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Mediation Analysis for Censored Survival
Data under an Accelerated Failure Time Model

Isabel Fulcher, Eric J. Tchetgen Tchetgen, and Paige Williams

Abstract

Recent advances in causal mediation analysis have formalized conditions for es-
timating direct and indirect effects in various contexts. These approaches have
been extended to a number of models for survival outcomes including acceler-
ated failure time (AFT) models which are widely used in a broad range of health
applications given their intuitive interpretation. In this setting, it has been sug-
gested that under standard assumptions, the “difference” and “product” methods
produce equivalent estimates of the indirect effect of exposure on the survival
outcome. We formally show that these two methods may produce substantially
different estimates in the presence of censoring or truncation, due to a form of
model misspecification. Specifically, we establish that while the product method
remains valid under standard assumptions in the presence of independent cen-
soring, the difference method can be biased in the presence of such censoring
whenever the error distribution of the AFT model fails to be collapsible upon
marginalizing over the mediator. This will invariably be the case for most choices
of mediator and outcome error distributions. A notable exception arises in case of
normal mediator-normal outcome where we show consistency of both difference
and product estimators in the presence of independent censoring. These results
are confirmed in simulation studies and two data applications.
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Abstract

Recent advances in causal mediation analysis have formalized conditions for esti-

mating direct and indirect e↵ects in various contexts. These approaches have been

extended to a number of models for survival outcomes including accelerated failure

time (AFT) models which are widely used in a broad range of health applications

given their intuitive interpretation. In this setting, it has been suggested that under

standard assumptions, the “di↵erence” and “product” methods produce equivalent es-

timates of the indirect e↵ect of exposure on the survival outcome. We formally show

that these two methods may produce substantially di↵erent estimates in the presence

of censoring or truncation, due to a form of model misspecification. Specifically, we

establish that while the product method remains valid under standard assumptions

in the presence of independent censoring, the di↵erence method can be biased in the

presence of such censoring whenever the error distribution of the AFT model fails to be

collapsible upon marginalizing over the mediator. This will invariably be the case for

most choices of mediator and outcome error distributions. A notable exception arises

in case of normal mediator-normal outcome where we show consistency of both di↵er-

ence and product estimators in the presence of independent censoring. These results

are confirmed in simulation studies and two data applications.

Background

Numerous papers have in recent years laid the foundation for causal mediation analysis in
the context of linear and nonlinear models for continuous, binary, and survival outcomes,
and likewise in situations where an interaction may be present between the exposure and
the mediator.1�7 These advances have clarified conditions under which traditional media-
tion techniques for estimating the indirect e↵ect, such as the “product” and “di↵erence”
methods, are equivalent.3,5 In a recent commentary, VanderWeele8 established that the well-
known equivalence of the di↵erence and product methods in linear models with no exposure-
mediator interaction holds exactly for the mean of the log of a survival outcome under a
certain accelerated failure time (AFT) model. This result confirmed previous findings by
Tein and MacKinnon9 who showed in simulation studies that under a Weibull AFT model the
product and di↵erence estimators were consistent for the indirect e↵ect; however, both Tein
and MacKinnon9 and VanderWeele8 only considered a setting in which censoring was absent.
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In practice, outcomes in survival data are typically subject to some form of censoring,
primarily due to loss to follow-up and administrative censoring. The AFT model is a promi-
nent approach for handling censored survival data in the health sciences and has become
widely used in practice by epidemiologists partly because it is readily available from pop-
ular standard commercial software packages such as PROC LIFEREG in SAS,10 streg in
Stata,11 and survreg in R.12 Another approach to handling censored survival data is the
Cox proportional hazards model, but the regression coe�cients from these models can be
hard to interpret due to built-in selection bias as they condition on information about the
outcome.13,14 The central role of survival models in medical research coupled with the in-
creasing popularity of causal mediation analyses has led to method development and software
that will estimate direct and indirect e↵ects. Recently, Valeri and Vanderweele15 created a
SAS macro to estimate direct and indirect e↵ects in censored survival data using AFT and
Cox PH models. They cautioned that the estimated direct and indirect e↵ects for a Cox PH
model are based on a rare disease assumption, while the AFT model does not require such
an assumption.15 In a more recent paper, Gelfand et al.16 encourage the use of AFT models
over Cox PH models in mediation analysis. A commonly noted drawback of the AFT model
is that the event times are assumed to follow a specific distribution, but Gelfand et al.16

argue that the breadth of distributions available can capture the variability in survival data,
and the Weibull distribution can represent distributions commonly found in clinical research.

For mediation analysis with a censored survival outcome and assuming no exposure-
mediator interaction in the outcome model, researchers can easily estimate direct and indi-
rect e↵ects in standard software through a combination of AFT and linear models (see R
Code in appendix). In doing so, researchers may estimate the indirect e↵ect either by the
product or di↵erence method, as the results by Tein and MacKinnon9 and VanderWeele8

may inadvertently lead one to incorrectly assume that both estimators are valid. However,
Gelfand et al.16 demonstrate in simulation studies that in the presence of right censoring
the product and di↵erence estimators are not necessarily equivalent under a Weibull AFT
model. Interestingly, they note that the product method appeared to remain una↵ected by
right censoring, while the di↵erence method underestimated the indirect e↵ect in their sim-
ulation studies.16 The results of our paper will provide the theoretical underpinning for the
conclusions drawn from simulation studies by Tein and MacKinnon9 and Gelfand et al.16.
We supply formal justification for their conjecture that the di↵erence method will often fail
to provide a consistent estimator of the indirect e↵ect under an AFT model even when the
product method does.

Specifically, in this paper, we formally establish that the equivalence between the product
and di↵erence method generally fails in the presence of censoring, primarily due to lack of
consistency of the di↵erence method arising from a form of model misspecification. We will
formally show that this form of model misspecification gives rise to bias in the di↵erence
method estimator when censoring is present. However, in the absence of censoring, this
form of model misspecification is relatively benign and does not generally induce bias in the
estimated indirect e↵ect using the di↵erence method. This misspecification does not arise in
the special case of normal mediator-normal outcome model, and, thus, both di↵erence and
product estimators are consistent in the presence of independent censoring. In a simulation
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study, we confirm these results for normal and Weibull distributed time-to-event outcomes,
respectively. We also consider the implication of our findings in estimating the indirect e↵ect
of HIV status mediated by height for age at sexual maturity in the Pediatric HIV/AIDS Co-
hort Study (PHACS) and Pediatric AIDS Clinical Trials Group 219C (PACTG) studies and
the indirect e↵ect of combination treatment mediated by viral suppression on time to death
or opportunistic infection among HIV-infected adults using multiple studies of the AIDS
Clinical Trial Group.17�20 Although the paper focuses on the implications of censoring, all
of the main results hold for left truncation as we formally show in the appendix.

Notation and Assumptions

Throughout, we focus on a binary exposure A, continuous mediator M , and time-to-event
outcome T . To simplify the presentation, we do not explicitly include pre-exposure co-
variates, and therefore, for all practical purposes, our analysis may be viewed as if we had
conditioned on a specific level of such covariates. However, in the appendix formal statements
of our main results and corresponding proofs explicitly account for covariates. Let M(a) de-
note the counterfactual mediator had the exposure taken value a and T (a) = T (a,M(a))
denote the counterfactual outcome had exposure taken value a. In mediation analysis, we
will also consider the counterfactual outcome T (a,M(a⇤)) had exposure taken value a = 0, 1
and the mediator taken the value it would have under a⇤ = 0, 1.

We consider the following models for the survival outcome T and mediator M :

log T = �0 + �aA+ �mM + �" (1)

M = ↵0 + ↵aA+ ⇠ (2)

where ⇠ has mean zero and is independent of A, " follows a known distribution and is inde-
pendent of A and M , and � is some positive scale parameter. Note that model (1) assumes
no exposure-mediator interaction, which is necessary for possible equivalence between the
product and di↵erence representation of the indirect e↵ect.

As shown in the appendix, under treatment randomization (A1) and cross-world counter-
factuals independence (A2) assumptions and following the same reasoning as Pearl,2 the
average natural (or pure) direct or indirect e↵ects on the log mean scale is nonparametri-
cally identified. (A1) is a standard no unmeasured confounding assumption of the e↵ects of
A on (M,Y ), while (A2) is a somewhat stronger no unmeasured confounding assumption of
the e↵ects of M on Y .21 The natural direct (NDE(a, a⇤)) and indirect (NIE(a, a⇤)) e↵ects
for the log-survival time are defined in terms of these counterfactuals and under models (1)
and (2) we have that:

NDE (a, a⇤) = E{log T (a,M(a⇤))}� E{log T (a⇤,M(a⇤))} = �a (a� a⇤)

NIE (a, a⇤) = E{log T (a,M(a))}� E{log T (a,M(a⇤))} = �m↵a (a� a⇤)
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Letting a = 1 and a⇤ = 0, this leads to a natural direct e↵ect of �a and a natural indirect
e↵ect given by the product rule �m↵a. The expression for the di↵erence method, given by
⌧a��a, is obtained upon marginalizing over M by positing a second accelerated failure time
model for T as a function of A only, which shall be referred to as the reduced form model
and is typically specified as followed:

log T = �⇤
0 + ⌧aA+ e�e" (3)

where "̃ independent of A and typically assumed to follow the same distribution as " in (1),
and �̃ is a positive scale parameter. This specification is also used by both Vanderweele8

and Tein and MacKinnon9. Under this formulation, we see that ⌧a is the total e↵ect of A on
the mean of T on the log scale and satisfies:

⌧a = ↵a�m + �a (4)

This equivalence follows from direct substitution of equation (2) into (1) and evaluation of
total e↵ect ⌧a.

Equivalence of the Product and Di↵erence Method

As we discuss further below, equation (4) is usually mis-specified because the error distri-
bution specified in models (1) and (2) completely determine the error distribution in model
(3) as a convolution of these two laws (see appendix (A7)). Unless the error distribution
of model (3) is carefully chosen to match this convolution, the model will be mis-specified.
This convolution seldom reduces to a standard model typically implemented in o↵-the-shelf
software when M and T follow standard distributions. For instance, suppose that M is
assumed normal and T assumed to follow a Weibull distribution, then the reduced form
error distribution is a convolution of a normal with a Weibull distribution, which is neither
normal nor Weibull and is in fact not of a standard closed form (see appendix (A10)). In this
case, the assumption that the error in the reduced model is Weibull is clearly incorrect. A
fairly prominent setting in which the reduced form model is correctly specified is the normal
mediator-normal outcome model, in which case the error distribution of model (3) is also
normal.

As shown in the appendix, in the absence of censoring, maximum likelihood estimation
of the reduced form model will be consistent for the total e↵ect ⌧a = ↵a�m + �a even if the
error distribution is mis-specified. This follows from the fact that in the absence of censor-
ing, consistency of the estimated regression parameters in an AFT model depends on correct
specification of the regression model, not on the choice of error distribution. In contrast,
result (A8) in the appendix formally establishes that in the presence of censoring, maximum
likelihood estimation of the reduced form model will fail to be consistent when the error
distribution is incorrect because the corresponding score function fails to be unbiased, which
is a basic requirement of consistency. Under correct specification of models (1) and (2),
the product method corresponds to the maximum likelihood estimator and is guaranteed to
be consistent whether or not censoring is present and irrespective of choice of models for
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residual errors.

On these theoretical grounds, we conclude that one should exert caution when using the
di↵erence method in the presence of censoring (or as shown in the appendix, in the presence
of truncation), as it is prone to model misspecification of model (3) even when models (1)
and (2) are correctly specified. When these two models are correctly specified, the product
method gives a valid estimator for the indirect e↵ect. In the next section, we illustrate this
phenomenon in extensive simulation studies and two separate applications.

Simulation

In simulation studies, we considered two scenarios, one where T is normal and the other
where T is Weibull distributed. In both settings, A was generated Bernoulli with proba-
bility equal to .5. In the first setting, M was generated from a normal model with mean
↵0 + ↵aA and variance 1, where (↵0,↵a) = (0,�.5). The time-to-event outcome, T , was
generated from a normal distribution with mean �0 + �aA + �mM and variance 1, where
(�0, �a, �m) = (180, 4,�4). We investigated the following three censoring scenarios: no
censoring, 70% right-censored and the remaining 30% with observed event times, and 70%
right-censored and the remaining 30% interval-censored. Models (1), (2), and (3) were es-
timated using survreg in the R survival package12, with gaussian time-to-event distribution
for models (1) and (3) and a linear regression for (2). For the right-censoring only setting, a
censoring distribution was generated from a normal distribution to yield approximately 70%
censored. For the right and interval-censoring setting, the same right-censoring distribution
was used, and a censoring interval was generated for observed event times. The length of the
censoring interval was generated from a multinomial distribution; to choose where on the
interval the true time occurred, we generated a proportion from a uniform(0,1) distribution.

For the second setting with a Weibull distributed time-to-event, the mediator M was gen-
erated from a normal model with mean ↵0 + ↵aA and variance 1, where (↵0,↵a) = (0,�.3).
Lastly, the time-to-event outcome was generated as �0+�aA+�mM+�✏, where (�0, �a, �m) =
(4, .5,�.6), � is .25, and ✏ is the extreme value density. For this model, we investigated the
following two censoring scenarios: no censoring and 30% right-censored. Models (1), (2),
and (3) were fit using survreg in the R survival package12 with a Weibull distribution for
time. For the right censoring scenario, a censoring distribution was generated for a Weibull
distribution to yield ⇠ 30% censored. We performed 10,000 simulations for each scenario,
with sample size ranging from 800 to 4,000.

We evaluated the following characteristics for each distribution and censoring type: absolute
proportion di↵erence between the estimators (|cIEp� cIEd|/cIEp) and proportion bias of each

estimator (|cIEp � IE|/IE and |cIEd � IE|/IE), where IE is the true indirect e↵ect, cIEp is

the Monte Carlo mean of the product estimator, and cIEd is the Monte Carlo mean of the
di↵erence estimator. Simulation results for each scenario are summarized in Figures 1 and
2.
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Figure 1a shows the absolute proportion di↵erence between the product and di↵erence
method under the normal model. In the absence of censoring, the proportion di↵erence
was identically zero for all sample sizes, thus confirming that in this setting the estimators
are numerically identical as theory dictates. In the presence of censoring (whether right or
interval censoring), the di↵erence between the estimators decreased as sample size increased.
Though not displayed in the figure, this trend continues and the proportion di↵erence con-
verges to zero with increasing sample size. Figure 1b shows that both the product and
di↵erence methods produced consistent estimators for the indirect e↵ect.

Figure 2a shows the absolute proportion di↵erence between the product and di↵erence
method under a Weibull model. In the absence of censoring, the proportion di↵erence
decreased as sample size increased but was still relatively large for small sample sizes. In the
presence of right censoring, the proportion di↵erence between the estimators was very large
and did not decrease with increasing sample size. Figure 2b gives a summary of the propor-
tion bias incurred by each estimator under the two censoring scenarios. For no censoring,
both product and di↵erence methods produced consistent estimators of the indirect e↵ect.
Under right censoring, the product method also produced an consistent indirect e↵ect esti-
mator across all sample sizes. In contrast, the di↵erence method under right censoring had a
proportion bias of about 45%, which does not appear to decrease with increasing sample size.
The results from Figure 2b reveal that under right censoring, the di↵erence method failed
to be consistent for the indirect e↵ect, with significant bias regardless of sample size. When
there was no censoring, the di↵erence method produced a consistent estimator of the indirect
e↵ect, although, in small samples the di↵erence between the estimators was substantial.

In the above simulations, we only considered the indirect e↵ect, but the results can be easily
expanded to the total e↵ect. For the normal model scenario, the total e↵ect estimator is
consistent. Thus, in both the absence and presence of censoring, the total e↵ect can be
estimated from the reduced form model (⌧a estimator) or by summation of direct and indi-
rect e↵ect estimators based on the product or di↵erence method and the direct e↵ect (�a

estimator). For the Weibull model scenario, in the absence of censoring, the total e↵ect can
be estimated using either method, similar to the normal model scenario. In the presence of
censoring, the total e↵ect should only be estimated by the summation of the product method
indirect e↵ect estimator and the direct e↵ect as the estimate of ⌧a will be biased.

Figure A1 in the Appendix shows the Monte Carlo variances for each estimator discussed
above. As expected, the variance of all estimators decreased towards zero as sample size
increased.

Applications

We considered a data application which combined two cohort studies of HIV-exposed per-
sons: PHACS and PACTG 219C. The studies both followed perinatally HIV-exposed males
and females upon entry into study and measured various outcomes. The outcome T evalu-
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Figure 1: Normal AFT Simulation, Product vs. Di↵erence Method for Indirect E↵ect
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Figure 2: Weibull AFT Simulation, Product vs. Di↵erence Method for Indirect E↵ect
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Table 1: Normal AFT mediation model e↵ect estimates for age at sexual maturity by peri-
natal HIV status (n = 1380)

Estimate Standard Error 95% CI

Direct 4.14 3.55 (-2.82, 11.10)
Indirect (di↵erence) 2.90 0.97 (1.00, 4.80)
Indirect (product) 2.99 0.65 (1.73, 4.26)
Total (di↵erence) 7.04 3.63 (-0.07, 14.16)
Total (product) 7.13 3.28 (0.70, 13.56)

ated was age at sexual maturity for males only, which was subject to both interval and right
censoring. Sexual maturity is defined as having reached stage 5 of the Tanner stage criteria
for genitalia.22 Previous research has modeled the outcome with a normal distribution, since
age at attainment of pubertal milestones generally follows a normal distribution.23,24 Thus,
T is adequately modeled as a normal outcome, and, therefore, we expect results for the nor-
mal model to apply. Of the 1,380 males in the sample, 28% reached sexual maturity during
follow-up and were subject to interval censoring; the remaining 72% were right-censored.
The exposure A was binary perinatal HIV infection. The mediator M was height age- and
sex-adjusted Z-score (HTZ) at first visit occurring at age seven or older.

We adjusted for confounding by birth year and race. These correspond to Z in models
below. We fit a normal AFT model as age at sexual maturity is known to follow an approx-
imately normal distribution. We used R to fit the following models in order to estimate the
direct, indirect, and total e↵ects using both the product and di↵erence method. Note that R
allows a “Gaussian” distributed outcome in the survreg12 function, so that the model can be
written in terms of T rather than log T , though the same model can be obtained by fitting
log T as a log-normal model for exp(age):

T = ✓0 + ✓1HIV + ✓2HTZ + ✓T3 Z + " (5)

T = �0 + �1HIV + �T
3 Z + ⇠ (6)

HTZ = ↵0 + ↵1HIV + ↵T
3 Z + ⇣ (7)

where ", ⇠, and ⇣ are all normally distributed variables with mean zero and unknown variance.

Table 1 displays e↵ect estimates, their standard errors, and 95% confidence intervals. Boot-
strap estimates of standard errors were used for indirect (di↵erence) and total (product)
e↵ect estimates. Our analysis indicated that HIV-infected youth had a 7.1 month delay in
age at sexual maturity compared to uninfected youth; height Z-score accounting for approx-
imately 40% of the e↵ect. There was a 3% di↵erence between the product and di↵erence
method estimators of the indirect e↵ect. As discussed above, we do not expect numerical
equivalence in the presence of censoring, though asymptotically both estimators should be
consistent for the indirect e↵ect. In addition, as we saw in the simulations, this sample size
yielded a similar percent di↵erence between estimators.

9
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Table 2: Weibull AFT mediation model e↵ect estimates for time to death or OI by combi-
nation ARV treatment (n = 707)

Estimate (log-scale) Standard Error 95% CI

Direct 0.48 0.18 (0.13, 0.83)
Indirect (di↵erence) 0.22 0.04 (0.14, 0.29)
Indirect (product) 0.19 0.06 (0.08, 0.31)
Total (di↵erence) 0.70 0.19 (0.33, 1.07)
Total (product) 0.67 0.18 (0.33, 1.02)

In a second application, we combined 4 di↵erent randomized studies HIV-infected adults
from the US-based AIDS Clinical Trials Group studies.19�21 The binary exposure A was
treatment assignment at baseline to combination antiretroviral therapy versus monotherapy.
The outcome T was time to opportunistic infection or death and modeled as Weibull dis-
tributed. Out of 719 HIV-infected patients, 18% experienced the outcome, and the remaining
82% were right-censored. The mediator M was change in viral load (log base 10 scale), which
was measured at 8-weeks of follow-up. We excluded 12 people who had the event or were
lost to follow-up within the first 8 weeks after treatment initiation and any subjects with
missing values for change in viral load. Of the four studies, two randomized participants to
either combination antiretroviral therapy versus monotherapy, while the other two studies
randomized participants to two di↵erent types of monotherapy. As our comparison is no
longer based on randomization, we adjusted for potential confounding by sex, weight, and
IV drug use at baseline; these correspond to variable Z in models below.

log(T ) = ✓0 + ✓1Combination+ ✓2V Lchange + ✓T3 Z + "̃ (8)

log(T ) = �0 + �1Combination+ �T
3 Z + ⇠ (9)

V Lchange = ↵0 + ↵1Combination+ ↵T
3 Z + ⇣̃ (10)

where ⇣̃ is normally distributed with mean zero and unknown variance and "̃ and ⇠ follow
an extreme value distribution with unknown scale parameters.

Table 2 displays e↵ect estimates, their standard errors, and 95% confidence intervals. Boot-
strap estimates of standard errors were used for the indirect (di↵erence) and total (product)
e↵ect estimates. Our estimates indicated a 2-fold increase in mean time to death or OI
for adults starting combination ARVs as compared to monotherapy, but 28% of this e↵ect
was mediated by decrease in viral load. The proportion di↵erence between the two esti-
mators was 12%. As previously discussed, we do not expect exact numerical equivalence.
Even asymptotically, we expect the estimators to be di↵erent, with only the product method
yielding a consistent estimator for the indirect e↵ect. As shown in the appendix, the total
e↵ect estimator via the reduced form AFT (“di↵erence” in Table 2) will be biased, and the
total e↵ect (“product” in Table 2) is the only valid estimate for the total e↵ect. Unlike
the normal model discussed previously, we had no prior knowledge about the distribution
of the time-to-event outcome. In order to assess goodness-of-fit, we compared the AIC of
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our full model with other potential distributions for the outcome: exponential, log-normal,
log-logistic, and Rayleigh. We found that the Weibull time-to-event outcome provided the
best fit as it had the lowest AIC. Furthermore, the Cox-Snell residual plot for our Weibull
model showed that the fit was adequate as the residuals were relatively linear through the
origin.

Conclusion

In recent years, there has been an explosion of work to identify direct and indirect e↵ects
through causal mediation analysis in a variety of settings. The ease of estimating and inter-
preting direct and indirect e↵ects from AFT models holds tremendous appeal to researchers,
however, there are currently no explicit guidelines regarding possible complications due to
censoring or truncation, two common phenomena in survival analysis. This paper o↵ers
such guidance, based on theoretical considerations, simulation studies, and two applications,
establishing that the well-known equivalence of the product and di↵erence approaches for
estimating an indirect e↵ect in linear models does not generally apply in the presence of
censoring or truncation.

Specifically, we have formally established that the reduced form AFTmodel upon marginal-
izing over the mediator is mis-specified when the error distribution of the AFT model is not
collapsible with respect of the error distribution of the mediator. In the presence of cen-
soring or truncation, this misspecification can cause bias of the reduced form estimator of
total e↵ect, and therefore bias of the di↵erence estimator of indirect e↵ect. In the absence of
censoring or truncation, the di↵erence method yields a consistent estimator of the indirect
e↵ect. However, the model-based variance of the di↵erence methods is generally incorrect,
since the information matrix is derived from an incorrect likelihood. In theory, one could
correct this by using the nonparametric bootstrap or the sandwich variance estimator for
inference.

The normal mediator-normal outcome model is an exception to the above phenomenon
because the reduced form accelerated failure time model is correctly specified; thus, the
product and di↵erence method are both consistent for the indirect e↵ect whether or not
censoring or truncation is present. Crucially, consistency relies on both the mediator and
the outcome following a normal distribution. If the mediator is not normally distributed,
then the reduced form accelerated failure time model will be mis-specified. However, in the
absence of censoring or truncation, we have shown that this form of model misspecification
does not compromise consistency of the estimator of the indirect e↵ect with either the prod-
uct or di↵erence method. Thus, the normality assumption of the mediator is only needed in
the presence of censoring and truncation.

The normal mediator-normal outcome simulation study confirmed these results as the
product and di↵erence methods yielded consistent estimators of the indirect e↵ect regardless
of censoring. In addition, the Weibull simulation study confirmed that the di↵erence method
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indirect e↵ect estimator was biased and, thus, inconsistent in the presence of censoring, but
consistent when there was no censoring. As shown in the appendix and our simulation re-
sults, under certain assumptions, the product method will always yield a consistent estimator
of the indirect e↵ect. Thus, we caution users against employing the di↵erence method for
AFT models, and generally recommend using the product method as it yields a consistent
estimator of the indirect e↵ect in any of the above scenarios. In addition, one could also use
alternative semi-parametric methods that are less susceptible to modeling bias.6,7,25 Regard-
less of the approach used, a careful evaluation of the distributional choice for models and
assessment of potential confounders should always be conducted.
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Appendix: Mediation Analysis for Censored Survival Data under

an Accelerated Failure Time Model

For exposure A, mediator M and outcome T , let M(a) and T (a) = T (a,M(a)) define the coun-
terfactual mediator and outcome had exposure taken value a. Likewise, let T (a,m) define the
counterfactual outcome had exposure and mediator taken the value a and m, respectively. Finally
let T (a,M(a⇤)) denote the counterfactual outcome had exposure taken value a and the mediator
taken the value it would have under treatment a⇤. The average pure or natural direct e↵ect on the
log-additive scale is then defined for a 6= a

⇤ :

NDE (a, a⇤) = E {log T (a,M(a⇤))}� E {log T (a⇤)}

and the natural indirect e↵ect is defined as

NIE (a, a⇤) = E {log T (a)}� E {log T (a,M(a⇤))}

Equivalently, we could write the above expressions conditioning on a set of confounders, Z. Through-
out, we make the assumption:

A ?? {T (a,m),M(a)} | Z (A1)

and we further suppose that we also have for all a, a⇤ :

T (a,m) ?? M(a⇤)|A = a, Z (A2)

Under these assumptions, it follows that NDE (a, a⇤) and NIE (a, a⇤) are identified empirically
with2

E {log T (a,M(a⇤))} =
X

m,z

E {log T |a,m, z} f (m|a⇤, z) f (z)

Derivation of the indirect e↵ect under an AFT model: Suppose that the following acceler-
ated failure time model holds,

log T = �0 + �

a

A+ �

m

M + �

T

z

Z + �" (A3)

where " is an independent residual of arbitrary distribution and not necessarily mean zero.

Assume that M follows
M = ↵0 + ↵

a

A+ ↵

T

z

Z + ⇠ (A4)

where ⇠ is a mean zero error independent of A and Z. Then,

E {log T (a,M(a⇤))} =
X

m,z

E {log T |a,m, z} f (m|a⇤, z)

= �0 + �

a

a+ �

m

E(M | a⇤, z) + �

T

z

z + �✏

= �0 + �

a

a+ �

m

↵0 + �

m

↵

a

a

⇤ + ↵

T

z

z + �

T

z

z + �✏
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which gives the following result,

NDE (a, a⇤) = E {log T (a,M(a⇤))}� E {log T (a⇤,M(a⇤))}
= E {log T (a,M(a⇤)) | Z}� E {log T (a⇤,M(a⇤)) | Z}
= �

a

(a� a

⇤)

NIE (a, a⇤) = E {log T (a,M(a))}� E {log T (a,M(a⇤))}
= E {log T (a,M(a)) | Z}� E {log T (a,M(a⇤)) | Z}
= �

m

↵

a

(a� a

⇤)

Note that under the AFT model one has the stronger result that at the individual level,

NDE (a, a⇤) = log T (a,M(a⇤))� log T (a⇤,M(a⇤))

= �

a

(a� a

⇤)

NIE (a, a⇤) = log T (a,M(a))� log T (a,M(a⇤))

= �

m

↵

a

(a� a

⇤)

For binary A with a = 1 and a

⇤ = 0, the indirect e↵ect product method estimand is �
m

↵

a

and the
natural direct e↵ect is �

a

. The expression for the di↵erence method is obtained from (A3) and (A4):

log T = �0 + �

a

A+ �

m

M + �

T

z

Z + �"

= �0 + �

a

A+ �

m

(↵0 + ↵

a

A+ ↵

T

z

Z + ⇠) + �"

= �0 + �

m

↵0 + (�
a

+ �

m

↵

a

)A+ (�T

z

+ ↵

T

z

)Z + (�"+ �

m

⇠)

= �

⇤
0 + ⌧

a

A+ �

⇤T
z

Z + e"

(A5)

where e" follows the distribution given by the convolution of the density of �" with that of �
m

⇠,
which is independent of A and Z. The total e↵ect is given by ⌧

a

and the indirect e↵ect from the
di↵erence method is:

⌧

a

� �

a

= ↵

a

�

m

(A6)

The di↵erence method estimand is obtained by positing a second accelerated failure time model for
T as a function of A and Z only, which shall be referred to as the reduced form model and would
typically be specified as followed:

log T = �

⇤
0 + ⌧

a

A+ �

⇤T
z

Z + �⌫ (A7)

where � is some unknown scale parameter to be estimated. Therefore, when using the di↵erence
method, one must specify the correct distribution of ⌫ hoping to match that of e" in (A5) – failure
to do so will result in model mis-specification.

Evaluating consistency of the maximum likelihood estimator for ⌧

a

under model mis-

specification and right censoring: Suppose that one mis-specifies the reduced form density of

2

http://biostats.bepress.com/harvardbiostat/paper211



T given A and Z from model (A7) with the density f

T

(t | X;↵,�,�) = f

T

(t | X) and survival
function S

T

(t | X;↵,�,�) = S

T

(t | X). Let X = (A,ZT )T ,� = (⌧
a

,�

⇤T
Z

), and ↵ is the intercept
(�⇤

0 above). We show below that the maximum likelihood estimator of �, and thus ⌧
a

, will be con-
sistent in the absence of censoring. However, in the presence of censoring, the maximum likelihood
estimator will not be consistent. We sketch the proof for the case of right censoring only.

The observed data is min(T,C) and I(T  C) where T is event time and C is independent censoring
time. The log likelihood for a single observation is:

log ` = I(T  C) log f
T

(T | X) + I(T > C) logS
T

(C | X)

We can re-express this in terms of the rescaled residual error term, T0 = Te

�↵��X = exp(�"),
which has density f0(T0 | X) = f0(T0) because the residual error is independent of X,

f

T

(t | X) = f0(te
�↵��X)e�↵��X

We can re-express the log likelihood:

log ` = I(T  C) log[f0(te
�↵��X)e�↵��X ] + I(T > C) logS0(Ce

�↵��X)

= I(T  C) log(f0(te
↵��X))� (↵+ �X)I(T  C) + I(T > C) log(S0(Ce

��X))

The score function of �, can be expressed as:

U

�

(�,↵) =
d

d�


I(T  C) log(f0(te

↵��X))� (↵+ �X)I(T  C) + I(T > C) log(S0(Ce

��X))

�

= �XI(T  C)
ḟ0(te

�↵��X)te�↵��X

f0(te�↵��X)
�XI(T  C) + I(T > C)

d

d�

S0(Ce

�↵��X)

S0(Ce

�↵��X)

= �XI(T  C)
ḟ0(te

�↵��X)te�↵��X

f0(te�↵��X)
�XI(T  C)

+
I(T > C)

S0(Ce

�↵��X)

d

d�

✓
1�

Z
C

0
f0(te

�↵��X)e�↵��X

dt

◆

= �XI(T  C)
ḟ0(te

�↵��X)te�↵��X

f0(te�↵��X)
�XI(T  C)

+
I(T > C)

S0(Ce

�↵��X)

✓
�
Z

C

0

d

d�

[f0(te
�↵��X)e�↵��X ]

f0(te�↵��X)
f0(te

�↵��X)dt

◆

= �XI(T  C)
ḟ0(te

�↵��X)te�↵��X

f0(te�↵��X)
�XI(T  C)

+
I(T > C)

S0(Ce

�↵��X)

✓
X

Z
C

0

ḟ0(te
�↵��X)te�↵��X

e

�↵��X + f0(e
�↵��X)e�↵��X

f0(te�↵��X)
f0(te

�↵��X)dt

◆

where ḟ0(·) is the derivative of f0(·) with respect to its argument.

Let (�̄, ↵̄) denote the limiting value of the MLE, i.e. (↵̂, �̂)
P! (�̄, ↵̄) where (↵̂, �̂) is the MLE.

Then,
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E

✓
U

�

(�̄, ↵̄)
U

↵

(�̄, ↵̄)

�◆
= 0

Now, we can take the expectation of the score of � conditional on C and X. Note that f

⇤
0 (·)

indicates the true law:

E[U�(�̄, ↵̄) | C,X] = E


�XI(T  C)

ḟ0(te
�↵̄��̄X)te�↵̄��̄X

f0(te�↵̄��̄X)
�XI(T  C)

+
I(T > C)

S0(Ce�↵̄��̄X)

✓
X

Z C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄Xe�↵̄��̄X + f0(e

�↵̄��̄X)e�↵̄��̄X

f0(te�↵̄��̄X)
f0(te

�↵̄��̄X)dt

◆
| C,X

�

=

Z C

0

(�X)
ḟ0(te

�↵̄��̄X)te�↵̄��̄X

f0(te�↵̄��̄X)
f⇤
0 (te

�↵��X)e�↵��Xdt+

Z C

0

(�X)f⇤
0 (te

�↵��X)e�↵��Xdt

+

R1
C

f⇤
0 (te

�↵��X)e�↵��Xdt

S0(Ce�↵̄��̄X)

✓
X

Z C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄Xe�↵̄��X + f0(e

�↵̄��̄X)e�↵̄��X

f0(te�↵̄��̄X)
f0(te

�↵̄��̄X)dt

◆

=

Z C

0

(�X)
ḟ0(te

�↵̄��̄X)te�↵̄��̄X

f0(te�↵̄��̄X)
f⇤
0 (te

�↵��X)e�↵��Xdt+

Z C

0

(�X)f⇤
0 (te

�↵��X)e�↵��Xdt

+
S⇤
0 (Ce�↵��X)

S0(Ce�↵̄� ¯�X)

✓
X

Z C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄X + f0(e

�↵̄��̄X)

f0(te�↵̄��̄X)
f0(te

�↵̄��̄X)e�↵̄��̄Xdt

◆

=

Z C

0

(�X)
ḟ0(te

�↵̄��̄X)te�↵̄��̄X + f0(te
�↵̄��̄X)

f0(te�↵̄��̄X)
f⇤
0 (te

�↵��X)e�↵��Xdt

+
S⇤
0 (Ce�↵��X)

S0(Ce�↵̄��̄X)

✓
X

Z C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄X + f0(e

�↵̄��̄X)

f0(te�↵̄��̄X)
f0(te

�↵̄��̄X)e�↵̄��̄Xdt

◆

Note that the conditional mean for the score of ↵ is of similar form:

E[U
↵

(�̄, ↵̄) | C,X] =

Z
C

0
� ḟ0(te

�↵̄��̄X)te�↵̄��̄X + f0(te
�↵̄��̄X)

f0(te�↵̄��̄X)
f

⇤
0 (te

�↵��X)e�↵��X

dt

+
S

⇤
0(Ce

�↵��X)

S0(Ce

�↵̄��̄X)

✓Z
C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄X + f0(e

�↵̄��̄X)

f0(te�↵̄��̄X)
f0(te

�↵̄��̄X)e�↵̄��̄X

dt

◆

Let p be the mean vector for the vector X. Noting that E
⇥
U

�

(�̄, ↵̄)] = 0 and E

⇥
U

↵

(�̄, ↵̄)] = 0, we
can write,

E

⇥
U

�

(�̄, ↵̄)] = E

⇥
U

�

(�̄, ↵̄)� pU

↵

(�̄, ↵̄)
⇤

= E


� (X � p)

Z
C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄X + f0(te

�↵̄��̄X)

f0(te�↵̄��̄X)
f

⇤
0 (te

�↵��X)e�↵��X

dt

+ (X � p)
S

⇤
0(Ce

�↵��X)

S0(Ce

�↵̄��̄X)

✓Z
C

0

ḟ0(te
�↵̄��̄X)te�↵̄��̄X + f0(e

�↵̄��̄X)

f0(te�↵̄��̄X)
f0(te

�↵̄��̄X)e�↵̄��̄X

dt

◆�

We will now plug in the true values to assess whether we get an unbiased score equation under
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model mis-specification for �, i.e. E
⇥
U

�

(�, ↵̄)] = 0. Suppose that �̄ = � :

= E


� (X � p)

Z
C

0

ḟ0(te
�↵̄��X)te�↵̄��X + f0(te

�↵̄��X)

f0(te�↵̄��X)
f

⇤
0 (te

�↵��X)e�↵��X

dt

+ (X � p)
S

⇤
0(Ce

�↵��X)

S0(Ce

�↵̄��X)

✓Z
C

0

ḟ0(te
�↵̄��X)te�↵̄��X + f0(e

�↵̄��X)

f0(te�↵̄��X)
f0(te

�↵̄��X)e�↵̄��X

dt

◆�

= E


� (X � p)

Z
Ce

��X

0

ḟ0(e
�↵̄

u)e�↵̄

u+ f0(e
�↵̄

u)

f0(e�↵̄

u)
f

⇤
0 (e

�↵

u)e�↵

du

+ (X � p)
S

⇤
0(Ce

�↵��X)

S0(Ce

�↵̄��X)

Z
Ce

��X

0

ḟ0(e
�↵̄

u)e�↵̄

u+ f0(e
�↵̄

u)

f0(e�↵̄

u)
f0(e

�↵̄

u)e�↵̄

du

�

= E


(p�X)

Z
Ce

��X

0

⇥
1� S

⇤
0(Ce

�↵��X)f0(e
�↵̄

u)e�↵̄

S0(Ce

�↵̄��X)f⇤
0 (e

�↵

u)e�↵

⇤
ḟ0(e

�↵̄

u)u+ f0(e
�↵̄

u)

f0(e�↵̄

u)
f

⇤
0 (e

�↵

u)e�↵

du

�

=

Z 1

0
E


(p�X)

⇥
1� S

⇤
0(Ce

�↵��X)f0(e
�↵̄

u)e�↵̄

S0(Ce

�↵̄��X)f⇤
0 (e

�↵

u)e�↵

⇤
I(u < Ce

��X)

�
ḟ0(e

�↵̄

u)u+ f0(e
�↵̄

u)

f0(e�↵̄

u)
f

⇤
0 (e

�↵

u)e�↵

du (A8)

If there is no right censoring (C ! 1), and for every value of x:

I

⇣
u < Ce

��x

⌘
! 1

S

⇤
T

�
Ce

�↵��x

�

S

T

(Ce

�↵̄��x)
! 1

in which case the expectation evaluates to zero, and the score for � is unbiased. Additionally, if
the model is not mis-specified, so that S⇤

0(·) = S0(·) and f

⇤
0 (·) = f0(·), then the score for � will also

be unbiased regardless of censoring. Thus, the association of X with T is consistent in the absence
of censoring. However, in the presence of censoring, the above will not necessarily evaluate to zero.
To show this, we consider a special case when X is binary:

=

Z 1

0
E


(p�X)X

✓⇥
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⇤
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⇤
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⇤
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⇥
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⇤
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⇤
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⇤
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⇤
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⇤
0(Ce

�↵)

S0(Ce

�↵̄)
I(u < C)

◆
f0(e

�↵̄

u)e�↵̄

f

⇤
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⇤
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0
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⇤
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⇤
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�↵̄
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�↵̄

u)]du

The above expression will generally be nonzero except at exceptional laws, such as when � = 0.
Therefore, in the presence of model mis-specification, censoring, and a non-null e↵ect, the MLE of
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⌧

a

will not be consistent.

Evaluating consistency of the maximum likelihood estimator for ⌧

a

under model mis-

specification and left truncation: Suppose that one mis-specifies the reduced form density of
T given A and Z from model (A7) with the density f

T

(t | X;↵,�,�) = f

T

(t | X) and survival
function S

T

(t | X;↵,�,�) = S

T

(t | X). Let X = (A,ZT )T ,� = (⌧
a

,�

⇤T
Z

), and ↵ is the intercept
(�⇤

0 above). We show below that the maximum likelihood estimator of �, and thus ⌧
a

, will be con-
sistent in the absence of left truncation. However, in the presence of left truncation, the maximum
likelihood estimate will not be consistent.

Let T be left truncated at V such that we consider T | T � V assuming that the truncation time
is independent of T and X, but otherwise follows an unrestricted density. The log likelihood for a
single observation subject to left truncation is:

log ` = log f
T

(T | X)� logS
T

(V | X)

We can re-express this in terms of the rescaled residual error term, T0 = Te

�↵��X = exp(�"),
which has density f0(T0 | X) = f0(T0) because the residual error term is independent of X, the
following way:

f

T

(t | X) = f0(te
�↵��X)e�↵��X

We can re-express the log likelihood:

log ` = log[f0(te
�↵��X)e�↵��X ]� log(S0(V e

�↵��X))

= log[f0(te
�↵��X)]� (↵+ �X)� log(S0(V e

�↵��X))

The score function of � can be expressed as:

U

�

(↵,�) = �X

ḟ0(te
�↵��X)te�↵��X

f0(te�↵��X)
�X �

d

d�

S0(V e

�↵��X)

S0(V �↵��X)

= �X

ḟ0(te
�↵��X)te�↵��X

f0(te�↵��X)
�X � 1

S0(V e

�↵��X)

d

d�

✓
1�

Z
V

0
f0(te

�↵��X)e�↵��X

dt

◆

= �X

ḟ0(te
�↵��X)te�↵��X

f0(te�↵��X)
�X � 1

S0(V e

�↵��X)

d

d�

✓Z 1

V

f0(te
�↵��X)e�↵��X

dt

◆

= �X

ḟ0(te
�↵��X)te�↵��X

f0(te�↵��X)
�X � 1

S0(V e

�↵��X)

✓Z 1

V

d

d�

[f0(te
�↵��X)e�↵��X ]

f0(te�↵��X)
f0(te

�↵��X)dt

◆

= �X

ḟ0(te
�↵��X)te�↵��X

f0(te�↵��X)
�X

+
1

S0(V e

�↵��X)

✓
X

Z 1

V

ḟ0(te
�↵��X)te�↵��X

e

�↵��X + f0(e
�↵��X)e�↵��X

f0(te�↵��X)
f0(te

�↵��X)dt

◆

where ḟ0 is the derivative of f0 with respect to its argument.
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Let (�̄, ↵̄) denote the limiting value of the MLE, i.e. (↵̂, �̂)
P! (�̄, ↵̄) where (↵̂, �̂) is the MLE.

Then,

E

✓
U

�

(�̄, ↵̄)
U

↵

(�̄, ↵̄)

�◆
= 0

Now, we can take the expectation of the score of � conditional on X with respect to the density of
T | T > V . Note that f⇤

0 (·) indicates the true law:

E[U�(�̄, ↵̄) | X,V ] =

Z 1

V

(�X)
ḟ0(te

�↵̄��̄X)te�↵̄��̄X
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S⇤
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e�↵��Xdt+

Z 1

V
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S⇤
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e�↵��Xdt
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S⇤
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e�↵��Xdt
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✓
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�↵̄��̄X)e�↵̄��̄X

f0(te�↵̄��̄X)
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◆
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Note that the conditional mean for the score of ↵ is of similar form and satisfies:

E[U
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⇤
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Let p be the mean vector for the vector X. Noting that E
⇥
U

�

(�̄, ↵̄)] = 0 and E

⇥
U

↵

(�̄, ↵̄)] = 0, we
can write,
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⇥
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We will now plug in the true values to assess whether we get an unbiased score equation under
model mis-specification for �, i.e. E

⇥
U

�

(�, ↵̄)] = 0. Suppose that �̄ = � :
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⇥ ḟ0(e
�↵̄

u)e�↵̄

u+ f0(e
�↵̄

u)

f0(e�↵̄

u)
f

⇤
0 (e

�↵

u)e�↵

du (A9)

If there is no left truncation (V = 0), and for every value of x:

I(u > V e

��x) = I (u > 0) = 1

1

S

⇤
0(V e

�↵��X)
� f0(e

�↵̄

u)e�↵̄

f

⇤
0 (e

�↵

u)e�↵

S0(V e

�↵̄��X)
= 1� f0(e

�↵̄

u)e�↵̄

f

⇤
0 (e

�↵

u)e�↵

in which case the expectation evaluates to zero, and the score for � is unbiased. Additionally, if
the model is not mis-specified, so that S⇤

0(·) = S0(·) and f

⇤
0 (·) = f0(·), then the score for � will also

be unbiased. Thus, the association of X with T is consistent in the absence of censoring. However,
in the presence of left truncation, the above will not necessarily evaluate to zero. To show this, we
consider a special case when X is binary:
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� (X � p)X

✓⇥ 1

S

⇤
0(V e

�↵��)
� f0(e

�↵̄

u)e�↵̄

f

⇤
0 (e

�↵

u)e�↵

S0(V e

�↵̄��)

⇤
I(u > V e

��)

�
⇥ 1

S

⇤
0(V e

�↵)
� f0(e

�↵̄

u)e�↵̄

f

⇤
0 (e

�↵

u)e�↵

S0(V e

�↵̄)

⇤
I(u > V )

◆

+
f0(e

�↵̄

u)e�↵̄

f

⇤
0 (e

�↵

u)e�↵

S0(V e

�↵̄)

⇤
I(u > V )

�
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⇤
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The above expression will generally be nonzero except at exceptional laws, such as when � = 0.
Therefore, in the presence of model mis-specification, censoring, and a non-null e↵ect, the MLE of
⌧

a

will not be consistent.

An issue with equivalence of the product and di↵erence method indirect e↵ect under

a AFT model with a Weibull outcome, no censoring: Consider model (A3) and (A4), where
" follows an extreme value distribution and ⇠ is normally distributed. Then the implied reduced
form model is given by:

log T = �0 + �

a

A+ �

m

M + �

T

z

Z + �"

= �0 + �

a

A+ �

m

(↵0 + ↵

a

A+ ↵

T

z

Z⇠) + �

T

z

Z + �"

= �0 + �

m

↵0 + (�
a

+ �

m

↵

a

)A+ (↵T

z

+ �

T

z

)Z + (�"+ �

m

⇠)

= �

⇤
0 + ⌧

a

A+ �

⇤T
z

Z + e"

(A10)

where �

⇤
0 = �

m

↵0 + �0, �
⇤T
z

= ↵

T

z

+ �

T

z

, e" = �

m

⇠ + �" and ⌧

a

= ↵

a

�

m

+ �

a

. The above model is an
AFT model since e" is independent of A and C which follows from (⇠, ") independent of A and C.
However, the reduced-form density of log T given A and C is of a complicated form given by the
convolution of a normal density with an extreme value density: fe"(·) =

R
"

1
�m

f

⇠

( ·��✏

�m
)g(")d", where

g(") is the extreme value density and �

m

6= 0. Thus, e" will not have an extreme value distribution,
so that the reduced form model is mis-specified if an extreme value density is assumed for fe". As
we showed in the previous section, in the presence of censoring, the estimator of ⌧

a

will therefore
fail to be consistent; thus, the di↵erence method indirect e↵ect estimator will not be consistent for
the indirect e↵ect. However, according to our results, in the absence of censoring, the di↵erence
method estimator will be consistent for the indirect e↵ect.

Equivalence of the product and di↵erence method indirect e↵ect under a AFT model

with a log-normal outcome: In contrast, if " and ⇠ are both normal, the reduced-form density of
log T given A and C is of correct form because the convolution of two independent normal densities
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Figure A1: Simulation Study, Product vs. Di↵erence Method for the Indirect E↵ect
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will also be a normal density. Due to this, the reduced form model (A7) will be correctly specified,
so the estimator of ⌧

a

will be consistent. Thus, the di↵erence method, ⌧
a

� �

a

, will be a consistent
estimator for the indirect e↵ect.

Monte Carlo variance for indirect e↵ect estimates in the simulation study:
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R Code for direct and indirect e↵ect estimates from data application:

##Calculate indirect and direct effect estimates:

#normally distributed time to event outcome

#normally distributed mediator

#no interaction between exposure and mediator

#interval and right censoring

#exp is the exposure variable (A in the paper)

#med is the mediator variable (M in the paper)

#time1 is the left interval

#time2 is the right interval; NA for right censored data

#cov1,..,cov5 are the potential confounders

#choose the correct library in R

library(survival)

#full model

full.model <- survreg(Surv(time1,time2,type=c(’interval2’)) ~ exp + med + cov1 + cov2 +

cov3 + cov4 + cov5, dist="gaussian")

#reduced model

exp.model <- survreg(Surv(time1,time2,type=c(’interval2’)) ~ exp + cov1 + cov2 + cov3

cov4 + cov5, dist="gaussian")

#mediator model

med.model <- lm(med ~ exp + cov1 + cov2 + cov3 + cov4 + cov5)

#Calculating direct and indirect effects

nde <- full.model$coefficients[2]

nie.prod <- med.model$coefficients[2]*full.model$coefficients[3]

nie.diff <- exp.model$coefficients[2]-full.model$coefficients[2]

#Calculating standard errors for the indirect (product) and direct effect estimates

se_nde <- sqrt(full.model$var[2,2])

se_nie.prod <- sqrt((med.model$coefficients[2]^2)*full.model$var[3,3] +

(full.model$coefficients[3]^2)*summary(med.model)$cov[2,2])

####################################

##Calculate indirect and direct effect estimates:

#Weibull distributed time to event outcome

#normally distributed mediator

#no interaction between exposure and mediator

#right censoring

#exp is the exposure variable (A in the paper)

#med is the mediator variable (M in the paper)
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#outcome is the time of event or censoring

#censor is a binary variable indicating censoring

#cov1,..,cov3 are the potential confounders

#full model

full.model <- survreg(Surv(outcome, censor) ~ exp + med + cov1 + cov2 + cov3,

dist="weibull")

#reduced model -- Recall the total effect is biased!

exp.model <- survreg(Surv(outcome, censor) ~ exp + cov1 + cov2 + cov3, dist="weibull")

#mediator model

med.model <- lm(med ~ exp + cov1 + cov2 + cov3)

#Calculating direct and indirect effects

nde <- full.model$coefficients[2]

nie.prod <- med.model$coefficients[2]*full.model$coefficients[3]

nie.diff <- exp.model$coefficients[2]-full.model$coefficients[2] #this is biased!

#Calculating standard errors for the indirect (product) and direct effect estimates

se_nde <- sqrt(full.model$var[2,2])

se_nie.prod <- sqrt((med.model$coefficients[2]^2)*full.model$var[3,3] +

(full.model$coefficients[3]^2)*summary(med.model)$cov[2,2])

##### NOTES #####

#The nie.diff estimator under the Weibull model will be biased in the presence of censoring

#To calculate the standard errors for the indirect effect (difference), use the boostrap

#Bootstrap code available upon request
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