








with I(β) and l(β) the information matrix and efficient influence function for P (D|Y, T ).

Theorem 2 Under the specified regularity conditions, P̂EB
l

(c) and P̂EB
u

(c) are asymp-

totically normally distributed as N → ∞ for c 6= ρ0 − ρ1. In particular:

(i)
√

N
{
P̂EB

l

(c) − PEBl(c)
}

=
1√
N

N∑

i=1

{(1 − c) (Ψ5i + Ψ6i) − I(ρ0 − ρ1 > c) (Ψ3i + Ψ4i)}+op(1),

(ii)
√

N
{

P̂EB
u

(c) − PEBu(c)
}

=
1√
N

N∑

i=1

{(1 − c) (Ψ7i + Ψ8i) − I(ρ0 − ρ1 > c) (Ψ3i + Ψ4i)} + op(1),

where
Ψ5i =

∂E(∆+)

∂β
I−1(β)l(β)i, Ψ6i = (∆i)+ − E(∆+),

Ψ7i =
∂ [E{Risk0(β)} − E{Risk0(β) + Risk1(β)− 1}+]

∂β
I−1(β)l(β)i,

Ψ8i = Risk0i(β)− {Risk0i(β) + Risk1i(β) − 1}+ − [ρ0 −E{Risk0(β) + Risk1(β) − 1}+] .

When c 6= ρ0 − ρ1, asymptotic normality of ŜEB(c)l and ŜEB(c)u then follows from Theo-

rems 1 and 2 and the Delta method.

When c = ρ0 − ρ1, it can be shown that
√

N

{(∑N

i=1 ∆̂i/N − c
)

+
− (ρ0 − ρ1 − c)+

}

converges to a mixture of 0 and a truncated normal distribution. As a result, asymptotic

normality of ÊB(c), P̂EB(c), or ŜEB(c) does not hold. Even when asymptotic normality

of these estimators does hold, we recommend the bootstrap for constructing confidence

intervals since computation of the asymptotic variance of these estimators requires numerical

differentiation. In practice, standard bootstrap percentile CI can lead to undercoverage when

c ≈ ρ0 −ρ1, we adopt an adaptive bootstrap confidence interval following the ideas of Berger

and Boos (1994), Laber and Murphy (2011), and Robins (2004). Specifically, the proposed

interval is equivalent to the standard bootstrap percentile CI when c is far from ρ0 − ρ1 and

is equivalent to a projection interval otherwise, which is the union of bootstrap intervals as
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described below. Because the behavior of the confidence interval is automatically dictated

by the data, we term it ‘adaptive.’

Let b = 1, . . . , B index bootstrap samples drawn from the original data with replacement.

We add a superscript b, to indicate that a statistic has been computed using a bootstrap sam-

ple. We construct an adaptive projection confidence interval as follows. For any r ∈ R define

ÊB
b

r(c) =
∑N

i=1

(
∆̂b

i − c
)

+
/N−

(∑N

i=1 ∆̂b
i/N − c

)
I(r > 0), P̂EB

lb

r (c) =
∑N

i=1

(
∆̂b

i

)
+
×(1−

c)−
(∑N

i=1 ∆̂b
i/N − c

)
+

I(r > 0), and P̂EB
ub

r (c) =
∑N

i=1

{
R̂isk

b

0i −
(

R̂isk
b

0i + R̂isk
b

1i − 1

)

+

}
/N×

(1 − c) −
(∑N

i=1 ∆̂b
i/N − c

)
I(r > 0). Let ζEB(c),η(r), ζPEBl(c),η(r), and ζPEBu(c),η(r) denote

(1 − η) × 100% percentile bootstrap confidence intervals formed by taking empirical per-

centiles of ÊB
b

r(c), P̂EB
lb

r (c), and P̂EB
ub

r (c) over bootstrap samples respectively. Let Γα(c)

denote an asymptotically valid (1 − α) × 100% confidence interval for ρ0 − ρ1 − c. The

(1 − η − α) × 100% projection intervals for EB(c), PEBl(c) and PEBu(c) are given re-

spectively by
⋃

r∈Γα(c) ζEB(c),η(r),
⋃

r∈Γα(c) ζPEBl(c),η(r), and
⋃

r∈Γα(c) ζPEBu(c),η(r). Let P b

denote probability taken with respect to the bootstrap sampling algorithm, conditional on

the observed data. The following results (Theorem 3 and Corollary 1) are proved in the

Supplementary Appendix B.

Theorem 3 [Projection bootstrap intervals] Assume ∆(Y ) has a continuous and bounded

density function. Let α, η ∈ (0, 1), and let c be fixed. Then,

1. P b
(
EB(c) ∈ ⋃

r∈Γα(c) ζEB(c),η(r)
)
≥ 1 − α − η + op(1);

2. P b
(
PEBl(c) ∈ ⋃

r∈Γα(c) ζPEBl(c),η(r)
)
≥ 1 − α − η + op(1);

3. P b
(
PEBu(c) ∈ ⋃

r∈Γα(c) ζPEBu(c),η(r)
)
≥ 1 − α − η + op(1).

If E∆(Y ) 6= c then the right hand side of the foregoing inequalities can be replaced with

equality to 1 − η + oP (1).
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Corollary 1 Let τN be a sequence of positive random variables satisfying τN → 0 and
√

NτN → ∞ almost surely as N → ∞. Define A(c) = Γα(c) if |ρ̂0 − ρ̂1 − c| ≤ τN and

{∑N

i=1 ∆̂i/N − c} otherwise. Assume the conditions of Theorem 3. Then,

1. P b
(
EB(c) ∈ ⋃

r∈A(c) ζEB(c),η(r)
)
≥ 1 − α − η + op(1);

2. P b
(
PEBl(c) ∈

⋃
r∈A(c) ζPEBl(c),η(r)

)
≥ 1 − α − η + op(1);

3. P b
(
PEBu(c) ∈

⋃
r∈A(c) ζPEBu(c),η(r)

)
≥ 1 − α − η + op(1).

If E∆(Y ) 6= c then the right hand side of the foregoing inequalities can be replaced with

equalities. Note that for |ρ̂0 − ρ̂1 − c| > τN ,
⋃

r∈A(c) ζEB(c),η(r),
⋃

r∈A(c) ζPEBl(c),η(r), and

⋃
r∈A(c) ζPEBu(c),η(r) in the corollary refer to standard (1 − η) × 100% bootstrap confidence

interval for EB(c), PEBl(c) and PEBu(c).

Remark 1. Berger and Boos (1994) recommend choosing α to quite small in which case

1 − η ≈ 1 − η − α. Consequently, the originally proposed projection confidence interval is

nearly exact in large samples provided E∆(Y ) 6= c, but potentially conservative otherwise.

However, Corollary 1 suggests a procedure which provides exact coverage when E∆(Y ) 6= c

and is thus both adaptive and less conservative than the projection interval. For these

reasons, it is recommended in practice.

Remark 2. The conditions of the preceding theorem can be relaxed at the expense of

a possibly more conservative confidence interval. In the Supplementary Appendix C we

provide a locally consistent projection confidence interval that does not require ∆(Y ) have

smooth bounded density. However, this interval requires taking a union over a larger set and

is thus potentially more conservative in some settings. We defer the detailed investigation

of this CI to future work.
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3.3 Robust Estimation Methods

The validity of the model-based approach for estimating the expected benefit of an optimal

treatment selection rule depends critically on model calibration. In practice, one may adopt

a working model ∆? based on a GLM and focus on constructing a decision rule A(Y ) =

I{∆?(Y ) ≥ δ} that has large benefit regardless of whether or not ∆? is well-calibrated.

Write the expected benefit based on ∆? and threshold δ as E{I(∆?(Y ) > δ) {∆(Y ) − c}}−

[ρ0 − ρ1 − c]+ , which in a randomized trial can be represented as

{P (D = 1|∆?(Y ) > δ, T = 0) − P (D = 1|∆?(Y ) > δ, T = 1) − c}P (∆?(Y ) > δ)

− [ρ0 − ρ1 − c]+ , (6)

and estimated nonparametrically by



∑N

i=1 Di

(
∆̂?

i > δ
)

(1 − Ti)

∑N
i=1

(
∆̂?

i > δ
)

(1 − Ti)
−

∑N

i=1 Di

(
∆̂?

i > δ
)

Ti

∑N
i=1

(
∆̂?

i > δ
)

Ti

− c





1

N

N∑

i=1

(
∆̂?

i > δ
)

−
[∑N

i=1 Yi(1 − Ti)∑N

i=1(1 − Ti)
−

∑N

i=1 Yi(Ti)∑N

i=1 Ti

− c

]

+

. (7)

A natural nonparametric analogue of the model-based estimator based on threshold value c

can be constructed by entering δ = c into (7). This estimator is unbiased for the expected

benefit of A(Y ) = ∆?(Y ) > c whether or not ∆? is well calibrated. However, when ∆? is not

well-calibrated, the rule based on comparing ∆? with c is not optimal among all rules of the

form ∆? > δ. An optimal δ among this class that maximizes (6) can instead be identified

by maximizing (7) over δ. Furthermore, following Zhang and others (2012), an augmented

version of (7) can be constructed as

(7) +
1

N

N∑

i=1

Ti

(
∆̂?

i > δ
)

+ (1 − Ti)
(
∆̂?

i ≤ δ
)
− π(Y, δ)

π(Y, δ)
×

{
R̂isk1 × I(∆̂?

i > δ) + R̂isk0 × I(∆̂?
i ≤ δ)

}
, (8)
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where π(Y, δ) = P (T = 1)(∆̂? > δ) + P (T = 0)(∆̂? ≤ δ). The optimal δ can be constructed

as the maximizer of (8) for potential efficiency gain. These robust estimation methods are

aimed for scenarios where risk model is prone to misspecification. Since validity of the model-

based bounds in (4) and (5) for perfect selection benefit relies on well-calibrated risk model,

here we do not consider those bounds anymore.

Let δ̂ be the estimate of δ through maximization of either (7) or (8), the corresponding

value of expected benefit in the training data tends to overestimate the true expected benefit

of the rule A(Y ) = ∆̂? > δ̂. In practice one can use cross-validation to correct for this bias,

as we demonstrate in our simulation studies.

4 Simulation Studies

In this section, we conduct simulation studies to investigate our estimators of (standardized)

expected benefit. We consider a two-arm 1:1 randomized trial with T = 0 and T = 1 indicat-

ing placebo and treatment arm respectively. Assume we have a biomarker Y which follows

standard normal distribution, we consider a linear logistic model for the risk of a binary dis-

ease D conditional on Y and T : logitP (D = 1|Y, T ) = β0+β1T +β2Y +β3Y T . The risk model

parameters are chosen such that disease prevalences are ρ0 = 0.25 and ρ1 = 0.125 in placebo

and treatment arm respectively. We consider cost ratios c = 0, 0.105, 0.125, 0.145, 0.175,

which correspond to expected benefit value of 0.043, 0.059, 0.063, 0.048, 0.029. The pairs

of lower and upper bounds for expected benefit from perfect treatment selection equal to

{0.043, 0.098}, {0.130, 0.180}, {0.147, 0.196}, {0.144, 0.191}, and {0.139, 0.184} respectively.

Sample sizes of 200, 500, and 2000 are used in the simulation studies.

Performance of the model-based estimators for EB(c), PEB(c) and SEB(c) are shown

in Tables 1 and 2. With a sample size of 200, model-based estimators have minimal bias

for each measure. Coverage of 95% percentile bootstrap CI is close to nominal level when
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c is away from ρ0 − ρ1, whereas an under-coverage is observed when c = ρ0 − ρ1, which is

not alleviated with the increase of sample size. The adaptive bootstrap CI fixes the under-

coverage problem where we use the projection interval (with α = 0.01) when estimated

ρ0 − ρ1 is close to c (defined as |ρ̂0 − ρ̂1 − c| ≤ ŜE (ρ̂0 − ρ̂1) × Φ−1(0.9) in the simulation

study).

If we use the same threshold c for risk difference but use a nonparametric method instead

for estimating EB(c), a decrease of efficiency is observed compared to the model-based esti-

mator (details omitted). In our simulation setting, variances of the model-based estimators

are around 40% ∼ 70% of the variances of the nonparametric estimators.

Based on the same logistic model fitting, we further consider finding δ̂ by maximizing

the empirical estimate of EB(c) (7) and its augmented version (8). Table 3 presents perfor-

mance of the derived treatment decision rule using δ̂ versus using δ = c in the population.

Estimating δ leads to a rule with smaller expected benefit with larger variability for small

sample size of 200, but has small impact on treatment selection performance when sample

size is as large as 2000. In general, using the augmented estimator for δ estimation leads

to small increase in treatment selection performance and decreased variability. Note that

under correct model specification, the estimated expected benefit based on robust methods

is expected to be suboptimal compared to the model-based estimator. It is when the model

is misspecified that the robust estimation methods may yield higher expected benefit.

In Supplementary Table 1, we present results for estimating expected benefit of treatment

selection rule ∆̂? > δ̂, using naive estimators based on the training data or alternative

estimators based on random cross-validation. For the latter, we randomly split the data

into 2/3 of training set and 1/3 of test set, fitting a logistic model to the training data

and compute δ̂, then compute the expected benefit based on the test data. An average of

expected benefit is computed over 500 splits. We see that expected benefit estimated from
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training data can have severe over-estimation even with a sample size as large as 2000, which

is corrected by cross-validation. Also presented in Supplementary Table 1 are naive and CV

estimates for expected benefits using the model-based rule. Here the over-fitting in naive

estimate is much less severe compared to nonparametric estimator and is minimal when

sample size goes above 500.

5 Data Example

In this section, we illustrate the estimation of expected benefit using an example from the

Diabetes Control and Complications Trial (DCCT) (Control and Group, 1993). DCCT was

a large-scale randomized controlled trial designed to compare intensive and conventional

diabetes therapy with respect to their effects on the development and progression of the

early vascular and neurologic complications of diabetes. Overall 1441 patients with insulin-

dependent diabetes mellitus were enrolled from 1983 to 1999, including 726 primary preven-

tion cohort patients who were free of any microvascular complications and 715 secondary

prevention cohort patients who had mild preexisting retinopathy or other complications.

Their appearances of progression of retinopathy and other complications assessed regularly

and the trial was terminated on 1999 with significant evidence of treatment efficacy resulting

in an average followup of 6.5 years.

One outcome of which the treatment in DCCT shows significant effect in reducing the

risk is micro-albuminuria, a sign of kidney damage, defined as albumin excretion rate greater

than 40mg/24hr. Our analysis here consists of 579 subjects in the secondary prevention co-

hort who did not have micro-albuminuria and neuropathy at baseline. We consider baseline

homoglobin A1C (HBA1C) as a biomarker for selecting treatment: a linear logistic regres-

sion model of micro-albuminuria developed during the study versus treatment and baseline

HBA1C and their interaction shows a significant interaction between treatment and HBA1C.

We estimate the expected benefit of HBA1C and its standard value. The curve of model-
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based estimator of EB(c) versus c is presented in Supplementary Figure 1(a). Also displayed

are estimated lower and upper bounds of expected benefit for perfect treatment selection.

Corresponding bounds for standardized expected benefit of HBA1C are displayed in Sup-

plementary Figure 1(b). For a series of chosen cost ratio, the model-based estimates and

their 95% CI are shown in Table 4. For example, at cost ratio c = 0, i.e., no cost of more

intensive diabetes therapy, HBA1C has a EB of 0.005 while the EB of a perfect treatment

selection rule can range from 0.005 to 0.206, such that standard EB of HBA1C is above

2.3%. For a bigger cost ratio such as c = 0.05, i.e., the cost of intensive therapy is 5% the

cost of micro-albuminuria, HB1AC has EB of 0.019, which explains 8% - 38.8% benefits of a

perfect treatment selection rule. Supplementary Table 2 presents cross-validated EB for the

model-based estimator and for the robust estimators where the selection threshold is non-

parametrically derived. In general we see reduction in EB resulted from CV. Optimization

of the threshold leads to slightly better CV estimate compared to model-based estimator.

6 Concluding Remarks

In this paper we developed an expected benefit measure for characterizing the capacity of

biomarkers in treatment selection. Built upon a decision-theoretic framework, this measure

integrates the benefit of a marker-based treatment selection rule on reducing population dis-

ease rate with the additional treatment cost through the specification of a treatment/disease

cost ratio. We also developed a new concept of a perfect treatment selection rule in the

sense that it correctly makes treatment recommendation for patients according to whether

or not they will benefit from the treatment. We developed bounds for expected benefit of

a perfect treatment selection rule based on the model of disease risk conditional on marker

and treatment. These bounds can be used to standardize the expected benefit of a treatment

selection rule, potentially facilitating comparison of markers across different study settings.
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The idea of generating bounds for treatment selection can be readily applied to other treat-

ment selection measures such as the population disease rate resulted from treatment selection

(Song and Pepe, 2004). An interesting fact about these model-based bounds is that their

width depends on how well the risk model used to construct the bounds can identify the

percent of “benefitted” in the population. A model that better predicts heterogeneity in

treatment responses in terms of larger variability in ∆ tends to move up the lower bound

for PEB through the increase of E{∆(Y )}+. In other words, tighter bounds reflect a better

knowledge in selecting treatment-benefitted subjects. In particular, in the scenario where

we compare two nested models, sharper bounds for perfect treatment selection can be esti-

mated from the more complicated model. In general when we have several risk models in a

population to assess expected benefit of perfect treatment selection. Tighter bounds can be

constructed using bounds derived from individual risk model. Specifically, at a given cost

ratio, the minimum benefit of perfect selection can be constructed as the maximum among

corresponding values in individual lower bounds, and the maximum benefit of perfect selec-

tion can be constructed as the minimum among corresponding values in individual upper

bounds.

We considered the problem of maximizing the expected benefit based on a GLM and

proposed two strategies. The model-based estimator was more efficient under well-calibrated

models whereas the nonparametric and augmented estimators were robust to misspecification

of working model and provided a way for sensitivity analysis. One advantage of using the

common GLM method for deriving the treatment selection rule is the computation simplicity

as the GLM model can be easily implemented with standard statistical software. We note

that there are alternative ways to construct the treatment selection rule A(Y ) in the field,

such as maximizing the measure of interest directly as adopted in Zhang and others (2012ab,

2013), and Zhao and others (2012); expected benefit of the treatment selection rule derived
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can be similarly estimated, through procedures such as cross-validation. To make inference

using the proposed model-based estimator, we proposed an adaptive bootstrap procedure

to handle the presence of non-regularity when cost ratio is close to the average treatment

effect. This idea of using data to adaptively construct bootstrap confidence interval has a

great potential to be used in other types of biomarker evaluation and comparison problems

where non-regularity can occur at some point in the parameter space.

In this paper, we consider cost ratio c to be a constant and a series of c can be chosen for

sensitivity analysis. In practice, the cost ratio might be a function of biomarker. For example,

the cost of mammography use for breast cancer prevention might depend on women’s age

(Gail, 2009). It is straightforward to extend the concept of expected benefit allowing c =

C(Y ) to be a function of biomarker value in scenarios where information is available for

modeling C(Y ) as proposed in Janes and others (2013).

Finally, while the concepts of perfect and/or standardized expected benefits are restricted

to binary disease outcomes, the concept of expect benefit itself and the methods developed

can be readily generalized to handle continuous outcomes.
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Figure 1: Expected benefit curves for Marker 1 (a) and Marker 2 (b) and bounds for perfect
treatment selection rule, and corresponding standardized expected benefit curves for Marker
1 (c) and Marker 2 (d). Disease prevalence among untreated and treated subjects is 0.25 and
0.12 respectively. Each marker Y follows a N(2,1) distribution and its relationship to disease
status is described by a logistic risk model, logitP (D = 1|Y, T ) = β0 + β1T + β2Y + β3Y T ,
where T is an indicator of treatment assignment. For Marker 1, β0 = 0.69, β1 = 0.2, β2 =
−1, β3 = −1. For Marker 2, β0 = −0.158, β1 = 3.495, β2 = −0.5, β3 = −4. Note that in
this setting the optimal treatment strategy in the absence of marker information is to treat
everyone if c < 0.13 and treat no one otherwise.
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Table 2: Performance of the Model-Based Estimator for Bounds of PEB(c) and SEB(c).

Cost ratio c 0.000 0.105 0.125 0.145 0.175 0.000 0.105 0.125 0.145 0.175

PEBu(c) PEBl(c)

0.098 0.180 0.196 0.191 0.184 0.043 0.130 0.147 0.144 0.139

N Bias×1000
200 -0.10 -11.73 -20.31 -12.08 -4.93 2.02 -9.82 -18.45 -10.27 -3.18
500 -0.53 -5.53 -13.37 -6.04 -2.00 1.22 -3.97 -11.84 -4.55 -0.56

2000 -0.28 -0.98 -6.38 -1.02 -0.32 0.24 -0.51 -5.92 -0.57 0.11

SE ×
√

N

200 0.33 0.29 0.31 0.34 0.39 0.29 0.25 0.28 0.32 0.38
500 0.33 0.30 0.32 0.37 0.44 0.29 0.26 0.29 0.36 0.43

2000 0.34 0.32 0.32 0.43 0.45 0.29 0.28 0.30 0.42 0.45

Coverage of 95% percentile bootstrap CI
200 94.90 88.20 77.80 90.70 95.90 95.10 89.60 78.70 92.70 96.70

500 94.50 91.50 77.70 93.80 95.50 95.10 94.20 80.70 96.10 95.50
2000 94.50 95.80 80.10 96.50 95.00 94.50 96.40 82.20 96.70 95.20

Coverage of 95% adaptive bootstrap CI
200 94.90 94.28 91.08 93.98 95.84 95.14 95.04 91.22 94.90 96.62

500 94.52 95.02 91.44 94.72 95.50 95.08 96.26 92.02 96.36 95.62
2000 94.50 96.08 96.38 96.54 95.04 94.48 96.44 96.32 96.56 95.24

SEBl(c) SEBu(c)

0.436 0.327 0.323 0.253 0.156 1.000 0.452 0.429 0.336 0.207

N Bias×1000
200 9.12 -30.47 -58.66 -27.63 4.30 0.00 -42.79 -74.27 -39.34 -0.86

500 10.19 -10.73 -38.06 -12.60 3.42 0.00 -17.01 -47.53 -19.03 0.24
2000 2.66 -0.74 -19.51 -0.96 2.05 0.00 -2.30 -23.24 -2.43 1.36

SE ×
√

N

200 2.02 1.23 1.24 1.31 1.36 0.00 1.41 1.46 1.57 1.65
500 2.12 1.25 1.27 1.45 1.60 0.00 1.38 1.44 1.71 1.94

2000 2.21 1.35 1.29 1.66 1.70 0.00 1.45 1.39 1.89 2.06

Coverage of 95% percentile bootstrap CI
200 95.10 95.80 91.40 96.80 97.30 100.00 94.10 88.80 96.50 97.40

500 95.10 96.70 90.80 96.90 95.60 100.00 95.50 87.80 96.60 95.80
2000 94.20 96.20 89.40 96.80 95.60 100.00 96.40 87.20 97.00 95.40

Coverage of 95% adaptive bootstrap CI

200 95.12 97.82 95.88 97.24 97.20 100.00 97.02 94.86 97.02 97.40
500 95.10 97.94 95.72 97.28 95.74 100.00 97.04 94.80 96.88 95.86
2000 94.16 96.18 97.82 96.68 95.58 100.00 96.44 97.28 96.84 95.42
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Table 3: MEAN (SD) of expected benefit in the population using model-based selection
rule(PAR) or selection rules where threshold value is nonparametrically identified (NPAR,
AUG). NPAR is associated with empirically estimator and AUG is associated with aug-
mented estimator.

Cost ratio c 0.000 0.105 0.125 0.145 0.175

N=200 PAR 0.0406 (0.0035) 0.0542 (0.0067) 0.0577 (0.0072) 0.0420 (0.0080) 0.0213 (0.0075)
NPAR 0.0337 (0.011) 0.0474 (0.0136) 0.0514 (0.0136) 0.0368 (0.0127) 0.0179 (0.0106)

AUG 0.0353 (0.0097) 0.0484 (0.0128) 0.0523 (0.0126) 0.0376 (0.0117) 0.0187 (0.0092)

N=500 PAR 0.042 (0.0012) 0.0572 (0.002) 0.0611 (0.0022) 0.0459 (0.0025) 0.0257 (0.0035)
NPAR 0.0385 (0.006) 0.0536 (0.0066) 0.0577 (0.0067) 0.0426(0.0071) 0.0227 (0.007)

AUG 0.0395 (0.0044) 0.0539 (0.0061) 0.0579 (0.0065) 0.0427 (0.0071) 0.0227 (0.0069)

N=2000 PAR 0.0427 (3e-04) 0.0585 (5e-04) 0.0626 (6e-04) 0.0476 (7e-04) 0.028 (8e-04)
NPAR 0.0415 (0.002) 0.0571 (0.0022) 0.0611 (0.0024) 0.0463 (0.0024) 0.0266 (0.0032)

AUG 0.0417 (0.0016) 0.0572 (0.0022) 0.0612 (0.0023) 0.0463 (0.0024) 0.0264 (0.0035)

Table 4: Estimate and 95%CI of expected benefit in DCCT example.
Cost ratio c 0 0.05 0.10 0.12

EB(c) 0.005 (0, 0.166) 0.019 (0, 0.123) 0.035 (0.001, 0.102) 0.028 (0, 0.119)

PEB
l(c) 0.005 (0 ,0.166) 0.05 (0.031 ,0.157) 0.086 (0.029 ,0.149) 0.084 (0.029 ,0.149)

PEBu(c) 0.206 (0.157 ,0.352) 0.242 (0.192 ,0.335) 0.267 (0.216 ,0.329) 0.261 (0.211 ,0.343)

SEB
l(c) 0.023 (0 ,0.498) 0.08 (0 ,0.382) 0.131 (0.003 ,0.334) 0.107 (0.001 ,0.366)

SEB
u(c) 1 (1 ,1) 0.388 (0 ,0.802) 0.408 (0.026 ,0.809) 0.333 (0.005 ,0.823)
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Figure 1: Expected benefit curves of HBA1C and the bounds for perfect biomarker for
guiding the prevention of micro-albuminuria in the DCCT example.
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Table 1: Performance of naive and cross-validated estimates of expected benefit. PAR
indicates model-based selection rule, NPAR and AUG are selection rules where threshold
value is nonparametrically identified. NPAR is associated with empirically estimator and
AUG is associated with augmented estimator.

Cost ratio c 0.000 0.105 0.125

PAR NPAR AUG PAR NPAR AUG PAR NPAR AUG

N = 200 EB(c; β̂)? 0.0406 0.0337 0.0353 0.0542 0.0474 0.0484 0.0577 0.0514 0.0523
Naive∗ 0.0454 0.0586 0.0568 0.0518 0.0653 0.0659 0.0485 0.0625 0.0636

CV† 0.0391 0.0403 0.0394 0.0380 0.0393 0.0384 0.0327 0.0342 0.0336

N = 500 EB(c; β̂) 0.0420 0.0385 0.0395 0.0572 0.0536 0.0539 0.0611 0.0577 0.0579
Naive 0.0439 0.0513 0.0506 0.0559 0.0633 0.0637 0.0531 0.0608 0.0616

CV 0.0410 0.0418 0.0414 0.0501 0.0509 0.0502 0.0463 0.0471 0.0464

N = 2000 EB(c; β̂) 0.0427 0.0415 0.0417 0.0585 0.0571 0.0572 0.0626 0.0611 0.0612

Naive 0.0433 0.0468 0.0465 0.0588 0.0622 0.0623 0.0575 0.0607 0.0609
CV 0.0428 0.0432 0.0432 0.0575 0.0579 0.0575 0.0555 0.0558 0.0555

Cost ratio c 0.145 0.175
PAR NPAR AUG PAR NPAR AUG

N = 200 EB(c; β̂) 0.0420 0.0368 0.0376 0.0213 0.0179 0.0187
Naive 0.0429 0.0580 0.0595 0.0318 0.0488 0.0510

CV 0.0256 0.0274 0.0275 0.0129 0.0155 0.0171

N = 500 EB(c; β̂) 0.0459 0.0426 0.0427 0.0257 0.0227 0.0227

Naive 0.0462 0.0549 0.0559 0.0313 0.0417 0.0431
CV 0.0389 0.0397 0.0390 0.0234 0.0245 0.0243

N = 2000 EB(c; β̂) 0.0476 0.0463 0.0463 0.0280 0.0266 0.0264
Naive 0.0480 0.0519 0.0523 0.0293 0.0339 0.0344

CV 0.0462 0.0465 0.0462 0.0274 0.0278 0.0274

EB(c; β̂)? is expected benefit of a treatment selection rule based on estimated risk model given
cost ratio c;

Naive∗ is the naive estimate of EB(c; β̂)? based on training data;
CV† is the estimate of EB(c; β̂)? based on random cross-validation.

Table 2: Cross-Validated estimates of EB(c) in DCCT example.
Cost ratio c 0 0.05 0.10 0.12

PAR(Naive) 0.005 0.019 0.035 0.028
PAR(CV) 0.0051 0.016 0.020 0.012

NPAR(CV) 0.0060 0.018 0.022 0.012

AUG(CV) 0.0072 0.021 0.023 0.013
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Supplementary Appendix

Here we provide rough sketches of the proofs of theorems stated in the paper.

Appendix A. Proof of Theorems 1 and 2

We assume the following conditions hold:

i)
√

N (β̂ − β) = n−1/2
∑n

i=1 I(β)l(β)i + op(1)

ii) ρ0 − ρ1 6= c

iii) E(Risk0(β)− Risk1(β)) is differentiable with respect to β at the true β value

iv) EB(c; β), E(Risk0(β) − Risk1(β))+, E(Risk0(β)), E(Risk0(β) + Risk1(β)− 1) are dif-

ferentiable with respect to β at the true β value

We prove the result for EB(c) and the proofs for PEBl(c) and PEBu(c) in Theorem 2

follow similar arguments.

√
N
{
ÊB(c) −EB(c)

}

=
√

N

{
1

N

N∑

i=1

(
∆̂i − c

)
+
− E (∆ − c)+

}
−

√
N

{(
1

N

N∑

i=1

∆̂i − c

)

+

− I(ρ0 − ρ1 > c)

}

=
√

N

{
1

N

N∑

i=1

(
∆̂i − c

)
+
− 1

N

N∑

i=1

(∆i − c)+

}
+
√

N

{
1

N

N∑

i=1

(∆i − c)+ − E(∆ − c)+

}

−
√

N

{(
1

N

N∑

i=1

∆̂i − c

)

+

− (ρ0 − ρ1 − c)+

}

=
√

N

[
E
{

∆(β̂) > c
}

+
− E(∆ − c)+

]
+
√

N

{
1

N

N∑

i=1

(∆i − c)+ − E(∆ − c)+

}

− A + op(1)

where A =
√

N

{(
1

N

N∑

i=1

∆̂i − c

)

+

− (ρ0 − ρ1 − c)+

}

=
√

N

{(
1

N

N∑

i=1

∆̂i − c

)

+

−
(

1

N

N∑

i=1

∆i − c

)
× I(ρ0 − ρ1 − c > 0)

}

+
√

N

{(
1

N

N∑

i=1

∆̂i − c

)
× (Iρ0 − ρ1 − c > 0) − (ρ0 − ρ1 − c)+

}
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which when ρ0 − ρ1 6= c by equi-continuity equals to

√
N × (ρ0 − ρ1 − c) ×

{
I

(
1

N

N∑

i=1

∆̂i − c > 0

)
− I(ρ0 − ρ1 − c > 0)

}

+
√

N

{
1

N

N∑

i=1

∆̂i − (ρ0 − ρ1)

}
× I(ρ0 − ρ1 − c > 0) + op(1)

=
√

N

{
1

N

N∑

i=1

∆̂i − (ρ0 − ρ1)

}
× I(ρ0 − ρ1 − c > 0) + op(1),

which equals to
√

N
{∑N

i=1 ∆̂i/N − (ρ0 − rho1)
}

for ρ0−ρ1 > c and equals to 0 for ρ0−ρ1 <

c.

Appendix B. Proof of Theorem 3 and Corollary 1

We prove the result for EB(c) as the proofs for PEBl(c) and PEBu(c) are similar.

Suppose τN is a positive sequence of random variables converging to zero almost surely

with n and satisfying
√

NτN → ∞ almost surely as n → ∞. Define the event E , {|ρ̂0 −

ρ̂1 − c| ≤ τN} then 1E → 1ρ0−ρ1=c in probability. Thus, the validity of the confidence interval

follows if: (i) the projection interval provides the correct coverage when ρ0 − ρ1 = c; and (ii)

the standard bootstrap confidence interval provides the correct coverage when ρ0 − ρ1 6= c.

We next sketch the argument that the projection interval is valid in both (i) and (ii).

Define EBr(c) , E [∆(Y ) − c]+−E(∆(Y )−c)1r≥0. We show that
√

N (ÊBr(c)−EBr(c))

and
√

N (ÊB
b

r(c)− ÊBr(c)) converge to the same limiting distribution in probability. Thus,

the validity of the proposed confidence intervals follows from standard arguments for the

validity of projection intervals (see, for example, Berger and Boos (1994)). To simplify our

proofs we assume that Y is bounded with probability one. Let l(β∗) denote the influence

function of
√

N(β̂ − β∗). Without loss of generality we assume c = 0.

For θ ∈ R
2dim(Y )+2 define

∆(Y ; θ) , g−1
(
θ0 + θT

2 Y
)
− g−1

(
θ0 + θ1 + (θ2 + θ3)

T Y
)
,
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where g is the logit function. Note that ∆(Y ) = ∆(Y ; β) and ∆̂(Y ) = ∆(Y ; β̂). Define

∆̇(Y ; θ) , (d/dθ)∆(Y ; θ), then for any compact set K ⊆ R
2dim(Y )+2 the class of functions

{||∆̇(y; θ)|| : R
dim(Y ) → R , θ ∈ K} is Donsker (see, for example, Kosorok (2008)). Write ÊN

to denote expectation with respect to the empirical distribution. Then

√
N(ÊBr(0)−EBr(0)) =

√
N

(
ÊN

[
∆̂(Y )

]
+
− ÊN∆̂(Y )1r≥0

)
−
√

N
(
E [∆(Y )]+ − E∆(Y )1r≥0

)
,

which we can expand to equal

√
NÊN

([
∆̂(Y )

]
+
− [∆(Y )]+

)
− ÊN

√
N
(
∆̂(Y ) − ∆(Y )

)
1r≥0

+
√

N (ÊN − E)
(
[∆(Y )]+ − ∆(Y )1r≥0

)
,

which equals

ÊN

([
ZN (Y ) +

√
N∆(Y )

]
+
−
[√

N∆(Y )
]

+

)

+
√

N(ÊN − E)
(
[∆(Y )]+ − ∆(Y )1r≥0 − 1r≥0E(∆̇(Y ; β∗)T )l(β∗)

)
+ oP (1),

where ZN ,
√

N(∆̂(Y ) − ∆(Y )) = ∆̇(Y ; β̃)T
√

N(β̂ − β∗) for some β̃ intermediate to β̂

and β∗. We now argue that the leading term in the above display is equal to
√

N(ÊN −

E)∆̇(Y ; β∗)T l(β∗)1∆(Y )≥0 + oP (1). The leading term in the above display is equal to

ÊNZN (Y )1∆(Y )≥01√N |∆(Y )|≥|ZN (Y )|

+ ÊN

([
ZN (Y ) +

√
N∆(Y )

]
+
−
[√

N∆(Y )
]
+

)
1√N |∆(Y )|≤|ZN (Y )|. (1)

Note that P
(
|
√

N∆(Y )| ≤ |ZN (Y )|
)

is bounded above by

P

(
|∆(Y )| ≤ sup

y∈supp(Y )

||∆̇(y; β̃)|| ||β̂ − β∗||
)

≤ 2C sup
y∈supp(Y )

||∆̇(y; β̃)|| ||β̂ − β∗|| = oP (1),

where C is an upper bound on the density of ∆(Y ). Using |[a + b]+ − [b]+| ≤ [a]+ the sec-

ond term in (1) is bounded above in magnitude by ÊN [ZN (Y )]+ 1√N |∆(Y )|≤|ZN | = oP (1).
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The first term in (1) is equal to ÊNZN (Y )1∆(Y )≥0 + oP (1), which in turn is equal to

E∆̇(Y ; β∗)T1∆(Y )≥0

√
N(ÊN −E)l(β∗) + oP (1).

Assembling the arguments made above, it follows that

√
N(ÊBr(0) − EBr(0)) = νT

√
N(ÊN − E)




[∆(Y )]+
∆(Y )1r≥0

l(β∗)


 + oP (1),

where ν = (1, 1r≥0, E∆̇(Y ; β∗)T (1∆(Y )≥0 − 1r≥0))
T .

Following the same arguments, it can be shown that
√

N(ÊB
b

r(0) − ÊBr(0)) equals

√
N(ÊB

b

r(0) − EBb
r(0)) = νT

√
N(ÊN −E)




[∆(Y )]+
∆(Y )1r≥0

l(β∗)


 + oP b(1),

where ν is defined as above and we write rN = oP b(1) to mean P b(|rN | ≥ ε) = oP (1) for any

ε > 0. Note that
√

N (∆̂b(Y ) − ∆̂(Y )) = ∆̇(Y ; β̃)T
√

N(Êb
N − ÊN)I(β∗) + oP b(1) where β̃ is

intermediate to β̂b and β̂, and

P

(
|∆̂(Y )| ≤ sup

y∈supp(Y )

||∆̇(y; β̃)|| ||β̂b − β̂||
)

≤ P

(
|∆(Y )| ≤ sup

y∈supp(Y )

||∆̇(y; β̃)|| ||β̂b − β̂||+ sup
y∈supp(Y )

|∆̂(y)− ∆(y)|
)

= oP b(1),

where again β̃ is intermediate to β̂b and β̂.

It remains to show that the bootstrap confidence interval for ÊB(c) is consistent when

ρ0 −ρ1 6= 0. In the above notation this requires showing
√

N(ÊB
b

ρ̂b

0
−ρ̂b

1

(0)− ÊB ρ̂0−ρ̂1
(0)) and

√
N(ÊBρ̂0−ρ̂1

(0) − EBρ0−ρ1
(0)) converge to the same limiting distributions in probability.

However, since ρ̂0− ρ̂1 is a regular, (strongly) consistent estimator of ρ0−ρ1 and ρ0−ρ1 6= 0,

it follows that

√
N(ÊB

b

ρ̂b

0
−ρ̂b

1

(0) − ÊBρ̂0−ρ̂1
(0)) =

√
N(ÊB

b

ρ0−ρ1
(0) − ÊBρ0−ρ1

(0)) + oP b(1),

and
√

N(ÊBρ̂0−ρ̂1
(0) − EBρ0−ρ1

(0)) =
√

N(ÊBρ0−ρ1
(0) − ÊBρ0−ρ1

(0)) + oP (1).

Thus, the projection interval proof for r = ρ0 − ρ1 applies.
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Appendix C. Details supporting Remark 2

Remark 2: [Locally consistent confidence interval for EB(c).]

For any η ∈ R
dim(β) and r ∈ R define

θ̂(η, r) , ÊN∆(Y ; β̂N)1∆(Y ;η)≥0(1 − c) − ÊN (∆(Y ; η) − c)1r−c≥0,

θ(η, r) , E∆(Y ; β)1∆(Y ;η)≥0(1 − c) −E(∆(Y ; η) − c)1r−c≥0.

Note that θ(β, E∆(Y ; β)) = EB(c). For every fixed η, r pair it can be shown that
√

N (θ̂(η, r)−

θ(η, r)) is regular, asymptotically normal, and for any δ ∈ (0, 1) a (1− δ)× 100% confidence

interval for θ(β, E∆(Y ; β)) can be obtained via the bootstrap. Denote such an interval by

ξδ(η, r). Thus, were β∗ and E∆(Y ; β) known, one could bootstrap
√

N
(
θ̂(β, E∆(Y ; β))− θ(β, E∆(Y ; β))

)
(but holding β and E∆(Y ; β) to be fixed) to obtain

a valid confidence interval for θ(β, E∆(Y ; β)). Of course, neither β nor E∆(Y ; β) are known;

however, for any α ∈ (0, 1) standard methods can be used to construct a (1 − α) × 100%

joint confidence region for (β, E∆(Y ; β)), say Γα. Then, it follows that

⋃

(η,r)∈Γα

ξδ(η, r),

is a valid (1−δ−α)×100% confidence interval for θ(β, E∆(Y ; β)) = EB(c). This procedure

involves the union of smooth, regular, confidence intervals and is therefore also regular (i.e.,

locally consistent). The above interval takes a union over a larger set and is therefore

potentially more conservative than the interval described in Section 4.2. On the other hand,

a smooth density for ∆(Y ) is no longer required (details omitted).
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