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The inverse probability weighted Cox model is frequently used to estimate marginal
hazard ratios. Its validity requires a crucial condition that the propensity score model
is correctly specified. To provide protection against misspecification of the propen-
sity score model, we propose a weighted estimation method rooted in empirical
likelihood theory. The proposed estimator is multiply robust in that it is guaranteed
to be consistent when a set of postulated propensity score models contains a correctly
specified model. Our simulation studies demonstrate satisfactory finite sample per-
formance of the proposed method in terms of consistency and efficiency. We apply
the proposed method to compare the risk of postoperative hospitalization between
sleeve gastrectomy and Roux-en-Y gastric bypass using data from a large medical
claims and billing database. We further extend the development to multi-site studies
to enable each site to postulate multiple site-specific propensity score models.
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1 INTRODUCTION

In biomedical studies, marginal hazard ratios are commonly used to assess the effects of treatments on time-to-event

outcomes by comparing the hazard functions of failure times between the treated and untreated individuals. In random-

ized controlled trials, fitting a Cox model relating the time-to-event outcome to only the treatment yields the estimated

marginal hazard ratio. In observational studies, inverse probability weighted (IPW) Cox estimation provides one

approach to estimate marginal hazard ratios with measured confounders adjusted for through weighting.1,2,3,4,5,6,7,8,9

The weights are a function of the estimated propensity score, i.e., the probability of receiving treatment conditional on

the measured baseline confounders.10 Specifically, an IPW Cox model is a Cox model that relates the time-to-event



outcome to only the treatment and weighs the individuals by the reciprocal of their estimated probabilities of receiv-

ing the observed treatment, i.e., the estimated propensity score (if treated) or 1 minus the estimated propensity score

(if untreated). Like other standard propensity score methods, the validity of IPW Cox estimation requires the propen-

sity score model be correctly specified. When the propensity score model is misspecified, the resulting estimator is

generally biased.

There is a growing interest in developing more robust methods to protect against potential misspecification of the

propensity score model. For example, the doubly robust estimation methods provide consistent estimators if either

the propensity score model or the outcome model is correctly specified.11,12,13,14,15,16 Additional estimation methods

have been developed to achieve multiply robustness, mainly in the context of missing data analysis.17,18,19,20,21,22 An

estimator is said to be multiply robust if it is consistent when a set of postulated propensity score or outcome models

contains a correctly specified model.

To our knowledge, there are currently no doubly or multiply robust estimators for marginal hazard ratios. In this

paper, we propose to estimate the marginal hazard ratio by fitting a weighted Coxmodel where the weights are obtained

by adapting the method in Han and Wang,17 which considered estimating a population mean for a non-survival

outcome with missing values. Our method yields consistent marginal hazard ratio estimators as long as the set of pos-

tulated propensity score models contains a correctly specified model, thereby providing more protection against model

misspecification than the commonly used IPW Cox estimation method. We further expand the proposed method to

multi-site studies, where weighted Cox models stratified on data-contributing sites will produce consistent estimators

of marginal hazard ratios when each site includes a correctly specified model in its set of propensity score models.

The rest of this paper is organized as follows. In Section 2, we discuss why propensity score model misspecification

is a practical concern in observational studies and illustrate the need for doubly or multiply robust methods. In Section

3, we describe the standard IPW Cox model framework for estimating marginal hazard ratios using one (possibly

misspecified) propensity score model. In Section 4, we develop a multiply robust method to estimate marginal hazard

ratios. In Sections 5 and 6, we conduct simulation studies to evaluate the finite sample performance of the proposed

method, with and without including a correctly specified propensity score model in the set of postulated models,

respectively. In Section 7, we apply the proposed method to analyze a dataset arising from a real-world electronic

healthcare database, to compare the risk of postoperative hospitalization between sleeve gastrectomy and Roux-en-Y

gastric bypass. In Section 8, we extend the development to multi-site studies. We conclude the paper with a discussion

in Section 9.

2 CONCERNS ABOUT PROPENSITY SCORE MODEL MISSPECIFICATION IN
OBSERVATIONAL STUDIES

Propensity score methods are commonly used in observational studies that investigate the effects of medical treatments,

especially when there are more data to model the treatment decision process than the outcome process (e.g., drug

safety studies with common exposures and rare outcomes). The validity of a typical propensity score-based analysis
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requires the propensity score model be correctly specified. However, treatment decision process is a complex behavior

in clinical practice. Many studies collect high-dimensional data that may or may not fully capture factors that influence

treatment decision, making it even more challenging to correctly specify the propensity score model.

Confounder selection has been an extensively discussed issue. For example, Mickey and Greenland23 and Mal-

donado and Greenland24 examined various confounder selection strategies and found satisfactory performance of the

“change-in-estimate” criterion. Pearl25 and Greenland et al.26 illustrated how to use known causal diagrams to identify

covariates that should be measured and controlled for to eliminate confounding bias. Brookhart et al.27 recommended

including covariates related to the outcome and excluding covariates related only to the treatment but not the outcome.

Schneeweiss et al.28 developed a data-driven algorithm based on prioritizing covariates by their potential for controlling

confounding unconditional on the treatment and other covariates. VanderWeele29 proposed to include covariates that

are known causes of the exposure or the outcome, exclude instrumental variables, and include proxies for unmeasured

variables that are common causes of the exposure and the outcome.

In practice, it may still be difficult to develop one final propensity score model based on these useful principles for

various reasons. First, different covariate selection techniques may result in different sets of selected covariates. Sec-

ond, even if the set of confounders were known, it is difficult to correctly specify their functional forms in the propensity

score model (e.g., using viral load measurement itself or its log(⋅) transformation). Third, different researchers (e.g.,

biostatisticians, clinicians, epidemiologists) in a multidisciplinary team may have different “best models” in mind and

cannot reach a consensus about which model to use. Given the complexity of treatment decision process in observa-

tional studies, researchers often end up having multiple candidate models that all seem reasonable but incompatible

with each other.

3 WEIGHTED ESTIMATION OF MARGINAL HAZARD RATIOS USING ONE
PROPENSITY SCORE MODEL

Let X be a vector of measured baseline covariates, A a binary treatment indicator (A = 1 if treated and A = 0 if

untreated), and T = min(T ∗, C) where T ∗ is the event time, C is the censoring time. Define � = I(T ∗ ≤ C) to be the

non-censoring indicator, where I(⋅) is the indicator function.

Suppose we have an independent and identically distributed (i.i.d.) sample of size n. For the ith individual where

i = 1,… , n, the observed data are (Xi, Ai, Ti, �i). We aim to use the observed data to estimate the log marginal hazard

ratio � of the model:

�a(t) = �0(t) exp(�a), (1)

where �a(t) is the hazard function for T ∗a the event time for an individual that would have been observed had we set

the treatment level A = a for a = 0 or 1.



Provided standard exchangeability, consistency and positivity assumptions9 hold, propensity score weighting effec-

tively adjusts for confounding bias. Given that the weighted data emulate data that would have been collected from a

randomized controlled trial, the IPW Cox models provide one approach to estimate marginal hazard ratios.

Based on propensity score e(X) = P (A = 1|X), the conventional inverse probability weights

w = wipw =
A
e(X)

+ 1 − A
1 − e(X)

(2)

and the stabilized weights

w = wstabilized = P (A = 1)
A
e(X)

+ P (A = 0) 1 − A
1 − e(X)

(3)

are commonly used.2,4,5 Since the treatment decision process is often unknown, we may need to adopt a modeling

strategy to specify a parametric propensity score model for e(X). We then estimate e(X) by fitting the specified propen-

sity score model relating the treatment indicator A to the baseline covariates X. The treatment prevalence P (A = 1)

is estimated nonparametrically as the number of treated individuals divided by the total number of individuals in the

study.

For i = 1,… , n, let ŵi denote the estimated weight for individual i under either the conventional inverse probability

weights (2) or stabilized weights (3). The weighted partial likelihood score equation30,31 for � is

n
∑

i=1
ŵi�i

{

Ai −

∑

l∶l∈ℜi
ŵl exp(Al�)Al

∑

l∶l∈ℜi
ŵl exp(Al�)

}

= 0, (4)

whereℜi = {l ∶ Tl ≥ Ti, �i = 1} is the risk set for uncensored individual i. Solving (4) for � gives the IPW estimator

of log hazard ratio, denoted by �̂.

The consistency of estimator �̂ requires the propensity scoremodel be correctly specified.Misspecifying a propensity

score model may result in severely biased results.

4 MULTIPLY ROBUST ESTIMATION OF MARGINAL HAZARD RATIOS USING A
SET OF PROPENSITY SCORE MODELS

Using the empirical likelihood technique,32,33 Han and Wang17 proposed a multiply robust method for estimating

population means for non-survival outcomes that are subject to non-response. We adapt their method to our survival

context to estimate the marginal hazard ratio. Our method allows researchers to simultaneously postulate a set of

propensity score models. The resulting estimator is consistent when this set contains a correctly specified model that

consistently estimates the marginal hazard ratio.

4.1 Multiply Robust Estimation

To increase the chance of correctly modeling e(X), we allow a set of parametric models instead of using just one

model. Suppose  = {ej(
j ;X) ∶ j = 1,… , J} is a set of J postulated propensity score models for e(X), where 
j
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is the vector of parameters for the jth model. Let 
̂j be the estimator of 
j obtained by fitting the jth propensity score

model. Write 
̂ = (
̂1T,… , 
̂JT)T.

Without loss of generality, let i = 1,… , m be the indexes for treated individuals and i = m+1,… , n the indexes for

untreated individuals, where m is the size of the treated group. Define �̂j = n−1
∑n
i=1 e

j(
̂j ;Xi) for j = 1,… , J . For

i = 1,… , n, define

ĝi(
̂) = (e1(
̂1;Xi) − �̂1,… , eJ (
̂J ;Xi) − �̂J )T,

and it immediately follows that
∑n
i=1 ĝi(
̂) = 0.

We propose to fit a weighted Cox model relating the time-to-event outcome to only the treatment to estimate the

marginal hazard ratio, where the weights are obtained by adapting the work of Han and Wang17 and Han.19,20,21

Specifically, the empirical likelihood weights for the treated individuals i = 1,… , m are given by

ŵi = argmax
wi

m
∏

i=1
wi

subject to constraints

ŵi ≥ 0,
m
∑

i=1
ŵi = 1, and

m
∑

i=1
ŵiĝi(
̂) = 0,

which yields

ŵi =
{

1
1 + �̂Tĝi(
̂)

}/

m for i = 1,… , m (5)

where �̂ = (�̂1,… , �̂J )T is a J × 1 vector obtained by solving the equation
m
∑

i=1

ĝi(
̂)
1 + �Tĝi(
̂)

= 0

for � with 
̂ given. To get around possible multiple-root issues, we apply the computation method of Han19 to obtain

� by convex minimization.

By symmetry, the empirical likelihood weights for untreated individuals i = m + 1,… , n are given by

ŵi =
{

1
1 − �̂Tĝi(
̂)

}/

(n − m) for i = m + 1,… , n, (6)

where �̂ = (�̂1,… , �̂J )T is a J × 1 vector solving the equation
n
∑

i=m+1

ĝi(
̂)
1 − �Tĝi(
̂)

= 0

for � with 
̂ given.

Similarly to the use of the stabilized weights (3) as an alternative to the conventional weights (2) in the IPW context,

we also consider an alternative to empirical likelihood weights (5) and (6):

ŵi = P̂ (A = 1)
{

1
1 + �̂Tĝi(
̂)

}/

m for i = 1,… , m, (7)

ŵi = P̂ (A = 0)
{

1
1 − �̂Tĝi(
̂)

}/

(n − m) for i = m + 1,… , n, (8)

where �̂ and �̂ are the same as in (5) and (6), P̂ (A = 1) = m∕n, and P̂ (A = 0) = (n − m)∕n.



The proposed estimator of the log marginal hazard ratio is obtained by fitting a Cox model relating the time-to-

event outcome to only the treatment with individuals weighted by empirical likelihood weights (5) and (6), or, their

alternatives (7) and (8). Specifically, with the proposed empirical likelihood weights, solving the estimating equation

(4) for � gives the proposed estimator of the log marginal hazard ratio �, denoted as �̂. In Appendix, we establish the

multiple robustness of �̂. That is, �̂ is a consistent estimator of the log marginal hazard ratio �, if  = {ej(
j ;X) ∶ j =

1,… , J} contains a correctly specified model that consistently estimates �.

4.2 Variance Estimation and Confidence Interval

In settings for IPW Cox model with one propensity score model, Austin7 suggested using the bootstrap method34 for

variance estimation. For each bootstrap sample, the weights are estimated using the same bootstrap sample rather than

the original data. By doing so, the uncertainty in weight estimation is taken into account. His simulations demonstrated

satisfactory performance of the bootstrap variance estimator with 200 bootstrap samples.

For our settings with multiple propensity score models, the bootstrap method can also be used for variance estima-

tion. Specifically, we resample the data with replacement for B times to construct B bootstrap samples, each with the

same size as the original data, where B is a user-specified number. For b = 1,… , B, let �̂b denote the estimated log

hazard ratio obtained from the bth bootstrap sample. Then the bootstrap variance estimator for �̂ is given by

v̂ar(�̂) = 1
B − 1

B
∑

b=1

(

�̂b −
1
B

B
∑

b=1
�̂b

)2

. (9)

A normality-based 95% confidence interval for � is �̂ ∓ 1.96 ⋅
√

v̂ar(�̂).

5 SIMULATION STUDIES: WHEN ONE OF THE POSTULATED PROPENSITY
SCORE MODELS IS CORRECTLY SPECIFIED

We conducted simulation studies to assess the finite sample performance of the proposed multiply robust method

compared to standard IPW Cox estimation.

5.1 Data Generating Process

To simulate data that exactly followed model (1) with the true log marginal hazard ratio �, we adapted the simulation

method of Young et al.,35 which was designed for time-varying treatment settings, to our one-time treatment studies.

Specifically, for individuals i = 1,… , n, we simulated the following data:

Step 1: counterfactual control (i.e., untreated) group event time T ∗0 that followed the unit exponential distribution.

Step 2: vector of covariates X = (X(1), X(2), X(3), X(4), X(5), X(6))T. The first three covariates were continuous, simu-

lated asX(1) = −0.3+0.5T ∗0 ∕(T
∗
0 +1)+0.4Z1,X

(2) = −0.3+log(T ∗0 +2)+Z2, andX
(3) = 1∕(T ∗0 +2)+Z1, whereZ1 and
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Z2 independently followed the uniform distribution ranging from -0.5 to 0.5. The other three covariates were binary,

with P (X(4) = 1|T ∗0 ) = 0.2+0.6∕(T
∗
0 +3), P (X

(5) = 1|T ∗0 ) = 0.3+0.4∕(0.5T
∗
0 +2), and P (X

(6) = 1|T ∗0 ) = 1∕(T
∗
0 +1).

Step 3: treatment indicator A that generated from the propensity score model

logit P (A = 1|X) = 
0 − 0.1 exp(X(1)) − 0.3 exp(X(2)) + 0.1 exp(X(3)) + 0.6X(4) + 0.4X(5) + 0.5X(6), (10)

where the parameter 
0 was chosen to produce treatment prevalence of approximately 10%, 20%, 30%, 40% or 50%.

Step 4: actual true event time using formula T ∗ = T ∗0 exp(−�A). We specified � = log(1.5) so that the true marginal

hazard ratio was 1.5.

Step 5: non-censoring indicator � = I(T ∗ ≤ C) and T = min(T ∗, C), where C followed an exponential distribution

whose rate parameter was chosen to yield a censoring rate of about 30% or 60%.

5.2 Specification of Propensity Score Models in Estimation

In analyzing the simulated data, we considered  = {ej(
j ;X) ∶ j = 1,… , 5}, a set of five postulated propensity

score models:

logit P (A = 1|X) = (1, X(1), X(2))
1, (11)

logit P (A = 1|X) = (1, X(4), X(5), X(6))
2, (12)

logit P (A = 1|X) = (1, exp(X(1)), X(5), X(6))
3, (13)

c loglog P (A = 1|X) = (1, X(3), X(5), X(3) ⋅X(5))
4, (14)

and

logit P (A = 1|X) = (1, exp(X(1)), exp(X(2)), exp(X(3)), X(4), X(5), X(6))
5, (15)

where “logit” was the logit link function, “c loglog” was the complementary log-log link function, and the 
j(j =

1,… , 5) are vectors of the associated propensity score model parameters.

Given that the true propensity score model was (10), the postulated models (11)-(14) were wrong, due to excluding

certain covariates or using incorrect functional forms of covariates. The fifth postulated model (15) was correctly

specified.

5.3 Evaluation Criteria

We compared six estimators. The first five were IPW Cox estimators obtained from the individual propensity score

models (11)-(15). The sixth estimator was the proposed multiply robust estimator obtained by simultaneously using

the five models (11)-(15). We considered two types of weights. The first type was referred to as conventional weights,

including the inverse probability weights (2) and the proposed empirical likelihood weights (5) and (6). The second



type was referred to as stabilized weights, including the inverse probability weights (3) and the proposed empirical

likelihood weights (7) and (8).

We considered sample sizes of 500 and 5000 and ran 1000 simulations for each parameter configuration. As in

Austin,7 we used 200 bootstrap samples for estimating the variance of each estimator. We used three criteria to evaluate

the finite sample performance of each estimator. First, we examined the average empirical relative bias (in percent) for

estimator �̂, defined as (�̂ − �)∕� × 100%, across 1000 simulation runs. Second, we examined the empirical coverage

(in percent), defined as the percentage of 95% confidence intervals in 1000 simulation runs that covered the true log

marginal hazard ratio �. Third, we examined the average widths of the 95% confidence intervals across 1000 simulation

runs.

5.4 Results

5.4.1 Examining Empirical Relative Bias
Figures 1 and 2 report the empirical relative bias in percent using the six estimators with stabilized weights, under

various combinations of censoring rate and treatment prevalence. The four IPW Cox estimators under the incorrectly

specified propensity score models (11)-(14) could produce substantially biased results due to model misspecification.

As expected, the IPW Cox estimator under the correctly specified propensity score model (15) and the proposed mul-

tiply robust estimator using all five models (11)-(15) generally yielded negligible empirical bias, although a noticeable

empirical bias for both estimators was seen when n = 500 with low treatment prevalence 10%.

[insert Figures 1 and 2 here]

5.4.2 Examining Empirical Coverage
Figures 3 and 4 report the empirical coverage using the six estimators with stabilized weights, under various com-

binations of censoring rate and treatment prevalence. Given that we used 1000 simulation runs for each parameter

configuration, empirical coverage for a consistent point estimator with a reliable variance estimator was expected to

fluctuate around 95% and roughly lie within the range of 93.65% to 96.35%. Therefore, as in Austin,7 we drew three

horizontal lines (at 93.65%, 95%, and 96.35%) to indicate a plausible range of coverage.

Due to model misspecification, the four IPWCox estimators under the incorrectly specified propensity score models

(11)-(14) resulted in severe undercoverage, and the performance worsened as sample size increased. The IPW Cox

estimator under the correctly specified propensity score model (15) and the proposed multiply robust estimator using

all five models (11)-(15) produced empirical coverage close to 95% and roughly within range, except that the IPW

Cox estimator produced slight undercoverage when n = 500 with 30% censoring. These results showed that with 200

bootstrap samples, the bootstrap variance estimator performed reasonably well.

[insert Figures 3 and 4 here]
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5.4.3 Examining Widths of 95% Confidence Intervals
Both the IPWCox estimator under the correctly specified propensity score model (15) and the proposedmultiply robust

estimator using all fivemodels (11)-(15) produced negligible empirical bias for estimating the logmarginal hazard ratio,

because of their consistency (Figures 1 and 2). We further compared their efficiency through examining their average

widths of the 95% confidence intervals. Figures 5 and 6 summarize the results with stabilized weights, under various

combinations of censoring rate and treatment prevalence. As seen from the overlapping lines for these two estimators,

the widths of their 95% confidence intervals were almost the same under 60% censoring. Under 30% censoring, the

proposed multiply robust estimator tended to produce narrower 95% confidence intervals than the IPW Cox estimator

under the correctly specified propensity score model (15). Therefore, the proposed multiply robust method not only

provided protection against model misspecification, but also had better efficiency in some scenarios.

[insert Figures 5 and 6 here]

Weobserved similar simulation results using conventional weights (Figures S1-S6, Online SupplementaryMaterial).

6 SIMULATION STUDIES: WHEN NONE OF THE POSTULATED PROPENSITY
SCORE MODELS IS CORRECTLY SPECIFIED

The validity of the proposed method requires a critical condition that the set of postulated propensity score models

contains a correctly specified model. When all the proposed models are wrong, the proposed estimator is no longer

consistent. To examine the sensitivity of the proposed method to this condition, we conducted simulations with a

sample size of 5000 and replaced model (15) with the following incorrectly specified model:

logit P (A = 1|X) = (1, X(1), X(2), X(3), X(4), X(5), X(6))
5. (16)

We compared six estimators. The first five were IPW Cox estimators obtained from the individual incorrectly spec-

ified propensity score models (11)-(14) and (16). The sixth estimator was the proposed estimator obtained using five

incorrectly specified models (11)-(14) and (16) simultaneously.

Figure 7 reports the boxplots of the estimates obtained from the six methods with stabilized weights, under various

combinations of censoring rate and treatment prevalence. In each panel, the horizontal line indicates the true log

marginal hazard ratio of log(1.5), and the sign “+” indicates the average of the estimates across 1000 simulation runs

for each method. Since models (11)-(14) and (16) were all incorrectly specified, the six estimators generally produced

biased results. Interestingly, in terms of empirical bias, the proposed method performed similarly to (and slightly better

than) the fifth estimator under model (16) and outperformed the first four estimators under models (11)-(14). Given its

performance being comparable to the least biased estimator among the five IPW estimators, the proposed method was

still a reasonable option even when all postulated propensity score models were wrong.

[insert Figure 7 here]

We observed similar results using conventional weights (Figures S7, Online Supplementary Material).



7 APPLICATION TO REAL-WORLD DATA

We applied the existing IPW Cox estimation method in Section 3 and the proposed method in Section 4 to ana-

lyze the bariatric surgery dataset arising from the IBM R© Health MarketScan R© Research Databases, which contains

de-identified patient-level healthcare claims information from employers, health plans, hospitals, and Medicare and

Medicaid programs fully compliant with the Health Insurance Portability andAccountability Act (HIPAA). The dataset

included 6690 patients who were 18 to 79 years of age and underwent either sleeve gastrectomy (n = 4719; 70.5%)

or Roux-en-Y gastric bypass (n = 1971; 29.5%) between 1/1/2015 and 9/30/2015. The treatment indicator was 1 for

sleeve gastrectomy and 0 for Roux-en-Y gastric bypass. The outcome was time to the first all-cause hospitalization

during the first 30 post-surgical days. As a common feature of administrative databases with rare safety outcomes, the

censoring rate was high (97%).

We classified the 30 researcher-identified baseline covariates into four categories (a) sex, age, and the Charlson/Elix-

hauser combined comorbidity score; (b) diagnosis of anxiety, cardiovascular disease, cancer, cerebrovascular disease,

depression, diabetes, dyslipidemia, eating disorder, gastroesophageal reflux disease, hypertension, infertility, kidney

disease, non-alcoholic fatty liver disease, osteoarthritis, polycystic ovary syndrome, psychoses, sleep apnea, substance

use disorder, and tobacco use disorder; (c) number of emergency department visits, inpatient stays, non-acute institu-

tional stays, outpatient visits, and other ambulatory visits; and (d) number of unique drug classes dispensed, unique

generic medications dispensed, and outpatient pharmacy dispensing.

We first conducted IPWCox estimation, separately using six postulated propensity scoremodels. The first propensity

score model (PS-1) was specified as a logistic regression model relating the treatment indicator to all 30 researcher-

identified covariates, a commonly used strategy. In practice, it may be necessary to conduct covariate selection for

propensity score models, so we specified the second propensity score model (PS-2) as a logistic regression model

relating the treatment indicator to sex, age, comorbidity score and 15 other covariates (i.e., diagnosis of cardiovascular

disease, depression, diabetes, dyslipidemia, hypertension, kidney disease, non-alcoholic fatty liver disease, psychoses,

and sleep apnea; number of emergency department visits, inpatient stays, and outpatient visits; and number of unique

drug classes dispensed, unique generic medications dispensed, and outpatient pharmacy dispensing) that were univari-

ately statistically significant at the 5% level in their associations with the treatment (modeled via univariate logistic

regression models). The last four logistic propensity score models reflected situations where only one category of

covariates was available. Specifically, the third model (PS-3) contained demographic covariates sex and age and comor-

bidity score in category (a), and three interaction terms between sex and age, sex and comorbidity score, and age and

comorbidity score. The fourth (PS-4), fifth (PS-5), and sixth (PS-6) models contained the diagnosis covariates in cat-

egory (b), the health services access covariates in category (c), and the drug dispensing covariates in category (d),

respectively.

Given that the true propensity score model was unknown, we applied the proposed multiply robust method to

simultaneously use all six models. We conducted bootstrapping to estimate the variance using 200 bootstrap samples.
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Table 1 summarizes the results. PS-1 and PS-2 produced similar results, suggesting that the exclusion of non-

statistically significant covariates did not affect the log hazard ratio estimates and standard errors. PS-3, PS-4, and

PS-5 produced slightly smaller (further from the null) hazard ratio estimates than PS-1 and PS-2. PS-6 produced larger

(towards the null) hazard ratio estimates than PS-1 and PS-2, but the difference was negligible. The proposed method

produced results similar to the results from IPW Cox estimation with PS-1, PS-2, and PS-6. The standard errors for

all six IPW estimators and the proposed estimator were similar (around 0.14). For each method, the conventional and

stabilized weights produced similar results.

All methods produced 95% confidence intervals for the marginal hazard ratio that excluded 1, suggesting a statisti-

cally significant lower risk of hospitalization 30-day postoperatively at the 5% level comparing sleeve gastrectomy to

Roux-en-Y gastric bypass. The result was consistent with the findings from prior studies.36,37

[insert Table 1 here]

8 EXTENSION TOMULTI-SITE STUDIES

There is a growing number of studies that combine information from multiple data sources to help generate more

statistically powerful and generalizable evidence. For example, the Sentinel System is a national electronic system

funded by the U.S. Food and Drug Administration to monitor the safety of approved medical products using data

from 18 health plans and delivery systems.38 The IPW Cox model stratified on data-contributing sites provides one

approach to estimate marginal hazard ratios in multi-site studies, where each site fits a site-specific propensity score

model.39,40,41 In this section, we apply the proposed multiply robust method in Section 4 to enable each participating

site to postulate multiple site-specific propensity score models.

Suppose we have a sample of n individuals coming from K participating sites. For k = 1,… , K , let Ωk = {i ∶

i in site k for i = 1,… , n} be the set of indexes for individuals that belong to the kth site. We consider a weighted

Cox model stratified on sites. By stratification, we assume the K sites have a common hazard ratio, but their baseline

hazards are allowed to differ and be completely unspecified. The stratified weighted partial likelihood score equation

is given by
K
∑

k=1

∑

i∶i∈Ωk

{

ŵi�iAi − ŵi�i

∑

l∶l∈ℜi(k)
ŵl exp(Al�)Al

∑

l∶l∈ℜi(k)
ŵl exp(Al�)

}

= 0, (17)

where ŵi is the empirical likelihood weight for individual i, and ℜi(k) = {l ∶ Tl ≥ Ti, l ∈ Ωk �i = 1} is the risk set

for a noncensored individual i in site k.

Solving (17) for � gives �̂, the estimate of the log hazard ratio �. Equation (17) is an extension of the unstratified

weighted partial likelihood score equation (4). When K = 1, (17) reduces to (4).

Instead of postulating a single site-specific propensity score model, each site can postulate a set of models to obtain

empirical likelihood weights in Section 4 for their members. The resulting log hazard ratio estimator of the weighted

Coxmodel stratified on sites is multiply robust, as long as each site includes a correctly specified site-specific propensity

score model in its set of candidate models. Below is the justification.



For each site k where k = 1,… , K , the corresponding site-specific weighted partial likelihood score function

∑

i∶i∈Ωk

{

ŵi�iAi − ŵi�i

∑

l∶l∈ℜi(k)
ŵl exp(Al�)Al

∑

l∶l∈ℜi(k)
ŵl exp(Al�)

}

(18)

is an unbiased estimating function for �, where ŵi is the empirical likelihood weight for individual i ∈ Ωk obtained

from a set of site k-specific propensity score models. As the summation of theseK unbiased estimating functions (18),

the estimating function for the weighted Cox model stratified on sites is also unbiased, i.e., solving estimating equation

(17) for � gives a consistent estimator of �.

9 DISCUSSION

In this paper, we proposed a multiply robust method for estimating marginal hazard ratios that can simultaneously

accommodate a set of propensity score models. If one of these models is correctly specified, our method produces

empirical likelihood weights that are asymptotically equivalent to the IPWweights from the correctly specified propen-

sity score model and therefore guarantees estimation consistency. Compared to the IPW estimation method that relies

on one propensity score model, the proposed method offers more protection against model misspecification and more

model options for researchers. Our method is particularly useful when researchers have a difficult time developing or

choosing only one propensity score model for their studies.

Our simulation studies showed that IPW Cox method can lead to severe bias and undercoverage when misspecify-

ing the propensity score model. The proposed method showed satisfactory finite sample performance under various

combinations of sample size, treatment prevalence, and censoring rate. The average widths of the 95% confidence

intervals of the proposed method tended to be no wider than that of the IPW estimation method that uses a correctly

specified propensity score model, suggesting that our method achieved multiple robustness without losing efficiency

(and sometimes even gained efficiency). One reason the proposed method was no more variable than IPW estimation

may be because it prevented the occurrence of extreme weights through maximizing
∏

iwi.19,20,21

Although the proposed method generally loses consistency if all postulated propensity score models are wrong,

it was comparable to the best-performing IPW estimation method in simulation settings we considered. It would be

useful to further investigate the theoretical properties of the proposed method when none of the postulated propensity

score models is correctly specified. In practice, efforts should be made to increase the chance of including at least

one model that gives consistent or nearly consistent estimators. Theoretically, the proposed method allows for any

finite number of models, but having too many models (i.e., high dimensional � and �) may jeopardize its numerical

performance.19,20,21 We recommend using both the subject-matter knowledge and reliable data-driven tools to carefully

build a comprehensive set of candidate models.

We also extended our method to multi-site settings so that each participating site may postulate multiple site-specific

propensity score models. It can be done in a privacy-protecting way using data-sharing methods of Shu et al.41 Specif-

ically, each site first calculates the empirical likelihood weights for its members using multiple postulated propensity
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score models, and then obtain risk-set tables using the resultant empirical likelihood weights. Finally, instead of shar-

ing individual-level data across sites, it suffices for sites to share their summary-level risk-set tables to the analysis

center for making inference on marginal hazard ratios.41

We note that the multiply robust methods of Han and Wang17 and Han19,20,21 also allow for postulating multiple

outcomemodels conditional on covariates. It is natural to consider extensions of our method to further include multiple

conditional Cox models relating the event time with treatment and covariates. However, the proportional hazards

assumption usually does not simultaneously hold for both the marginal and conditional Cox models, making it difficult

to convert results from the conditional Cox models to obtain marginal hazard ratio estimates. More investigation is

needed to expand the class of postulated models.

Although the current development focuses on marginal hazard ratios, the proposed weights can be directly used to

conduct weighted estimation of other effect measures for survival outcomes, such as the difference in restricted mean

survival times under treatment and control.42 The resulting weighted estimators would be multiply robust, because the

proposed weights are asymptotically equivalent to the inverse probability weights from a correctly specified propensity

score model.
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APPENDIX: PROOF OF MULTIPLE ROBUSTNESS OF THE PROPOSED METHOD

Suppose a set of postulated propensity score models  = {ej(
j ;X) ∶ j = 1,… , J} contains a correctly specified

model, say, without loss of generality, the first model e1(
1;X). Let 
10 be the true value of 

1, then e1(
10 ;X) = e(X).

By adapting the arguments of Han and Wang,17 the proposed weights ŵi in (5) can be re-written as

ŵi =
1
m

�̂1∕e1(
̂1;Xi)

1 + �̂Tĝi(
̂)∕e1(
̂1;Xi)
for i = 1,… , m,

where �̂ = Op(n−1∕2) is the Lagrange multiplier and �̂1 = n−1
∑n
i=1 e

1(
̂1;Xi). Then as n→∞,

1 + �̂Tĝi(
̂)∕e1(
̂1;Xi)
p
→ 1

and

�̂1
p
→ E{e1(
10 ;X)}, which equals P (A = 1).

As a nonparametric estimator of P (A = 1), m∕n well approximates P (A = 1), where m is the number of individuals

who receive the treatment. Therefore, the proposed weights for treated individuals i = 1,… , m in (5) well approximate

1∕{n ⋅ e1(
̂1;Xi)}, which is equivalent to the conventional IPW weights for treated individuals using model e1(
1;X).

By symmetry, we can show the proposed weights for untreated individuals i = m+1,… , n in (6) well approximates

1∕[n ⋅{1−e1(
̂1;Xi)}], which is equivalent to the conventional IPWweights for untreated individuals using the correct

propensity score model e1(
1;X).

Since e1(
1;X) is the correctly specified model which can be used to consistently estimate the log marginal hazard

ratio, the proposed weights (5) and (6), which are shown to be asymptotically equivalent to the conventional IPW

weights (2), can also be used to consistently estimate the log marginal hazard ratio.

Note the proposed alternative weights (7) for treated individuals are defined as weights (5) multiplied by P̂ (A = 1),

and the proposed alternative weights (8) for untreated individuals are defined as weights (6) multiplied by P̂ (A = 0),

it is immediate that they are asymptotically equivalent to the stabilized weights (3) using model e1(
1;X). Given

that e1(
1;X) is the correctly specified propensity score model which yields a consistent log marginal hazard ratio

estimator, the proposed weights (7) and (8) also provide a consistent estimator of the log marginal hazard ratio.

How to cite this article:
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FIGURE 1 Empirical relative bias in percent using stabilized weights with n = 500.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified propensity score models (11)-
(14), respectively; correctly specified PS-5: IPWCox estimator from a correctly specified propensity score model (15);
multiply robust: the proposed multiply robust estimator using multiple models (11)-(15).
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FIGURE 2 Empirical relative bias in percent using stabilized weights with n = 5000.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified propensity score models (11)-
(14), respectively; correctly specified PS-5: IPWCox estimator from a correctly specified propensity score model (15);
multiply robust: the proposed multiply robust estimator using multiple models (11)-(15).
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FIGURE 3 Empirical coverage in percent using stabilized weights with n = 500. The right panel shows a zoom-in
version of the left panel.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified propensity score models (11)-
(14), respectively; correctly specified PS-5: IPWCox estimator from a correctly specified propensity score model (15);
multiply robust: the proposed multiply robust estimator using multiple models (11)-(15).
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FIGURE 4 Empirical coverage in percent using stabilized weights with n = 5000. The right panel shows a zoom-in
version of the left panel.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified propensity score models (11)-
(14), respectively; correctly specified PS-5: IPWCox estimator from a correctly specified propensity score model (15);
multiply robust: the proposed multiply robust estimator using multiple models (11)-(15).
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FIGURE 5 Average widths of 95% confidence intervals using stabilized weights with n = 500.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified propensity score models (11)-
(14), respectively; correctly specified PS-5: IPWCox estimator from a correctly specified propensity score model (15);
multiply robust: the proposed multiply robust estimator using multiple models (11)-(15).
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FIGURE 6 Average widths of 95% confidence intervals using stabilized weights with n = 5000.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified propensity score models (11)-
(14), respectively; correctly specified PS-5: IPWCox estimator from a correctly specified propensity score model (15);
multiply robust: the proposed multiply robust estimator using multiple models (11)-(15).
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FIGURE 7 Simulation results when all postulated propensity score models are wrong using stabilized weights with
n = 5000.
incorrect 1-5: IPW Cox estimators from five incorrectly specified propensity score models (11)-(14) and (16), respec-
tively; MR: the proposed multiply robust estimator using multiple incorrectly specified models (11)-(14) and (16);
Cases 1, 2, and 3: 30% censoring with treatment prevalence 10%, 30%, and 50%; Cases 4, 5, and 6: 60% censoring
with treatment prevalence 10%, 30%, and 50%;
“+”: average of estimates across 1000 simulation runs. The horizontal solid line indicates the true log marginal hazard
ratio.
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TABLE 1 Results from the real-world data analysis comparing the risk of hospitalization between sleeve gastrectomy
and Roux-en-Y gastric bypass

Weight Method Log hazard ratio Standard Error Hazard ratio 95% confidence interval

Conventional PS-1 -0.372 0.143 0.689 (0.521, 0.912)
PS-2 -0.376 0.142 0.686 (0.520, 0.906)
PS-3 -0.435 0.137 0.647 (0.494, 0.847)
PS-4 -0.416 0.139 0.660 (0.502, 0.866)
PS-5 -0.404 0.140 0.668 (0.508, 0.878)
PS-6 -0.368 0.139 0.692 (0.526, 0.909)
MR -0.364 0.141 0.695 (0.527, 0.916)

Stabilized PS-1 -0.372 0.143 0.690 (0.521, 0.912)
PS-2 -0.376 0.142 0.687 (0.520, 0.907)
PS-3 -0.435 0.137 0.647 (0.495, 0.847)
PS-4 -0.416 0.139 0.660 (0.503, 0.866)
PS-5 -0.404 0.140 0.668 (0.508, 0.878)
PS-6 -0.368 0.139 0.692 (0.526, 0.909)
MR -0.364 0.141 0.695 (0.527, 0.916)

PS-1: IPW Cox estimator using a logistic propensity score model including all 30 pre-specified covariates (see text for
the list of covariates);
PS-2: IPW Cox estimator using a logistic propensity score model including sex, age, Charlson/Elixhauser combined
comorbidity score and 15 other covariates that were univariately statistically significant at 5% level (see text for the list
of selected covariates);
PS-3: IPW Cox estimator using a logistic propensity score model including sex, age, Charlson/Elixhauser combined
comorbidity score, and three interaction terms between sex and age, sex and comorbidity score, and age and comorbidity
score;
PS-4: IPW Cox estimator using a logistic propensity score model including diagnosis covariates in category (b) (see
text for the list of diagnosis covariates);
PS-5: IPWCox estimator using a logistic propensity score model including health services assess covariates in category
(c) (see text for the list of health services assess covariates);
PS-6: IPW Cox estimator using a logistic propensity score model including drug dispensing covariates in category (d)
(see text for the list of drug dispensing covariates);
MR: the proposed multiply robust estimator using all six propensity score models simultaneously.
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with n = 5000.
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Figure S1: Empirical relative bias in percent using conventional weights with n = 500.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified
propensity score models (11)-(14), respectively; correctly specified PS-5: IPW Cox esti-
mator from a correctly specified propensity score model (15); multiply robust: the proposed
multiply robust estimator using multiple models (11)-(15).
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Figure S2: Empirical relative bias in percent using conventional weights with n = 5000.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified
propensity score models (11)-(14), respectively; correctly specified PS-5: IPW Cox esti-
mator from a correctly specified propensity score model (15); multiply robust: the proposed
multiply robust estimator using multiple models (11)-(15).
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Figure S3: Empirical coverage in percent using conventional weights with n = 500. The
right panel shows a zoom-in version of the left panel.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified
propensity score models (11)-(14), respectively; correctly specified PS-5: IPW Cox esti-
mator from a correctly specified propensity score model (15); multiply robust: the proposed
multiply robust estimator using multiple models (11)-(15).
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Figure S4: Empirical coverage in percent using conventional weights with n = 5000. The
right panel shows a zoom-in version of the left panel.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified
propensity score models (11)-(14), respectively; correctly specified PS-5: IPW Cox esti-
mator from a correctly specified propensity score model (15); multiply robust: the proposed
multiply robust estimator using multiple models (11)-(15).
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Figure S5: Average widths of 95% confidence intervals using conventional weights with
n = 500.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified
propensity score models (11)-(14), respectively; correctly specified PS-5: IPW Cox esti-
mator from a correctly specified propensity score model (15); multiply robust: the proposed
multiply robust estimator using multiple models (11)-(15).
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Figure S6: Average widths of 95% confidence intervals using conventional weights with
n = 5000.
incorrectly specified PS-1 to PS-4: IPW Cox estimators from four incorrectly specified
propensity score models (11)-(14), respectively; correctly specified PS-5: IPW Cox esti-
mator from a correctly specified propensity score model (15); multiply robust: the proposed
multiply robust estimator using multiple models (11)-(15).
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Figure S7: Simulation results when all postulated propensity score models are wrong using
conventional weights with n = 5000.
incorrect 1-5: IPW Cox estimators from five incorrectly specified propensity score models
(11)-(14) and (16), respectively; MR: the proposed multiply robust estimator using multiple
incorrectly specified models (11)-(14) and (16);
Cases 1, 2, and 3: 30% censoring with treatment prevalence 10%, 30%, and 50%; Cases 4,
5, and 6: 60% censoring with treatment prevalence 10%, 30%, and 50%;
“+”: average of estimates across 1000 simulation runs. The horizontal solid line indicates
the true log marginal hazard ratio.
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