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Summary: Inverse probability weighted Cox models can be used to estimate marginal hazard ratios under differ-

ent treatments interventions in observational studies. To obtain variance estimates, the robust sandwich variance

estimator is often recommended to account for the induced correlation among weighted observations. However, this

estimator does not incorporate the uncertainty in estimating the weights and tends to overestimate the variance,

leading to inefficient inference. Here we propose a new variance estimator that combines the estimation procedures

for the hazard ratio and weights using stacked estimating equations, with additional adjustments for the sum of

non-independent and identically distributed terms in a Cox partial likelihood score equation. We prove analytically

that the robust sandwich variance estimator is conservative and establish the asymptotic equivalence between the

proposed variance estimator and one obtained through linearization by Hajage et al., 2018. In addition, we extend

our proposed variance estimator to accommodate clustered data. We compare the finite sample performance of the

proposed method with alternative methods through simulation studies. We illustrate these different variance methods

in an inverse probability weighted application to estimate the marginal hazard ratio for postoperative hospitalization

under sleeve gastrectomy versus Roux-en-Y gastric bypass in a large medical claims and billing database. To facilitate

implementation of the proposed method, we have developed an R package ipwCoxCSV.

Key words: Clustered data; Cox model; Inverse probability weighting; Marginal hazard ratio; Sandwich variance

estimator.

This paper has been submitted for consideration for publication in Biometrics



Variance Estimation in Inverse Probability Weighted Cox Models 1

1. Introduction

Inverse probability weighting, a tool to address missing data or unequal selection proba-

bilities, has been widely used in various fields such as causal inference (e.g., Rosenbaum,

1987; Lunceford and Davidian, 2004; Hernán and Robins, 2019) and survey sampling (e.g.,

Horvitz and Thompson, 1952; Pfeffermann, 1993; Höfler et al., 2005; Seaman and White,

2013; Miratrix et al., 2018). With time-to-event outcomes, the inverse probability weighted

(IPW) Cox model is frequently used to estimate the marginal hazard ratio comparing hazard

functions of counterfactual failure times under different hypothetical treatment interventions

in observational studies (Hernán and Robins, 2019). When interest is in the comparison of

binary point treatment interventions (e.g., “treat” versus “do not treat”), the weights are

a function of the estimated propensity score; i.e., the probability of receiving treatment

conditional on the measured baseline confounders (Rosenbaum and Rubin, 1983). The con-

sistency of the resulting estimator depends on several assumptions, including the assumptions

of exchangeability between treated and untreated individuals given the baseline measured

covariates, correct model specification, and consistent estimation of the propensity score.

The focus of this work is on variance estimation for the treatment effect estimators

from IPW Cox models. Previous authors have discussed an efficiency paradox such that

estimators constructed using the estimated nuisance parameters are more efficient than

those constructed using the true values of these nuisance parameters (e.g., Robins et al.,

1992; van der Laan and Robins, 2003; Henmi and Eguchi, 2004). Henmi and Eguchi (2004)

gave a sufficient condition for this paradox based on the orthogonality of the components

of the projected estimating functions – the projections of the score function on to a given

set of estimating functions – corresponding to the parameters of interest and the nuisance

parameters. In IPW estimation of average treatment effects for non-survival outcomes,

it was found that estimating parameters in a propensity score model leads to a smaller
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asymptotic variance for the IPW estimator than using the true values (Lunceford and

Davidian, 2004). Similarly, with survival outcomes, it has been noted that a robust sandwich

variance estimator tends to be conservative in estimating the variance of an IPW estimator

when ignoring the uncertainty in estimating the weights (e.g., Robins, 1997, 1999; Hernán

et al., 2000). Given the convenient implementation of a robust sandwich variance estimator

using off-the-shelf statistical software, this approach to variance estimation has become

routine in practical applications of weighted analysis, including in IPW Cox estimation.

Austin (2016) confirmed in extensive simulations that the robust sandwich variance estima-

tor tends to provide conservative estimates of the variance in the case of IPW estimators of

Cox models. He suggested that, given the overestimation of the variance, which leads to wider

confidence intervals and inefficient inference, bootstrap resampling (Efron and Tibshirani,

1993) should be used in place of the robust sandwich variance estimator. However, given

the computational burden of the bootstrap method, an analytical formula for computing a

consistent variance estimator is desirable. Analytical variance formulae for IPW estimators

for non-survival outcomes have been proposed in various settings (Lunceford and Davidian,

2004; Williamson et al., 2014; Perez-Heydrich et al., 2014), using the standard M-estimation

technique (Stefanski and Boos, 2002) based on stacked estimating equations of the treatment

effect and propensity score weights. However, the Cox partial likelihood score equation is not

a sum of independently and identically distributed (i.i.d.) terms, making it challenging to

apply the standard M-estimation technique to obtain a sandwich type variance estimator

for the hazard ratio. Mao et al. (2018) proposed to first poissonize the Cox model and

then construct the stacked estimating equations, motivated by numerical findings that the

poissonized likelihood gave nearly identical point estimates as the Cox model. This method

involves penalized splines that require specification of the number and location of knots.

Hajage et al. (2018) derived a closed-form variance formula using linearization (Deville,
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1999). Their approach involved linearizing the Cox model and the propensity score weights

to arrive at a variable whose dispersion can be used to approximate the variance.

In this paper, we take a different approach to derive a new analytical variance formula,

by directly correcting the available robust sandwich variance estimator (Lin and Wei, 1989;

Binder, 1992) that ignores the uncertainty in weight estimation. Specifically, we combine

the estimating equations for the propensity score weights and the estimating equation used

for the robust sandwich variance estimation. In the “meat” part of the sandwich variance

estimator, we approximate and replace the original non-i.i.d. terms in the weighted partial

likelihood score equation with the i.i.d terms proposed by Lin and Wei (1989) and Binder

(1992). We establish two properties of the proposed variance estimator. First, we show that

it is asymptotically equivalent to the existing linearization estimator (Hajage et al., 2018).

Second, we show that it is more efficient than the existing robust sandwich variance estimator

through a direct comparison of the two formulae.

We further propose a new variance estimator for clustered data settings. Clustered data

occur frequently in practice. For example, each patient may experience recurrent post-

surgery infections where times to multiple infections for the same patient are expected to

be correlated. There is no available analytical variance formulae for the IPW Cox model

to handle clustered survival data. To fill the gap, we extend the robust sandwich variance

estimator proposed by Lee et al. (1992) to the IPW context, with uncertainty in weight

estimation taken into account using stacked estimating equations.

The manuscript is organized as follows. In Section 2, we review IPW estimation of Cox

models. In Section 3, we review four existing variance estimation methods, and propose

a new estimator – the corrected sandwich variance estimator – for both independent and

clustered data settings. We establish the relation between our corrected sandwich variance

estimator and the linearization variance estimator and prove analytically that the robust
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sandwich variance estimator is conservative. In Section 4, we conduct simulation studies to

evaluate the finite sample performance of the proposed method. For illustration, in Section 5

we perform an IPW Cox analysis of a bariatric surgery dataset arising from the IBM R© Health

MarketScan R© Research Databases. We apply various variance estimation methods for IPW

estimator of the log hazard ratio for postoperative hospitalization under sleeve gastrectomy

versus Roux-en-Y gastric bypass. We conclude the paper with a discussion in Section 6.

2. Estimation of Marginal Hazard Ratios Using Inverse Probability Weighting

Observed Data Structure: Consider an observational study in which the following are mea-

sured on each of i = 1, . . . , n individuals randomly sampled from a target population of

interest (we initially assume individuals are i.i.d. and therefore suppress the i subscript

here): Let X be a vector of measured baseline covariates, A a binary treatment indicator

(A = 1 if treated and A = 0 otherwise), and T = min(T ∗, C) where T ∗ is the event time, C

is the censoring time. Further define δ = I(T ∗ ≤ C), where I(·) is the indicator function. We

assume a non-informative censoring mechanism that C is independent of (T ∗,X) conditional

on A.

Parameter of Interest: We aim to estimate the log marginal hazard ratio θ of the model:

λa(t) = λ0(t) exp(θa), (1)

where λa(t) is the hazard function for T ∗a , the time to failure for a given individual in the

study population that would have been observed had we set the treatment level A = a for

a = 0 or 1. We can equivalently interpret θ in (1) as the parameter to which an unweighted

partial likelihood estimator of a correctly specified unconditional Cox model would converge

when applied to data from a randomized controlled trial.

IPW estimator of θ: Inverse probability weighting effectively eliminates or reduces con-

founding bias such that the weighted data emulate data that would have been collected from
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a randomized controlled trial. We consider the IPW estimator θ̂ which solves the weighted

partial likelihood score equation (Cox, 1975; Lin and Wei, 1989; Binder, 1992) for θ

n∑
i=1

ŵiδi

{
Ai −

∑
l:l∈<i

ŵl exp(Alθ)Al∑
l:l∈<i

ŵl exp(Alθ)

}
= 0, (2)

where <i = {l : l = 1, . . . , n, Ti ≤ Tl, δi = 1} is the risk set for individual i who experiences

an event at Ti and ŵi is an estimate of a weight wi. Two types of weight are commonly used:

the conventional inverse probability weight

wi = wi,ipw =
Ai

ei
+

1− Ai

1− ei
(3)

and the stabilized weight

wi = wi,stab = P (A = 1)
Ai

ei
+ P (A = 0)

1− Ai

1− ei
, (4)

where ei = P (Ai = 1|Xi) is the propensity score (Rosenbaum, 1987; Cole and Hernán,

2004, 2008). In an observational study, the propensity score ei and treatment prevalence

P (A = 1) are unknown but may be estimated from the data. We consider the estimator θ̂

under a logistic regression model for ei and, when stabilized weights are used, nonparametric

estimation of the marginal treatment prevalence by the proportion treated in the sample.

The consistency of θ̂ for the true value of θ relies on correct specification of the propensity

score model. It also requires several identifying assumptions including conditional exchange-

ability of treated and untreated individuals (A independent of T ∗a given X), positivity

(individuals with A = 1 or A = 0 are possibly observed within all levels ofX) and sufficiently

well-defined counterfactual outcomes (Hernán and Robins, 2019).

3. Variance Estimation Methods for Marginal Hazard Ratios

In this section we describe five variance estimation methods for the IPW estimator θ̂.

In Section 3.1, we review four existing variance estimation methods. In Section 3.2, we

propose the new corrected sandwich variance estimator and establish its relation with the
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linearization estimator and the standard robust sandwich variance estimator. We also give

an extension of our estimator that handles clustered data.

3.1 Review of Four Existing Variance Estimation Methods

3.1.1 Naive Likelihood-Based Variance Estimator. With the estimated weights in (2)

treated as known constants, an application of the partial likelihood-based variance estimation

(Andersen and Gill, 1982) leads to the naive likelihood-based variance estimator for θ̂:

v̂arNL(θ̂) =

{
−

n∑
i=1

ψ∗′i (θ̂)

}−1
, (5)

where

ψ∗i (θ) = ŵiδi

{
Ai −

∑
l:l∈<i

ŵl exp(Alθ)Al∑
l:l∈<i

ŵl exp(Alθ)

}
.

In addition to ignoring the uncertainty in weight estimation, the naive likelihood-based

variance estimator (5) incorrectly assumes independence among the weighted observations

and thus is biased in general.

3.1.2 Robust Sandwich Variance Estimator. To help protect against model misspecifi-

cation, Lin and Wei (1989) developed the robust sandwich variance estimator for partial

likelihood estimates of Cox model parameters, and Binder (1992) extended their results to

incorporate known constant weights.

The weighted robust sandwich variance estimator that replaces the true weights wi with

their estimates ŵi, i = 1, . . . , n is given by

v̂arRS(θ̂) =

{
−

n∑
i=1

ψ∗′i (θ̂)

}−1 n∑
i=1

η∗i (θ̂)η∗i (θ̂)T

{− n∑
i=1

ψ∗′i (θ̂)

}−1T

, (6)

where

η∗i (θ̂) = ŵiδi

{
Ai −

S1(i)

S0(i)

}
−ŵiAi exp(Aiθ̂)

n∑
j=1

δjŵjI(Tj ≤ Ti)

S0(j)
+ŵi exp(Aiθ̂)

n∑
j=1

δjŵjI(Tj ≤ Ti)S1(j)

S2
0(j)

,

S0(i) =
∑

l:l∈<i
ŵl exp(Alθ̂), and S1(i) =

∑
l:l∈<i

ŵl exp(Alθ̂)Al.
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Since the log marginal hazard ratio is a constant, both ψ∗′i (θ̂) and η∗i (θ̂) are scalars, and

the robust sandwich variance estimator can be re-written as

v̂arRS(θ̂) =

{
−

n∑
i=1

ψ∗′i (θ̂)

}−2 n∑
i=1

{η∗i (θ̂)}2. (7)

Because the robust sandwich variance estimator (6) or (7) treats the estimated weights as

known constants, it does not take into account the uncertainty in weight estimation and is

generally a biased estimator of the true variance of θ̂.

3.1.3 Bootstrap Variance Estimator. The bootstrap method (Efron and Tibshirani, 1993)

has been frequently used to obtain variance of estimators. In the current context, one

resamples data at the individual level with replacement M times, for user-specified M (e.g.,

M = 500) to construct M bootstrap samples each containing the same dimensions as the

original data. In each bootstrap sample m = 1, . . . ,M , the entire estimation algorithm is

repeated, including estimation of the propensity score and corresponding weights, to obtain

an estimate of the log hazard ratio (the true θ under the model 1), in that sample. Denote

the estimate for sample m by θ̂m. The bootstrap variance estimator is then given by

v̂arBOOT(θ̂) =
1

M − 1

M∑
m=1

(
θ̂m −

1

M

M∑
m=1

θ̂m

)2

. (8)

Note that, because the propensity score and the weights are re-estimated in each boot-

strap sample, the bootstrap variance estimator (8) incorporates the uncertainty in weight

estimation. Austin (2016) found that the performance of the bootstrap variance estimator

was superior to the commonly used robust sandwich variance estimator in his simulations.

3.1.4 Linearization Variance Estimator. Hajage et al. (2018) derived an analytical vari-

ance formula for the IPW estimator θ̂ that is the solution to (2) using an influence function

technique (Deville, 1999). Specifically, they showed that the variance can be approximated by

the dispersion of a linearized variable divided by sample size. In their derivation, linearization
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was conducted for both the Cox model and the propensity score weights to take into account

the uncertainty in weight estimation.

Their proposed linearization variance estimator is

v̂arLIN(θ̂) =
1

n(n− 1)

n∑
i=1

(
L̂i −

1

n

n∑
i=1

L̂i

)2

, (9)

where {L̂i : i = 1, . . . , n} are the linearized terms. Specifically, define

L̂0i = δi

{
Ai −

S1(i)

S0(i)

}
− exp(θ̂Ai)

[
n∑

j=1

ŵjδjI(Tj ≤ Ti)

S0(j)

{
Ai −

S1(j)

S0(j)

}]
,

Û =
1

n

n∑
j=1

êj(1− êj)XjX
T

j , and V̂ =
1

n

n∑
j=1

ŵjδj
S1(j)

S0(j)

{
1− S1(j)

S0(j)

}
.

For the conventional inverse probability weights (3), the linearized term L̂i in (9) is

L̂1i = V̂ −1{ŵiL̂0i + d̂T

1(Ai − êi)Xi},

where

d̂1 = Û−1

[
1

n

n∑
j=1

{
−Aj

1− êj
êj

+ (1− Aj)
êj

1− êj

}
L̂0jXj

]
,

and êi is the estimated propensity score i = 1, . . . , n. For the stabilized weights (4), the

linearized term L̂i in (9) is given by L̂2i = V̂ −1{ŵiL̂0i + d̂2(Ai − ρ̂) + d̂T

3(Ai − êi)Xi}, where

d̂2 =
1

n

n∑
j=1

(
Aj

êj
− 1− Aj

1− êj

)
L̂0j

and

d̂3 = Û−1

[
1

n

n∑
j=1

{
−Aj

ρ̂(1− êj)
êj

+ (1− Aj)
(1− ρ̂)êj

1− êj

}
L̂0jXj

]
.

3.2 New Method: The Corrected Sandwich Variance Estimator

3.2.1 Theoretical Development. We derive a new analytical variance estimator under

either the conventional inverse probability weights (3) or stabilized weights (4). Our method

extends the robust sandwich variance estimation to account for the uncertainty in estimating

weights. We refer to the proposed estimator as the corrected sandwich variance estimator.
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First, we develop the variance estimator with the conventional inverse probability weights

(3). Let γ denote the vector of parameters in the propensity score model, which is specified

as a logistic regression model. The corresponding system of estimating equations for β =

(θ,γT)T is given by

n∑
i=1

Φi(θ,γ) =


∑n

i=1 ψi(θ,γ) =
∑n

i=1wiδi

{
Ai −

∑
l:l∈<i

wl exp(Alθ)Al∑
l:l∈<i

wl exp(Alθ)

}
= 0∑n

i=1 πi(γ) =
∑n

i=1[Ai − 1/{1 + exp(−γTXi)}]Xi = 0

(10)

where wi is individual i’s conventional weight defined by (3) and estimated using the score

function πi(γ) for logistic propensity score model (with 1 included in the vector of covariates).

Solving (10) for (θ,γT)T gives (θ̂, γ̂T)T, where θ̂ is the estimated log hazard ratio and γ̂ is

the estimated propensity score model parameters.

A standard application of M-estimation (e.g., Stefanski and Boos, 2002) to (10) is compli-

cated by the fact that the partial likelihood score equation is not a sum of i.i.d. terms. We

propose to estimate the variance of β̂ = (θ̂, γ̂T)T by adapting the strategy of Lin and Wei

(1989) and Binder (1992) to get around the non-i.i.d. problems.

In Web Appendix A, we prove that the variance of β̂ can be consistently estimated by

v̂arCS(β̂) = A(β̂)−1B(β̂)
{
A(β̂)−1

}
T

, (11)

whereA(β̂) = −
∑n

i=1 Φ′i(β̂) andB(β̂) =
∑n

i=1 Ωi(β̂)Ωi(β̂)T, with Ωi(β̂) =
(
ηi(θ̂, γ̂), πi(γ̂)T

)
T

and ηi(θ̂, γ̂) given by

ŵiδi

{
Ai −

S1(i)

S0(i)

}
−ŵiAi exp(Aiθ̂)

n∑
j=1

δjŵjI(Tj ≤ Ti)

S0(j)
+ŵi exp(Aiθ̂)

n∑
j=1

δjŵjI(Tj ≤ Ti)S1(j)

S2
0(j)

.

Then the element at the first row and the first column of matrix v̂arCS(β̂), denoted by

v̂arCS(θ̂), is the proposed variance estimator for θ̂.

Let ρ denote the treatment prevalence. Under the stabilized weights (4), we define a system
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of estimating equations for β = (θ,γT, ρ)T:

n∑
i=1

Φi(θ,γ, ρ) =



∑n
i=1 ψi(θ,γ, ρ) =

∑n
i=1wiδi

{
Ai −

∑
l:l∈<i

wl exp(Alθ)Al∑
l:l∈<i

wl exp(Alθ)

}
= 0∑n

i=1 πi(γ) =
∑n

i=1[Ai − 1/{1 + exp(−γTXi)}]Xi = 0∑n
i=1 σi(ρ) =

∑n
i=1(Ai − ρ) = 0

(12)

where wi is given by (4), and ψi(θ,γ, ρ), πi(γ) and σi(ρ) are the partial likelihood score

function for the weighted Cox model, the score function for the logistic propensity score

model (with 1 included in the vector of covariates), and the estimating function for the

treatment prevalence, respectively.

Solving (12) for (θ,γT, ρ)T gives (θ̂, γ̂T, ρ̂)T, where θ̂ is the estimated log hazard ratio,

γ̂ is the estimated propensity score model parameters, and ρ̂ is the estimated treatment

prevalence. The variance estimator for β̂ = (θ̂, γ̂T, ρ̂)T under estimating equations (12) can

be derived in a similar way to the variance estimator (11) under estimating equations (10).

3.2.2 Comparison with the Linearization and Robust Sandwich Estimators. Both the

proposed variance estimator v̂arCS(θ̂) and the linearization variance estimator v̂arLIN(θ̂)

developed by Hajage et al. (2018) incorporate the uncertainty in the estimation of the

propensity score weights. It is of interest to establish the intrinsic connections between these

two analytical estimators, whose formulae look quite different at first glance.

Although derived from different approaches, the two estimators are asymptotically equiv-

alent. This is justified by showing that v̂arCS(θ̂) can be re-written as the empirical second

moment of the linearized variable divided by n. Below is a sketch of proof with the conven-

tional inverse probability weights. The detailed proof with both types of weights is available

in Web Appendix B.

We re-write A(β̂) and B(β̂) in block matrix form as

A(β̂) =

A11 A12

0 A22

 and B(β̂) =

B11 B12

BT

12 B22

 .
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It can be shown that v̂arCS(θ̂), the element at the first row and the first column of matrix

v̂arCS(β̂) = A(β̂)−1B(β̂)
{
A(β̂)−1

}
T

, is given by

v̂arCS(θ̂) =
1

A2
11

B11 −
2

A2
11

B12A
−1
22A

T

12 +
1

A2
11

A12A
−1
22B22A

−1
22A

T

12.

On the other hand, it can be shown that

n∑
i=1

L̂2
1i/n

2 =
1

A2
11

(
B11 + 2d̂T

1B
T

12 + d̂T

1B22d̂1

)
.

By further showing d̂1 = −A−122A
T

12, we obtain

v̂arCS(θ̂) =
n∑

i=1

L̂2
1i/n

2, (13)

where L̂1i is the linearized term for i = 1, . . . , n. By (9) and (13), v̂arCS(
√
nθ̂) is the empirical

second moment of the linearized variable, and v̂arLIN(
√
nθ̂) is the sample variance of the

linearized variable. Because variance is the same as the second moment for a mean-zero

variable, v̂arCS(
√
nθ̂) and v̂arLIN(

√
nθ̂) are asymptotically equivalent.

While it is well-known that the standard robust sandwich variance estimator is conserva-

tive, the development of a correct variance formula allows explicit comparisons of the two

formulae. In Web Appendix C, we derive the large sample difference matrix between the

proposed and robust sandwich variance estimators, which is negative definite. In addition

to providing an explicit proof that the robust sandwich variance estimator is conservative,

examining the components of this difference matrix may provide insights into which settings

result in large or negligible differences between the standard robust sandwich variance

estimator and the proposed corrected estimator.

3.2.3 Extension to Handle Clustered Data. We again use the stacked estimating equations

approach to develop a variance estimator for IPW Cox model with clustered data (e.g.,

recurrent events for each patient). In unweighted situations, Lee et al. (1992) proposed

a robust sandwich variance estimator for Cox regression when the data consists of a large
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number of independent small-size clusters of correlated failure time observations. We consider

its extension to the IPW context and correct the corresponding robust sandwich variance

estimator by further accounting for the estimating equations for the propensity score weights.

Suppose cluster i has Ki failure times for i = 1, . . . , n and k = 1, . . . , Ki, where Ki is

relatively small compared to n. For the kth failure time of cluster i, let Xik be the baseline

covariates, Aik the treatment indicator, Tik = min(T ∗ik, Cik) where T ∗ik is the event time and

Cik is the censoring time, and δik the event indicator. Note that (XT

ik, Aik)T may contain

cluster-level factors, which are k-invariant.

We now develop the variance estimator under the conventional inverse probability weights

(3). Let γ denote the logistic propensity score model parameters. The corresponding system

of the estimating equations for β = (θ,γT)T is given by

n∑
i=1

Ki∑
k=1

Φi,k(θ,γ) =


∑n

i=1

∑Ki

k=1 ψi,k(θ,γ) = 0∑n
i=1

∑Ki

k=1 πi,k(γ) = 0

(14)

where

ψi,k(θ,γ) = wikδik

{
Aik −

∑n
j=1

∑Kj

l=1 I(Tjl ≥ Tik)wjl exp(Ajlθ)Ajl∑n
j=1

∑Kj

l=1 I(Tjl ≥ Tik)wjl exp(Ajlθ)

}
is the partial likelihood score function for the weighted Cox model,

πi,k(γ) = [Aik − 1/{1 + exp(−γTXik)}]Xik

is the score function for logistic propensity score model (with 1 included in the vector of

covariates), and wik is given by (3). Solving (14) for (θ,γT)T gives (θ̂, γ̂T)T, denoted by β̂.

Similarly to the development in Section 3.2.1, we derive the corrected sandwich variance es-

timator of β̂, given by v̂arCS(β̂) = A(β̂)−1B(β̂)
{
A(β̂)−1

}
T

, whereA(β̂) = −
∑n

i=1

∑Ki

k=1 Φ′i,k(β̂)

and B(β̂) =
∑n

i=1 Ωi(β̂)Ωi(β̂)T, with Ωi(β̂) =
(∑Ki

k=1 ηi,k(θ̂, γ̂),
∑Ki

k=1 πi,k(γ̂)T

)
T

and

ηi,k(θ̂, γ̂) = ŵikδik

{
Aik −

S1(i, k)

S0(i, k)

}
− ŵikAik exp(Aikθ̂)

n∑
j=1

Kj∑
l=1

δjlŵjlI(Tjl ≤ Tik)

S0(j, l)
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+ŵik exp(Aikθ̂)
n∑

j=1

Kj∑
l=1

δjlŵjlI(Tjl ≤ Tik)S1(j, l)

S2
0(j, l)

,

where S1(i, k) =
∑n

j=1

∑Kj

l=1 I(Tjl ≥ Tik)ŵjl exp(Ajlθ̂)Ajl and S0(i, k) =
∑n

j=1

∑Kj

l=1 I(Tjl ≥

Tik)ŵjl exp(Ajlθ̂). Then the element at the first row and the first column of matrix v̂arCS(β̂),

denoted by v̂arCS(θ̂), is the proposed variance estimator for θ̂. Similarly, the variance estima-

tor under stabilized weights (4) can be obtained by further including the estimating equation

for treatment prevalence, i.e.,
∑n

i=1

∑Ki

k=1(Aik − ρ) = 0. Note ηi,k(θ̂, γ̂) is the key to address

non-i.i.d. issues. In unweighted case, ηi,k(θ̂, γ̂) reduces to the result of Lee et al. (1992). In

non-clustered case, ηi,k(θ̂, γ̂) reduces to the result of Binder (1992).

4. Simulation Studies

We conducted simulation studies to compare the finite sample performance of the proposed

corrected sandwich variance estimation method with alternative methods in two settings:

without clustering and with clustering. In Setting 1, we compared the proposed estimator

with the naive likelihood-based variance estimator, the robust sandwich variance estimator,

the bootstrap variance estimator, and the linearization variance estimator. In Setting 2,

we compared the proposed estimator with the (cluster version) robust sandwich variance

estimator (Lee et al., 1992) and the cluster bootstrap variance estimator (Davison and

Hinkley, 1997; Field and Welsh, 2007).

4.1 Setting 1: without clustering

4.1.1 Data Generation and Simulation Scenarios. To simulate data that exactly followed

model (1), we adapted the simulation method of Young et al. (2008), which was initially

designed for time-varying treatment settings, to our point-treatment setting. Specifically, for

i = 1, . . . , n individuals, we simulated the following (we assumed individuals were i.i.d. and

therefore suppressed the i subscript):
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Step 1: counterfactual event time under an intervention that sets A = 0, T ∗0 , according to

an exponential distribution with constant hazard rate λ0 = 0.01.

Step 2: vector of covariates X = (X(1), X(2), X(3))T, where X(1) = 0.5(T ∗0 + 0.2)/(T ∗0 + 1) +

0.3Z and X(2) = 1/ log(1.3T ∗0 +3)−0.3Z with Z following the standard normal distribution,

and X(3) a binary variable with P (X(3) = 1|T ∗0 ) = 0.3 + 0.5/(T ∗0 + 1).

Step 3: treatment indicator A generated by setting the probability of being treated to be

1/{1 + exp(γ0 + X(1) − X(2) − X(3))}, where the parameter γ0 was chosen such that the

treatment prevalence was about 10%, 20%, 30%, 40%, or 50%.

Step 4: event time using formula T ∗ = T ∗0 exp(−θA), where θ was specified as log(0.8) such

that the true marginal hazard ratio was 0.8.

Step 5: censoring time C generated from an exponential distribution whose rate was chosen

to yield a censoring rate about 20%, 40%, 60%, or 80%, to feature different degrees of

censoring, and calculated T = min(T ∗, C) and δ = I(T ∗ ≤ C).

We considered sample sizes of 250 and 5000 and ran 1000 simulations for each parameter

configuration. Five hundred bootstrap samples were used when implementing the bootstrap

variance estimator.

4.1.2 Results. Similar to Austin (2016), to evaluate the accuracy of the proposed variance

estimator in comparison to the other four methods, we examined the ratio of the average

standard error (ASE) to the empirical standard error (ESE), where ASE was calculated as

the average of the estimated standard errors for θ̂ (obtained using each variance estimation

method) across 1000 simulation runs, and ESE was calculated as the empirical estimate of

the standard error (i.e., square root of sample variance of θ̂ across 1000 simulation runs).

ESE directly measures the uncertainty in estimation of the log marginal hazard ratio and

reflects the true variability. With adequate sample size, a consistent variance estimator is

expected to have the ratio of ASE to ESE close to 1.
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Figures 1 and 2 depict the ratios of ASE to ESE for the five variance estimation methods

under various combinations of censoring rates and treatment prevalence. As expected, the

proposed variance estimator generally produced ASE to ESE ratios fairly close to 1 with

n = 5000 (censoring rates ranging from 20% to 80%, treatment prevalence ranging from

10% to 50%), indicating that it estimated the variance with high accuracy when the sample

size was adequate. With a small sample size n = 250, the ratios of ASE to ESE can be

noticeably smaller than 1 especially when the treatment prevalence was far from 50% and the

censoring rate was high, implying that the proposed variance estimator may underestimate

the variance when the number of events is small within one or both treatment groups. The

robust sandwich variance estimator tended to produce ratios greater than 1, suggesting

a tendency to overestimate the truth. In some scenarios, the robust sandwich variance

estimator produced ratios as high as 1.4, implying an 40% overestimation of variance.

The naive likelihood-based variance method severely underestimated the variance under the

conventional inverse probability weights. Under stabilized weights, it can underestimate or

overestimate the variance. The linearization method showed almost the same performance

as the proposed method, as seen from the overlapping lines in figures. With a large sample

size of n = 5000, the bootstrap method performed well. With a small sample size of n = 250,

the bootstrap method severely overestimated the variance under high censoring rate and low

treatment prevalence, which is likely due to extreme estimates in some bootstrap samples.

[Figure 1 about here.]

[Figure 2 about here.]

We further examined the empirical coverage rates of the corresponding 95% confidence

intervals obtained using the five variance estimation methods, where an empirical coverage

rate was calculated as the percentage of 95% confidence intervals in 1000 simulation runs

that covered the true log marginal hazard ratio. Results are summarized in Figures 3 and 4.
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As in Austin (2016), we drew three horizontal lines (at 93.65%, 95% and 96.35%) to indicate

a plausible range of coverage rates. Based on the normality approximation, a consistent

variance estimator is expected to have empirical coverage rates that fluctuate around 95%

and roughly within the interval of (93.65%, 96.35%) given that we used 1000 simulation runs.

In most scenarios, the proposed method produced empirical coverage rates close to 95%

and within range, although it tended to result in undercoverage with high censoring rates

and low treatment prevalence. As anticipated, the robust sandwich variance estimator tended

to produce conservative confidence intervals with empirical coverage higher than 95% (and

96.35%), due to its overestimation of variance. In some scenarios, its empirical coverage

rates could be nearly 100%. The naive likelihood-based variance method produced severe

undercoverage under the conventional inverse probability weights due to its underestima-

tion of variance. Using stabilized weights, its coverage rates behaved much better than

under the conventional weights, but still could be outside of the range (93.65%, 96.35%).

Results from the linearization method were almost the same as those from the proposed

method, shown from the overlapping lines in figures. With a large sample size n = 5000,

the bootstrap method produced reasonable empirical coverage rates that within the interval

(93.65%, 96.35%). With a small sample size n = 250, the bootstrap method produced slight

undercoverage under 20% censoring and overcoverage under 80% censoring.

[Figure 3 about here.]

[Figure 4 about here.]

Finally, we examined the average widths of the 95% confidence intervals (Figures S1 and

S2, Web Appendix D). Under a large sample size of n = 5000, the three methods that

account for uncertainty in weights: the bootstrap method, the linearization method, and the

proposed method behaved similarly. Under a small sample size of n = 250, the bootstrap

method produced the widest confidence intervals. This difference could be substantial, likely
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resulting from extreme estimates obtained in some bootstrap samples when the number of

events was small. Results for additional settings with sample sizes of n = 100, 500, 1000, and

2000 are included in Figures S3-S14 (Web Appendix D). Similar results were observed.

4.2 Setting 2: with Clustering

We compared the finite sample performance of the proposed corrected sandwich variance

estimator with the (cluster version) robust sandwich variance estimator (Lee et al., 1992)

and the cluster bootstrap variance estimator (Davison and Hinkley, 1997; Field and Welsh,

2007). When implementing the cluster bootstrap, we resampled with replacement from the n

clusters and used all observations from each selected cluster to form the bootstrap samples.

We simulated n clusters of size K as follows. For the ith cluster where i = 1, . . . , n,

we first generated K counterfactual failure events {T ∗0 (i, 1), . . . , T ∗0 (i,K)} from the Frank’s

family with unit exponential margins and Kendall’s tau equals 0.7. Then for k = 1, . . . , K,

we specified covariates Xik = (X
(1)
ik , X

(2)
ik , X

(3)
ik )T, where X

(1)
ik =

1

K

∑K
k=1[0.5{T ∗0 (i, k) +

0.2}/{T ∗0 (i, k)+1}], X(2)
ik =

1

K

∑K
k=1[1/ log{1.3T ∗0 (i, k)+3}], and X

(3)
ik = 0.3+0.5/{T ∗0 (i, k)+

1}. Here X
(1)
ik and X

(2)
ik were both made k-invariant to be cluster-level factors. The treatment

Aik was generated by setting the propensity score for cluster i and time k to ei,k = 1/{1 +

exp(γ0 + 2X
(1)
ik +X

(2)
ik +X

(3)
ik )}, where γ0 was chosen to achieve the desired treatment preva-

lence of approximately 10%, 20%, 30%, 40%, or 50%. Calculate T ∗ik = T ∗0 (i, k) exp(−θAik).

Censoring times for each cluster were drawn independently from an exponential distribution

whose rate was chosen to yield a censoring rate of about 20% or 60%. The true marginal

hazard ratio was specified as 1.5. We considered 80 clusters with size K = 3 or K = 6, and

ran 1000 simulations for each parameter configuration. Five hundred bootstrap samples were

used when implementing the cluster bootstrap method.

Figure 5 reports the ratios of ASE to ESE for the three variance estimation methods under

various combinations of censoring rate and treatment prevalence. The proposed variance
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estimator generally produced ASE: ESE ratios close to 1 and outperformed the robust

sandwich variance estimator and the cluster bootstrap estimator. The robust sandwich

variance estimator tended to overestimate the truth, just like in settings without clustering;

in some scenarios, the resulting estimates doubled the true variance.

We further reported the empirical coverage rates and the average 95% confidence interval

widths (Figures S15-S16, Web Appendix E) and repeated simulations under n = 200 and

n = 800 clusters (Figures S17-S22, Web Appendix E). The simulation results showed that

when the number of clusters became larger (n = 200 and n = 800), both the proposed

method and the cluster bootstrap performed well in terms of ratios of ASE to ESE and

coverage rates. In general, the proposed method tended to produce narrower confidence

intervals than the cluster bootstrap.

[Figure 5 about here.]

5. Application to A Bariatric Surgery Dataset

We applied the naive likelihood-based variance estimator, the robust sandwich variance

estimator, the bootstrap variance estimator, the linearization variance estimator, and the

proposed corrected sandwich variance estimator to analyze a real-world bariatric surgery

dataset arising from the IBM R© Health MarketScan R© Research Databases, which contained

de-identified patient-level healthcare claims information from employers, health plans, hos-

pitals, and Medicare and Medicaid programs fully compliant with the Health Insurance

Portability and Accountability Act (HIPAA). The dataset included 6690 patients aged 18

to 79 years who received sleeve gastrectomy (SG) or Roux-en-Y gastric bypass (RYGB)

surgery between 1/1/2015 and 9/30/2015. The treatment variable was set to 1 if the patient

received SG and 0 if the patient received RYGB. Among the 6690 patients, 4719 (70.5%)

received SG and 1971 (29.5%) received RYGB. The outcome was time to the first all-cause
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hospitalization during the first 30-day follow-up after patients were discharged from the index

hospitalization. As a common feature of administrative databases in safety studies of rare

outcomes, the censoring rate was high (97%). There were 210 total failure events.

We conducted IPW Cox regression to estimate the marginal hazard ratio. The propensity

score model was specified as a logistic regression model linking the treatment variable to

measured baseline covariates X, including gender; age; the Charlson/Elixhauser combined

comorbidity score; diagnosis of cancer, depression, diabetes, eating disorder, gastroesophageal

reflux disease, hypertension, kidney disease, and non-alcoholic fatty liver disease; number of

emergency department visits; number of dispensing of unique drug classes; and number

of unique generic medications. The resultant propensity score weights achieved reasonable

covariate balance across treatment groups, shown from absolute standardized differences in

percent (Austin and Stuart, 2015) (Figure S23, Web Appendix F). The estimated marginal

hazard ratios under the conventional and stabilized weights were both 0.659.

To obtain the standard error and 95% confidence interval, we used the five variance

estimation methods. Table 1 summarizes the results. The proposed corrected sandwich

variance estimator and the linearization estimator produced almost the same standard errors

and 95% confidence intervals. The robust sandwich variance estimate was only slightly larger

than the proposed and linearization variance estimates in this example. The likelihood-based

variance method produced a remarkably smaller standard error than the other methods

under the conventional inverse probability weights, consistent with the findings in simulation

studies. All the variance methods examined produced 95% confidence intervals for the

marginal hazard ratio that excluded 1, suggesting a statistically significant lower risk of

post-surgery hospitalization at the nominal level of 5% comparing SG to RYGB.

[Table 1 about here.]
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6. Discussion

We considered variance estimation for IPW Cox model and proposed the corrected sandwich

variance estimator for both independent and clustered data settings. Our simulation studies

demonstrated satisfactory performance of the proposed variance estimator and confirmed

that the standard robust sandwich variance estimator which incorporates estimated weights

is conservative. The performance of the linearization estimator and the proposed estima-

tor was quite similar and tended to provide narrower confidence intervals than the boot-

strap estimator. Although the robust sandwich variance estimator ignores the uncertainty

in weight estimation, the impact of ignoring such uncertainty on the magnitude of the

variance is expected to be negligible when sample size is large. Based on findings from

our study and prior studies, the proposed variance estimator, the linearization variance

estimator, and the bootstrap variance estimator are generally recommended for practical

use. To facilitate the implementation of the proposed method, we developed an R package

ipwCoxCSV, which is available from the Comprehensive R Archive Network (CRAN) at

https://cran.r-project.org/package=ipwCoxCSV.

The idea of correcting available robust sandwich variance estimators is generally applicable

to weighted Cox models in causal inference and survey sampling. For example, results of

Binder (1992) may be extended to multivariable-adjusted Cox models (targeting conditional

hazard ratios) with sampling weights estimated from the data. As another example, in multi-

site studies, it will be useful to develop a variance estimator for IPW Cox model stratified

on data-contributing sites (Shu et al., 2019). It is also possible to handle other weighting

strategies such as the one targeting the average treatment effect among treated (ATT).

As the performance of asymptotic methods relies on adequate sample size, in small samples

with rare treatment, the proposed estimator may underestimate the variance while the

bootstrap estimator may overestimate or underestimate the variance. In this case, analysts

https://cran.r-project.org/package=ipwCoxCSV
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may calculate v̂arCS(θ̂), v̂arLIN(θ̂), v̂arBOOT(θ̂), and v̂arRS(θ̂) to see if they are similar. The un-

derestimation of the robust sandwich variance for estimators from generalized linear models

with small number of clusters has been extensively studied (see for examples Kauermann

and Carroll, 2001; Mancl and DeRouen, 2001). Small sample correction formulae have been

proposed. It is not yet apparent and would be useful to investigate, whether or how these

corrections may be extended to the survival data settings.

The robust sandwich variance method and the bootstrap method can be applied under

any type of propensity score model. The proposed and linearization methods assume a

logistic propensity score model, which is widely used in practice. To be flexible within the

logistic model form, analysts may include additional terms such as interaction terms between

covariates or higher-order polynomial terms of certain covariates if the relationship might be

non-linear, to help achieve covariate balance. In principle, the proposed method allows for

any type of propensity score model, as long as it has a well-defined estimating equation to be

included in the stacked estimating equations. When the estimating equation is intractable

(e.g., a black-box machine learning algorithm), it is unclear how to develop an analytical

variance estimator. It would be useful to investigate the statistical properties of resulting

estimators.
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Figure 1: Ratios of average standard error (ASE) to empirical standard error (ESE) with
n = 250. Total number of failure events is about 200, 150, 100, or 50.
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Figure 2: Ratios of average standard error (ASE) to empirical standard error (ESE) with
n = 5000. Total number of failure events is about 4000, 3000, 2000, or 1000.
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Figure 3: Empirical coverage rates in percent with n = 250. Total number of failure events
is about 200 or 50. The right panel shows a zoom-in version of the left panel.
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Figure 4: Empirical coverage rates in percent with n = 5000. Total number of failure events
is about 4000 or 1000. The right panel shows a zoom-in version of the left panel.
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Figure 5: Ratios of average standard error (ASE) to empirical standard error (ESE) with
n = 80 clusters each of size K.
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Table 1: Analysis results of bariatric surgery data using various variance estimation methods:
estimated log marginal hazard ratio (log HR), estimated marginal hazard ratio (HR),
standard error, and 95% confidence interval for marginal hazard ratio (95% CI of HR)

Weight log HR HR Variance Method Standard Error 95% CI of HR

Conventional -0.417 0.659 Naive likelihood 0.0960 (0.5458, 0.7953)
Robust sandwich 0.1440 (0.4968, 0.8738)

Bootstrap (500 times) 0.1450 (0.4958, 0.8755)
Linearization 0.1436 (0.4973, 0.8729)

Corrected sandwich 0.1435 (0.4973, 0.8729)

Stabilized -0.417 0.659 Naive likelihood 0.1426 (0.4982, 0.8714)
Robust sandwich 0.1440 (0.4969, 0.8738)

Bootstrap (500 times) 0.1450 (0.4959, 0.8755)
Linearization 0.1435 (0.4973, 0.8729)

Corrected sandwich 0.1435 (0.4973, 0.8729)
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Web Appendix A: Development of the proposed variance estimator

Since
∑n

i=1 Φi(β̂) = 0, Taylor expansion gives

n∑
i=1

Φ′i(β̃)(β̂ − β∗) +

n∑
i=1

Φi(β
∗) = 0

where β∗ = (θ∗,γ∗T)T is the limiting value for β̂, and β̃ is between β̂ and β∗. We obtain

n1/2(β̂ − β∗) =

{
− 1

n

n∑
i=1

Φ′i(β̃)

}−1
n−1/2

n∑
i=1

Φi(β
∗).

To estimate the asymptotic variance of n1/2(β̂ − β∗), we need to estimate

{
− 1

n

∑n
i=1 Φ′i(β̃)

}−1
,

and the asymptotic variance of n−1/2
∑n

i=1 Φi(β
∗) = n−1/2 (

∑n
i=1 ψi(θ

∗,γ∗),
∑n

i=1 πi(γ
∗)T)

T
. Note that{

− 1

n

∑n
i=1 Φ′i(β̃)

}−1
can be estimated by substituting β̂ into the formula. Let

A(β̂) = −
n∑

i=1

Φ′i(β̂).

Asymptotic variance of n−1/2
∑n

i=1 Φi(β
∗) = n−1/2 (

∑n
i=1 ψi(θ

∗,γ∗),
∑n

i=1 πi(γ
∗)T)

T
is non-trivial since

the partial likelihood score equation is not a sum of i.i.d. terms. By adapting the strategy of Lin and

1



Wei (1989) and Binder (1992) to get around the non-i.i.d. problems, ψi(θ
∗,γ∗) can be replaced by i.i.d.

terms ηi(θ
∗,γ∗) where n−1/2

∑n
i=1 ηi(θ

∗,γ∗) is asymptotically equivalent to n−1/2
∑n

i=1 ψi(θ
∗,γ∗). Define

Ωi(β
∗) = (ηi(θ

∗,γ∗), πi(γ
∗)T)

T
. The asymptotic variance of

∑n
i=1 Ωi(β

∗) can be estimated by

B(β̂) =

n∑
i=1

Ωi(β̂)Ωi(β̂)T,

where Ωi(β̂) =
(
ηi(θ̂, γ̂), πi(γ̂)T

)T

and

ηi(θ̂, γ̂) = ŵiδi

{
Ai −

S1(i)

S0(i)

}
− ŵiAi exp(Alθ̂)

n∑
j=1

δjŵjI(Tj ≤ Ti)
S0(j)

+ ŵi exp(Alθ̂)

n∑
j=1

δjŵjI(Tj ≤ Ti)S1(j)

S2
0(j)

.

Therefore, we propose to estimate the variance of β̂ as v̂arCS(β̂) = A(β̂)−1B(β̂)
{
A(β̂)−1

}T

.

Web Appendix B: Relation between the proposed variance and the

linearization variance

Recall the linearization variance v̂arLIN(θ̂) is the sample variance of the linearized terms divided by n. In

this proof we show that for both the conventional inverse probability weights and stabilized weights, the

proposed variance estimator v̂arCS(θ̂) can be re-written as the sample second moment of the linearization

variable divided by n. By the mean-zero property of the linearized terms, the linearization and the proposed

variance estimators are asymptotically equivalent. Below we give the detailed proof.

Conventional inverse probability weights

We re-write A(β̂) and B(β̂) in block matrix form as

A(β̂) =

A11 A12

0 A22

 and B(β̂) =

B11 B12

BT
12 B22

 .

The inverse of A(β̂) is A11 A12

0 A22


−1

=

C11 C12

0 C22


where C11 =

1

A11
, C22 = A−122 and C12 = − 1

A11
A12A

−1
22 .

2



Some matrix calculations show that v̂arCS(θ̂), the element at the first row and the first column of matrix

v̂arCS(β̂) = A(β̂)−1B(β̂)
{
A(β̂)−1

}T

, is given by

v̂arCS(θ̂)

= C11B11C11 + 2C11B12C
T

12 +C12B22C
T

12

=
1

A2
11

B11 −
2

A2
11

B12A
−1
22 A

T

12 +
1

A2
11

A12A
−1
22 B22A

−1
22 A

T

12. (1)

Our task is to show that the proposed variance estimator v̂arCS(θ̂) can be re-written as
∑n

i=1 L̂
2
1i/n

2,

where L̂2
1i is the linearized term for i = 1, . . . , n. Observing that A11 = nV̂ , B11 =

∑n
i=1 ŵ

2
i L̂

2
0i, B

T
12 =∑n

i=1 ŵiL̂0i(Ai − êi)Xi, and B22 =
∑n

i=1(Ai − êi)2XiX
T
i , we obtain

n∑
i=1

L̂2
1i/n

2 =

n∑
i=1

(nV̂ )−2
{
ŵ2

i L̂
2
0i + 2ŵiL̂0id̂

T

1 (Ai − êi)Xi + d̂T

1 (Ai − êi)2XiX
T

i d̂1

}
=

1

A2
11

{
B11 + 2

n∑
i=1

ŵiL̂0id̂
T

1 (Ai − êi)Xi + d̂T

1B22d̂1

}

=
1

A2
11

{
B11 + 2d̂T

1B
T

12 + d̂T

1B22d̂1

}
. (2)

To show the equivalence of (1) and (2), it suffices to show

d̂1 = −A−122 A
T

12.

Observing A22 = Û , we only need to show

1

n

n∑
j=1

[{
−Aj

1− êj
êj

+ (1−Aj)
êj

1− êj

}
L̂0iXj

]
= −AT

12 (3)

by the definition of d̂1.

For ease of exposition, we denote gj = −Aj
1− êj
êj

+ (1−Aj)
êj

1− êj
. The left-hand-side of (3) equals

1

n

n∑
j=1

(gjXj Î0j)

=
1

n

n∑
j=1

gjXj

[
δj

{
Aj −

S1(j)

S0(j)

}

−Aj exp(θ̂Aj)

n∑
l=1

ŵlδlI(Tl ≤ Tj)
S0(l)

+ exp(θ̂Aj)

n∑
l=1

ŵlδlI(Tl ≤ Tj)S1(l)

S2
0(l)

]
. (4)

3



Note that

−AT

12 =

n∑
j=1

(
δj

{
Aj −

S1(j)

S0(j)

}
· ∂ŵi

∂γ̂

−ŵjδj


∑n

l=1 I(Tl ≥ Tj) exp(Alθ̂)Al
∂ŵl

∂γ̂∑n
l=1 ŵlI(Tl ≥ Tj) exp(Alθ̂)

− Re{∑n
l=1 ŵlI(Tl ≥ Tj) exp(Alθ̂)

}2


 (5)

where

Re =

{
n∑

l=1

I(Tl ≥ Tj) exp(Alθ̂)
∂ŵl

∂γ̂

}{
n∑

l=1

ŵlI(Tl ≥ Tj) exp(Alθ̂)Al

}
.

We observe that
∂ŵl

∂γ̂
= glXl, and obtain

n∑
j=1

gjXjAj exp(θ̂Aj)

n∑
l=1

ŵlδlI(Tl ≤ Tj)
S0(l)

=

n∑
k=1

ŵkδk
S0(k)

n∑
l=1

glXlAl exp(θ̂Al)I(Tl ≥ Tk)

=

n∑
j=1

ŵjδj
S0(j)

n∑
l=1

glXlAl exp(θ̂Al)I(Tl ≥ Tj)

=

n∑
j=1

ŵjδj

∑n
l=1 I(Tl ≥ Tj) exp(Alθ̂)AlglXl∑n

l=1 ŵlI(Tl ≥ Tj) exp(Alθ̂)
(6)

and

n∑
j=1

gjXj exp(θ̂Aj)

n∑
l=1

ŵlδlI(Tl ≤ Tj)S1(l)

S2
0(l)

=

n∑
k=1

ŵkδkS1(k)

S2
0(k)

n∑
l=1

glXl exp(θ̂Al)I(Tl ≥ Tk)

=

n∑
j=1

ŵjδjS1(j)

S2
0(j)

n∑
l=1

glXl exp(θ̂Al)I(Tl ≥ Tj)

=

n∑
j=1

ŵjδj

{∑n
l=1 I(Tl ≥ Tj) exp(Alθ̂)glXl

}{∑n
l=1 ŵlI(Tl ≥ Tj) exp(Alθ̂)Al

}
{∑n

l=1 ŵlI(Tl ≥ Tj) exp(Alθ̂)
}2 . (7)

Combining (6) and (7) shows that (4) equals (5), and hence (1) equals (2).

Stabilized weights

4



We re-write A(β̂) and B(β̂) in block matrix form as

A(β̂) =


A11 A12 A13

0 A22 0

0 0 1

 and B(β̂) =


B11 B12 B13

BT
12 B22 B23

BT
13 BT

23 B33

 .

The inverse of A(β̂) is 
A11 A12 A13

0 A22 0

0 0 1



−1

=


C11 C12 C13

0 C22 0

0 0 1


where C11 =

1

A11
, C22 = A−122 , C12 = − 1

A11
A12A

−1
22 , and C13 = − 1

A11
A13.

Some matrix calculations show that v̂arCS(θ̂), the element at the first row and the first column of matrix

v̂arCS(β̂) = A(β̂)−1B(β̂)
{
A(β̂)−1

}T

, is given by

v̂arCS(θ̂)

= C11B11C11 + 2C11B12C
T

12 + 2C11B13C
T

13 + 2C12B23C
T

13 +C12B22C
T

12 + C13B33C
T

13

=
1

A2
11

B11 −
2

A2
11

B12A
−1
22 A

T

12 −
2

A2
11

B13A
T

13

+
2

A2
11

A12A
−1
22 B23A

T

13 +
1

A2
11

A12A
−1
22 B22A

−1
22 A

T

12 +
1

A2
11

A13B33A
T

13. (8)

Our task is to show that the proposed variance estimator v̂arCS(θ̂) can be re-written as
∑n

i=1 L̂
2
2i/n

2,

where L̂2
2i is the linearized term for i = 1, . . . , n. Observing that A11 = nV̂ , B11 =

∑n
i=1 ŵ

2
i L̂

2
0i, B

T
12 =∑n

i=1 ŵiL̂0i(Ai− êi)Xi, B22 =
∑n

i=1(Ai− êi)2XiX
T
i , B13 =

∑n
i=1 ŵiL̂0i(Ai− ρ̂), BT

23 =
∑n

i=1(Ai− êi)(Ai−

ρ̂)Xi, and B33 =
∑n

i=1(Ai − ρ̂)2, we obtain

n∑
i=1

L̂2
2i/n

2 =

n∑
i=1

(nV̂ )−2
{
ŵ2

i L̂
2
0i + d̂22(Ai − ρ̂)2 + d̂T

3 (Ai − êi)2XiX
T

i d̂3 + 2ŵiL̂0id̂2(Ai − ρ̂)

+2ŵiL̂0id̂
T

3 (Ai − êi)Xi + 2d̂2(Ai − êi)(Ai − ρ̂)d̂T

3Xi

}
=

1

A2
11

{
B11 + d̂22B33 + d̂T

3B22d̂3 + 2d̂2B13 + 2d̂T

3B
T

12 + 2d̂2d̂
T

3B
T

23

}
. (9)

To show the equivalence of (8) and (9), it suffices to show

d̂2 = −A13 and d̂3 = −A−122 A
T

12,

5



which can be done in a similar way to the proof for the conventional inverse probability weights.

Web Appendix C: Robust sandwich variance is conservative

In this proof we show that the robust sandwich variance estimator v̂arRS(θ̂) which ignores the uncertainty

in propensity score estimation is conservative, by comparing it with the proposed precise variance estimator

v̂arCS(θ̂).

Conventional inverse probability weights

The proposed variance v̂arCS(θ̂) is

n∑
i=1

L̂2
1i/n

2 =

n∑
i=1

(nV̂ )−2
{
ŵ2

i L̂
2
0i + 2ŵiL̂0id̂

T

1 (Ai − êi)Xi + d̂T

1 (Ai − êi)2XiX
T

i d̂1

}
=

1

A2
11

n∑
i=1

ŵ2
i L̂

2
0i +

1

A2
11

[
d̂T

1

n∑
i=1

{(Ai − êi)2XiX
T

i }d̂1 + 2d̂T

1

n∑
i=1

ŵiL̂0i(Ai − êi)Xi

]
,

where
1

A2
11

∑n
i=1 ŵ

2
i L̂

2
0i is the robust sandwich variance estimator v̂arRS(θ̂). Thus we obtain

v̂arCS(
√
nθ̂) = v̂arRS(

√
nθ̂) +

1

(A11/n)2

[
d̂T

1

1

n

n∑
i=1

{(Ai − êi)2XiX
T

i }d̂1 + 2d̂T

1

1

n

n∑
i=1

ŵiL̂0i(Ai − êi)Xi

]
.

To show that the robust sandwich variance estimator is conservative, we need to show

d̂T

1

1

n

n∑
i=1

{(Ai − êi)2XiX
T

i }d̂1 + 2d̂T

1

1

n

n∑
i=1

ŵiL̂0i(Ai − êi)Xi ≤ 0 as n→∞. (10)

Let gj = −Aj
1− êj
êj

+ (1−Aj)
êj

1− êj
. Then d̂1 = Û−1

{
1

n

∑n
j=1 gjL̂0jXj

}
. Note

ŵi(Ai − êi) =

(
Ai

êi
+

1−Ai

1− êi

)
(Ai − êi) = Ai

1− êi
êi

− (1−Ai)
êi

1− êi
= −gi.

6



The left-hand-side of (10) equals

 1

n

n∑
j=1

gjL̂0jXj


T

Û−1
1

n

n∑
i=1

{(Ai − êi)2XiX
T

i }Û−1
 1

n

n∑
j=1

gjL̂0jXj


+2

 1

n

n∑
j=1

gjL̂0jXj


T

Û−1
1

n

n∑
i=1

ŵiL̂0i(Ai − êi)Xi

≈

 1

n

n∑
j=1

gjL̂0jXj


T

Û−1

 1

n

n∑
j=1

gjL̂0jXj

− 2

 1

n

n∑
j=1

gjL̂0jXj


T

Û−1

 1

n

n∑
j=1

gjL̂0jXj


= −

 1

n

n∑
j=1

gjL̂0jXj


T

Û−1

 1

n

n∑
j=1

gjL̂0jXj


≤ 0,

where Û ≈ 1

n

∑n
i=1{(Ai − êi)2XiX

T
i } is used in the first step, because they converge to the same limiting

value as n→∞:

Û =
1

n

n∑
j=1

êj(1− êj)XjX
T

j → E{e(1− e)XXT}

and

1

n

n∑
i=1

{(Ai − êi)2XiX
T

i } → E{(A− e)2XXT} = E{(A− 2Ae+ e2)XXT} = E{e(1− e)XXT}.

Therefore, as n→∞, v̂arCS(
√
nθ̂) ≤ v̂arRS(

√
nθ̂), indicating that the robust sandwich variance estimator is

conservative.

Stabilized weights

In an approximate sense with the treatment prevalence assumed known, it can be shown that the robust

sandwich variance estimator with stabilized weights is also conservative in a similar way to the proof for the

conventional inverse probability weights.
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Web Appendix D: Additional simulation results without clustering

Web Appendix E: Additional simulation results with clustering

Web Appendix F: Balance diagnostics in case study
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Figure S1: Average widths of 95% confidence intervals with n = 250. Total number of failure events is about
200, 150, 100, or 50.

9



●

●

naive (conventional)         
robust sandwich (conventional)         
bootstrap (conventional)         
linearization (conventional)         
proposed (conventional)         

naive (stabilized)         
robust sandwich (stabilized)         
bootstrap (stabilized)         
linearization (stabilized)         
proposed (stabilized)         

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
00

0.
25

0.
50

0.1 0.2 0.3 0.4 0.5

20% censor

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
00

0.
25

0.
50

0.1 0.2 0.3 0.4 0.5

40% censor

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
00

0.
25

0.
50

0.1 0.2 0.3 0.4 0.5

60% censor

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
00

0.
25

0.
50

0.1 0.2 0.3 0.4 0.5

80% censor

Figure S2: Average widths of 95% confidence intervals with n = 5000. Total number of failure events is
about 4000, 3000, 2000, or 1000.
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Figure S3: Ratios of average standard error (ASE) to empirical standard error (ESE) with n = 100. Total
number of failure events is about 80, 60, 40, or 20. Note: in some scenarios with low prevalence or high
censoring rate, unestimable (i.e., error message from R) or extreme results occur and hence not shown in
the figure.
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Figure S4: Ratios of average standard error (ASE) to empirical standard error (ESE) with n = 500. Total
number of failure events is about 400, 300, 200, or 100.
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Figure S5: Ratios of average standard error (ASE) to empirical standard error (ESE) with n = 1000. Total
number of failure events is about 800, 600, 400, or 200.
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Figure S6: Ratios of average standard error (ASE) to empirical standard error (ESE) with n = 2000. Total
number of failure events is about 1600, 1200, 800, or 400.
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Figure S7: Empirical coverage rates in percent with n = 100. Total number of failure events is about 80 or
20. The right panel shows a zoom-in version of the left panel. Note: in some scenarios with low prevalence
or high censoring rate, unestimable (i.e., error message from R) results occur and hence not shown in the
figure.
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Figure S8: Empirical coverage rates in percent with n = 500. Total number of failure events is about 400 or
100. The right panel shows a zoom-in version of the left panel.
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Figure S9: Empirical coverage rates in percent with n = 1000. Total number of failure events is about 800
or 200. The right panel shows a zoom-in version of the left panel.
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Figure S10: Empirical coverage rates in percent with n = 2000. Total number of failure events is about 1600
or 400. The right panel shows a zoom-in version of the left panel.
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Figure S11: Average widths of 95% confidence intervals with n = 100. Total number of failure events is
about 80, 60, 40, or 20. Note: in some scenarios with low prevalence or high censoring rate, unestimable
(i.e., error message from R) or extreme results occur and hence not shown in the figure.
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Figure S12: Average widths of 95% confidence intervals with n = 500. Total number of failure events is
about 400, 300, 200, or 100.
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Figure S13: Average widths of 95% confidence intervals with n = 1000. Total number of failure events is
about 800, 600, 400, or 200.
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Figure S14: Average widths of 95% confidence intervals with n = 2000. Total number of failure events is
about 1600, 1200, 800, or 400.
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Figure S15: Empirical coverage rates in percent with n = 80 clusters each of size K.

23



●robust sandwich (conventional)         
bootstrap (conventional)         
proposed (conventional)         

robust sandwich (stabilized)         
bootstrap (stabilized)         
proposed (stabilized)         

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
0

0.
8

1.
6

0.1 0.2 0.3 0.4 0.5

20% censor, K = 3

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
0

0.
8

1.
6

0.1 0.2 0.3 0.4 0.5

20% censor, K = 6

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
0

0.
8

1.
6

0.1 0.2 0.3 0.4 0.5

60% censor, K = 3

treatment prevalence

av
er

ag
e 

C
I w

id
th

0.
0

0.
8

1.
6

0.1 0.2 0.3 0.4 0.5

60% censor, K = 6

Figure S16: Average widths of 95% confidence intervals with n = 80 clusters each of size K.
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Figure S17: Ratios of average standard error (ASE) to empirical standard error (ESE) with n = 200 clusters
each of size K.
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Figure S18: Ratios of average standard error (ASE) to empirical standard error (ESE) with n = 800 clusters
each of size K.
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Figure S19: Empirical coverage rates in percent with n = 200 clusters each of size K.
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Figure S20: Empirical coverage rates in percent with n = 800 clusters each of size K.
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Figure S21: Average widths of 95% confidence intervals with n = 200 clusters each of size K.
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Figure S22: Average widths of 95% confidence intervals with n = 800 clusters each of size K.
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Figure S23: Absolute standardized differences of baseline covariates in unweighted and weighted samples
(with conventional inverse probability weights and stabilized weights). The vertical line denotes an absolute
standardized difference of 10%, considered by some authors as a threshold below which is indicative of
negligible imbalance (Austin and Stuart, 2015).

31



References

Austin, P. C. and Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treat-

ment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational

studies. Statistics in Medicine 34, 3661–3679.

Binder, D. A. (1992). Fitting Cox’s proportional hazards models from survey data. Biometrika 79, 139–147.

Lin, D. Y. and Wei, L.-J. (1989). The robust inference for the Cox proportional hazards model. Journal of

the American Statistical Association 84, 1074–1078.

32


	main (2)
	Introduction
	Estimation of Marginal Hazard Ratios Using Inverse Probability Weighting
	Variance Estimation Methods for Marginal Hazard Ratios 
	Review of Four Existing Variance Estimation Methods
	New Method: The Corrected Sandwich Variance Estimator

	Simulation Studies
	Setting 1: without clustering
	Setting 2: with Clustering

	Application to A Bariatric Surgery Dataset
	Discussion
	References

	suppl

