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Technical Considerations in the Use of the
E-value

Tyler J. VanderWeele, Peng Ding, and Maya Mathur

Abstract

The E-value is defined as the minimum strength of association on the risk ratio
scale that an unmeasured confounder would have to have with both the exposure
and the outcome, conditional on the measured covariates, to explain away the
observed exposure-outcome association. We have elsewhere proposed that the re-
porting of E-values for estimates and for the limit of the confidence interval closest
to the null become routine whenever causal effects are of interest. A number of
questions have arisen about the use of E-value including questions concerning the
interpretation of the relevant confounding association parameters, the nature of
the transformation from the risk ratio scale to the E-value scale, inference for and
using E-values, and the relation to Rosenbaum’s notion of design sensitivity. Here
we bring these various questions together and provide responses that we hope will
assist in the interpretation of E-values and will further encourage their use.
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Abstract. The E-value is defined as the minimum strength of association on the risk ratio scale 
that an unmeasured confounder would have to have with both the exposure and the outcome, 
conditional on the measured covariates, to explain away the observed exposure-outcome 
association. We have elsewhere proposed that the reporting of E-values for estimates and for the 
limit of the confidence interval closest to the null become routine whenever causal effects are of 
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concerning the interpretation of the relevant confounding association parameters, the nature of 
the transformation from the risk ratio scale to the E-value scale, inference for and using E-values, 
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Introduction 
 
In 2017, we introduced the E-value metric to help assess sensitivity of results to potential 
unmeasured confounding.1 The E-value was defined as the minimum strength of association on 
the risk ratio scale that an unmeasured confounder would have to have with both the exposure 
and the outcome, conditional on the measured covariates, to explain away the observed 
exposure-outcome association.1 Formulas for computing E-values or approximate E-values in a 
variety of settings were provided. Software and also an online calculator for E-values have since 
been provided.2 Since its introduction a number of, often more technical, questions have been 
posed concerning the use and interpretation of E-values. The purpose of this paper is to 
document and address some of the more common questions that have arisen. 
 
 
Calculation of E-values and Interpretation of the Parameters 
 
The formal derivation of the E-value relies on two parameters.3 Let E denote an exposure of 
interest, D the outcome, C the measured covariates, and U one or more unmeasured confounders. 
The observed exposure-outcome association on the risk ratio scale, conditional on covariates C, 
is given by  
 

𝑅𝑅"#$ =
𝑃(𝐷 = 1|𝐸 = 1, 𝑐)
𝑃(𝐷 = 1|𝐸 = 0, 𝑐) 

 
The association, conditional on C, but adjusted also for U would be: 
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𝑅𝑅0123 =
𝑃(𝐷 = 1|𝐸 = 1, 𝑐, 𝑢)𝑃(𝑢|𝑐)2

𝑃(𝐷 = 1|𝐸 = 0, 𝑐, 𝑢)𝑃(𝑢|𝑐)2
 

 
If covariates (C,U) suffice to control for confounding of the effect of E on D, then the latter 
expression RRtrue can be interpreted as the causal risk ratio of U on D conditional on C. More 
formally, let De denote the counterfactual outcome if E is set to e, and let X || Y | Z be used to 
denote that X that X is independent of Y given Z. The effect of E on D is said to be 
unconfounded conditional on Z if De || E | Z for all e. We have that if the effect of E on D is 
unconfounded given (C,U) then 

 
𝑃(𝐷5|𝑐)
𝑃(𝐷6|𝑐)

=
𝑃(𝐷 = 1|𝐸 = 1, 𝑐, 𝑢)𝑃(𝑢|𝑐)2

𝑃(𝐷 = 1|𝐸 = 0, 𝑐, 𝑢)𝑃(𝑢|𝑐)2
 

 
and hence we denote the expression 7(895|:95,;,2)7(2|;)<

7(895|:96,;,2)7(2|;)<
 as RRtrue. 

 
Consider now the following to sensitivity analysis parameters1,3: 
  

𝑅𝑅=8 = 𝑚𝑎𝑥
𝑚𝑎𝑥2𝑃 𝐷 = 1 𝐸 = 1, 𝑐, 𝑢
𝑚𝑖𝑛2𝑃 𝐷 = 1 𝐸 = 1, 𝑐, 𝑢 ,

𝑚𝑎𝑥2𝑃 𝐷 = 1 𝐸 = 0, 𝑐, 𝑢
𝑚𝑖𝑛2𝑃 𝐷 = 1 𝐸 = 0, 𝑐, 𝑢  

 

𝑅𝑅:= = 𝑚𝑎𝑥2
𝑃(𝑈 = 𝑢|𝐸 = 1, 𝑐)
𝑃(𝑈 = 𝑢|𝐸 = 0, 𝑐) 

 
Essentially, RRUD is the maximum effect that U can have on D, conditional on C=c, comparing 
any two categories of U, for either the exposed or unexposed; and RREU is the maximum risk 
ratio relating the exposure to any particular level of U, conditional on C=c. We showed that3:  
 

𝑅𝑅"#$
𝑅𝑅0123

≤
𝑅𝑅=8×𝑅𝑅:=

𝑅𝑅=8 + 𝑅𝑅:= − 1
 

 
so that HHIJ×HHKI

HHIJLHHKIM5
 was the maximum bias (comparing the ratio of the observed association 

adjusted for C, to the true association adjusted also for U) that could be generated by such an 
unmeasured confounder. We then further derived that for the unmeasured confounder(s) to shift 
the observed risk ratio to the null of 1, if one wanted both RRUD and RREU to be as small as 
possible, then the minimum they could both be (which was what we called the E-value) was1,3: 
 

𝐸 − 𝑣𝑎𝑙𝑢𝑒 = 𝑅𝑅"#$ + 𝑅𝑅"#$(𝑅𝑅"#$ − 1) 
 
The E-value is thus straightforward to calculate from the observed risk ratio. 
 
Questions have come up concerning the consequences of having a potentially continuous, many-
valued, or multivariate unmeasured confounder U. In such cases, because many pairwise 
comparisons of categories of U are possible, it may be more plausible than it is with a binary U 
that the maxima of these numerous pairwise comparisons produce RRUD and RREU exceeding the 
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E-value. Hence, it might the case that a large E-value still in fact does not imply all that much 
evidence for a causal effect. This is a reasonable inquiry and concern. Several interpretative 
points here, however, are important. First, the confounding associations RRUD and RREU are both 
conditional on the measured covariates C so that the confounding associations RRUD and RREU 
reflect residual confounding not captured by the measured covariates C. It is the association 
between U and both D and E, independent of C, that is relevant here. Second, the inequality 
holds for any U and thus the results are relevant for any set of covariates U such that the effect of 
E on D is unconfounded conditional on (C,U). One could thus define the parameters RRUD and 
RREU for each possible U such that (C,U) suffice to control for confounding and then take the 
minimum over U of the resulting bias HHIJ×HHKI

HHIJLHHKIM5
. One would then have 

 
𝑅𝑅"#$
𝑅𝑅0123

≤ 𝑚𝑖𝑛=:ST	||	V	|	(W,X)
𝑅𝑅=8×𝑅𝑅:=

𝑅𝑅=8 + 𝑅𝑅:= − 1
 

 
The E-value calculated as 𝑅𝑅"#$ + 𝑅𝑅"#$(𝑅𝑅"#$ − 1) is then the minimum strength of 
association on the risk ratio scale that any and every unmeasured confounder, that suffices along 
with C to control for confounding, would have to have with both the exposure and the outcome, 
above and beyond the measured covariates, to explain away the observed exposure-outcome 
association. 
  
Third, and perhaps most importantly when combined with the second observation above, the 
reality of our estimates and attempts at confounding control are at best approximate. Often we 
would be content, and indeed very pleased, if our estimates were only a few percent away from 
the truth. Let S denote the set of all possible covariates U such that adjustment for (C,U) would 
bring the observed association between E and D, conditional on C and adjusted for U, within a 
factor of say 1.03 (i.e. 3%) of the actual causal effect i.e. 
 

𝑆 = 𝑈:	
1
1.03 ≤

𝑃(𝐷 = 1|𝐸 = 1, 𝑐, 𝑢)𝑃(𝑢|𝑐)2
𝑃(𝐷 = 1|𝐸 = 0, 𝑐, 𝑢)𝑃(𝑢|𝑐)2

𝑃(𝐷5|𝑐)
𝑃(𝐷6|𝑐)

≤ 1.03  

 
One could then define the parameters RRUD and RREU for each possible U in the set S such that 
(C,U) would suffice to bring the bias within 3% of the causal effect. One could then further take 
the minimum over U of the resulting bias HHIJ×HHKI

HHIJLHHKIM5
. One would then have 

 
𝑅𝑅"#$

𝑃 𝐷5 𝑐 /𝑃(𝐷6|𝑐)
≤ (1.03)×𝑚𝑖𝑛=∈]

𝑅𝑅=8×𝑅𝑅:=
𝑅𝑅=8 + 𝑅𝑅:= − 1

 

 
Once we allow for up to 3% bias say, a considerably coarsened version of the relevant 
unmeasured confounders may well suffice. For such coarsened versions of the unmeasured 
confounders, the relevant confounding association parameters RRUD and RREU may be 
considerably smaller for the coarsened unmeasured confounder than for the original underlying 
unmeasured confounder. Once we further take the minimum over all possible unmeasured 
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confounders and all possible coarsenings that would result in at most 3% bias, the confounding 
association parameters RRUD and RREU will be yet smaller still. 
 
The E-value calculated as 𝑅𝑅"#$ + 𝑅𝑅"#$(𝑅𝑅"#$ − 1) could then be interpreted as the 
minimum strength of association on the risk ratio scale that any and every unmeasured 
confounder or coarsening thereof, that suffices along with the observed covariates to bring the 
observed association within 3% of the true causal effect, would have to have with both the 
exposure and the outcome, above and beyond the measured covariates, to explain away the 
observed exposure-outcome association. Thus, even if an unmeasured confounder that 
completely eliminated bias had very large confounding association parameters RRUD and RREU, 
the E-value may arguably still be a useful metric for robustness to unmeasured confounding as it 
can be applied, in an approximate sense as above, to coarsenings and approximate confounding 
control as well. 
 
A somewhat related issue that pertains to the definition of the confounding parameters concerns 
the possibility of multiple unmeasured confounders being needed to eliminate confounding. The 
bias analysis and E-value calculations above are in fact applicable to the setting of multiple 
unmeasured confounders.3 The confounding parameters RRUD and RREU are then simply 
interpreted respectively as the maximum effect that U can have on D, conditional on C=c, 
comparing any two categories of the entire vector of unmeasured confounders U, for either the 
exposed or unexposed; and RREU, is the maximum risk ratio relating the exposure to any 
particular level of the entire vector U, conditional on C=c. In such settings large values of RRUD 
and RREU may not be particularly implausible. While an E-value of 5 say, may seem, when 
considering a single confounder, to require very substantial confounding associations and it is 
perhaps unlikely a single unmeasured confounder could increase the probability of the outcome 
by 5-fold above and beyond the measured covariates, an increase of that magnitude may not be 
as implausible if one is considering a whole group of potential unmeasured confounders. The 
effect comparing the most favorable values of a set of confounders U to the least favorable 
values of that set U might plausibly increase the probability of the outcome by 5-fold, perhaps 
even above and beyond the measured covariates. However if this is indeed so, one should 
perhaps question whether the data available are in fact adequate to get a reasonable estimate of 
the causal effect at all. If it is known in advance that there are not just one, but numerous known 
unmeasured confounders, strongly associated with the outcome and exposure and independent of 
the measured covariates, then arguably this is not a good study setting in which to attempt to 
draw conclusions. If it is thought plausible that a 5-fold increase in the probability of the 
outcome could be generated by the unmeasured confounders above and beyond the measured 
covariates, then it is perhaps time to leave that study data alone and pursue other more adequate 
data sources. The initial estimate for the causal effect should of course be adjusted for as many 
measured confounders as possible. A large E-value is only strong evidence for a true causal 
effect if the set of measured covariates adjusted for plausibly controls for much of the 
confounding. Said another way, the design of the study, and the collection of data on measured 
and known confounders, is essential in whether an estimate is plausible or not. The E-value 
calculation is useful in assessing quantitatively the potential robustness of results to different 
magnitudes of unmeasured confounding. But if the magnitude of unmeasured confounding is 
itself thought to be very substantial, possibly being generated by numerous unmeasured 
confounders, then it is perhaps best to move on. 
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Lastly, it is to be remembered that the E-value is conservative insofar as, if the parameters RRUD 
and RREU are in fact as large as the E-value, then it is possible to construct scenarios in which an 
unmeasured confounder U with those parameters would suffice to bring the observed association 
down to the null.3 However, there are also many other scenarios in which an unmeasured 
confounder has confounding parameters RRUD and RREU that are equal to the E-value and yet the 
unmeasured confounder would not suffice to reduce the observed association to the null. The 
inequality for the maximum bias HH^_`

HHab<T
≤ HHIJ×HHKI

HHIJLHHKIM5
 is an inequality, not an equality. The 

inequality is sharp in that it is always possible to construct a variable U with those confounding 
associations that attains the bound, but, with an actual unmeasured confounder, the bias will 
often be less. This is especially the case when, for example, the unmeasured confounder is 
rare.1,3 The E-value essentially assumes that the distribution of U is as least favorable as possible. 
Indeed when it is known in advance that the unmeasured confounder is rare, this is one scenario 
in which the E-value calculation is perhaps of less use, and is perhaps to be avoided, as it will, in 
that setting, be exceedingly conservative. 
 
 
The E-value as a Transformation of the Estimate and Confidence Interval 
 
In our paper, we recommend reporting the E-value for the estimate and for the limit of the 
confidence interval closest to the null. The former E-value reports how much unmeasured 
confounding would be needed to shift the estimate itself (one’s best guess given the data) to the 
null. The latter E-value is perhaps a more adequate measure related to the actual strength of the 
evidence for an effect, since a large E-value for the limit of the confidence closest to the null 
suggests that even allowing for uncertainty in the estimation of the observed association, the 
entire range of plausible values for the estimate are all relatively robust to potential unmeasured 
confounding. We will return more explicitly to issues of inference for and with the E-value in the 
following section. However, with regard to our recommended practices of reporting the E-value 
for the estimate and for the limit of the confidence interval closet to the null, another question 
that has sometimes arisen concerns the E-value simply being a transformation of the estimate and 
confidence interval itself and thus not really providing any additional information beyond that 
estimate and confidence interval. 
 
While it certainly is the case that the E-value for the estimate is just a transformation of the 
observed risk ratio; and the E-value for the limit of the confidence interval closest to the null is 
just a transformation of that limit, we still believe the reporting of these metrics is useful for 
interpretative purposes. The E-value gives the interpretation of the estimate and confidence 
interval with respect to the minimum strength of confounding associations that would be needed 
to explain away the estimate. It is a more intuitive transformation to the confounding association 
scale, and one which we believe makes it easier to evaluate the robustness of results to potential 
unmeasured confounding. Most people cannot simply compute E-values in their head, nor 
necessarily have a clear sense as to how much confounding would be needed to explain away an 
estimate of a given magnitude. While the E-value, simply taken as a number, conveys nothing 
that is not already there in the estimate itself, we think the reporting of the E-value may assist 
substantially in the actual practice of science, in interpretation, and in the assessment of the 
robustness of conclusions. 
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As an analogy, in many settings, the p-value in fact conveys no additional information beyond 
the estimate and the confidence interval and can be derived from it.4 While the use of the p-value 
has been at times controversial, it arguably is still a valuable measure of evidence for an 
association when properly interpreted as a continuous metric (rather than say as being 
dichotomized at the 0.05 level). While the p-value, as a number, likewise often does not convey 
any information that is not already there in the confidence interval, it can still be helpful for the 
practical purposes of trying to understand the strength of the evidence.5-7 Most people cannot 
simply automatically compute a p-value in their head when given the estimate and confidence 
interval. The scale on which something is reported does make a difference in trying to 
understand and interpret, and this is the case with the p-value.6,7 As another example, instead of 
reporting risk ratios, we could report the hundredth root of the risk ratios that were obtained so 
that a risk ratio of 4 was reported as 1.014 and a risk ratio of 1.6 as 1.0047. As numbers, the 
information conveyed in these two forms of reporting is exactly the same, but the interpretation 
of the latter is arguably not very intuitive, nor as useful as the former; and again, most people 
cannot simply do the conversion in their head.  
 
It is similar with the E-value. The proposed E-value calculations, as numbers, do not provide 
additional information beyond what is already present in the estimate and limit of the confidence 
interval closest to the null. However, the transformation of these estimates, carried out by the E-
value computation, provides the appropriate scale on which to interpret robustness to 
confounding. Most people again cannot carry out such computations in their head and will thus 
have more difficulty in interpreting robustness to potential unmeasured confounding when using 
the untransformed numbers. What is the E-value for a lower limit of the confidence interval 
which is 1.12? How much confounding would at the minimum be needed to bring such a risk 
ratio to the null? Again, without going through the computation it is not entirely easy to see or 
guess. In this case we obtain an E-value of nearly 1.5. 
 
We believe the E-value computations, if routinely carried out are likely to affect interpretative 
practices with regard to robustness to unmeasured confounding. Consider two hypothetical 
estimates of a causal effect from two different studies that have adjusted for similar, and all 
known, confounders: one study obtains an estimate as RR=1.18 (95% CI: 1.04, 1.33) and the 
other as RR=1.18 (95% CI: 1.12, 1.24). In our current set of practices, we believe the evidence 
for a causal effect in these two studies would be interpreted in a relatively similar manner. Both 
obtained similar effect sizes; both had confidence intervals somewhat bounded away from the 
null so that it seemed unlikely that it was simply a matter of “p-hacking” to get the confidence 
interval just above 1; the p-value in the latter study is smaller, but both are relatively extreme. 
Current practices for both studies would probably suggest evidence for a causal effect but with 
the caveat of course that association is not causation and that there may be unmeasured 
confounding. We would argue, however, that the evidence from these two studies is quite 
different in strength. The E-value for the confidence interval of the former study is 1.24 and for 
the latter it is 1.49. While we routinely see risk ratios of 1.24 in the research literature, those of a 
magnitude of 1.5 are rather rarer, and to have a risk ratio of magnitude 1.5 with both the outcome 
and the exposure, above and beyond the measured covariates, rarer still. We believe if the E-
values for the lower limit of the confidence intervals for these two studies were reported, along 
with the estimates and confidence intervals themselves, the robustness to potential unmeasured 
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confounding would be more appropriately evaluated, discussed, and assessed. And this is not 
simply a matter of also reporting the p-value. Examples have been given of two studies, one with 
a more extreme p-value, but the other having the more extreme E-value for the confidence 
interval.1 The p-value and E-value are assessing different types of evidence: the p-value evidence 
that there is an association, the E-value evidence that that association if present is causal. Both 
can, and we believe should, be reported. So while our proposed reporting practices for the E-
value are indeed just a transformation of the estimate and the limit of the confidence interval 
closest to the null, we believe this will prove helpful in interpretation and will improve 
assessments of robustness.  
 
 
Inference For and Using E-values 
 
As noted above, we recommend reporting the E-value for the estimate and for the limit of the 
confidence interval closest to the null. Questions have arisen as to whether it might be good to 
provide a confidence interval for the E-value itself. Note that our recommendation is to provide 
an E-value for the limit of the confidence interval closest to the null; it is not to provide a 
confidence interval for the E-value itself. The distinction is subtle, but important, and concerns 
the goal of inference. Our perspective is that, in settings in which the E-value may be of use, the 
goal of inference is the causal effect itself of the exposure on the outcome. The E-value is a tool, 
not the goal, of inference. The E-value is a tool, a tool to assess the robustness of one’s 
conclusions to potential unmeasured confounding when trying to draw inferences about causal 
effects. The goal and object of inference does not concern E-value itself, but rather the causal 
effect. 
 
The distinction between the E-value for the confidence interval versus the confidence interval for 
the E-value becomes clearer when we think about the type of inferential statements one is able to 
make in repeated sampling. Suppose one calculated a 95% confidence interval for the E-value 
for the confounded association. In that case, one could make statements along the lines of 
“Across repeated samples, at least 95% of the time, the minimum strength of association on the 
risk ratio scale that an unmeasured confounder would have to have with both the exposure and 
the outcome, conditional on the measured covariates, to explain away the actual confounded 
exposure-outcome association will lie in the confidence interval provided.” Such statements may 
be of some interest but they are statements concerning, over repeated samples, minimum 
unmeasured confounding associations, rather than statements directly about the causal effect 
itself. Suppose instead of calculating a confidence interval for the E-value, one alternatively, as 
we advocate, calculated the E-value for the limit of the confidence interval closest to the null and 
did this across samples and settings. One could then make statements along the following lines: 
“Across repeated samples, at least 95% of the time, if the actual confounding parameters RRUY 
and RREU are both less than the E-value for the confidence interval that was calculated, then 
there will be a true effect in the same direction as the observed association.”a This is a statement 

																																																								
a Or more generally one could make statements of the form “Across repeated samples, at least 
95% of the time, if the actual confounding parameters RRUY and RREU are such that the bias 
factor generated by them is less than that given by having RRUY and RREU equal to the E-value 
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more directly about the presence of a true causal effect and for this reason we believe that in 
most settings it is the type of statement that is of interest. It makes the causal effect, not the E-
value, the target of inference.  
 
Again, as above, one could in principle obtain a confidence interval for the E-value for the 
estimate, perhaps by bootstrapping or by the delta method. It is not difficult to derive an 
asymptotic standard error using the delta method for the E-value of the estimate, when that E-
value is computed by 𝑅𝑅"#$ + 𝑅𝑅"#$(𝑅𝑅"#$ − 1). Typically, estimation and inference for risk 
ratios are carried out using symmetric confidence interval around b=log(RRobs). Suppose we 
have an estimate 𝛽of b with estimated standard error 𝜎, then the E-value for the estimate is 𝑒e +

𝑒e(𝑒e − 1) and its standard error is, by the delta method, 𝜎 𝑒e + f3ghM3h

f 3h(3hM5)
 and from there 

one could obtain an asymptotic 95% confidence interval for the E-value as 𝑒e + 𝑒e(𝑒e − 1) ±

1.96𝜎 𝑒e + f3ghM3h

f 3h(3hM5)
.  However, as above, it is not clear why the E-value itself, rather than 

the causal effect should be the target of inference. 
 
 
Relation to Rosenbaum’s Design Sensitivity 
 
Questions have also arisen with respect to the relation of the E-value to what Paul Rosenbaum 
calls design sensitivity.8 The two concepts are related but also have a number of important 
differences. The sensitivity analysis parameter, G, in Rosenbaum’s design sensitivity is the 
maximum ratio by which two units with identical covariates C may differ in their odds of 
receiving the exposure. Under randomization conditional on C, two units with the same 
covariates would not differ at all in their odds of exposure and thus we would have G=1. If 
however there were an unmeasured covariate U that affected the odds of exposure, then we may 
have G>1. For a given population, and a given design, and a proposed method of analysis, the 
design sensitivity is how large the sensitivity analysis parameter, G, would have to be in large 
samples to change the conclusion. What is similar with design sensitivity and the E-value is that 
both concern the amount of unmeasured confounding that would be required to alter conclusions 
or to explain away an observed association as to not being due to a true causal effect of the 
exposure on the outcome. 
 
However, there are several differences between the design sensitivity and the E-value. First, 
different associations are used to characterize unmeasured confounding in the two approaches. In 
Rosenbaum’s design sensitivity the strength of the unmeasured confounding relates to how much 
an unmeasured covariate might increase the odds of exposure. With the E-value, the sensitivity 
analysis parameters are the associations relating the exposure to the unmeasured confounder, and 
																																																																																																																																																																																			
for the confidence interval that was calculated, then there will be a true effect in the same 
direction as the observed association” 
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also relating the unmeasured confounder to the outcome. Rosenbaum’s design sensitivity does 
not make explicit reference to the effect of the unmeasured confounder on the outcome. In 
further work Rosenbaum and Silber9 propose what they call an amplification of the sensitivity 
analysis that re-expresses the sensitivity analysis parameter G in terms of effects of an 
unmeasured confounder on the exposure and outcome. However, it does so under a particular 
model for the effect of the confounder on the outcome. In contrast, the sensitivity analysis 
parameters that are used in the E-value, RRUD and RREU, do not presuppose a model for the 
effect of the unmeasured confounder on the outcome, nor for the relation between the exposure 
and the unmeasured confounder. The sensitivity analysis parameters RRUD and RREU are defined 
non-parametrically, as above, using maximums.  
 
A second difference between the approaches is that Rosenbaum’s design sensitivity was 
developed to evaluate the sharp null hypothesis of no causal effect for any individual. The E-
value can be used to assess the strength of unmeasured confounding that is needed to move the 
estimate to the null of no average causal effect; the E-value can also be used to assess the 
strength of unmeasured confounding that is needed to move the estimate of the average causal 
effect to any other value of the causal effect as well, for example to a scientifically meaningful 
threshold for which a causal effect of lesser magnitude would simply not be of substantive 
interest.1,3 
 
A third difference between the approaches is that Rosenbaum proposes that the design sensitivity 
be calculated for large samples, whereas our proposal is that the E-value be calculated for the 
actual sample. Rosenbaum’s design sensitivity is intended to be a property of the design, not the 
sample size. Using the design sensitivity, one can compare different designs for large sample 
sizes to determine which designs may be more robust to potential unmeasured confounding. Our 
proposed approach using E-values is calculated with the actual data and estimates. As above, we 
propose calculating E-values for both the estimate and for the limit of the confidence interval 
closest to the null.1 The E-value for the limit of the confidence interval closest to the null will of 
course vary across samples and will vary by sample size. There is in principle also an E-value for 
the actual confounded association between exposure and the outcome conditional on C i.e. the 
risk ratio one would obtain in an infinite sample size relating the exposure and the outcome, 
conditional on the measured covariates, but not adjusting for unmeasured covariates U. That E-
value for the actual confounded risk in an infinite sample is more closely analogous to 
Rosenbaum’s design sensitivity. It is also what would be the target of inference if one were to 
calculate a confidence interval for the E-value of the estimated risk ratio. However, as argued in 
the previous section, this seems of less use in evaluating the actual evidence for a causal effect 
from a given study than the E-value for the confidence interval itself. Again, as argued above, 
the target of inference is the causal effect, not the E-value. 
 
A third difference between design sensitivity and the E-value is the scale used. The design 
sensitivity is defined on an odds ratio scale. The E-value is defined on the risk ratio scale. In 
principle, this difference is only a matter of mathematical definition of scale. However, in 
practice, we think it is often an important difference. In practice, odds ratios are not infrequently 
interpreted, often inadvertently, as risk ratios. When the variable under consideration is rare, 
odds ratios in fact approximate risk ratios and this is then unproblematic.4 However, when the 
variable for which the odds is being considered is common, then odds ratios can vastly 
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overestimate risk ratios. In many scenarios, odds ratio are roughly the square of risk ratios.10 
When the probability of the variable being considered lies in the range 0.2 to 0.8, the odds ratio 
can exaggerate the risk ratio by a factor as large as 400%!10 In these cases, interpreting odds 
ratios as risk ratios is highly problematic. The sensitivity analysis parameters in Rosenbaum’s 
design sensitivity are defined in terms of odds ratios for the exposure. The exposures being 
examined in many studies are of course often relatively common. Sensitivity analysis using odds 
ratio scales in these settings can be problematic,11 and one must take due caution. If investigators 
are careful not to interpret odds ratios as risk ratios, then this need not necessarily be 
problematic. If, however, in the interpretation of the investigators, or that of the readers of their 
research reports, odds ratios are interpreted as risk ratios then this may vastly exaggerate the 
robustness of conclusions to unmeasured confounding since odds ratios can vastly exaggerate 
risk ratios. We believe such misinterpretation of odds ratios as risk ratios is common in practice 
and for that reason would in general advocate for using sensitivity analysis parameters on risk 
ratio scales. We have endeavored to provide a variety of approximations so that E-values, with 
parameters reported on risk ratio scales, can be obtained regardless of the initial method of 
analysis or effect measure employed in estimation.1,10 
 
In summary, while design sensitivity is somewhat analogous to the E-value for the actual 
confounded association between the exposure and outcome, the reporting practices for the E-
value that we advocate for1 differ from design sensitivity in their considerations of the relations 
between the unmeasured confounder and the outcome; differ in considering the null of no 
average causal effect rather than the sharp null; differ in considering the actual sample versus an 
infinite sample; and differ in using risk ratio rather than odds ratio scales. 
 
It is our hope, by addressing these questions concerning the interpretation of the confounding 
association parameters, the nature of the E-value transformation, questions of statistical inference 
using the E-value, and distinctions from design sensitivity, that the interpretation of the E-value 
metric is clearer and that its use will thereby be further facilitated. 
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