observed disease process trajectories present many options for model fitting (Andersen and Kei-

ding, 2002). Panel data, consisting of snapshots of the process at discrete times on multiple individuals,

present challenges for inference. We assume that the sampling frame is independent of the underlying pro-

cess, except for possibly known times of death, and that observation times are not necessarily evenly spaced

and may vary across subjects.

In the panel observation setting, one typically assumes that the observed data are generated by a dis-

cretely observed continuous-timeMarkov chain (CTMC). This family of models enjoys tractable likelihoods

and has established methods of obtaining maximum likelihood estimates (MLEs) for transition intensities

(Kalbfleisch and Lawless, 1985; Lange, 1995). CTMCs entail two strong assumptions: a) the Markov prop-

erty indicates that transition probabilities depend on an individual’s history only through the current state,

and b) sojourn distributions are exponential, so that the rate of leaving a state does not depend on occupancy

duration.

Ideally, we would like to fit panel data using more flexible models. Semi-Markov models present one

class of alternatives, in which the sequence of states is Markov, but sojourn distributions may have any form

and need not be exponential. In general, however, data from discretely observed semi-Markov processes

result in likelihoods that are very difficult to compute, particularly if there are reversible transitions. Methods

for fitting semi-Markov models to panel data are limited to special cases, such as progressive processes

(Foucher et al., 2007) or processes in which some states have exponential sojourn distributions (Kang and

Lagakos, 2007).

Titman and Sharples (2010) proposed modeling discretely observed multistate disease processes with a

latent state CTMC. Each disease state maps to multiple latent states, which are traversed according to an

underlying CTMC. This framework yields hazard rates of transitioning between disease states that depend

on the duration spent in that state; yet likelihoods are analytically tractable, even for disease processes with

reversible transitions.

A latent CTMC structure implies phase-type (PH) distributions of sojourn times in disease states. PH

distributions are attractive since they can approximate generic distributions with positive support (Cumani,

1982); and PH functionals, such as hazard rates and cumulative distribution functions (CDFs), are easily

expressible with matrix exponentials. Aalen (1995) reviews properties of PH distributions with applications

to survival outcomes. The disadvantage of PH distributions is that model parameters may not be identifiable,

compromising estimation in a frequentist setting. Fortunately, scientifically meaningful functionals describ-

ing sojourn time distributions typically are identifiable (Bladt et al., 2003). Latent CTMC models of disease

processes inherit both these advantages and disadvantages.
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Our focus is on parameter estimation of the latent CTMC model in the panel data setting. Titman and

Sharples (2010) describe how these data fit into a hidden Markov model (HMM) framework based on an

underlying discretely observed CTMC, with or without misclassification error. The observed data likelihood

is obtainable from the recursive Baum-Welch forward-backward algorithm for HMMs (Baum et al., 1970).

Since the transition probability matrices of the latent trajectory relate to the intensity matrix via matrix

exponentials, obtaining MLEs of latent CTMC parameters is less straightforward than simply running the

Baum-Welch algorithm.

Titman and Sharples (2010) suggest standard numerical optimization methods for obtaining latent model

MLEs. In our experience, these methods are slow, sensitive to starting values, and exhibit poor convergence

properties. Here we propose a novel expectation-maximation (EM) algorithm. EM algorithms assume a

complete data space underlying the observed data whose likelihood is easy to maximize. MLEs are obtained

through iterative maximizations of the expected complete data log-likelihood conditional on observed data

and current parameter estimates (Dempster et al., 1977). Our complete data space consists of the underlying

latent trajectory and the observed data at discrete time points. These yield exponential family score equations

that can be solved easily with either an analytic maximization step (M-step) or with a few iterations of the

Newton-Raphson algorithm.

Bureau et al. (2003) developed an alternative EM method for this setting that considers the complete

data as the observed data plus latent CTMC states at each observation time. Their M-step is less stable and

computationally more costly than our approach. We show that our EM method has better performance than

both direct maximization of the observed data likelihood and the EM alogrithm of Bureau et al. (2003),

particularly when we apply the EM-acceleration of Varadhan (2011).

Our EM algorithm uniquely combines computational developments derived for PH models (Asmussen

et al., 1996) and discretely observed CTMCs (Hobolth and Jensen, 2005) and uses efficient methods devel-

oped for HMMs to sum over the latent states (Cappe et al., 2005). Our EMmethod shares a similar complete

data space and E-step as the EM algorithm that Roberts and Ephraim (2008) developed for HMMs based

on discretely observed CTMCs. However, our approach is considerably more general, as it accommodates

known times of absorption and allows for covariates in the latent CTMC model. We also construct an exact

method of calculating the Hessian matrix for model parameters using the recursive smoothing framework

described by Cappe et al. (2005).

In addition to our algorithmic developments, we focus on the practical application and interpretation of

latent CTMC models. Their value hinges on their ability to describe disease processes with generic sojourn

distributions. Models with few latent states are more likely to result in identifiable parameters, but point

estimates for disease process functionals, such as sojourn time hazard and CDFs, may be biased, and interval

estimates may have poor coverage. We investigate these aspects by fitting latent CTMCs to discretely and

fully observed processes simulated from known distributions. Others have investigated the use of phase-

type models to approximate generic distributions (Faddy, 1998; Asmussen et al., 1996; Marshall and Zenga,

2010), but to our knowledge, no one has examined their performance with discretely observed data or

investigated confidence interval coverage.

Finally, we re-analyze the bronchiolitis obliterans syndrome (BOS) dataset from Titman and Sharples

(2010), both to compare performance of different fitting methods and to illustrate model interpretation, em-

phasizing clinically relevant functionals of the disease process (Andersen and Keiding, 2012). This applica-

tion highlights the benefit of latent CTMC models for describing sojourn distributions and demonstrates the

superior speed and robustness of our EM algorithm on real data against other methods for obtaining MLEs.
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2 Model description

2.1 Latent CTMC parameterization

Let W (t) be the disease process trajectory with disease state space R = {1,2, . . . ,r}. Underlying W (t) is a

time-homogeneous CTMC, X(t), with latent state space

S = {11,12, . . . ,1s1}∪{21,22, . . . ,2s2}∪ · · ·∪{r1,r2, . . . ,rsr
},

intensity matrix ΛΛΛ, and initial distribution πππ . We assume that S has s = ∑
r
k=1 sk states. Each observable

disease state maps to multiple states in the latent state space. Thus, W (t) = j <=> X(t) ∈ { j1, j2, . . . , js j
}.

For example, Figure 1A shows a latent trajectory X(t) and the corresponding disease trajectory W (t) for a
2-state reversible disease model.

The mapping of multiple latent states in S to a single disease state in R yields phase-type, not exponen-

tial, sojourn distributions of W(t). Generally, PH distributions characterize time-to-event variables as time to

absorption in an underlying CTMC. To promote parsimony, Titman and Sharples (2010) specify the sojourn

distributions of W (t) to have Coxian PH structure. Coxian PH models assume the process starts in the first

transient state and at each transition either proceeds forward or exits to an absorbing state (Figure 1B). These

restrictions induce sparseness in ΛΛΛ. Figure 1C shows the allowable transitions of X(t)whenW (t) consists of
a 2-state reversible disease model with Coxian PH sojourn time distributions, corresponding to the trajectory

plotted in Figure 1A. The framework can also be scaled for more complex disease models, including those

where an individual in disease state p ∈ R can transition to disease states u or v. The allowable transitions

are similar; when X(t) is in latent state pk, it can proceed forward to pk+1 or exit to either latent state u1 or

v1.

2.2 Observed data likelihood

The panel data with state space R may be observed with or without misclassification error. Latent states

at each observation time will be denoted by x1, . . . ,xn, and observed data by o1, . . . ,on. Observed data

are conditionally independent given W (t) at observation times t1, . . . , tn. Thus, the relationship between

observed and latent states is described by an emission matrix E = {e(i, j)} with entries e(i, j) = P(Ot =
j|X(t) = i) that satisfy the identity e(i,k) = e( j,k) for all latent states i, j ∈ {p1, . . . , psp

} and observed

values k.

Given the HMM formulation, the observed data likelihood is

P(o) =∑
x1

∑
x2

...∑
xn

πx1

n

∏
i=2

Pxixi+1
(ti+1− ti)

n

∏
i=1

e(xi,oi), (1)

where Pxixi+1
(ti+1 − ti) = P(X(ti+1) = xi+1|X(ti) = xi) and πx1 = P(X(t1) = i) . For some individuals the

time to absorption(death), Y, is known. When the last observation time tn = y, the observed data likelihood,
∂
∂y

P(o,Y < y) is similar to equation 1. The only difference is that Pxn−1xn
(tn− tn−1) is replaced by f (tn−

tn−1|Xn−1 = xn−1), the density of Y given state xn−1 at time tn−1.
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0 1 2 3 4

Obs. times t1 t2 t3 t4

W (tl) 1 2 2

O(tl) 1 1 1 2

X(t)
1

2
1

1

W (t)

1
2

2
2

2
1

X(tl) 11 12 22 22

A.

1

Healthy Diseased

C.

12 2211 21

B.

11 12 2

Figure 1: A. Example of latent trajectory X(t), disease trajectory W (t), and observed data O(tl) at discrete
observation times for model in subfigure C, assuming possible misclassification error. B. 2-state survival

model of W(t) assuming R = {1,2} and S = {{11,12},{2}}, where disease state 2 is absorbing. Coxian

PH structures implies X(t) starts in 11. C. 2-state reversible model of W(t), with state space R = {1 =
Healthy,2= Diseased} and S = {{11,12},{21,22}}). X(t) starts in 11 or 21.

2.3 Adding covariates to the latent CTMC model

We can parameterize ΛΛΛ in the latent CTMC model by the log-rates {log(λi j) : i, j ∈ S; i "= j}. To incorporate

baseline subject-level covariates wh, we set log(λ h
i j) = βββ

T
i jw

h, where h denotes the individual. More par-

simonious models equate individual covariate effects across rate parameters. In particular, the assumption

that a covariate has a multiplicative effect on the sojourn time in disease state p is achieved by equat-

ing the covariate effect across all log rates
{

log(λi j) : i ∈ {p1, . . . , psp
}
}

. Initial distributions and emission

distributions are multinomial. The initial latent state is captured by an indicator vector Z = (Z1, . . . ,Zs),
where Zi = I(X1 = i). Thus Z ∼ Multinomial(πππ,1). The initial distribution πππ has natural parameters
{

ηi = log
(

πi

π1

)

: i = 2, ...,s
}

, and the emission distribution ei has natural parameters
{

ηi j = log
(

e(i, j)
e(i,1)

)

: j = 2, ...,r
}

.

Subject-level covariates wh are added to the multinomial models via a linear predictor by taking ηh
i j = γγγ i jw

h.

2.4 Complete data likelihood

We assume m independent subjects. The vector (o,x) denotes the complete data (observed data and underly-

ing latent trajectory) for a given subject. The model parameters θθθ = (πππ,ΛΛΛ,E) characterize the initial distri-

bution, CTMC transitions, and emission probability matrix, respectively. The complete data log-likelihood
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has exponential family form and is a linear function of complete data sufficient statistics. For a subject

these sufficient statistics include nT (i, j), the total counts of transitions from state i to state j; dT (i), the total

duration spent in state i; zi, the initial latent state indicator ; and oT (i, j) = ∑n
l=1 I(xl = i)I(ol = j), the total

co-occurrences of latent state i and observed state j.

For this subject, the complete data log-likelihood (LL) has the factored form

l(θθθ ;o,x) = l(πππ;x1)+ l(ΛΛΛ;x|x1)+ l(E;o|x,x1)

=
s

∑
i

zi log(πi)+
s

∑
i=1
∑
j "=i

nT (i, j) log(λi j)−
s

∑
i=1

dT (i)

(

s

∑
j "=i

λi j

)

+
s

∑
i=1

r

∑
j=1

oT (i, j) log{e(i, j)}.

(2)

The separation of parameters in the factored log-likelihood means that πππ,ΛΛΛ and E can be dealt with one

by one. Moreover, given the independence of individual subjects, the score and information are additive,

such that l̇(θθθ) = ∑
m
h=1 l̇h(θθθ) and l̈(θθθ) = ∑

m
h=1 l̈h(θθθ), where h indexes the score or information contribution

of individual h.

3 EM algorithm

3.1 M-step

The exponential family form of the complete data log-likelihood enables a straightforward M-step in the

EM algorithm. The score vectors and Hessian matrices for ΛΛΛ, πππ and E are provided in Web Appendix A.

In the absence of covariates, the score equations solved in the M-step have closed-form solutions, namely

λ̂i j =
∑

m
h=1 nh

T (i, j)

∑
m
h=1 dh

T (i)
, êi j =

∑
m
h=1 oh

T (i, j)

∑
m
h=1∑

r
j=1 oh

T (i, j)
and π̂(i) = ∑

m
h=1 Zh

i

m
, where h denotes an individual. With covariates,

the score equations can be solved using the Newton-Raphson algorithm, which requires the Hessian as

well as the score. Generally, the rth iteration of the Newton-Raphson method for parameter θθθ is given by

θθθ (r) = θθθ (r−1)− l̈
(

θθθ (r−1)
)−1

l̇
(

θθθ (r−1)
)

. This procedure can be applied separately to update the parameter

vectors corresponding to πππ,ΛΛΛ and E. In fact, Newton-Raphson need not be run to convergence, as a single

update will still yield the same EM convergence properties as full maximization (Lange, 1995).

3.2 E-step

The expectation step (E-step) requires computing the expectation of the complete data log-likelihood (2)

conditional on the observed data. The log-likelihood for an individual is additive across time intervals

Tl = [tl−1, tl]. Hence,

E[l(θθθ ;o,x)] =
s

∑
i=1

E[zi|o] log(πi)+
n

∑
l=1

s

∑
i=1
∑
j "=i

E[nTl
(i, j)|o] log(λi j)

−
n

∑
l=1

s

∑
i=1

E[dTl
(i)|o]

(

∑
j "=i

λi j

)

+
n

∑
l=1

s

∑
i=1

r

∑
j=1

E[oTl
(i, j)|o] log(e(i, j)) .
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This reduces the E-step to finding the conditional expectation of the complete data sufficient statistics across

Tl .

Conditional expectations for zi and oTl
(i, j) are computed as in the Baum-Welch algorithm, using the

smoothing probabilities P(Xl = xl|o) =
bl(m)αl(m)

P(o) , where αl(m) and βl(m) are HMM forward and backward

probabilities (Web Appendix B) and P(ooo) refers to equation 1. Hence

E[zi|o] = P(X1 = i|o) =
βl(m)αl(m)

P(o)

and

E[oT ( j,m)|o] =∑
l

I(Ol = m)P(Xl = j|o) =∑
l

βl(m)αl(m)

P(o)
.

Expectations of dTl
(i) and nTl

(i, j) can be obtained by first conditioning on the latent states xl and xl+1,

that is

E[dTl
|o] = E [E(dTl

|o,Xl = a,Xl+1 = b)] = E [E(dTl
|Xl = a,Xl+1 = b) |o] ,

and likewise for nTl
(i, j). Thus, we break the task down into finding the “inner” expectations, E[dTl

|Xl =
a,Xl+1 = b] and E[nTl

(i, j)|Xl = a,Xl+1 = b], and the “outer” expectations, which involve summing over the

latent states conditional on the observed data.

3.2.1 Inner expectations: conditional moments of occupancy durations and transition counts

In a general time-homogeneous CTMC, we express conditional expectations of transition counts nt(i, j) and
occupancy durations dt(i) in terms of the joint expectations E[nt(i, j)I(X0 = a)|Xt = b] and E[dt(i)I(Xt =
b)|X0 = a] divided by Pab(t), the probability of transitioning from a to b. These joint expectations are

given by the integrals
∫ t
0 λi j Pai(u)P jb(t−u)du and

∫ t
0 Pai(u)Pib(t−u)du, respectively (Hobolth and Jensen,

2005). We calculate the joint expectation integrals via the efficient matrix-based methods of Minin and

Suchard (2008a) and Minin and Suchard (2008b). These methods assume ΛΛΛ has no repeated eigenvalues

and rely on eigen-decomposition. When ΛΛΛ has repeated eigenvalues, we compute the integrals using the

uniformization approach derived in Hobolth and Jensen (2011) and Bladt et al. (2011).

Our exact method of obtaining information of parameter estimates requires joint second and cross mo-

ments of nt(i, j) and dt(i). We define these quantities as E[nt(i, j)nt(l,m)I(Xt = c)|X0 = a]; E[dt(i)dt( j)I(Xt =
c)|X0 = a]; and E[dt(i)nt(l,m))I(Xt = c)|X0 = a]. Details for these computations using eigen-decomposition

are provided by Minin and Suchard (2008b), and using uniformization by Hobolth and Jensen (2011).

Joint first and second moments are also desired when the interval endpoint coincides with the time of

absorption, Y. Let S refer to specific statistics of interest, such as nt(i, j), dt(i), nt(i, j)nt(l,m), dt(i)dt( j),
or dt(i)nt(l,m). We seek the differentiated joint moment ∂

∂ t
E[S× I(Y < t)|X0 = a] = E[S|X0 = a,Y = t]×

f (t|X0 = a).Methods for obtaining these moments are presented by Asmussen et al. (1996) and are described

in detail in Web Appendix C.

3.2.2 Outer expectations: summing over latent states

To finish the E-step, we need to compute the “outer” expectations E[STl
|o] = E[E[STl

|Xl = a,Xl+1 = b]|o],
for the complete data sufficient statistics STl

= dTl
(i) or nTl

(i, j) on each time interval Tl . In order to integrate

7

Hosted by The Berkeley Electronic Press



over latent states xl and xl+1, we exploit the bivariate smoothing probabilities

P(Xl = a,Xl+1 = b|o) =
e(b,ol+1)αl(a)βl+1(b)P(Xl+1 = b|Xl = a)

P(o)

delivered by the Baum-Welch algorithm. Thus, the expression for the conditional expectation of the com-

plete data sufficient statistic across the entire time interval T = [t1, tn] is

E[ST |o] =
n−1

∑
l=1

r

∑
a=1

r

∑
b=1

E[STl
|Xl = a,Xl+1 = b]P(Xl = a,Xl+1 = b|o).

In the case where tn corresponds to a known time of absorption, y, the summand corresponding to the

final interval is altered accordingly. The inner expectation is replaced by

E[STn−1
|Xn−1 = a,Y = tn], the transition probability is replaced by the density f (tn − tn−1|Xn−1 = a), and

the denominator is replaced by ∂
∂y

P(o,Y < y), the observed data likelihood with a known absorption time

(section 2.2).

3.2.3 Recursive smoothing for complete data sufficient statistics

Our E-step calculates conditional expectations of complete data sufficient statistics via marginal and bivari-

ate smoothing probabilities that condition on a subject’s entire observed data, o. Another option is recursive

smoothing, described by Cappe et al. (2005) for general HMMs. Recursive smoothing is an online method

for computing expectations of a functional of the currently encountered latent states conditional on the cur-

rently encountered observations. We will abbreviate x1, . . . ,xk by x1:k and the first k observations o1, . . .ok

by o1:k. The functional will be denoted by tk(x1:k). The method requires that we can define the functional

recursively, expressing tk+1(x1:k+1) as a linear combination of tk(x1:k) and functions of xk and xk+1, That is,

the functional is initialized at t1(x1) and is defined as

tk+1(x1:k+1) = mk(xk,xk+1)tk(x1:k)+ sk(xk,xk+1), (3)

where mk(xk,xk+1) and sk(xk,xk+1) are sequences of possibly vector (or matrix) valued functions.

The ultimate target, E[tn(x1:n)|o1:n], is obtained through recursive updates of auxiliary functions τk(xk) =
E[I(Xk = xk)tk(x1:k)|o1:k], for k = 1, . . . ,n. At each step, E[tk(x1:k)|o1:k] = ∑xk

τk(xk), with the final step

enabling calculation of E[tn(x1:n)|o1:n]. The auxiliary functions are initialized as

τ1(x1) = t1(x1)
e(x1,o1)π(x1)

∑a e(a,o1)π(a)
.

Cappe et al. (2005) showed that updates to the auxiliary functions are given by

τk+1(xk+1) =
P(o1:k)

P(o1:k+1)

{

∑
xk

[τk(xk)mk(xk,xk+1)+P(Xk = xk|o1:k)sn(xk,xk+1)]

× e(xk+1,ok+1)Pxkxk+1
(tk+1− tk)

}

.

(4)

Updates to the auxiliary functions require calculating the filtering probabilities P(Xk = xk|o1:k) and the con-

ditional observed data likelihood P(Ok = ok|o1:k−1), described in Web Appendix B.
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To apply recursive smoothing to the first moments of the complete data sufficient statistics, we define

tk(x1:k) as these moments on the interval [t1, tk] conditional on x1:k. Let S be the vector of complete data

sufficient statistics for a single subject and S[tl, tm] be these sufficient statistics confined to the interval

[tl, tm]. Thus, the functional is tk(x1:k) = E[S[t1, tk]|o1:k]. The functional is initialized t1(x1) = E[S[t1, t1]|o1]
and expressed recursively as

tk+1(x1:k+1) = E[S[t1, tk+1]|x1:k+1] = E[S[t1, tk]|x1:k]+E[S[tk, tk+1]|xk,xk+1] = tk(x1:k)+ sk(xk,xk+1).

Here, mk(xk,xk+1) = 1. The specific values of t1(x1) and sk(xk,xk+1) for latent CTMC complete data suffi-

cient statistics are provided in Web Appendix B.

There is no computational advantage to using recursive smoothing over our first method for first moment

calculations. However, recursive smoothing can also be used to calculate second moments of complete data

sufficient statistics conditional on o, which are used in our exact method of computing the information

matrix of latent CTMC parameter estimates. It excels for these calculations since it retains computational

complexity O(n) in the number of time intervals. Second moment recursions require the same quantities

derived for first moments, motivating the introduction here.

4 Information and variance of parameter estimates and disease process func-

tionals

We calculate the observed information matrix of parameter estimates using the formula of Louis (1982).

Letting om and (om,xm) be the observed and complete data for all subjects, we can express the information

matrix of parameter estimates using the formula of Louis (1982) as

−l̈(θθθ ;om) = E[−l̈(θθθ |om]−Cov[l̇(θθθ |om]

= E[−l̈(θθθ)|om]−
{

E[l̇(θθθ)l̇(θθθ)T |om]−E[l̇(θθθ)|om]E[l̇(θθθ)|om]T
}

.

The expectation and covariances are taken with respect to the distribution of the complete data given the

observed data for all subjects.

We can calculate E[−l̈(θθθ)|om] readily given the factorization of the log likelihood (2) and the relatively

simple forms for Hessian functions (Web Appendix A) for πππ , λλλ and E. At the MLE, E[l̇(θθθ)|o] = 0, so we

only need to calculate E[l̇(θθθ)l̇(θθθ)T |om]. Given that the score functions are linear in the complete data suffi-

cient statistics, we need second and cross moments of these statistics conditional on the observed data. These

moments require the “inner” expectations defined in Section 3.2.1 and use recursive smoothing to integrate

over latent states (Web Appendix B). Approximate interval estimates for disease process functionals such

as hazard functions and first passage CDFs can be obtained with delta-method standard errors (Gentleman,

1994) (Web appendix D).

5 Implementation

We have implemented the EM algorithm in R (R Development Core Team, 2011), in the form of R package

cthmm available at http://r-forge.r-project.org/projects/multistate/. The software accom-

modates panel data and exact times of absorption and allows for parameterized intensity, initial distribution,
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and emission matrices. Computationally intensive E-step and information calculations are coded in C++

and rely on Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo packages (Francois et al., 2011).

5.1 Speeding up the EM with acceleration methods

EM algorithms are robust but slow, displaying linear rates of the convergence in the vicinity of the maximum

log-likelihood (Dempster et al., 1977). EM acceleration algorithms, such as the squared iterative method

of Varadhan and Roland (2008), can substantially reduce time to convergence. This method applies to any

fixed point algorithm and only requires the EM updating function. Our software uses an implementation of

the method available in the R package SQUAREM (Varadhan, 2011). In our tests, SQUAREM reduces the

time to convergence of our EM algorithm by a factor of 6 without notable loss of robustness.

6 Simulation study

The aim of the simulation study was to examine performance of latent CTMC estimates of disease process

functionals from non-exponential sojourn distributions. Data were generated for two state survival and

reversible semi-Markov models with Weibull sojourn distributions with increasing (shape=1.5, scale=1)

and decreasing (shape=.75, scale=10) hazards. 100 datasets were generated for each of the 3 scenarios

(survival with increasing hazard; survival with decreasing hazard; 2-state reversible semi-Markov model

with increasing and decreasing sojourn distributions.) With the survival data, death times were observed

exactly unless they exceeded 20, in which case they were right censored; the reversible process was observed

discretely at times (0,1,..10), jittered by Uniform(-.5,.5) random deviates.

We analyzed the simulated data with 3 latent CTMC models. Models II and III fit survival data with

Coxian PH models with 2 and 3 transient states, respectively; Model IV fit discretely observed data from

a 2-state reversible model assuming sojourn distributions analogous to model II. All data were fit with our

EM using 10 different random starting values per dataset. Hazard and CDFs of sojourn distributions were

estimated for each dataset using the corresponding models. We summarized the model performance based

on point-wise calculation of bias and root mean squared error (RMSE) of the estimates, as well as the

point-wise coverage of 95% confidence intervals based on delta-method standard errors. We limited our

analysis to datasets with more than one starting value converging to the putative maximum log-likelihood

(481/500=96%). Evaluation of interval estimates based on delta-method standard errors was further limited

to datasets with unique MLEs of latent CTMC parameters (449/481=93%).

The means of the point estimates from each model are shown in Figure 2A. The bias of the estimates

is summarized in Figure 2B. Coxian PH models have asymptotically constant hazard functions (Aalen,

1995). As such, the estimates of the Weibull(1.5,1) hazard function were increasingly biased for t > 1.

In contrast, bias of estimates of the Weibull(.75,10) hazard decreased with time, as the hazard flattened

out. As anticipated, model II estimates were more biased than those of model III. We expected that model

IV estimates would be comparable to model II, since both assume sojourn distributions characterized by

2 latent transient states. This appeared to hold for Weibull(1.5,1) functionals, but not for Weibull(.75,10)

functionals; in particular, Model IV was poor at estimating the early portion of the hazard function.

RMSE (Figure 2C) provides a means of assessing the performance of models II and III accounting

for bias and variability of estimates. Generally, RMSE of functional estimates were similar for II and
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III, except when model II was quite biased (e.g., Weibull(1.5,1) hazard, t > 2). The RMSE of model IV

estimates was highest overall, reflecting the loss of information due to discrete observations, and in the case

of Weibull(.75,.1) functional estimates, increased bias.

Coverage of 95% confidence intervals based on delta-method standard errors are shown in Figure 2D.

Poor coverage resulted when point estimates were quite biased (Weibull(1.5,1) hazards for t > 1.5), or

when the delta-method standard errors under-estimated the true variability of the estimates (Web Appendix

Figure 1), as in Weibull(75,10) CDF and hazard functions. Coverage of model IV estimates for small t was

also poor for Weibull(1.5,1) functionals at t near 0, which appeared to be due to skewness in the estimates’

distributions at this boundary. Nominal coverage was attained when the bias was small and the delta-method

standard errors provided good approximations of the true variability of the estimates.

11
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Figure 2: Summary of estimates of CDFs and hazard functions based on models fit to data generated from

Weibull(1.5,1) and Weibull(.75,10) sojourn distributions. Models II and III fit survival data with Coxian

PH models with 2 and 3 transient states, respectively; Model IV fit discretely observed data from a 2-state

reversible model assuming sojourn distributions analogous to model II. A. Mean of point estimates from all

models and the data generating value. B. Bias of estimates, with intervals representing Monte Carlo 95%

confidence intervals. C. Root mean squared error of estimates. D. Coverage of nominal 95% confidence

intervals based on delta-method standard errors.
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7 Application

Following lung transplantation, patients are at risk of developing brochiolitis obliterans syndrome, in which

bronchioles are irreversibly occluded with scar tissue. Clinically, BOS is diagnosed by >20% reduction

in forced expiratory volume/second (FEV1) from post-transplant baseline (Estenne et al., 2002). Titman

and Sharples (2010) use an illness-death model to characterize the disease process in a study of heart-lung

and double lung transplant patients who had FEV1 monitored 6 months post-transplant and at 9 months, 12

months, and every six months thereafter (Jackson et al., 2002). Our version of the dataset consisted of 122

double lung and 244 heart lung patients. Individuals with only baseline observations were excluded.

The BOS disease process, W (t), has a state space with 3 states: R = {1 = ”healthy”,2 = ”BOS”,3 =
”death”}, where death is absorbing. The model of Titman and Sharples (2010) assumes that W (t) has an

underlying latent CTMC with state space S = {11,12,21,22,3} and an intensity matrix ΛΛΛ implying Coxian

phase-type sojourn distributions of W (t). Although the BOS disease process is irreversible, the model

includes reversible transitions since they improved model fit. To promote parsimony, the intensity matrix ΛΛΛ

is structured, as λ1221 = τ1λ1121 , λ213 = τ1λ113, λ2211 = τ2λ2111 , and λ223 = τ2λ213. The parameters τ1 and τ2
mean that rates of exiting states 12 and 22 relative to 11 and 21 change by the same factor regardless of the

destination. We expressed this parameterization using log-intensity rates and dummy covariate effects.

The model includes transplant type in the probability of misclassification of healthy patients as diseased,

such that logit(e(Healthy,BOS)) = γ0+ γ1 ∗ZDL, where ZDL is an indicator of double lung transplant. Mis-

classification of diseased patients as healthy does not depend on covariates: logit(e(BOS,Healthy)) = ν0.

Initially, individuals occupy either state 11 or 21 with a probability depending on transplant type, according

to the parameterization logit(π21) = B0+B1 ∗ZDL.

7.1 Comparison between our EM and other optimization methods

We compared the performance of our EM algorithm (denoted EM1) to a) the EM of Bureau et al. (2003)

(EM2), b) the R implementation of Nelder-Mead (NM) (Nelder andMead, 1965), and c) the box-constrained

BFGS optimization algorithms (Byrd et al., 1995). The BFGS constraints assumed all model parameters

fell in the interval (-50,8). We implemented the M-step of EM2 with the BFGS stopping criteria based on

a relative convergence tolerance of 10−3. We accelerated both EM algorithms by SQUAREM (Varadhan,

2011).

We considered scenarios in which the emission and initial probabilities were unknown or known and

fixed at their MLEs. All methods were compared with the same 30 random starting values generated inde-

pendently from Normal(0,σ2 = .25) distributions. EM convergence was declared when successive itera-

tions of the log-likelihood differed by < 10−6 or 200 iterations were taken, whichever came first. NM, and

BFGS algorithms were run with the default relative convergence tolerance of "optim" (10−8) and capped

likelihood evaluations at 2,500.

The maximum log-likelihood obtained under any method was -1,248.602. Figure 3 shows the algorithm

run-time and the maximum attained likelihood for each method and condition, and Table 1 summarizes the

convergence results. EM1 was the clear winner in terms of run time, taking a median of 80 seconds to

converge when πππ and E were unknown. Other methods ran between 5.5 to 18 minutes before converging or

reaching the maximum iteration limit.
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NM had a particularly poor record in converging to the maximum log-likelihood, reaching the iteration

limit without converging for 60% of starting values. The other methods were more likely to converge,

but not necessarily to the global maxima. With unknown emission and initial distributions, the two EM

methods and BFGS converged to local maxima for 40-65% of starting values, though these differences were

not statistically significant (chi-square p-value=.12). For these starting values, EM1 was the most stable,

in that no starting value resulted in algorithm failure. The other methods failed in 16 out of 120 trials for

various reasons depending on the optimization method. In general, exploration of regions of the parameter

space corresponding to high rates led to numeric difficulties in calculating transition probabilities.

Figure 3: Runtime and attained log-likelihood (LL) when EM1 (our method), EM2, BFGS, and NM algo-

rithms were used to fit the BOS data, using 30 random starting values and assuming either (E,πππ) was fixed

(A), or was unknown (B). This figure appears in color in the electronic version of this article.

Table 1: Results of fitting the BOS data using different optimization methods with 30 random starting values.

E,π fixed E,π unkown

EM1 EM2 NM BFGS EM1 EM2 NM BFGS

Median run-time (s) 60.6 762.4 532.6 337.0 80.3 1125.3 639.5 431.9

Converged to max. LL 30 24 11 13 12 11 0 18

Convergence to local max. or

stationary point

0 3 8 10 18 16 4 10

Iteration limit reached 0 0 11 0 0 0 25 0

Algorithm failure 0 3 0 7 0 3 1 2

Total trials 30 30 30 30 30 30 30 30
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7.2 BOS results

Due to differences between the dataset we used and that analyzed by Titman and Sharples (2010), model

parameter estimates are similar but not identical to that of Titman and Sharples (2010). Both sets of MLEs

were evidently unique, based on numeric investigations with different starting values. Estimates and 95%

confidence intervals for the rate, emission, and intensity parameters on their original scales (i.e., rates,

emission and initial probabilities) are shown in Web Appendix Table 2.

The first passage distribution for BOS development, depicted in Figure 4A, shows that about 30% of

those starting in healthy state 11 will have transitioned into the disease state after 1 year and over 60%

after 4 years. The rate of entry into the diseased states declines with time since transplant; disease rates are

initially 35-40% and drop to 15% per year after 5 years (Figure 4B). The rates of returning to the healthy

state from the BOS state also decline with time spent in the BOS state. Among those in BOS state 21 at time

t0, the rate of reversion to the heathy state 11 is initially 6%, but drops to 1.6% after a year.

Functionals of the disease process are shown in Figure 4 along with delta-method based confidence

intervals. The cumulative probabilities of death conditional on starting in healthy state 11 versus BOS state

21 at t0, is shown in Figure 4C. By 2 years post diagnosis, 15% of those initially healthy will have died. For

individuals in BOS state 21 at time t0, nearly 30% have died by one year, and 65% by five years. Mortality

rates in individuals in healthy state 11 at t0 are 9% per year at 1 year and increase slowly thereafter (Figure

4D). The increase in mortality appears solely attributable to those who transition to BOS status because

mortality rates prior to BOS remain close to zero. After transitioning to BOS state 21, mortality rates jump

dramatically (> 50% per year), and then drop to 20% after one year. The very high initial mortality rates

are probably attributable to individuals with rapidly progressing versions of the disease.
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Figure 4: A. Cumulative probability of having transitioned to BOS state at least once, conditional on being

in 11 at t0. B. Disease rate conditional on being in healthy state 11 at t0. C. Cumulative probability of

death. C. Mortality rate per year, as a function of state at t0. In all figures the shaded regions represent 95%

point-wise confidence intervals for the estimates. This figure appears in color in the electronic version of

this article.

8 Discussion

Multistate disease processes observed in the panel data setting pose challenges for analysis. The widely-

used approach of assuming standard CTMCs leads to models that are unrealistic for processes with duration-

dependent sojourn distributions. Assuming a latent CTMC framework accommodates duration-dependent

sojourn distributions but yields tractable likelihoods. These models also offer interpretative advantages, as

functionals describing the process are computable analytically.

Our EM algorithm provides an efficient and robust method of obtaining MLEs and standard errors of

latent parameter estimates. The method considerably outperformed other optimization approaches, includ-

ing those implemented in the R package msm (Jackson, 2011), Nelder-Mead, and BFGS. Our method also

performed favorably relative to the EM of Bureau et al. (2003), despite our complete data space yielding a
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higher fraction of missing information. Another alternative optimization method is implementing Newton-

Raphson on the observed data likelihood (Lystig and Hughes, 2002). However, each Newton-Raphson step

requires calculation of the observed data score and information matrix, necessitating computations similar to

first and second moments of complete data sufficient statistics. On balance, it is likely the relatively compu-

tationally expensive information calculation outweighs a faster rate of convergence in the Newton-Raphson

method relative to our EM algorithm.

The utility of latent CTMC models lies in their ability to approximate functionals of disease processes

from generic sojourn time distributions. Our simulation studies focused on sojourn distributions with in-

creasing or decreasing hazard functions, but latent CTMCa can also approximate non-monotonic hazards

(Aalen, 1995). The quality of approximation depends on the number of latent states in the model, the data

generating scenario, and time. Since latent CTMCmodels imply that sojourn time distributions have asymp-

totically constant hazard functions, substantial bias can result if the data-generating sojourn distribution has

an increasing hazard. In these cases, caution should be applied to interpretation of hazard latent CTMC

estimates outside of near-range time points.

Latent CTMC models appear to offer particular advantages for discretely observed reversible disease

processes. However, performance of panel data estimates of disease process functionals differed from fully

observed counterparts, based on models assuming the same number of latent states per disease state. Not

surprisingly, estimates based on panel observations were much more variable. We also observed relatively

more bias in panel data estimates of hazard and CDFs from the decreasing but not increasing hazard sojourn

distributions. We suspect this bias would be reduced if observations were initially more frequent. Those

designing panel studies would be well served to investigate variance and bias with their own simulations

prior to committing to an observation schedule. This is especially important given that observations that are

too distantly spaced may limit the estimability of latent model parameters (Bladt and Sorensen, 2005).

We also investigated the frequentist properties of interval estimates of functionals based on delta-method

standard errors. Delta-method standard errors on average represented 92% of the true variability of the

estimates, but performance varied by model, functional, time, and data generating distribution. Models

with more latent states generally yielded better delta-method standard error estimates, which, along with

reduced estimate bias, led to better coverage properties of nominal 95% confidence intervals. Given that

latent CTMCmodels approximate generic data-generating distributions, robust variance estimates in the EM

algorithm context may yield more valid standard errors (Elashoff and Ryan, 2004). Ultimately, the validity

of delta-method standard errors assumes the uniqueness of latent parameter MLEs. In their absence, we

recommend applying a non-parametric bootstrap. The computation time required would not be prohibitive

given the increased efficiency of our fitting algorithm.

In the frequentist setting, the major weakness of latent CTMCmodels is that latent model parameters are

potentially non-identifiable. Despite their relatively parsimonious representation, Coxian PH models of a

given dimension may have multiple intensity matrices that imply the same sojourn time distribution (He and

Zhang, 2007). HMMs based on discretely observed CTCMs with measurement error also may not be fully

identifiable (Rosychuk and Thompson, 2004). Non-identifiable latent CTMC parameters will often still have

unique disease process functional estimates. However, lack of identifiability not only affects standard error

estimates of functionals but also complicates model selection, including choice of the number of latent states.

Titman and Sharples (2010) describe a likelihood ratio test of exponential sojourn distributions that requires

special adjustments for non-identifiable ΛΛΛ parameters under the null hypothesis. Use of the Akaike and

Bayesian information criteria to compare non-nested models requires that we know the number of estimable
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model parameters. The increased efficiency of our fitting algorithm suggests that it may be practical to

evaluate models using k-fold cross validation with a goodness of fit statistic measuring prediction error

(Titman and Sharples, 2008).

Our focus has been on frequentist estimation. Bayesian methods also have a strong appeal in this setting

(Bladt et al., 2003). Sensible priors may yield identifiable latent parameters, and posterior distributions pro-

vide uncertainty estimates for model functionals. Further, model selection may be possible using reversible

jump MCMC (Green, 1995). McGrory et al. (2009) have implemented Bayesian model selection for PH

models of length of hospital stay, and their approach might be scaled to apply to more general latent CTMC

models.

9 Conclusion

Latent CTMCs provide a flexible means of describing discretely observed multistate disease processes with

duration-dependent sojourn distributions. They have especial value for discretely observed processes with

reversible transitions, for which few compelling analysis approaches exist. Our EM method provides an

efficient and robust way to fit these models in a frequentist setting. We hope our results will encourage the

wider use of latent CTMCs in the analysis of clinical studies.
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Appendix for

Fitting and Interpreting Continuous-Time Latent Markov Models
for Panel Data

by Jane M. Lange and Vladimir N. Minin

Appendix A: Complete data score and Hessian

Note: All vectors are assumed to be column vectors unless otherwise noted.

CTMC parameters

The CTMC log-likelihood component is in the curved exponential family, with natural parameters
log(λij) and

∑

i �=j λij corresponding to sufficient statistics nT (i, j) and dT (i). Individual level

baseline covariates wh are added via log(λhij) = β
T
ijw

h, where h denotes the individual and wh and
βij are p-dimensional vectors corresponding to p covariates. For convenience, we list the intensity
parameters {log(λij) : i, j ∈ S; i  = j} as a q-dimensional vector ψ, indexing each i, j pair in ψ by
u. This allows us to derive the score and information for all intensity parameters simultaneously,
which is particularly useful if one assumes the same covariate effect for more than one transition
intensity. Using the notation i[u] and j[u] to yield the i and j corresponding to u, the uth entry of
the vector score function for ψ is

l̇(ψ)[u] = nT (i[u], j[u])− dT (i[u]) exp (ψ[u]) .

The Hessian matrix for ψ is diagonal with non-zero entries

l̈(ψ)[u, u] = −dT (i[u]) exp (ψ[u]) .

The score function when the rate matrix is parameterized with covariates w is given by

l̇(β|wh) = ∇ψ(β)T l̇{ψ(β)},

where ∇ψ(β)T is the p × q matrix whose m,u entry corresponds to ∂ψ[u]
∂β[m] . The Hessian matrix in

the presence of covariates is

l̈(β|wh)[j,m] = −

q
∑

u=1

∂ψ[u]

∂β[j]

∂ψ[u]

∂β[m]
dT (i[u]) exp (ψ[u]) .

In matrix form, this can be written as

l̈(β|wh) = ∇ψ(β)T (∇ψ(β)) ◦D,

where D is a q × p matrix with each column consisting of column vector v, such that entries
v[u] = −exp(ψ[u])dT (i[u]) , and ◦ refers to the Hadamard (element-wise) product. Both the score
and Hessian are additive across subjects, so the total score and Hessian are obtained by summing
over corresponding subject-specific quantities.

1
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Initial and Emission distributions parameters

We limit our attention to the score and Hessian for the emission distribution, as the initial distri-
bution is analogous. For a single subject,
OT (i) = {OT (i, 1), . . . , OT (i, r)} ∼ Multinomial{ei, N(i)}, where N(i) =

∑r
j=1OT (i, j) and

ei = {e(i, 1), . . . , e(i, r)}. Sufficient statistics include the r − 1 length vector

oi[−1] = {oT (i, 2), ..., oT (i, r)}. The natural parameters are
{

ηij = log
(

e(i,j)
e(i,1)

)

: j = 2, ..., r
}

. In the

absence of covariates, the score function for the parameters ηi = (ηi2, ..., ηir) is

l̇(ηi) = oi[−1] −N(i)ei[−1],

where ei[−1] = {e(i, 2), ...e(i, r)} is a r − 1 length vector of emission probabilities written in terms
of ηi.

Subject-level covariates wh
i are added to the model via ηhij = γT

ijw
h
i , where h indexes the

individual. Let γi = (γi2, . . . ,γir) be the vector of all p covariate parameters. The score is

l̇(γi|w
h) = ∇ηi(γi)

T {oi[−1] −Niei[−1])},

where ∇ηi(γi)
T is the p × (r − 1) matrix of partial derivatives of ηi with respect to γi and ei[−1])

is written in terms of γi. The Hessian matrix in the absence of covariates is given by

l̈(ηi) = −Cov(oi[−1]).

With covariates, the Hessian matrix is given by

l̈(γi|w
h) = −

{

∇ηi(γi)
T Cov(oi[−1])∇(ηi(γi)

}

.

As before, the total score and Hessian are obtained by summing over the corresponding subject-
specific quantitites.

Appendix B: Recursions for hidden Markov models

Throughout, we abbreviate x1, . . . , xk by x1:k and o1, . . . ok by o1:k.

Forward and backward probabilities

Forward probabilities are defined as αk(u) = P(o1:k, Xk = u) and backward probabilities as βk(u) =
P(ok+1:n|Xk = u). When the last time coincides with the time of absorption, Y, the forward and
backward probabilities are defined as before, with the exception that βk(u) = ∂

∂y
P(ok+1:n, Y <

y|Xk = u) and αn(u) = ∂
∂y

P(ok+1:n, Y < y), Forward and backward probabilities are calculated
through recursive formulae of ?.

2
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Filtering and conditional likelihood calculations

Filtering probabilities, P(Xk = j|o1:k) and the conditional observed data likelihood P(Ok = ok|o1:k−1)
are related to modified forward probabilities, ak(j) = P(Xk = j, Ok = ok|o1:k−1). That is, P(Ok =

ok|o1:k−1) =
∑

j∈S ak(j), and P(Xk = j|o1:k) =
ak(j)∑
l∈S ak(l)

. The modified forward probabilities can

be calculated recursively. Initialize

a1(j) = P(O1 = o1, X1 = x1) = e(x1, o1)π(x1),

and the recursion is

ak+1(j) =
∑

i∈S

ak(i)
∑

l ak(l)
e(xk+1, ok+1)Pij(tk+1 − tk).

Recursive smoothing for first moments of complete data sufficient statistics

First moment calculations define entries of sk(xk, xk+1) as values of complete data sufficient statistics
(section 2.4.1) on the interval Tk = [tk, tk+1], conditional on xk and xk+1. Thus, sk(xk, xk+1) is
defined as E[dTk

|Xk = xk, Xk+1 = xk+1] for entries corresponding to dT (i); as E[nTk
(i, j)|Xk =

xk, Xk+1 = xk+1] for nT (i, j); 0 for zi; and as I(Xk+1 = i, Ok+1 = j) for oT (i, j). Initial values for
the function tk(x1:k) are set at t1(x1) = 0 for entries corresponding to dT (i) and nT (i, j); I(X1 = i)
for zi; and I(X1 = i, O1 = j) for oT (i, j).

Recursive smoothing for second moments of complete data sufficient statistics

The recursive smoothing method to obtain second and cross moments of complete data sufficient
statistics conditional on the entirety of a subject’s observed data, o, proceeds with a similar frame-
work and terminology as for first moments (Section 3.2.3.) First, we recursively define a functional
that corresponds to E[S[t1, tk]S[t1, tk]

T |x1:k], the second moments of complete sufficient statistics
on the interval [t1, tk], conditional on x1:k. Next, we define the recursive updates of the auxiliary
function, τk(xk). Finally, we compute the auxiliary function updates for t1, . . . , tn, enabling us to
calculate the target quantity E[S[t1, tn]S[t1, tn]

T |o1:n].

The recursive definition of E[S[t1, tk+1]S[t1, tk+1]
T |x1:k+1] involves not only

E[S[t1, tk]S[t1, tk]
T |x1:k] but also the first moment, E[S[t1, tk]|x1:k]. Thus it makes sense to consider

jointly the first and second moments of complete data sufficient statistics conditional on x1:k. We
define the joint recursive function of latent states as

t(x1:k+1) =
{

t(1)(x1:k+1), t
(2)(x1:k+1)

}

,

where
t(1)(x1:k+1) = E[S[t1, tk+1]|x1:k+1]

= t(1)(x1:k) + E[S[tk, tk+1]|xk, xk+1]

3
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and

t(2)(x1:k+1) = E[S[t1, tk+1]S[t1, tk+1]
T |x1:k+1]

= t(2)(x1:k) + E[S[tk, tk+1]|xk, xk+1]t
(1)(x1:k)

T + t(1)(x1:k)E[S[tk, tk+1]|xk, xk+1]
T

+ E[S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1].

The first component is identical to first moment recursive function (eq. (3) in the main text); the
second corresponds to second and cross moments of complete data sufficient statistics conditional
on latent states x1:k. The calculation of t(2)(x1:k+1) follows from the conditional independence of
S[tl, tl+1] and S[tj , tj+1] given the endpoints xl, xl+1, xj , xj+1 and the fact that E(XY ) = E(X)E(Y )
if X and Y are independent. We assign the function

sk(xk, xk+1) =
{

s
(1)
k (xk, xk+1), s

(2)
k (xk, xk+1)

}

=
{

E [S[tk, tk+1]|xk, xk+1] ,E
[

S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1

]}

.

The specific values of t
(1)
1 (x1) and s

(1)
k (xk, xk+1) for latent CTMC sufficient statistics were provided

previously. Appendix Table 1 summarizes specific details of s
(2)
k (xk, xk+1) and t

(2)
1 (x1) for all pairs

of latent CTMC complete data sufficient statistics.

The auxiliary functions likewise have two components corresponding to first and second mo-
ments: τ (xk) =

{

τ (1)(xk), τ
(2)(xk)
}

. The updates for τ (xk) follow from a multivariate version of

eq. (4) in the main text. The τ (1)(xk) component is defined as in eq. (4). The τ (2)(xk) component
is defined recursively as

τ
(2)
k+1(xk+1) = P(ok+1|o1:k)

−1

{

∑

xk

[τ (2)(xk) + τ
(1)
k (xk)s

(1)
k (xk, xk+1)

T

+ s
(1)
k (xk, xk+1)τ

(1)
k (xk)

T + P(Xk = xk|o1:k)E[S[tk, tk+1]S[tk, tk+1]
T |xk, xk+1]]

× e(xk+1, ok+1)Pxkxk+1
(tk+1 − tk)

}

.

The final recursion allows us to calculate E[t
(2)
n (x1:n)|o1:k] =

∑

xn∈X
τ
(2)
n (xn), giving us the expected

value of second moments of complete data sufficient statistics conditional on the observed data.

Table 1: Definition of s
(2)
k (xk, xk+1) and t

(2)
1 (x1) for second moment calculations.

Statistics s(2)(xk, xk+1) t
(2)
1 (x1)

dT (i), dT (j) E[dTk
(i)dTk

(j)|xk, xk+1] 0

dT (i), nT (j,m) E[dTk
(i)nTk

(j,m)|xk, xk+1] 0

dT (i), oT (j,m) E[dTk
(i)I(Xk+1 = j, Ok+1 = m)|xk, xk+1] 0

nT (i, l), nT (j,m) E[nTk
(i, l)nTk

(j,m)|xk, xk+1] 0

oT (j,m), oT (l, r) I(Xk+1 = j, Ok+1 = m,Xk+1 = l, Ok+1 = r) I(X1 = j, O1 = m,X1 = l, O1 = r)
nT (i, l), oT (l, r) E[nTk

(i, l)I(Xk+1 = l, Ok+1 = r)|xk, xk+1]
zi, zm 0 I(X1 = i)I(X1 = m)
zi, oT (j,m) 0 I(X1 = i)I(X1 = j, O1 = m)
nT (j,m), zi 0 0

dT (j), zi 0 0

4
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Appendix C: Differentiated joint moments of transitions and state

occupancy durations with known absorption times

We assume that the CTMC has one absorbing state g. Differentiated joint moments in the presence
of known absorption times rely on the fact that if an individual is absorbed at time t, transitions to
g occur only once and no time is spent in g. These joint moments formulae use the joint moments
defined in Section 3.2.1, which we refer to as Mij(t)[a, b] = E[nt(i, j)I(X0 = a)|Xt = b];
Hi(t)[a, b] = E[dt(i)I(Xt = b)|X0 = a]; Uijlm(t)[a, c] = E[nt(i, j)nt(l,m)I(Xt = c)|X0 = a];
Wij(t)[a, c] = E[dt(i)dt(j)I(Xt = c)|X0 = a]; and Vilm(t)[a, c] = E[dt(i)nt(l,m))I(Xt = c)|X0 = a].

When the complete-data statistic of interest is S = dt(i), the differentiated joint moment is
given by

∂

∂y
E[dt(i)I(Y < t)|X0 = a] = I(i �= g)

∑

c�=g

Hi(t)[a, c]λcg.

When S = dt(i)dt(j), the differentiated joint expectation is identical, except I(i �= g) is replaced by
I(i, j �= g), and Hi(t)[a, c] is replaced by the duration cross moment Wij(t)[a, c].

For S = nt(i, j), the differentiated joint expectation is

∂

∂y
E[nt(i, j)I(Y < y)|X0 = a] = I(i, j �= k)

∑

c�=k

Mij(t)[a, c]λck + I(i �= k, j = k)Pai(t)λik.

For S = nt(i, j)nt(l,m) the differentiated joint expectation is given by

∂

∂y
E[nt(i, j)nt(l,m)I(Y < y)|X0 = a] = I(i, j, l,m �= g)

∑

c�=g

Uijlm(t)[a, c]λcg

+ I(i, l,m �= g, j = g)Mlm(t)[a, i]λig + I(i, j, l �= g,m = g)Mij(t)[a, l]λlg

+ I(i, l �= g, i = l, j = m = g)Pai(t)λig.

For S = nt(l,m)dt(i), the differentiated joint expectation is given by

∂

∂y
E[dt(i)nt(l,m)I(Y < y)|X0 = a] = I(i, j, l, �= g)

∑

c�=g

Vilm(t)[a, c]λcg+I(i, l �= g,m = g)Hi(t)[a, l]λlm.

Appendix D: Delta method standard errors of disease process func-

tionals

Suppose ψ is a p×1 vector of latent model parameters with MLE ψ̂, and F (ψ, t) is a one-dimensional
functional. Let ∇F (ψ̂, t) be the p × 1 gradient of F (ψ, t) with respect to ψ evaluated at ψ̂. The
asymptotic distribution of the functional estimates F (ψ̂, t) is normal with mean F (ψ, t) and an
approximate covariance matrix given by

Cov(F (ψ̂, t)) = ∇F (ψ̂, t)T Cov(ψ̂, t)∇F (ψ̂, t).
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Functionals such as CDFs, hazard functions, and transition probabilities involve the matrix expo-
nential; thus we require the derivative of exp(Λ(ψ)t) with respect to entries of ψ. These derivative
involve similar integrals as first moments of occupancy durations and transition counts (Section
3.2.1) and are computed with similar methods(?). For example, consider the functional Pij(t,ψ) =

exp (Λ(ψ)t). Then
∂ Pij(t,ψ)
∂ψ[k] is the i, j entry of the matrix given by

∫ t

0 e
Λ(ψ)τBψ[k]e

Λ(ψ)(t−τ)dτ ,

where Bψ[k] = {Bψ[k](i, j)} and Bψ[k](i, j) =
∂λij(ψ)
∂ψ[k]

.
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Table 2: Maximum likelihood estimates of BOS model intensity rates, emission probabilities, and
initial probabilities.

.
Transition

Intensity rates i j Point estimate 95% CI

11 12 0.39 0.11 1.42
11 21 0.39 0.27 0.56
11 3 0.01 0 0.29
12 21 0.14 0.09 0.23
12 3 0.004 0.00017 0.11
21 11 0.06 0.01 0.31
21 22 3.12 0.97 9.99
21 3 0.73 0.27 1.94
22 11 0.02 0.004 0.06
22 3 0.19 0.15 0.23

Emission e(Healthy,BOS) Double lung 0.076 0.042 0.133
Heart lung 0.018 0.01 0.031

e(BOS,Healthy) 0.011 0.004 0.028
Initial Distribution π(BOS1) Heart-lung 0.061 0.035 0.103

Double lung 0.043 0.014 0.124
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Figure 1: Ratio of average delta-method standard errors to the empirical standard errors of the
estimates from simulated data. Models II and III fit survival data with Coxian PH models with 2
and 3 transient states, respectively; Model IV fits discretely observed data from a 2-state reversible
model assuming sojourn distributions analogous to model II.
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