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Quantifying the totality of treatment effect
with multiple event-time observations in the

presence of a terminal event from a
comparative clinical study

Brian Claggett, Lu Tian, Haoda Fu, Scott D. Solomon, and L. J. Wei

Abstract

To evaluate the totality of one treatment’s benefit/risk profile relative to an alter-
native treatment via a longitudinal comparative clinical study, the timing and oc-
currence of multiple clinical events are typically collected during the patient’s fol-
lowup. These multiple observations reflect the patient’s disease progression/burden
over time. The standard practice is to create a composite endpoint from the mul-
tiple outcomes, the timing of the occurrence of the first clinical event, to evaluate
the treatment via the standard survival analysis techniques. By ignoring all events
after the composite outcome, this type of assessment may not be ideal. Various
parametric or semi-parametric procedures have been extensively discussed in the
literature for the purposes of analyzing multiple event-time data. Many existing
methods were developed based on extensive model assumptions. When the model
assumptions are not plausible, the resulting inferences for the treatment effect
may be misleading. In this article, we propose a simple, non-parametric inference
procedure to quantify the treatment effect which has an intuitive, clinically mean-
ingful interpretation. We use the data from a cardiovascular clinical trial for heart
failure to illustrate the procedure. A simulation study is also conducted to evaluate
the performance of the new proposal.
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Abstract

To evaluate the totality of one treatment’s benefit/risk profile relative to

an alternative treatment via a longitudinal comparative clinical study, the tim-

ing and occurrence of multiple clinical events are typically collected during the

patient’s followup. These multiple observations reflect the patient’s disease

progression/burden over time. The standard practice is to create a compos-

ite endpoint from the multiple outcomes, the timing of the occurrence of the

first clinical event, to evaluate the treatment via the standard survival analysis

techniques. By ignoring all events after the composite outcome, this type of as-

sessment may not be ideal. Various parametric or semi-parametric procedures

have been extensively discussed in the literature for the purposes of analyzing

multiple event-time data. Many existing methods were developed based on ex-

tensive model assumptions. When the model assumptions are not plausible, the

resulting inferences for the treatment effect may be misleading. In this article,

we propose a simple, non-parametric inference procedure to quantify the treat-

ment effect which has an intuitive, clinically meaningful interpretation. We

use the data from a cardiovascular clinical trial for heart failure to illustrate

the procedure. A simulation study is also conducted to evaluate the perfor-

mance of the new proposal. Clinical Trials; Composite Endpoint; Multiple

Outcomes; Non-Parametric Estimation; Counting process; Survival analysis;

Wei-Lin-Weissfeld procedure.

1 Introduction

In a longitudinal clinical study, each patient may experience any of several clinical

events at various time points during the follow-up period. Such multiple event-time

observations provide a temporal profile of the patients disease burden or progression.
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An important question is how to utilize these observations collectively, for instance,

to evaluate a new therapy vs. the standard care from a risk-benefit perspective. A

common practice is to consider either the time from enrollment or randomization

to a specific event or to the first occurrence of one of a collection of pre-specified

clinical events as the study’s primary endpoint and to then analyze such data using

standard inference procedures from survival analysis. Such approaches, however, may

not utilize all relevant information to fully answer the clinical question of interest.

As an example, a randomized, comparative clinical trial, “Beta-Blocker Evalua-

tion of Survival Trial (BEST),” was conducted to evaluate whether the beta-blocking

drug, bucindolol, would benefit patients with advanced chronic heart failure (BEST,

2001). For this study, there were 2708 patients enrolled, randomized to receive either

placebo or the beta-blocker, who were then followed for an average of two years. The

patients overall survival time was chosen as the primary endpoint of the study. For

the comparison of the two treatment groups, the p-value of the two-sample logrank

test was 0.11 with the 0.95 confidence interval for the hazard ratio of (0.78, 1.02),

numerically, but not significantly, in favor of the beta-blocker. Although mortality is

an important endpoint, an evaluation of the beta-blockers benefits and risks should

also include morbidity for chronic heart failure patients over the course of the study.

Clinically important morbidity events for these patients are, for instance, hospital-

ization for worsening heart failure (WHF), non-heart failure hospitalization (NHFH),

myocardial infarction (MI), and heart transplant (HT). The BEST study is a typ-

ical cardiovascular trial for which the times to non-fatal events prior to a terminal

event (for example, death) can be potentially observed for each patient. If we fol-

low the conventional approach using a composite endpoint, that is, the time of the

first occurrence of any of the above five distinct events as the endpoint, the resulting
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Kalpan-Meier curves for two arms are given in Figure 1. The 0.95 confidence inter-

val for the hazard ratio is (0.85, 1.02) and the p-value of the logrank test is 0.10.

Furthermore, if we consider the distribution of each specific component event, it is

apparent that the composite event is more often an occurrence of non-heart failure

hospitalization and less often worsening heart failure in the bucindolol arm (Table

1), even though each of these types of events occurs in fewer patients randomized to

bucindolol than in patients randomized to placebo. Like the results from the mortal-

ity analysis, the beta-blocker has only modest statistical evidence of benefit in this

population with respect to this composite outcome.

Table 1: Total number of patients experiencing each type of event, and specific type
of clinical events represented by the composite outcome, by treatment group

Event type Placebo Bucindolol
Worsening HF 569 (42%) 476 (35%)
Non-HF Hosp 634 (47%) 619 (46%)

Death 449 (33%) 411 (30%)
MI 85 (6%) 46 (3%)

Transplant 41 (3%) 29 (2%)
Composite 971 (72%) 931 (69%)

Composite event type
Worsening HF 393 (40%) 341 (37%)
Non-HF Hosp 445 (46%) 466 (50%)

Death 99 (10%) 103 (11%)
MI 32 (3%) 18 (2%)

Transplant 2 (<1%) 3 (<1%)
Total 971 931

If the clinical questions regarding the risks and benefits of bucindolol extend be-

yond the simple analysis of mortality or of the occurrence of the first composite event,

several novel statistical procedures for comparing two groups may be used to analyze

such multiple event time observations (Wei et al., 1989; Li and Lagakos, 1998; Wang
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Figure 1: Time to first occurrence of worsening heart failure, non-HF hospitalization,
heart transplant, myocardial infarction, or death.

et al., 2001; Wang and Chiang, 2002; Ghosh and Lin, 2003; Lin et al., 2000; Huang and

Wang, 2011; Wang and Huang, 2014). These methods generally utilize model-based

parameters to quantify the between-group difference. As is the case with univari-

ate survival analysis, when the model assumptions are not plausible, the resulting

estimates for the parameters may be difficult to interpret clinically (Kalbfleisch and

Prentice, 1981; Struthers and Kalbfleisch, 1986; Lin and Wei, 1989; Hernán, 2010;

Uno et al., 2014, 2015).

In this article, in order to include both mortality and morbidity events beyond

the first composite endpoint, we consider the patient’s endpoint based on a reverse

counting process, R(t) over time t, which provides the profile of the multiple event

5
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times that comprise the composite outcome above. For example, with the aforemen-

tioned five clinical events: WHF, NHFH, MI, HT, and death, in the BEST study,

Figure 2 shows several realizations of the R(·) process. Each realization is a down-

ward step function starting with a y-axis value of 5, the number of distinct types of

event under consideration. At the time of an occurrence of a non-terminal (non-fatal)

event, R(·) drops by one unit, but at the time of the terminal event, R(·) drops to

zero. At a specific time t, R(t) represents the number of the composite events not

experienced at t. The area under this step function at t, A(t), is the sum of five

event-free survival times up to t. For example, for the first realization of R(·) in Fig-

ure 2, the observed A(48) is 118 (months). That is, this patient enjoyed 10 months of

HF-free survival, 18 months free of MI-free survival, 30 months of HT-free survival,

30 months of NHFH-free survival, and 30 months of overall survival. The cumulative

total of these is 118 months of event-free survival. Noting that the ideal case of a

patient without any increase in disease burden over the study period of interest (i.e.

here, 48 months) would correspond to A(48) = 240(= 48× 5) months, this particular

patient experienced 49%(= 118/240) of the maximum possible cumulative event-free

survival, or conversely, 51%(= 1− 118/240) of the maximum possible disease burden

over this time period, as measured by this combination of morbidity and mortality.

The values A(t) or the above ratio, P (t), for example, would be clinically meaningful

summaries for the temporal profile of patient health with regards to these multiple

event times up to time t. Note that for the second realization in Figure 2, only one of

the five outcomes is observed prior to the patient’s censoring at month 30. For this

patient, A(48) is not fully observed, but the available partial information indicates

that A(48) ∈ (140, 212] months (140 if the patient died the day after censoring; 212 if

the patient experienced no subsequent events until month 48) and P (48) is between
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0.12 and 0.42. It is important to note that in the presence of a terminal event such as

death, the standard forward counting process as the patient’s endpoint is problematic,

since this process is not well defined after death.

For the comparison of two groups, the difference or ratio of the two expected val-

ues E(R(t)), E(A(t)), or E(P (t)) is a clinically interpretable, model-free summary to

quantify the between-group contrast. In this paper, we present inference procedures

for handling one- and two-sample problems. All of the proposals are illustrated with

the data from the BEST study. Note that for the case with a single event time obser-

vation for each patient, E(R(t)) reduces to the survival rate S(t) and E(A(t)) is the

so-called restricted mean survival time at time t, which has been extensively studied,

for example, by Karrison (1987); Zucker (1998); Royston and Parmar (2011); Zhao

et al. (2012); Tian et al. (2014); Uno et al. (2014); Trinquart et al. (2016); A’Hern

(2016). Furthermore, classical methods such as Andersen and Gill (1982); Fine

and Gray (1999); Lin et al. (2000) either treat the terminal events as censoring, con-

sider the patient to be at risk for non-fatal events even after death, or extrapolate

the counting process of nonfatal and terminal events by assuming that there is no

nonfatal event after death. The validity of the former approach relies on the non-

informative censoring assumption, which unrealistically assumes that the terminal

event is independent of the non-fatal events during the follow-up. The latter does

not differentiate nonfatal from terminal events and may yield misleading comparisons

when the mortality rate is very different between two groups. For example, the low

incidence rate of one arm may reflect higher mortality rate rather than a real clinical

benefit. Other methods such as Liu et al. (2004); Rondeau et al. (2007) explicitly

model the joint distribution of non-fatal and terminal events and produce estimators

of the treatment effect on non-fatal and fatal events separately. These methods are

7
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heavily model-dependent and it is difficult to combine the two estimates into a single

summary in a setting of binary decision making. Mao and Lin (2016) recently pro-

posed a semiparametric model for a composite outcome based on pre-specified weights

for different types of events, relying on an assumption of multiplicative effects on the

marginal rate function.

2 One- and two-sample inference procedures

Suppose that for each study subject, there are (K + 1) distinct types of events of

interest, which can be potentially observed during the study follow-up. Also assume

that the (K + 1)th event is the only terminal event. Let R(·) be the reverse counting

process described in the Introduction with respect to these K+ 1 events. In this Sec-

tion, we are interested in making inferences about the parameters E(R(·)), E(A(·)),

and E(P (·)). Now, let Tk, k = 1, · · · , K + 1, be the minimum of T̃k and T̃K+1, where

T̃k is the time to the first occurrence of the kth type of event. Then,

R(t) =
K+1∑
k=1

I(Tk ≥ t), (2.1)

where I(·) is the indicator function,

A(t) =
K+1∑
k=1

Ak(t), (2.2)

where Ak(t) is the minimum of Tk and t, and

P (t) = 1− A(t)

t(K + 1)
. (2.3)
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Figure 2: Profile of observed data from three hypothetical patients from randomiza-
tion to end of follow-up.
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Note that E(Ak(t)) is the restricted mean survival time up to time t for Tk, which is

the area under the survival curve for Tk up to time t.

The above processes may not be observed completely if the terminal event time

T̃K+1 is censored by a random variable C, which is assumed to be independent of T̃K+1,

as well as the non-terminal event times T̃1, . . . , T̃K . Let Xk be the minimum of Tk and

C, ∆k = 1 if Tk is observed and zero, otherwise, for k = 1, · · · , K, and ∆̄ = 1 if T̃K+1

is observed and zero, otherwise. The data, ({Ri(t), 0 ≤ t ≤ Ci(1− ∆̄i) + τ ∗∆̄i}, ∆̄i),

i = 1, · · · , n, where τ ∗ is the maximum study followup time, consist of n independent

copies of ({R(t), 0 ≤ t ≤ C(1− ∆̄) + τ ∗∆̄}, ∆̄).

Using (2.1-2.3), E(R(t)), E(P (t)), and E(A(t)) can be consistently estimated with

these n sets of possibly incomplete observations by

Ê(R)(t) =
K+1∑
k=1

Ŝk(t), (2.4)

where Ŝk(·) is the Kaplan-Meier (KM) estimate for Tk based on {Xik,∆ik, i = 1, · · · , n}

for k = 1, · · · , K + 1; and

Ê(A)(t) =
K+1∑
k=1

Ê(Ak)(t), (2.5)

where Ê(Ak)(t) is the area under the KM curve Ŝk(·) up to time t.

It is important to note that although the censoring variable C is assumed to be

independent of all the event times, the outcome processes R(t), A(t), and P (t) may

be correlated with C. Such an induced dependence results in some technical difficulty

for deriving the large sample properties of Ê(R)(·) and Ê(A)(·) (Glasziou et al., 1990;

Lin, 2003). For the present case, due to the decompositions (2.4) and (2.5), one may
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use similar techniques, for example, as in Wei et al. (1989); Li and Lagakos (1998). to

justify the large sample mean-zero Gaussian approximations to the distributions of

{Ê(R)(t)−E(R)(t)} and {Ê(A)(t)−E(A)(t)} as processes over time, such that t ≤ τ ,

pr(Xk > τ) > 0 for all k . In practice, approximations to these distributions can be

obtained via a perturbation-resampling method. Specifically, a perturbed version of

each KM estimate is

S∗k(t) = exp

[
−

n∑
i=1

∫ t

0

Vid{I(u ≤ Tik)∆ik}∑n
l=1 VlI(Xlk ≥ u)

]
(2.6)

where t ≤ τ , and {Vi : i = 1, . . . n} is a random sample of size n from the stan-

dard exponential distribution. For each realization of random weights {Vi}, let

Ê(R∗)(t) =
∑

k S
∗
k(t), and Ê(A∗)(t) =

∑
k Ê(A∗)k(t), where Ê(A∗)k(t) is the area

under the KM curve S∗k(·) up to time t (Royston and Parmar, 2011; Zhao et al., 2012;

Tian et al., 2014). Then the distribution of
√
n{Ê(R)(·) − E(R)(·)} can be approx-

imated by the distribution of
√
n{ ̂E(R∗)(·) − Ê(R)(·)} with a large number, M , of

realizations of random weights {Vi}. Denote the observed variance as σ̂2
R(·). Similarly,

the distribution of
√
n{Ê(A)(·)− E(A)(·)} can be approximated by the distribution

of
√
n{Ê(A∗)(·)− Ê(A)(·)} with the corresponding variance estimate σ̂2

A(·). Thus, a

(1− α) confidence interval for E(R)(·), for t ≤ τ, is given by

(
Ê(R)(·)− z1−α/2n

−1/2σ̂R(·), Ê(R)(·) + z1−α/2n
−1/2σ̂R(·)

)
,

where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution. To

preserve the range of E(R)(·) ∈ [0, K + 1], we may also first construct a confidence

interval of g−1(E(R)(·)) based on the proposed perturbation method and then trans-

form the resulting confidence interval using g(·) to obtain an appropriate confidence
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interval for E(R)(·), where g(·) is a given monotone function (−∞,+∞)→ [0, K+1].

Similarly, a (1− α) confidence interval for E(A)(·) is given by

(
Ê(A)(·)− z1−α/2n

−1/2σ̂A(·), Ê(A)(·) + z1−α/2n
−1/2σ̂A(·)

)
.

This resampling technique has been utilized in dealing with various survival analysis

problems (Park and Wei, 2003; Cai et al., 2010).

Now, suppose we are interested in constructing a simultaneous confidence band

for E(R)(·) or E(A)(·) over a specific range t ∈ [a, b], where a is larger than the first

observed event time and b is smaller than the largest observed follow-up time. The

equal precision (1− α) confidence bands (Gilbert et al., 2002) can be constructed by

(
Ê(R)(·)− cαn−1/2σ̂R(·), Ê(R)(·) + cαn

−1/2σ̂R(·)
)

and (
Ê(A)(·)− dαn−1/2σ̂A(·), Ê(A)(·) + dαn

−1/2σ̂A(·)
)
,

where cα is chosen such that

pr

(
sup
t∈[a,b]

∣∣∣∣Ê(R∗)(t)− Ê(R)(t)

σ̂R(t)

∣∣∣∣ > cα

)
= α,

and dα is chosen such that

pr

(
sup
t∈[a,b]

∣∣∣∣Ê(A∗)(t)− Ê(A)(t)

σ̂A(t)

∣∣∣∣ > dα

)
= α.

With the data from the placebo arm of the BEST study for the five distinct

events discussed in the Introduction, Figure 3 gives the estimate Ê(R)(t) with the
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0.95 pointwise confidence intervals and simultaneous confidence bands for E(R)(t) for

1 ≤ t ≤ 48 months based on M = 500 sets of perturbed data. These bands are quite

informative; for example, in the placebo group, at t = 48 months, on average, there are

2.00 events not occurring before the death with a 0.95 pointwise confidence interval of

(1.81, 2.18). The estimated sum of all the event-free survival times, Ê(A)(48), is 150.8

months with a 0.95 confidence interval of (146.8, 154.8) months. Correspondingly, the

estimated proportion of maximum morbidity/mortality experienced was Ê(P )(48) is

0.372 (0.355, 0.388).

Now, if we are interested in making inferences about the difference DR(·) of

E(Rj)(·) between two treatment groups j(= 0, 1), the resulting D̂R(·) = Ê(R1)(·) −

Ê(R0)(·) can be obtained via the corresponding empirical counterparts, Ê(Rj)(·). The

distribution of D̂R(·) can be approximated via the aforementioned resampling method.

Our procedure is an extension of the proposal by Parzen et al. (1997) for the case with

the univariate event time observations. The difference DA(t) of two E(A)(t)’s can be

estimated by its counterpart via D̂A(t) = Ê(A1)(t) − Ê(A0)(t). With the data from

the BEST study, Figure 4 shows the estimated Ê(R)(·) process for both bucindolol

and the placebo groups, along with the corresponding contrast D̂R(·) between the

beta-blocker and the control arms. At t = 24 months, the estimated difference is 0.19

events with a 0.95 confidence interval of (0.03, 0.36). At t = 48 months, the estimated

difference is 0.18 but with a wider 0.95 confidence interval of (-0.09, 0.46). Note that

for each of these comparisons, no information is used regarding the temporal profile

of events occurring prior to the selected time point. In order to utilize both the occur-

rence and the timing of the events, we may used the estimated cumulative difference

in total event-free survival time DA(t). At the end of followup, this is 7.6 months with

a 0.95 confidence interval of (1.5, 13.7) months, demonstrating a significant overall

13
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beneficial effect of the active therapy over placebo. Alternatively, this overall treat-

ment difference can be expressed as R̂A(t) = Ê(A1)(t)/Ê(A0)(t) = 1.05(1.01, 1.09),

indicating an estimated 5% increase in event-free survival time, with p = 0.015 for the

test of equality between treatment groups. Another interesting expression is via the

comparison of the proportion of follow-up time lost to morbidity and mortality, Pj(t).

The ratio of these two estimates R̂P (t) = Ê(P1)(t)/Ê(P0)(t) = 0.92 (0.85, 0.98), an

8% decrease in morbidity/mortality.

3 Simulations

In order to assess the properties of the proposed area under the curve, Ê(A)(t), for the

purpose of comparing two treatment groups, we performed an extensive simulation,

intended to mimic a trial setting similar to that of the BEST trial. In the simulations

below, we consider a trial with N = 1500 patients followed for a maximum time τ of 4

years, in which there are a total of four clinical event of interest: three non-fatal events

in addition to all-cause mortality. In all scenarios, the event times in the placebo

group are drawn from Weibull distributions with shape parameter 0.8, and scale

parameters 2000, 3000, and 4000 for the non-fatal event and 8000 for the fatal events,

which correspond to survival probabilities of 46%, 57%, 64%, and 77%, respectively,

at the end of the follow-up period. In order to reflect the common scenario in which

event times are correlated within patients, we induce a shared frailty parameter drawn

from a gamma distribution with an unit mean and variance = 2 (Liu et al., 2004;

Rondeau et al., 2007, 2013). In Scenario 0, the treatment has no effect on any of the

four clinical outcomes, representing the null hypothesis. We then consider treatment

effects which reduce time lost to morbidity/mortality by either 10% (moderate effect)

14
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Figure 3: Point and interval estimates of E(R)(t) over time from the placebo arm of
the BEST trial. Solid curve represents point estimates, with 0.95 pointwise and simul-
taneous confidence intervals denoted by dashed lines and gray shading, respectively.

or 20% (strong effect). In Scenario 1, the treatment effect is strong with respect to

the two more frequent non-fatal events, but moderate for the other two events. In

Scenario 2, the treatment effect is strong with respect to the two less frequent events,

but moderate for the more frequent events. In Scenario 3, the treatment effect is

strong with respect to all 4 events. Within each scenario, we considered that the

treatment effect may manifest itself through a constant reduction in hazard, (i.e.
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arm. Right: Treatment effect D̂R(·) as a function of follow-up time. Solid curve
represents point estimates, with 0.95 pointwise and intervals denoted by dashed lines.

the shape parameter remains constant, and the scale parameters is increased in the

treated arm, PH assumption), or alternatively, through a delay in event times, such

that the treatment and control groups’ survival curves become equal at the end of

the study, but the treatment group’s survival curve is uniformly above the control

group’s for the duration of the study (i.e. the shape parameter is increased in the

treated arm, non-PH assumption). We assume independent administrative censoring,

reflecting a hypothetical 5-year trial with 3 years of uniform enrollment, so that every

patient is followed for at least two years. We compare the proposed method to the

traditional “time-to-first” composite outcome compared via the log-rank test. The

Table below shows the proportion of simulated data sets in which the null hypothesis

of no treatment effect is rejected at the α = 0.05 level.

In Scenario 0, we find that type-I error is well controlled. In Scenarios 1-3, we see
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Table 2: Two-Sample Power
Scenario Treatment Effect Treatment Effect Proportional Method 1: Method 2:

Frequent Events Less Frequent Events Hazards RCP LR (first event)

0 none none Yes 5% 5%
1 strong moderate Yes 34% 34%

No 45% 44%
2 moderate strong Yes 48% 22%

No 54% 28%
3 strong strong Yes 70% 56%

No 76% 63%

that the proposed metric has equal or greater power than the standard “time-to-first”

event approach in all settings, particularly when the treatment effect is strong with

respect to the fatal events and when the PH assumption does not hold.

4 Discussion

Although many statistical methods are currently available to compare two treatment

groups in the presence of multiple outcomes, a method that is not dependent on

a particular parametric modeling assumption is preferable. The ability to produce

estimates of treatment effects which cannot be undermined by model misspecification

should be seen as a benefit to investigators, sponsors, and regulators, each of whom

rely on the robustness of the inferences drawn from clinical studies. Moreover, an

intuitive and interpretable measure of the magnitude of treatment effect expressed

in concrete terms such the numbers of days spent event-free or the number of events

prevented is quite attractive. For example, the constant intensity or rate function

model for recurrent event times (Andersen and Gill, 1982; Lin et al., 2000) may be

theoretically interesting, but the results are difficult to interpret, especially when the
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model assumption is violated.

The methods proposed in this article represent extensions of relatively standard

concepts in the analysis of survival data to address to an important open question in

the general community of clinical trialists. We note that under certain circumstances,

it may be desirable to modify the starting value of the reverse counting process or

the relative values of the individual events in the reverse counting process R(0). For

example, reducing the starting value to R(0) = 1 results in a conventional “time-to-

first-event” analysis. One may also desire to implement weights wk associated with

each of the K + 1 event types, similar to ad-hoc procedures which have appeared in

the clinical literature (Armstrong et al., 2011).
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