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Summary 

In medical research, the development of mediation analysis with a survival outcome has 

facilitated investigation into causal mechanisms. However, studies have not discussed the 

death-truncation problem for mediators, the problem being that conventional mediation 

parameters cannot be well-defined in the presence of a truncated mediator. In the present study, 

we systematically defined the completeness of causal effects to uncover the gap, in 

conventional causal definitions, between the survival and nonsurvival settings. We proposed 

three approaches to redefining the natural direct and indirect effects, which are generalized 

forms of the conventional causal effects for survival outcomes. Furthermore, we developed 

three statistical methods for the binary outcome of the survival status and formulated a Cox 

model for survival time. We performed simulations to demonstrate that the proposed methods 

are unbiased and robust. We also applied the proposed method to explore the effect of hepatitis 

C virus infection on mortality, as mediated through hepatitis B viral load. 

Keywords: Cox proportional hazards model, Death-truncated mediator, Inverse odds ratio 

weighting, Inverse probability weighting, Regression-based method, Survival mediation 

analysis. 
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1. Introduction 

1.1. Death-truncation problem 

Mediation analysis is a technique used to investigate the mechanism of an already-

confirmed causal effect. Several methods have been proposed for various settings, including 

binary outcomes, mixed model, time-varying settings, and multiple mediators (Huang and Cai, 

2015; Lin et al., 2017a; Lin et al., 2017b; VanderWeele and Tchetgen Tchetgen, 2017; 

VanderWeele and Vansteelandt, 2010; VanderWeele and Vansteelandt, 2014; Zheng and van 

der Laan, 2012). In longitudinal studies, the problem of truncation by death arises when 

individuals die between follow-up visits. Thus, some variables may not be well-defined for 

dead individuals. The complete case approach is the conventional solution to this problem 

(Little, 1992; Little and Rubin, 2019); this method excludes individuals with death-truncated 

variables from the analysis. However, inference on the causal effects of exposure in the 

complete case approach could be biased even if experiments are randomized.  

1.2. Literature review 

To improve on this method, several models for causal inference have been proposed. Most 

studies have analyzed the causal effect of an exposure on nonsurvival outcomes truncated by 

death (Ding et al., 2011; Tchetgen Tchetgen, 2014; Wang, Zhou and Richardson, 2017; Zhang 

and Rubin, 2003). These studies have focused on estimating the survivor average causal effect 

(SACE), but they have omitted inference on causal mediation effects. In practice, SACE is not 

identifiable if further assumptions are not made (Zhang and Rubin, 2003). Sensitivity analysis 

is often performed to obtain a conservative estimate for SACE (Chiba and VanderWeele, 2011; 

Egleston et al., 2006; Gilbert, Bosch and Hudgens, 2003); alternatively, detailed covariate 

information for the identification process can be used (Ding et al., 2011; Tchetgen Tchetgen, 

2014; Wang et al., 2017; Zhang and Rubin, 2003). 

For causal mediation analysis with a survival outcome (referred to hereafter as survival 



 - 2 - 

mediation analysis), the problem of death truncation has received relatively little attention. 

Although methods for such mediation analysis have been adapted to survival outcomes 

(Fasanelli et al., 2019; Huang and Yang, 2017; Huang and Cai, 2015; Lange and Hansen, 2011; 

Tchetgen Tchetgen, 2011; VanderWeele, 2011), these methods require the assumption that the 

mediator is fully observed. If the mediator is death-truncated, the conventional mediation 

parameters are not well-defined, and these existing methods are therefore inappropriate for 

investigating the causal mechanism. Practically, this problem does not affect the total effect 

(TE), but it is critical for mediation analysis because the natural direct effect (NDE) and natural 

indirect effect (NIE) cannot be well-defined. To address this problem, two alternative 

formulations of mediation parameters have been separately proposed for the truncated mediator 

(Lin et al., 2017b; Zheng and van der Laan, 2017). Zheng and van der Laan proposed a random 

intervention formulation for the mediation parameter, based on a conditional mediator 

distribution with survival outcomes. By defining the conditional-intervention counterfactual, 

they formulated conditional mediation parameters in terms of time-varying variables to avoid 

the problem of death truncation. Similarly, Lin et al. adopted the interventional approach, where 

the intervention functions as an analogue of the set of causal effects in the survival setting, and 

the interventional analogue can be well-defined even if the mediator is truncated. 

1.3. Unsolved problems and contributions of this study 

Although two studies have proposed alternatives to conventional mediation parameters to 

remedy the problem of truncation in survival mediation analysis, three unsolved problems 

remain and should be addressed. First, in conventional causal definitions, it is unclear what the 

difference is between the survival setting and nonsurvival setting. Previous studies have 

suggested that conventional mediation parameters with survival outcomes can never be well-

defined, but no mathematical proof for this suggestion has been proposed thus far. Second, 

current methodologies have their unique set of limitations. Specifically, the conditional 

mediation parameter proposed by Zheng and van der Laan requires information about each 

individual’s time-varying history to overcome the problem of undefined causal effects. 
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Therefore, the conditional mediation parameter cannot be applied to data sets that do not 

include time-varying covariates. Furthermore, strong sequential randomization assumptions 

are required for identification. As for the approach proposed by Lin et al., its limitation is that 

its interventional causal effects do not always sum up to the TE. The final problem is one 

pertaining to statistical inference: Zheng and van der Laan as well as Lin et al. have considered 

only the binary outcome of survival status rather than the single outcome of survival time. 

Therefore, the survival model must be extended—for example, to a Cox proportional hazards 

model.  

To address these problems, we proposed three approaches to TE decomposition and 

comprehensively defined the mediation parameters for the death-truncated mediator. We also 

made appropriate assumptions to identify, through empirical data, the corresponding mediation 

parameter. By linking these proposed approaches, we formulated a theorem to illustrate the 

incompleteness of the conventional causal definitions in the survival setting. Additionally, 

based on the formula obtained using these approaches, we proposed three estimators using 

regression-based, inverse probability weighting (IPW), and inverse odds ratio weighting 

(IORW) methods to infer the causal effects. Binary survival status and survival time were both 

considered as outcome variables for modeling. The proposed estimators were illustrated by 

using Monte Carlo simulations and actual data sets. 

1.4. Motivating example  

    This study was motivated by the Risk Evaluation of Viral Load Elevation and Associated 

Liver Disease/Cancer–Hepatitis B Virus (REVEAL-HBV) study—a community-based cohort 

study conducted in Taiwan to assess the effect of viral hepatitis on the development of 

hepatocellular carcinoma (HCC) (Chen et al., 2006). This study revealed that the viral loads of 

hepatitis B virus (HBV) and hepatitis C virus (HCV) play crucial roles in the development of 

HCC. Additionally, HCV inhibits HBV replication in patients with HBV/HCV coinfection. 

Thus, to understand the causal mechanism through which HCV affects the incidence of liver 
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cancer and mortality, a mediation model is required to examine the effect of the HCV viral load 

on survival when mediated through the follow-up of HBV viral load among patients with HBV. 

However, in the REVEAL-HBV study, the follow-up of HBV viral loads for some patients with 

HBV-positive was truncated due to death. The truncation rate was 11.27%. The conventional 

causal mediation model, because it omits truncation events, can lead the researcher to 

misunderstand the causal mechanism through which HCV affects survival.  

The remainder of this paper is organized as follows. In Section 2, we introduce the 

definitions and symbolism for mediation parameters and propose three approaches that address 

the problem of death truncation. In Section 3, we state the assumptions required and procedures 

for identifying the mediation parameters. In Section 4, we introduce three estimators for 

statistical inference based on the identified mediation parameters. In Section 5, we conduct a 

series of simulation studies to illustrate the performance of the proposed estimators by 

comparing them with the conventional complete case approach. An application to the 

investigation of the causal mechanism of HCV is illustrated in Section 6, and we discuss the 

strengths and limitations of the study in Section 7. 

2. Notation and causal estimands 

2.1. Notation and review of causal mediation analysis without 

previous death 

Consider a longitudinal study, where 𝑇 is the survival time and 𝐶𝑐𝑡 is the censoring 

time, where �̃� = min(𝑇, 𝐶𝑐𝑡) and 𝛿 = I(𝑇 < 𝐶𝑐𝑡). In addition to survival time, we define an 

outcome indicator 𝑌 that indicates the binary survival status at the end of the follow-up period 

(1 represents survival and 0 represents death). Because survival time (�̃�) and survival status 

(𝑌) are both of practical importance in medical research, we determine the causal estimands 

corresponding to survival time and survival status, separately. For the other variables, let 𝐴 

denote the exposure, 𝑀  the mediator, C the baseline confounders, and 𝑌𝑝  the previous 

survival status during the period between 𝐴 and 𝑀 (1 represents survival and 0 represents 

death). The causal relationships between variables are described by a directed acyclic graph 
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(DAG), as illustrated in Figure 1. Notably, time-varying confounders cannot be included in the 

causal mechanism.   

To conduct a causal mediation analysis, we further introduced counterfactual models for 

defining all effects (Robins and Greenland, 1992). Let 𝑌(𝑎), 𝑀(𝑎), and 𝑌𝑝(𝑎) denote the 

counterfactual values of 𝑌, 𝑀, and 𝑌𝑝, respectively, where 𝐴 = 𝑎. Similarly, let 𝑌(𝑎,𝑚) 

denote the counterfactual of 𝑌  when 𝑀  = 𝑚  and 𝐴  = 𝑎 . Additionally, let 𝑌(𝑎,𝑀(𝑎∗)) 

denote the counterfactual value of 𝑌, where the exposure is set to 𝑎, and the mediator is set 

to the value it would take under exposure 𝑎∗ . Subsequently, we make consistency and 

composition assumptions (Gibbard and Harper, 1978; Robins and Greenland, 1992; 

VanderWeele and Vansteelandt, 2009). According to the consistency assumption for 𝑌(𝑎,𝑚), 

the observed outcome 𝑌 is equal to 𝑌(𝑎,𝑚) when the observed values of 𝐴 and 𝑀 are 𝑎 

and 𝑚, respectively. For 𝑀(𝑎), this consistency assumption states that the observed mediator 

𝑀 is equal to 𝑀(𝑎) when the observed exposure is 𝐴 = 𝑎. According to the composition 

assumption, 𝑌(𝑎) = 𝑌(𝑎,𝑀(𝑎)) . Similarly, the counterfactual values of survival time, 

namely 𝑇(𝑎) and 𝑇(𝑎,𝑀(𝑎∗)), follow the same definition.  

For readability, we adopt survival status (𝑌 ) to illustrate the problem of conventional 

mediation analysis with previous death; a similar argument based on survival time (𝑇 ) is 

provided in Web Appendix A. Conventionally, TE, NDE, and NIE are defined as follows based 

on the risk difference scale for the individual level (Pearl, 2001; Robins and Greenland, 1992): 

TE = 𝑌(1) − 𝑌(0)  

NDE = 𝑌(1,𝑀(0)) − 𝑌(0,𝑀(0))  

NIE =  𝑌(1,𝑀(1)) − 𝑌(1,𝑀(0))                                          (1) 

Let 𝜓(𝑎, 𝑎∗) ≡ 𝐸(𝑌(𝑎,𝑀(𝑎∗))), where 𝜓 is referred to as the mediation parameter (Pearl, 

2001; Robins and Greenland, 1992) and is defined according to the expectation of the 

counterfactual value. Thus, the population level TE, NDE, and NIE can be defined as 

𝜓(1,1) − 𝜓(0,0), 𝜓(1,0) − 𝜓(0,0), and 𝜓(1,1) − 𝜓(1,0), respectively. In the Section 2.2, 

we discuss the problem encountered using this conventional definition when the mediator is 

truncated by previous death. In the subsequent sections, we consider the population level for 



 - 6 - 

identification and estimation.  

2.2. Problem with using the conventional definition with previous 

death 

Subjects can be assigned to the following four groups (also named principal strata) based 

on the status of 𝑌𝑝 under two counterfactual settings (𝑌𝑝(1), 𝑌𝑝(0)) (Frangakis and Rubin, 

2002; Wang et al., 2017): an (1) always-survivor group (𝑌𝑝(1) = 1, 𝑌𝑝(0) = 1): the subject 

always survives, regardless of exposure status; a (2) protected group (𝑌𝑝(1) = 1, 𝑌𝑝(0) = 0): 

the subject survives if exposed, but dies if not exposed; a (3) harmed group (𝑌𝑝(1) =

0, 𝑌𝑝(0) = 1): the subject dies if exposed, but survives if not exposed; and a (4) doomed group 

(𝑌𝑝(1) = 0, 𝑌𝑝(0) = 0): the subject always dies, regardless of exposure status. We denote the 

four groups as 𝑃𝑆, 𝑃𝑃, 𝑃𝐻, and 𝑃𝐷, respectively.  

In the case of previous death, the composition assumption for 𝑌 is rewritten as 𝑌(𝑎) =

𝑌 (𝑎, 𝑌𝑝(𝑎),𝑀(𝑎, 𝑌𝑝(𝑎))), and a further composition assumption is required for 𝑀, namely 

𝑀(𝑎) = 𝑀(𝑎, 𝑌𝑝(𝑎)). Thus, based on these new composition assumptions, the conventional 

causal effects in (1) can be rewritten as the follows: 

TE = 𝑌 (1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1))) − 𝑌 (0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))),  

NDE = 𝑌 (1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0))) − 𝑌 (0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))), and  

NIE =  𝑌 (1, 𝑌𝑝(1),𝑀(1, 𝑌𝑝(1))) − 𝑌 (1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0))).                      

(2) 

To clearly state the weakness of the conventional definition with regard to previous death in 

(2), we first define the completeness of causal effects as follows:     

Definition 1. (Completeness of causal effects) 

If the causal effects, namely TE, NDE, and NIE, are well-defined in all principal strata, then 

the formation of the defined causal effects is complete. 

Based on Definition 1, we now show that the conventional definition of causal effects with 

previous death lacks completeness. First, in the always-survivor group (𝑃𝑆), the counterfactual 

values of 𝑌 and 𝑀 can be defined, and therefore all causal effects are well-defined. However, 



 - 7 - 

in the protected group (𝑃𝑃 ) (i.e., 𝑌𝑝(0) = 0  and 𝑌𝑝(1) = 1 ), the counterfactual outcome 

𝑌 (1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(0)))  is equal to 𝑌 (1, 𝑦𝑝 = 1,𝑀(0, 𝑦𝑝 = 0)) . This cannot be defined 

because although its hypothetical status supposes no previous death, it includes 𝑀(0, 𝑦𝑝 = 0), 

which is the death-truncated mediator. Furthermore, 𝑌 (0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))) also includes 

the death-truncated mediator, and according to its survival status, the individual is subject to 

previous death (𝑦𝑝 = 0), which implies that 𝑌 (0, 𝑌𝑝(0),𝑀(0, 𝑌𝑝(0))) is always equal to zero. 

Consequently, we can define TE in 𝑃𝑃 , but not in NDE and NIE. Similarly, in 𝑃𝐻 , all 

counterfactual values of 𝑌 are either well-defined or zero, and in 𝑃𝐷, all counterfactuals are 

zero. 

Table 1 illustrates the definition statuses of TE, NDE, and NIE in the four groups, where 

these definition statuses are such that TE is well-defined for all groups, but NDE and NIE are 

undefined in 𝑃𝑃 . Therefore, the conventional causal definitions for NDE and NIE in this 

context of survival analysis are incomplete.     

2.3. Three approaches to death-truncated mediation analysis 

To address the incompleteness of the conventional causal definition, we formulated the 

following three approaches to redefine the NDE and NIE for the death-truncated mediator: 

Approach 1: Principle stratification 

In this approach, we maintain the conventional causal definition but define all effects only 

under a certain principal stratum, namely, the always-survivor group (𝑃𝑆). This strategy is often 

used for estimating TE when the nonmortality outcome is truncated by death (Frangakis and 

Rubin, 2002; Zhang and Rubin, 2003). The mediation parameter for 𝑃𝑆  is defined as 

𝐸(𝑌(𝑎,𝑀(𝑎∗))|𝑃𝑆), which is well-defined. Following this approach, the conditional mediation 

parameters can only be identified with strong additional assumptions (Ding et al., 2011; 

Tchetgen Tchetgen, 2014; Wang et al., 2017); without these assumptions, only the boundary 

can be evaluated (Chiba and VanderWeele, 2011). Moreover, if we assume that the 
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counterfactuals are homogeneously distributed across the principal strata, then the conditional 

causal effects can be interpreted as the average causal effect of the mediator on the outcome 

(Forastiere, Mattei and Ding, 2018). 

Approach 2: Decreasing monotonicity assumption for 𝑌𝑝 (i.e., 𝑌𝑝(1) ≤ 𝑌𝑝(0)); equivalently, 

assumption of no protected group 

In the second approach, we assume decreasing monotonicity. If the exposure leads to on 

the early death, we can assume that no individuals benefit from exposure (i.e., no individual 

belongs to 𝑃𝑃). Because the counterfactual values of 𝑌 in (2) are well-defined under the other 

three principal strata, all effects are well-defined under this assumption. However, if 

background knowledge indicates that exposure can have a protective effect against death for 

some individuals (i.e., the protected group includes some individuals), then this approach is not 

applicable. Notably, if we can assume the absence of a harmful effect, then the total direct effect 

and pure indirect effect can be identified in the presence of a protective effect as an alternative 

for effect decomposition. This argument is detailed in Web Appendix A.    

Approach 3: Death-truncated analogues of NDE and NIE (i.e., 𝑁𝐷𝐸𝑑𝑡 and 𝑁𝐼𝐸𝑑𝑡) 

Although Approaches 1 and 2 have been widely used to estimate causal effects in survival 

analysis, these approaches cannot comprehensively solve the problem of death truncation. 

Therefore, in Approach 3, we adopt the sums of sets of path-specific effects (PSEs) as 

analogues for NDE and NIE, which are well-defined for all four groups. In the case with 

multiple mediators, a PSE is proposed to quantify the effect of the exposure on the outcome 

when mediated through a pathway comprised of the mediators of interest (Avin, Shpitser and 

Pearl, 2005; Daniel et al., 2015). Based on the definitions of the PSEs with 𝑌𝑝 and 𝑀 as 

mediators, the TE from 𝐴  to 𝑌  can be decomposed into four PSEs (Figure 1): (1) a PSE 

through 𝑌𝑝 only (i.e., 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑌 ), (2) a PSE through 𝑀 only (i.e., 𝑃𝑆𝐸𝐴→𝑀→𝑌), (3) a PSE 

through neither 𝑌𝑝  nor 𝑀  (i.e., 𝑃𝑆𝐸𝐴→𝑌  ), and (4) a PSE through 𝑌𝑝  and then 𝑀  (i.e., 

𝑃𝑆𝐸𝐴→𝑌𝑝→𝑀→𝑌). This decomposition can be expressed as follows: 
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𝑌(1) − 𝑌(0) = {𝑌 (1, 𝑌𝑝(1),𝑀 (1, 𝑌𝑝(1))) − 𝑌 (1, 𝑌𝑝(1),𝑀 (0, 𝑌𝑝(1)))}  

  +{𝑌 (1, 𝑌𝑝(1),𝑀 (0, 𝑌𝑝(1))) − 𝑌 (1, 𝑌𝑝(1),𝑀 (0, 𝑌𝑝(0)))} 

  +{𝑌 (1, 𝑌𝑝(1),𝑀 (0, 𝑌𝑝(0))) − 𝑌 (1, 𝑌𝑝(0),𝑀 (0, 𝑌𝑝(0)))} 

  +{𝑌 (1, 𝑌𝑝(0),𝑀 (0, 𝑌𝑝(0))) − 𝑌 (0, 𝑌𝑝(0),𝑀 (0, 𝑌𝑝(0)))} 

           = 𝑃𝑆𝐸𝐴→𝑀→𝑌 + 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑀→𝑌 + 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑌 + 𝑃𝑆𝐸𝐴→𝑌     

According to (2), NIE and NDE are equal to 𝑃𝑆𝐸𝐴→𝑀→𝑌 + 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑀→𝑌 and 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑌 +

𝑃𝑆𝐸𝐴→𝑌 , respectively.  

However, this effect decomposition is inappropriate in the presence of a death-truncated 

mediator, and an alternative effect decomposition is required. There are two reasons for why 

an alternative effect decomposition is required. First, the effects of paths 𝐴 → 𝑌𝑝 → 𝑌 and 

𝐴 → 𝑌𝑝 → 𝑀 → 𝑌 cannot be separated in terms of identification and definitions. Because 𝑌𝑝 

and 𝑌  are survival statuses measured at different times, the assumption that there are no 

unmeasured confounders between 𝑌 and 𝑌𝑝 does not hold. Therefore, we can only identify 

the effect through the pathways involving only 𝑌𝑝 (i.e., the combination of 𝐴 → 𝑌𝑝 → 𝑌 and 

𝐴 → 𝑌𝑝 → 𝑀 → 𝑌) (Vanderweele, Vansteelandt and Robins, 2014). In Section 2.2, we show 

that 𝑌(1, 𝑌𝑝(1),𝑀(0, 𝑌𝑝(1)))  cannot be defined in 𝑃𝑃 , indicating that 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑀→𝑌  and 

𝑃𝑆𝐸𝐴→𝑌𝑝→𝑌   cannot be well-defined separately. Second, NDE should be defined as a 

combination of effects through the pathway involving neither 𝑌𝑝 nor 𝑀 (i.e.,𝑃𝑆𝐸𝐴→𝑌 ) and 

the pathway involving only 𝑌𝑝 (i.e., 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑀→𝑌 + 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑌 ). In the counting process 

for survival time 𝑁(𝑡) = 𝐼(𝑇 > 𝑡), 𝑌𝑝 and 𝑌 are the survival statuses corresponding to two 

time points, denoted as 𝑌𝑝 = 𝑑𝑁(𝑡1)  and 𝑌 = 𝑑𝑁(𝑡2) , where 𝑡2 > 𝑡1 . Thus, the effects 

related to path 𝐴 → 𝑌𝑝 can be regarded as a source contributing to the direct effect on the 

survival process. Moreover, the causal effect that passes through 𝑌𝑝 → 𝑀  is meaningless, 

because, in our definition, 𝑌𝑝 → 𝑀 represents the occurrence of a truncation event, which is 

deterministic rather than causal. Therefore, the path 𝐴 → 𝑌𝑝 → 𝑀 → 𝑌  can be more 

reasonably included in the direct effect than in the indirect effect. 

Based on these two reasons, we propose the following alternative definitions of NDE and 



 - 10 - 

NIE, namely death-truncated NDE (NDEdt ) and death-truncated NIE (NIEdt ), which are 

suitable for the case with a death-truncated mediator: 

NDEdt   = 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑀→𝑌 + 𝑃𝑆𝐸𝐴→𝑌𝑝→𝑌 + 𝑃𝑆𝐸𝐴→𝑌   

       = 𝑌 (1, 𝑌𝑝(1),𝑀 (0, 𝑌𝑝(1))) − 𝑌 (0, 𝑌𝑝(0),𝑀 (0, 𝑌𝑝(0)))   

NIEdt = 𝑃𝑆𝐸𝐴→𝑀→𝑌  

      = 𝑌 (1, 𝑌𝑝(1),𝑀 (1, 𝑌𝑝(1))) − 𝑌 (1, 𝑌𝑝(1),𝑀 (0, 𝑌𝑝(1)))                       

(3)  

In contrast to the conventional causal effects, the proposed formulations of death-truncated 

causal effects are complete (proof provided in Web Appendix A). Table 1 compares the 

definition statuses of the death-truncated and conventional causal effects.  

In (3), NDEdt and NIEdt are identical to NDE and NIE in (2), respectively, when NDE 

and NIE are well-defined. This is stated in Theorem 1. 

Theorem 1. (Equivalence of death-truncated causal effects and conventional causal effects) 

In the presence of previous death, the death-truncated causal effects, 𝑁𝐷𝐸𝑑𝑡 and 𝑁𝐼𝐸𝑑𝑡, are 

identical to conventional causal effects, NDE and NIE, respectively, in groups 𝑃𝑆  (i.e., 

𝑌𝑝(1) = 1, 𝑌𝑝(0) = 1 ), 𝑃𝐻  (i.e., 𝑌𝑝(1) = 0, 𝑌𝑝(0) = 1 ), and 𝑃𝐷  (i.e., 𝑌𝑝(1) = 0, 𝑌𝑝(0) =

0). 

The proof of Theorem 1 is provided in Web Appendix A. According to Theorem 1 and the fact 

that 𝑁𝐷𝐸𝑑𝑡  and 𝑁𝐼𝐸𝑑𝑡  are complete, the proposed death-truncated causal effects are 

generalizations of the conventional causal effects. Finally, when death truncation occurs, let 

𝜙(𝑎, 𝑎∗) ≡ 𝐸(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)))) , which is referred to as the survival mediation 

parameter. Approach 3 provides novel causal estimands as the average causal effects at the 

population level; thus, the population level TE, NDEdt, and NIEdt are defined as 𝜙(1,1) −

𝜙(0,0), 𝜙(1,0) − 𝜙(0,0), and 𝜙(1,1) − 𝜙(1,0), respectively. Although these approaches are 

defined in terms of the expectation of time-invariant outcomes, we can extend these approaches 

to survival analysis by defining the survival mediation parameters as the hazard function or 

survival function on survival (Huang and Yang, 2017; Huang and Cai, 2015; Tchetgen Tchetgen, 

2011).  
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Finally, we summarize the features of Approaches 1 to 3 by considering the mediation 

parameters and effect decomposition. First, in Approaches 1 and 2, causal estimands are 

defined based on the conventional mediation parameter 𝜓(𝑎, 𝑎∗) ; by contrast, Approach 3 

adopts the survival mediation parameter 𝜙(𝑎, 𝑎∗) to define causal estimands. Second, the type 

of effect decomposition varied between these approaches: in Approach 1, TE was decomposed 

for the principle stratum (i.e., the always-survivor group 𝑃𝑆,), whereas in Approaches 2 and 3, 

TE was directly decomposed for the whole population, where Approach 2 required a decreasing 

monotonicity assumption for 𝑌𝑝. Furthermore, Approaches 2 and 3 have identical statistical 

parameters, the proof of which is provided in Section 3. Because Approach 1 focuses on the 

effect decomposition for 𝑃𝑆 rather than the whole population, we only discuss identification 

for Approaches 2 and 3 in Section 3. 

3. Identification 

As detailed in the previous section, the mediation parameters of Approaches 2 and 3 are 

𝜓(𝑎, 𝑎∗) and 𝜙(𝑎, 𝑎∗); to identify these parameters, five assumptions are required. 

Assumption 1: There is no unmeasured confounder between the exposure and overall survival 

status, including previous death status and final death status. 

(𝑌𝑝(𝑎), 𝑌(𝑎, 𝑦𝑝 = 1,𝑚))∐𝐴 |𝐶  

Assumption 2: There is no unmeasured confounder between the mediator and final death status. 

𝑌(𝑎, 𝑦𝑝 = 1,𝑚)∐𝑀|𝐴, 𝑦𝑝 = 1, 𝐶  

Assumption 3: There is no unmeasured confounder between the exposure and the mediator. 

𝑀(𝑎, 𝑦𝑝 = 1)∐𝐴 |𝐶  

Assumption 4: Confounders between the mediator and overall survival status (previous death 

status and final death status) are not affected by previous covariates. 

(𝑌𝑝(𝑎), 𝑌(𝑎, 𝑦𝑝 = 1,𝑚))∐𝑀(𝑎′, 𝑦𝑝 = 1) |𝐶  

Assumption 5: There is no unmeasured confounder between the mediator and previous death 

status. 

𝑀(𝑎, 𝑦𝑝 = 1)∐𝑌𝑝|𝐴 , 𝐶  

If there is no previous death (i.e., 𝑌𝑝(1) = 𝑌𝑝(0) = 1), Assumptions 1 to 4 reduce to the four 

conventional assumptions in causal mediation analysis (VanderWeele and Vansteelandt, 2009) 

(i.e., 𝑌(𝑎,𝑚))∐𝐴 |𝐶 , 𝑌(𝑎,𝑚)∐𝑀 |𝐴, 𝐶 , 𝑀(𝑎)∐𝐴 |𝐶 , and 𝑌(𝑎,𝑚)∐𝑀(𝑎′) |𝐶 ). 
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Moreover, Assumption 5 is excluded because 𝑌𝑝  is always equal to zero. Accordingly, the 

assumptions required for identification and the proposed formation of causal effects in Section 

2 are generalized versions of conventional causal models for the survival setting.    

We can describe all assumptions in terms of a nonparametric structural equation model, 

according to which the data generation process is described as a function of previous variables 

and an error term:  

𝐴 = 𝑔𝐴(𝜀𝐴) 
𝑌𝑝 = 𝑔𝑝(𝐴, 𝑈, 𝜀𝑌𝑝) 

𝑀 = 𝑔𝑀(𝐴, 𝜀𝑀) 𝑖𝑓 𝑌𝑝 = 1 ; undefined 𝑖𝑓 𝑌𝑝 = 0 

𝑌 = 𝑔𝑌(𝐴, 𝑌𝑝, 𝑈,𝑀, 𝜀𝑌)  

If 𝐶  prevents confounding among 𝐴 , 𝑀 , and (𝑌𝑝, 𝑌) —that is, 𝜀𝐴 , 𝜀𝑀 , and (𝜀𝑌𝑝 , 𝜀𝑌)  are 

independent—then all five assumptions are satisfied. The correspondence is presented in Web 

Appendix B. Both mediation parameters, namely 𝜙(𝑎, 𝑎∗)  and 𝜓(𝑎, 𝑎∗) , can be 

nonparametrically identified using the following two theorems.  

Theorem 2. Under positivity, consistency, and Assumptions 1 to 5, 𝜙(𝑎, 𝑎∗) can be identified 

as 𝑄(𝑎, 𝑎∗), where  

𝑄(𝑎, 𝑎∗) = ∫ 𝐸[𝑌|𝐴 = 𝑎, 𝑌𝑝 = 1,𝑀 = 𝑚, 𝐶 = 𝑐] 𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶
𝑚,𝑐

= 𝑐)𝑓𝑀|𝐴,𝐶(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑐)   𝑑𝑚𝑑𝑐 

Theorem 3. Under the decreasing monotonicity assumption for 𝑌𝑝  (𝑌𝑝(1) ≤ 𝑌𝑝(0)) , 

positivity, consistency, and Assumptions 1 to 5, for 𝑎 ≥ 𝑎∗, 𝜓(𝑎, 𝑎∗), as defined in Approach 

2, can be identified to be 𝑄(𝑎, 𝑎∗), which is defined in Theorem 1.  

The proofs of Theorems 2 and 3 are provided in Web Appendix B. According to these theorems, 

𝜙(𝑎, 𝑎∗) and 𝜓(𝑎, 𝑎∗) are identified as the identical statistical parameter 𝑄(𝑎, 𝑎∗), hereafter 

referred to as the survival mediation formula. The proposed survival mediation formula is an 

extension of Pearl’s mediation formula (Pearl, 2001). Therefore, on the risk difference scale, 

TE, NDE  (or NDEdt ), and NIE  (or NIEdt ) for the binary survival status (𝑌 ) are exactly 

𝑄(1,1) − 𝑄(0,0), 𝑄(1,0) − 𝑄(0,0), and 𝑄(1,1) − 𝑄(1,0), respectively. 

Consider the survival mediation parameter in terms of survival time (𝑇). In conventional 

survival mediation analysis (Cho and Huang, 2019; Huang and Yang, 2017), the mediation 
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parameter is defined as a log hazard; thus, in the presence of the truncated mediator, we defined 

the survival mediation parameter in terms of survival time as follows: 

                𝜙𝑇(𝑎, 𝑎
∗) ≡ 𝑙𝑜𝑔λ(𝑇(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)));  𝑡).               (4) 

The survival mediation parameter in (4) is identified in the following lemma. 

Lemma 1. Under positivity, consistency, and Assumptions 1 to 5, 𝜙𝑇(𝑎, 𝑎
∗) can be identified 

as  

𝑄𝑇(𝑎, 𝑎
∗) = 𝑙𝑜𝑔(𝜗𝑇

1(𝑎, 𝑎∗)/𝜗𝑇
2(𝑎, 𝑎∗)) 

where 

𝜗𝑇
1(𝑎, 𝑎∗) = ∫ 𝜆(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1)𝑒−𝛬(𝑡|𝑎,𝑚,𝑐,𝑦𝑝=1) 𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶

𝑚,𝑐

= 𝑐)𝑓𝑀|𝐴,𝐶(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑐) 𝑑𝑚𝑑𝑐, 

and  

𝜗𝑇
2(𝑎, 𝑎∗) = ∫ 𝑒−𝛬(𝑡|𝑎,𝑚,𝑐,𝑦𝑝=1) 𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶

𝑚,𝑐

= 𝑐)𝑓𝑀|𝐴,𝐶(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐)𝑓(𝑐) 𝑑𝑚𝑑𝑐. 

In Lemma 1, 𝜆(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1) is the conditional hazard function and 𝛬(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1) 

is the conditional cumulated hazard function. The identification assumptions and the proof are 

provided in Web Appendix B. To quantify 𝑄(𝑎, 𝑎∗) and 𝑄𝑇(𝑎, 𝑎
∗), we propose estimators for 

statistical inference in Section 4.  

4. Statistical inference for 𝑸(𝒂, 𝒂∗) and 𝑸𝑻(𝒂, 𝒂
∗) 

4.1. Regression-based, IPW, and IORW methods for 𝑸(𝒂, 𝒂∗)  

Based on the survival mediation formulas in Theorems 2 and 3, we propose three methods 

for estimating NDEdt  and NIEdt : the regression-based, IPW, and IORW methods. The 

regression-based method is a common parametric mediation technique used to derive the 

analytic solution of the causal effects by assuming the appropriate regression of the variables. 

However, model misspecification results in parametric models that lack power for statistical 

inference. Therefore, we also developed two weighted methods that are more robust to estimate 

the causal effects. The three proposed methods are detailed in the following sections.        

4.1.1. Regression-based estimator 
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In this method, the model distributions of 𝑌, 𝑀, and 𝑌𝑝 should be specified. Thus, we 

assumed that the outcome 𝑌 and early survival status 𝑌𝑝 followed the logistic regression for 

the binary survival status. For the distribution of the mediator, we considered both a normal 

distribution for the continuous mediator and a logistic model for the binary mediator. For 

simplicity, the formula for the binary mediator is presented herein. The other cases are provided 

in Web Appendix C. The exposure is dichotomous. This model setting is a prominent case in 

medical research. Other model distributions are applied to this method through integration with 

the Monte Carlo approach, which is a type of G-computation (Robins, 1986). Table 2 presents 

the sequential constructions of the regression models of 𝑌,𝑀, and 𝑌𝑝 based on the DAG in 

Figure 1. 

Based on this regression setting, the parameters Θ1 ≡ {{𝛼}, {𝛽}, {𝜃}} are estimated using 

the maximum likelihood (ML) approach, and the estimator is denoted as Θ̂1. Subsequently, we 

derive the estimators of NDE and NIE through the regression-based method as 𝑁𝐷�̂�𝑑𝑡
𝑅 =

�̂�𝑅(1,0) − �̂�𝑅(0,0)  and 𝑁𝐼�̂�𝑑𝑡
𝑅 = �̂�𝑅(1,1) − �̂�𝑅(1,0) , respectively, where �̂�𝑅(𝑎, 𝑎

∗)  is the 

estimator obtained when using Θ̂1.  

4.1.2. IPW estimator 

In this section, we use the estimator obtained through the IPW method to evaluate NDE 

and NIE. Under consistency and exchangeability assumptions, Lange et al (2012) derived the 

inverse probability (IP) weight for mediation analysis without a truncated event (Lange and 

Hansen, 2011). Following the IPW method, the survival mediation formula 𝑄(𝑎, 𝑎∗) can be 

rewritten as an expectation with respect to the outcome, mediator, and exposure, as stated in 

Theorem 4. 

Theorem 4 (IPW estimation)  

The survival mediation formula can be rewritten as 

𝑄𝐼𝑃𝑊(𝑎, 𝑎
∗) = 𝐸[𝑊(𝑚, 𝑎, 𝑎∗) × 𝑌], 

where 𝑊(𝑚,𝑎, 𝑎∗) is the weight and has the form 

𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶)𝐼(𝐴 = 𝑎)𝐼(𝑌𝑝 = 1)

𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝑌𝑝 = 1, 𝐶)𝑓(𝐴 = 𝑎|𝐶)
. 
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The proof of Theorem 4 is provided in Web Appendix C. The weight in Theorem 4 is equivalent 

to the conventional IP weight for mediation analysis without a truncated event constrained by 

𝑌𝑝 = 1 (Lange and Hansen, 2011).  

To calculate the IP weight, we assume models of the mediator and exposure as shown in 

Table 2. The ML approach is used to estimate Θ2 ≡ {{𝛽}, {𝛿}} as Θ̂2. According to Theorem 

4, the survival mediation formula of IPW can be derived by 

�̂�𝐼𝑃𝑊(𝑎, 𝑎
∗) = ℙ𝑛 [

𝑓(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶 = 𝑐, �̂�0, �̂�𝐴, �̂�𝐶)𝐼(𝐴 = 𝑎)𝐼(𝑌𝑝 = 1)

𝑓(𝑀 = 𝑚|𝐴 = 𝑎, 𝑌𝑝 = 1, 𝐶 = 𝑐, �̂�0, �̂�𝐴, �̂�𝐶)𝑓(𝐴 = 𝑎|𝐶 = 𝑐, 𝛿0, 𝛿𝐴)
𝑌] 

where ℙ𝑛[∙] = 𝑛−1∑ [∙]𝑖𝑖 , and the direct and indirect effects of IPW are estimated by 

𝑁𝐷�̂�𝑑𝑡
𝐼𝑃𝑊 = �̂�𝐼𝑃𝑊(1,0) − �̂�𝐼𝑃𝑊(0,0) and 𝑁𝐼�̂�𝑑𝑡

𝐼𝑃𝑊 = �̂�𝐼𝑃𝑊(1,0) − �̂�𝐼𝑃𝑊(0,0), 

respectively. The IPW method has the advantage of fewer model assumptions for estimation 

compared with the regression-based method. However, specifying an appropriate model for the 

mediator remains challenging because the types of mediator measurement are various. To 

address this problem, we propose the IORW method, the details of which are presented in the 

following section. 

4.1.3. IORW estimator  

IORW was proposed by Tchetgen Tchetgen to improve parametric mediation techniques 

(Tchetgen Tchetgen, 2013). This approach leverages on the advantage of the invariance 

property of the odds ratio to define a new weight by replacing the conventional weight formed 

by the conditional distribution of the mediator with a regression of exposure on the mediator. 

The IORW method adopts the marginal structural model to define the causal effects and applies 

the estimating equation approach to calculate the estimates. For estimation using the IORW 

method, two parametric regression models are fitted, as shown in Table 2. Notably, the 

exposure in the IORW method is regressed on the mediator and the confounders, whereas, the 

exposure in the IPW method is regressed on the confounders only. The parameters 𝜶 =
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{𝛼0, 𝛼𝐴, 𝛼𝐶} and 𝜿 = {𝜅0, 𝜅𝑀, 𝜅𝐴} of the regression model in Table 2 are estimated using the 

ML approach. 

Following the two-step procedure for estimation in the study of IORW by (Tchetgen 

Tchetgen, 2013), we first derive the estimators of TE and NDE by using the weighted 

estimating equation (WEE) and IORW approaches, separately. NIE is then calculated by 

subtracting NDE from TE. To simplify the notation, we define the following two conditional 

expectations of the counterfactual outcome: 

𝜙(𝑎, 𝑎∗|𝐶 = 𝑐) = 𝐸(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)))|𝐶 = 𝑐), and 

𝜙(𝑎, 𝑎|𝐶 = 𝑐, 𝑌𝑝 = 1) = 𝐸(𝑌(𝑎, 𝑌𝑝(𝑎),𝑀(𝑎∗, 𝑌𝑝(𝑎)))|𝐶 = 𝑐, 𝑌𝑝 = 1). 

Weighted estimation of TE 

First, we adopt the WEE approach to estimate TE. A regression model on 

𝜙(𝑎, 𝑎|𝐶 = 𝑐, 𝑌𝑝 = 1) through a link function 𝑔(∙) is defined as follows:  

𝑔−1 (𝜙(𝑎, 𝑎|𝐶 = 𝑐, 𝑌𝑝 = 1)) = 𝜇𝑇𝐸(𝜼; 𝑎, 𝑐), 

where 𝜇𝑇𝐸(𝜼; 𝑎, 𝑐) = 𝜂0 + 𝜂𝐴𝑎 + 𝜂𝐶𝑐 + 𝜂𝐴𝐶𝑎𝑐  and 𝜼 =  {𝜂0, 𝜂𝐴, 𝜂𝐶 , 𝜂𝐴𝐶} . For simplicity, 

we consider the identity link in this section. Suppose that the weight determined through the 

WEE approach is 𝑤(𝑎, 𝑐, �̂�) = 𝑃(𝑌𝑝 = 1|𝑎, 𝑐, �̂�); thus, the WEE for any 𝜼 can be written as 

follows: 

𝑈𝑇𝐸(𝜼) = 𝑤(𝑎, 𝑐, �̂�) × Γ𝑇𝐸(𝑎, 𝑐, 𝜼){𝑌 − 𝑔(𝜇𝑇𝐸(𝜼; 𝑎, 𝑐))}, 

where Γ𝑇𝐸(𝑎, 𝑐, 𝜼) = 𝜕𝑔(𝜇𝑇𝐸(𝜼; 𝑎, 𝑐))/𝜕𝜼. Based on this estimating equation, the following 

theorem motivates our estimation strategy. 

Theorem 5  

Under the consistency assumption and Assumptions 1 to 5, 𝑈𝑇𝐸(𝝀) is an unbiased estimating 

equation conditioned on 𝐶, 𝑌𝑝 = 1 (i.e., 𝐸𝑌,𝑀|𝐶,𝑌𝑝=1(𝑈𝑇𝐸(𝜼)) = 0). 

The proof of Theorem 5 is provided in Web Appendix C. On the basis of this theorem, 𝜼 is 

estimated by �̂� which is the solution of the equation ℙ𝑛[𝑈𝑇𝐸(�̂�)] = 0. As a result, TE can be 
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directly derived through the following equation. 

𝑇�̂�𝐼𝑂𝑅𝑊 = �̂�(1,1)− �̂�(0,0) = 𝐸𝐶 (�̂�(1,1|𝑪)− �̂�(0,0|𝑪)) 

= 𝐸𝐶 (𝑔(𝜇𝑇𝐸(�̂�; 1, 𝐶))𝑓𝑌𝑝(𝑦𝑝 = 1|1, 𝐶, �̂�) − 𝑔(𝜇𝑇𝐸(�̂�; 0, 𝐶))𝑓𝑌𝑝(𝑦𝑝 = 1|0, 𝐶, �̂�)). 

 

IORW estimation of NDE 

To estimate NDE, we fit the regression model on 𝜙(𝑎, 0|𝐶 = 𝑐, 𝑌𝑝 = 1) , where the 

exposure through the mediator is set as zero:  

𝑔−1 (𝜙(𝑎, 0|𝐶 = 𝑐, 𝑌𝑝 = 1)) = 𝜇𝑁𝐷𝐸(𝝂; 𝑎, 𝑐), 

where 𝜇𝑁𝐷𝐸(𝝂; 𝑎, 𝑐) = 𝜈0 + 𝜈𝐴𝑎 + 𝜈𝐶𝒄 + 𝜈𝐴𝐶𝑎𝒄 and 𝝂 =  {𝜈0, 𝜈𝐴, 𝜈𝐶 , 𝜈𝐴𝐶}. To estimate the 

NDE, we apply the IORW to derive the estimator �̂�  of 𝝂  under the survival mediation 

formula. Following the establishment of the odds ratio for the mediator and exposure in the 

study of IORW by Tchetgen Tchetgen (2013), the conditional odds ratio is modified as follows:  

OR(𝑀, 𝐴|𝐶, 𝑌𝑝 = 1) ≡
𝑓𝑀|𝐴,𝐶,𝑌𝑝(𝑀|𝐴, 𝑌𝑝 = 1, 𝐶)𝑓𝑀|𝐴,𝐶,𝑌𝑝(𝑀 = 𝑚0|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶)

𝑓𝑀|𝐴,𝐶,𝑌𝑝(𝑀 = 𝑚0|𝐴, 𝑌𝑝 = 1, 𝐶)𝑓𝑀|𝐴,𝐶,𝑌𝑝(𝑀|𝐴 = 𝑎∗, 𝑌𝑝 = 1, 𝐶)𝑃𝑌𝑝(𝑦𝑝 = 1|𝐴, 𝐶, 𝛼)
  

             =
𝑓𝐴|𝑀,𝐶,𝑌𝑝(𝐴|𝑀, 𝑌𝑝 = 1, 𝐶)𝑓𝐴|𝑀,𝐶,𝑌𝑝(𝐴 = 𝑎∗|𝑀 = 𝑚0, 𝑌𝑝 = 1, 𝐶)

𝑓𝐴|𝑀,𝐶,𝑌𝑝(𝐴 = 𝑎∗|𝑀, 𝑌𝑝 = 1, 𝐶)𝑓𝐴|𝑀,𝐶,𝑌𝑝(𝐴|𝑀 = 𝑚0, 𝑌𝑝 = 1, 𝐶)𝑃𝑌𝑝(𝑦𝑝 = 1|𝐴, 𝐶, 𝛼)
, 

where 𝑓𝐴|𝑀,𝐶,𝑌𝑝 is the density function of A given (𝑀, 𝐶, 𝑌𝑝) and 𝑚0 is a reference value for 

the mediator. Following (Tchetgen Tchetgen, 2013), we consider 𝑚0 = 0  for the binary 

mediator. This equation follows from the invariance property of the odds ratio, and it motivates 

the strategy for modeling the exposure rather than modeling the mediator. By definition, the 

odds ratio is the parametric model OR(𝑀, 𝐴|𝐶, 𝑦𝑝 = 1, 𝜶, 𝜿) , where 𝜶  and 𝜿  are the 

parameters of A given (𝑀, 𝐶, 𝑌𝑝)  and 𝑌𝑝  respectively, and the estimators �̂�  and �̂�  are 

derived using the ML estimation. Subsequently, the IORW estimating equation for any 𝝂 is 

defined as follows: 

𝑈𝐷𝐸(𝝂) = OR(𝑀 = 𝑚,𝐴 = 𝑎|𝐶, 𝑦𝑝 = 1, �̂�, �̂�)
−1

× Γ𝑁𝐷𝐸(𝑎, 𝑐, 𝝂){𝑌 − 𝑔(𝜇𝑁𝐷𝐸(𝝂; 𝑎, 𝑐))}, 

where Γ𝑁𝐷𝐸(𝑎, 𝑐, 𝝂) = 𝜕𝑔(𝜇𝑁𝐷𝐸(𝝂; 𝑎, 𝑐))/𝜕𝝂. Theorem 6 states that 𝑈𝑁𝐷𝐸(𝝂) is unbiased.  

Theorem 6  
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Under the consistency assumption and the assumptions in Section 2, 𝑈𝑁𝐷𝐸(𝝂) is unbiased 

when conditioned on 𝐶, 𝑌𝑝 = 1 (i.e., 𝐸𝑌,𝑀|𝐶,𝑌𝑝=1(𝑈𝑁𝐷𝐸(𝝂)) = 0). 

The proof of Theorem 6 is provided in Web Appendix C. The estimator �̂� of 𝝂 then solves 

the equation ℙ𝑛[𝑈𝑁𝐷𝐸(�̂�)] = 0; thus, 𝑁𝐷𝐸𝑑𝑡 can be estimated through the following formula. 

𝑁𝐷�̂�𝑑𝑡
𝐼𝑂𝑅𝑊 = �̂�(1,0) − �̂�(0,0) = 𝐸𝐶 (�̂�(1,0|𝑪) − �̂�(0,0|𝑪)) 

= 𝐸𝐶 (𝑔(𝜇𝑁𝐷𝐸(�̂�; 1, 𝐶))𝑓𝑌𝑝(𝑦𝑝 = 1|1, 𝐶, �̂�) − 𝑔(𝜇𝑁𝐷𝐸(�̂�; 0, 𝐶))𝑓𝑌𝑝(𝑦𝑝 = 1|0, 𝐶, �̂�)). 

Finally, 𝑁𝐼�̂�𝑑𝑡 can be estimated by 𝑇�̂�𝐼𝑂𝑅𝑊 − 𝑁𝐷�̂�𝑑𝑡
𝐼𝑂𝑅𝑊. 

4.2. Statistical inference for 𝑸𝑻(𝒂, 𝒂
∗) by using Cox proportional 

hazards model  

In this section, we adopt a Cox proportional hazards model and proposed a statistical 

method (hereafter referred to as the Cox model method) to infer the survival mediation formula 

presented in Lemma 1. Following the regression-based method described in Section 4.1.1, this 

method further requires distribution assumptions for 𝑀 and 𝑌𝑝. The complete model settings 

for the Cox model are listed in Table 2. In practice, the parameters of the log hazard model in 

Table 2 (𝜸 = {𝛾0, 𝛾𝐴, 𝛾𝑀, 𝛾𝐶}) can be estimated as �̂� by using the partial likelihood method, 

and the parameters of 𝑀 and 𝑌𝑝 are estimated as �̂� and �̂�, respectively, by using the ML 

approach. If the outcome of interest is relatively rare—the rare disease assumption—then the 

cumulated hazard 𝛬(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1) is approximately zero. Therefore, 𝑒−𝛬(𝑡|𝑎,𝑚,𝑐,𝑦𝑝=1) ≈

0, and the survival mediation formula can be approximated in terms of survival time 𝑄𝑇(𝑎, 𝑎
∗), 

as described in Lemma 1, by 𝑙𝑜𝑔(𝜗𝑇
𝑎(𝑎, 𝑎∗)/𝜗𝑇

𝑏(𝑎, 𝑎∗)), where 

𝜗𝑇
𝑎(𝑎, 𝑎∗) = ∫ 𝜆(𝑡|𝑎,𝑚, 𝑐, 𝑦𝑝 = 1) 𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐) ×

𝑚,𝑐
   

𝑓𝑀|𝐴,𝐶(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝐶 = 𝑐)𝑓(𝑐) 𝑑𝑚𝑑𝑐 

and 𝜗𝑇
𝑏(𝑎, 𝑎∗) = ∫  𝑓(𝑌𝑝 = 1|𝐴 = 𝑎, 𝐶 = 𝑐)𝑓𝑀|𝐴,𝐶(𝑀 = 𝑚|𝐴 = 𝑎∗, 𝐶 = 𝑐)𝑓(𝑐)

𝑚,𝑐
𝑑𝑚𝑑𝑐 . 

Cho and Huang (2019) suggested that this approximation requires a cumulative disease rate of 

<10%.  

 𝑁𝐷𝐸𝑑𝑡 and 𝑁𝐼𝐸𝑑𝑡 are estimated with respect to 𝑇 as 𝑁𝐷𝐸𝑑𝑡
𝑇  and 𝑁𝐼𝐸𝑑𝑡

𝑇 , respectively, 

by adopting a substitution estimation approach. We obtain �̂�𝑇(𝑎, 𝑎
∗) ≈ 𝑙𝑜𝑔(�̂�𝑇

𝑎(𝑎, 𝑎∗)/
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�̂�𝑇
𝑏(𝑎, 𝑎∗))  by substituting �̂� , �̂� , and �̂�  into 𝑙𝑜𝑔(𝜗𝑇

𝑎(𝑎, 𝑎∗)/𝜗𝑇
𝑏(𝑎, 𝑎∗)) . Integration with 

respect to 𝑚 and 𝑐 in 𝜗𝑇
𝑎(𝑎, 𝑎∗) and 𝜗𝑇

𝑏(𝑎, 𝑎∗) can be approximated by using Monte Carlo 

integration. This results in the following estimators:  

𝑁𝐷�̂�𝑑𝑡
𝑇 = �̂�𝑇(1,0) − �̂�𝑇(0,0) and 𝑁𝐼�̂�𝑑𝑡

𝑇 = �̂�𝑇(1,1) − �̂�𝑇(1,0). 

When there is a generalized linear model for the mediator, the Cox model method can be 

performed using G-computation. 

5. Simulation 

Two simulation studies were conducted to assess the empirical biases and standard errors 

of the proposed estimators. In study 1, we assessed the regression-based, IP, and IORW 

methods in terms of binary survival status. In study 2, we evaluated the Cox model method in 

the survival setting. The details of study 2 are provided in Web Appendix D. In both studies, 

we also applied the complete case approach to the simulated data for comparison.  

5.1. Three scenarios 

Study 1 employed a sample of size 10,000 with one binary mediator. The data for each 

variable were simulated as follows: 

𝐶~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 0.5)  

A~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 0.5)  

𝑌𝑝~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝1), 𝑝1 = 𝑒𝑥𝑝𝑖𝑡(𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶) 

𝑀 = {
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑,  𝑖𝑓 𝑌𝑝 = 0

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝2),  𝑖𝑓 𝑌𝑝 = 1
,   𝑝2 = 𝑒𝑥𝑝𝑖𝑡(𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶C )  

𝑌 = {
0      , 𝑖𝑓 𝑌𝑝 = 0

~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑝3),  𝑖𝑓 𝑌𝑝 = 1
,   𝑝3 = 𝑒𝑥𝑝𝑖𝑡(𝜃0 + 𝜃𝐴𝐴 + 𝜃𝑀𝑀 + 𝜃𝐶C )  

The term 𝑒𝑥𝑝𝑖𝑡  refers to the expit function, defined as expit(x) = 1/(1 + exp(−x)). The 

parameters were set as 𝜃𝐴 = 0.2, 𝜃𝑀 = 0.5, 𝜃𝐶 = 0.5, 𝛽𝐴 = 0.2, 𝛽𝐶 = 0.5, 𝛼𝐴 = 0.2, and 

𝛼𝐶 = 0.5. The values of 𝛽0 and 𝜃0 were determined by solving E(𝑀| 𝑌𝑝 = 1) = 0.4 and 

E(𝑌| 𝑌𝑝 = 1) = 0.3 , which is an empirical setting. The remaining parameter 𝛼0  was 

determined according to P( 𝑌𝑝 = 1) . To investigate the model performance under various 

death-truncation rates (i.e., 1 − P( 𝑌𝑝 = 1) ), we varied P( 𝑌𝑝 = 1)  from 0.1 to 0.9 at 
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increments of 0.1. Consequently, the data were simulated based on these parameter settings. 

 To evaluate the robustness of each method, we further considered three scenarios 

pertaining to model specification. In scenario 1, all models were correctly specified. By 

contrast, in scenarios 2 and 3, the models of 𝑌 and 𝑀, respectively, were misspecified. For 

each scenario, we performed 1000 repetitions, and we then calculated the bias, root empirical 

standard error (RESE), and root mean square error (RMSE) of estimates. Because the true 

values of estimators varied for the different probabilities of 𝑌𝑝 = 1 , we used normalized 

absolute bias, normalized RESE, and normalized RMSE, which were divided by 𝑃(𝑌𝑝 = 1), 

to enable a fair comparison.  

5.2 Result 

   The results of scenario 1 are illustrated in Figure 2. The estimations of NIE and NDE under 

the complete case approach were biased for a death-truncated mediator. By contrast, the three 

proposed methods precisely estimated all the causal effects. In scenario 2, the results of the 

regression-based, IPW, and IORW methods are presented in Figure 3(a) and Web Appendix D. 

The complete case approach was excluded from comparison in scenarios 2 and 3 because it 

produced biased results. Figure 3(a) shows the normalized biases of the estimators for the 

survival mediation formulas for various probabilities of 𝑌𝑝 = 1. The figure reveals that the 

regression-based method was more affected by the model misspecification of outcome 𝑌 than 

the other methods were. Subsequently, we explored the model performance when the model of 

the mediator 𝑀 was misspecified. The results of scenario 3 are shown in Figure 3(b) and Web 

Appendix D. These results indicated that the regression-based and IPW methods failed to 

accurately estimate NIE, but the IPW method provided unbiased estimators for NDE and TE. 

This reflected the fact that the misspecification of model 𝑀 only affected the estimation of 

NIE. Results for these three scenarios demonstrated the robustness of the IORW method. 

6. Application 

We applied the proposed methods to the motivating example, namely the REVEAL-HBV 
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study (Chen et al., 2006). We were interested in the role that HBV viral loads play in the 

mechanism of the effect of HCV viral loads on mortality. Although HBV and HCV infections 

are two main causes of death among patients with liver disease, HCV is known to inhibit HBV 

replication in patients with HBV/HCV coinfection. Therefore, to investigate the causal 

mechanism, we conducted a survival mediation analysis where HCV and HBV were treated as 

the exposure and mediator, respectively. Because the follow-up of HBV viral loads for some 

patients with HBV were truncated in the data set due to death, we applied the proposed methods 

to infer the causal effects for the binary survival status and the survival time. For comparison, 

we also calculated the results by using the complete case approach. Sex, alcohol consumption, 

and age were considered as confounders in the analysis. Additional descriptions of the data and 

preprocessing methods are provided in Web Appendix E.  

The results are listed in Table 3. We further adopted the bootstrapping method to calculate 

the 95% confidence intervals and the P values based on 1000 bootstrap samples. According to 

the results for all methods, the NDE and NIE estimates had opposite directions. Therefore, 

these methods reproduced the inhibition of HBV replication by HCV. However, for the binary 

survival status, the complete case approach exhibited less power to detect causal effects than 

the proposed methods did, especially for NDE. The complete case approach excluded the cases 

with a death-truncated mediator, and the excluded cases still contributed to the inference of 

NDE. Additionally, the results for the binary survival status revealed consistent estimations 

among the regression-based, IPW, and IORW methods. In the analysis of survival time, the 

results of the Cox model method were somewhat consistent with those of the complete case 

approach. 

7. Discussion 

 In this study, we comprehensively illustrated the incompleteness of the conventional 

causal definitions in the presence of a death-truncated mediator and a survival outcome. We 

then proposed three approaches to redefine these causal definitions for completeness with a 

truncated mediator. In the establishment of new causal definitions, we noted a difference 
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between the survival and nonsurvival settings in the conventional causal definitions. Moreover, 

we proved that the casual effects defined in the third approach are a generalization of the causal 

effects in the conventional definitions. Based on the proposed causal definitions, we developed 

three statistical methods for the binary survival status, in addition to a Cox model method for 

survival time. The regression-based method was limited by the problem of model 

misspecification, but it exhibited flexibility when computing the estimates through G-

computation. The simulation study revealed that the IPW and IORW methods were more robust 

in model specification. However, extending these methods to cases with multiple mediators is 

challenging. 

 The proposed methods have three limitations that should be addressed in future studies. 

First, this study focused on survival outcomes. Although several methods for nonsurvival 

outcomes have been developed, they are applicable only to TE analysis. Methods for causal 

mediation analysis have not been developed for nonsurvival outcomes. Second, only one 

mediator can be used in the proposed method. However, because mechanisms are unlikely to 

be explained by a single mediator, methods allowing for multiple mediators should be 

developed. Third, this study’s methods are restricted to time-invariant mediators. Future studies 

could extend the methods to permit time-to-event mediators, which can be competed by 

survival outcomes or even time-to-event exposures. 
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Table 1. Definition statuses of total effect, natural direct effect, natural indirect effect, death-truncated natural direct effect, and death-truncated 

natural indirect effect for the four survival types. 

Survival type 

(Description) 
𝑌𝑝(1) 𝑌𝑝(0) 𝑀(1) 𝑀(0) 

TE 

𝑌(1,𝑀(1)) 
−𝑌(0,𝑀(0))  

NDE 

𝑌(1,𝑀(0)) 
−𝑌(0,𝑀(0))  

NIE 

𝑌(1,𝑀(1)) 
−𝑌(1,𝑀(0))  

NDEdt 

𝑌(1,𝑀(0, 𝑌𝑝(1)))  

−𝑌(0,𝑀(0, 𝑌𝑝(0))) 

NIEdt 

𝑌(1,𝑀(1, 𝑌𝑝(1)))  

−𝑌(1,𝑀(0, 𝑌𝑝(1))) 

Always-survivor 

(The subject always 

survives, regardless of 

exposure status) 

1 1 
Well-

defined 

Well- 

defined 
Well-defined Well-defined Well-defined Well-defined Well-defined 

Protected 

(The subject survives if 

exposed, but dies if not 

exposed) 

1 0 
Well-

defined 
Undefined Well-defined Undefined Undefined Well-defined Well-defined 

Harmed 

(The subject dies if 

exposed, but survives if not 

exposed) 

0 1 Undefined 
Well-

defined 
Well-defined Well-defined 

Well-defined 

(= 0) 
Well-defined Well-defined (= 0) 

Doomed 

(The subject always dies, 

regardless of exposure 

status) 

0 0 Undefined Undefined 
Well-defined 

(= 0) 

Well-defined 

(= 0) 

Well-defined 

(= 0) 
Well-defined (= 0) Well-defined (= 0) 

TE: total effect; NDE: natural direct effect; NIE: natural indirect effect; NDEdt: death-truncated NDE; NIEdt: death-truncated NIE  

  



 

Table 2. Model assumptions for the proposed methods. 

Type of 

outcome 

Proposed 

method 
Model assumptions 

Binary survival 

status (𝑌) 

Regression

-based 

Survival status 𝑌: 𝑌|𝐴,𝑀, 𝐶, 𝑌𝑝 = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑦)  

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑦) = 𝜃0 + 𝜃𝐴𝐴 + 𝜃𝑀𝑀 + 𝜃𝐶𝐶, 

Mediator 𝑀: 𝑀|𝐴, 𝐶, 𝑌𝑝 = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑀) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑀) = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶, and 

Previous survival status 𝑌𝑝: 𝑀|𝐴, 𝐶~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑌𝑝) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑌𝑝) = 𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶. 

IPW 

Mediator 𝑀: 𝑀|𝐴, 𝐶, 𝑌𝑝 = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑀) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑀) = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶 and 

Exposure 𝐴: 𝐴|𝐶 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝐴) 
where 𝑙𝑜𝑔𝑖𝑡(𝜋𝐴) = 𝛿0 + 𝛿𝐶𝐶. 

IORW 

Previous survival status 𝑌𝑝: 𝑀|𝐴, 𝐶~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑌𝑝) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑌𝑝) = 𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶 and 

Exposure 𝐴: 𝐴|𝑀, 𝐶, 𝑌𝑝 = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝐴
𝐼𝑂𝑅𝑊) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝐴
𝐼𝑂𝑅𝑊) = 𝜅0 + 𝜅𝑀𝑀 + 𝜅𝐴𝐶. 

Survival time (𝑇) Cox model 

Survival model 𝑇:  

l𝑜𝑔 (𝜆𝑌(𝑡|𝐴,𝑀, 𝐶, 𝑌𝑝 = 1 )) = 𝑙𝑜𝑔(𝜆0(𝑡)) + 𝛾0 + 𝛾𝐴𝐴 + 𝛾𝑀𝑀 + 𝛾𝐶𝐶 

where 𝜆0(𝑡) is the baseline hazard,  

Mediator 𝑀: 𝑀|𝐴, 𝐶, 𝑌𝑝 = 1 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑀) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑀) = 𝛽0 + 𝛽𝐴𝐴 + 𝛽𝐶𝐶, and 

Previous survival status 𝑌𝑝: 𝑀|𝐴, 𝐶~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑌𝑝) 

where 𝑙𝑜𝑔𝑖𝑡(𝜋𝑌𝑝) = 𝛼0 + 𝛼𝐴𝐴 + 𝛼𝐶𝐶. 

 

  



 

Table 3. Mechanism of the effect of hepatitis C virus infection on mortality, mediated 

through hepatitis B viral load. 

Type of 

outcome 
Method 

Causal 

effects 
Estimate 

95% CI 

Lower 

Bound 

95% CI 

Upper 

Bound 

p-value 

Binary survival 

status (𝑌) in 

risk difference 

scale 

Complete 

Case 

TE -0.018 -0.057 0.020 0.356 

NDE -0.029 -0.072 0.014 0.185 

NIE 0.011 0.002 0.020 0.022 

Regression-

based 

TE -0.074 -0.078 -0.070 <0.001 

NDE -0.083 -0.087 -0.079 <0.001 

NIE 0.009 0.004 0.014 <0.001 

IPW 

TE -0.071 -0.132 -0.009 0.025 

NDE -0.093 -0.160 -0.025 0.008 

NIE 0.022 -0.006 0.050 0.129 

IORW 

TE -0.059 -0.104 -0.013 0.011 

NDE -0.064 -0.109 -0.019 0.006 

NIE 0.005 0.005 0.006 <0.001 

Survival time 

(𝑇) in hazard 

ratio scale 

Complete 

Case 

TE 1.253 0.576 1.931 0.463 

NDE 1.491 0.695 2.287 0.226 

NIE 0.841 0.745 0.936 0.001 

Cox model 

TE 1.154 0.494 1.814 0.647 

NDE 1.408 0.633 2.184 0.302 

NIE 0.820 0.723 0.916 <0.001 

 

  



 

 
Figure 1. Direct acyclic graph of causal relationships between variables. 𝐴, 𝑀, 𝑌𝑝, 𝑌, and 

𝐶  denote the exposure, the mediator, the survival indicator between A and M, the survival 

outcome, and the baseline confounders, respectively. 𝑌 represents the survival status at the 

end of study. U is the unmeasured confounder between 𝑌𝑝  and 𝑌 . 𝑌  can be replaced by 

survival time 𝑇, if available. 

  



 

 

Figure 2. Performance evaluation for the methods under scenario 1. Rows represent 

measurements, and columns represent causal effects. The x axis of each plot represents the 

probability of 𝑌𝑝 = 1, and the y axis represents the quantity of measurements. The complete 

case approach, IORW, IPW, and Reg methods are indicated by red, green, blue, and purple lines, 

respectively. Abbreviations: NIE, nature indirect effect; NDE, nature direct effect; TE, total 

effect; RESE, root empirical standard error; RMSE, root mean square error; IORW, inverse 

odds ratio weighting; IPW, inverse probability weighting; Reg, regression-based method. 

   

 



 

 

Figure 3. Absolute values of the normalized biases for the three methods for (a) scenario 2 

and (b) scenario 3. The x axis of each plot represents the probability of 𝑌𝑝 = 1, and the y axis 

represents the absolute value of the normalized biases. The IORW, IPW, and Reg methods are 

indicated by red, green, and blue lines, respectively. Abbreviations: IORW, inverse odds ratio 

weighting; IPW, inverse probability weighting. 

 


