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Summary 

Effect decomposition is a critical technique for mechanism investigation in settings with 

multiple causally ordered mediators. Causal mediation analysis is a standard method for effect 

decomposition, but the assumptions required for the identification process are extremely strong. 

By extending the framework of controlled direct effects, this study proposes the effect 

attributable to mediators (EAM) as a novel measure for effect decomposition. For policy 

making, EAM represents how much an effect can be eliminated by setting mediators to certain 

values. From the perspective of mechanism investigation, EAM contains information about 

how much a particular mediator or set of mediators is involved in the causal mechanism 

through mediation, interaction, or both. The assumptions of EAM for identification are 

considerably weaker than the those of causal mediation analysis. We develop a semiparametric 

estimator of EAM with robustness to model misspecification. The asymptotic property is fully 

realized. We applied EAM to assess the magnitude of the effect of hepatitis C virus infection 

on mortality, which was eliminated by controlling alanine aminotransferase and treating 

hepatocellular carcinoma. 
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1. Introduction 

1.1. Research question 

Effect decomposition is critical for investigating the mechanism of a confirmed causal 

effect. In settings with a single mediator, causal mediation analysis is a typical technique for 

effect decomposition (Pearl 2001, Robins and Greenland 1992). For settings with multiple 

causally ordered mediators, several methods have been proposed based on the framework of 

causal mediation analysis (Daniel et al. 2015, Fasanelli et al. 2019, Huang and Yang 2017, Lin 

2019, Lin and VanderWeele 2017, Steen et al. 2017, Tai and Lin 2020, VanderWeele and 

Vansteelandt 2014, VanderWeele et al. 2014). Although these methods have contributed 

considerably to investigations on mechanisms, three limitations have been noted. First, the 

measure of each path is defined based on a cross-world counterfactual model (Avin et al. 2005, 

VanderWeele and Vansteelandt 2014), which cannot be verified through randomized controlled 

trials (RCTs). Second, the assumptions required for identification are strong (Albert and Nelson 

2011, Avin, Shpitser and Pearl 2005, Daniel, De Stavola, Cousens and Vansteelandt 2015). For 

example, one assumption is that the mediator–outcome confounders cannot be affected by the 

exposure or by previous mediators. This assumption, however, is easily violated in longitudinal 

studies. Another assumption is that all mediator–mediator confounders and exposure–mediator 

confounders are comprehensively adjusted for. This unconfoundedness assumption, however, 

is also difficult to fulfil in practice. Third, and finally, causal mediation analysis answers 

questions such as “how much of the causal effect passes through the mediation effect of a 

particular mediator or set of mediators?” This question, however, differs from the substantive 

ones that researchers may be more interested in, such as “how much of the causal effect is 

attributed to a particular mediator or set of mediators, including mechanisms such as interaction 

and mediation?” This particular substantive question is highly related to similar scientific 



 

questions, such as “how much of the causal effect can be eliminated by setting a particular 

mediator or set of mediators to a certain value or set of values?” This question is critical for 

policy makers to determine resource allocation when intervening in risk factors to prevent 

disease, especial when the exposure is difficult to modify. However, existing methods based on 

causal mediation analysis cannot answer such questions comprehensively. 

1.2. Contributions of this study 

To fill this research gap, we propose the effect attributable to mediators (EAM) as an 

alternative approach for effect decomposition based on the controlled direct effect (CDE) 

framework. CDE is a well-developed technique for effect decomposition in settings with a 

single mediator, in which the direct effect is measured under the intervention on a mediator. 

This method plays an essential role in policy making (Pearl 2001, Robins and Greenland 1992, 

VanderWeele 2011, VanderWeele 2013) and mechanism investigation (VanderWeele 2014). 

The generalized CDE for multiple mediators is defined to assess the contrast between two 

counterfactuals if the exposure had a different value when a particular set of mediators is 

intervened on. By disentangling the representations of the generalized CDEs into mediator-set-

specific expressions, EAM is defined as the difference between two CDEs; defined as such, 

the EAM interprets the effect eliminated when specific mediators are intervened on. 

Furthermore, by intervening on certain mediators, EAM can assess how the exposure-induced 

mechanism is attributable to the remaining mediators. Similar to CDE identification, for which 

the requisite assumptions are considerably weaker than those for natural direct and indirect 

effects (VanderWeele 2011), EAM only requires two assumptions: no unmeasured confounding 

between the exposure and outcome and no unmeasured confounding between mediators and 

the outcome. The cross-world exchangeability required for natural direct and indirect effects is 

a strong and untestable assumption; however, the unconfoundedness assumptions required for 

EAM are testable. Through the requirement of fewer and testable assumptions, EAM 



 

estimation can not only be verified by clinical trials but also be applied to a broader range of 

circumstances than natural direct and indirect effects can. 

This study makes three substantial contributions. First, as mentioned, the proposed EAM 

yields an entirely new effect decomposition of the total effect (TE) in the presence of multiple 

mediators. In general, the analysis of EAM characterizes the mechanism of exposure on the 

outcome attributable to a set of mediators. By contrast, causal mediation analysis of multiple 

mediators mainly focuses on mediation and aims to decompose the TE into several path-

specific effects (PSEs), which quantify the causal effects mediated through a certain mediation 

pathway (Avin, Shpitser and Pearl 2005). Similar to CDE (VanderWeele 2013), if no interaction 

is assumed, the proposed EAM can be regarded as an alternative to a PSE. Previous methods 

are either restricted to performing partial decomposition, through which all PSEs either cannot 

be identified (Fasanelli, Giraudo, Ricceri, Valeri and Zugna 2019, Huang and Yang 2017, Steen, 

Loeys, Moerkerke and Vansteelandt 2017, VanderWeele and Vansteelandt 2014, VanderWeele, 

Vansteelandt and Robins 2014) or are limited by either strong assumptions or changing 

definitions (Daniel, De Stavola, Cousens and Vansteelandt 2015, Lin 2019, Lin and 

VanderWeele 2017). By contrast, EAMs are derived from the complete decomposition of the 

TE under weaker assumptions.  

Second, the proposed EAM is defined as a general form of the controlled mediated effect 

(CME) (VanderWeele 2011). Although the CME is a causal interpretation for mediation, two 

limitations arise. First, the CMEs do not sum up to the TE. Second, the complete-mediation 

condition is required (i.e., the effect of exposure should be completely mediated by mediators). 

In this article, CMEs are shown to be a subset of EAMs when the complete-mediation condition 

is assumed. The gap between the TE and the sum of the CMEs is another type of EAM. 

Moreover, identification of the CMEs may be restricted to conditions in which the mediators 

are causally independent, whereas the EAM is still applicable when mediators are independent 



 

or causally ordered. 

Third, we derive both parametric and semiparametric estimators, including a doubly 

robust semiparametric estimator for the EAM. Empirically, many confounding factors are 

collected in nonexperimental studies to adjust for confounding bias. Due to the problems of 

dimensionality, nonparametric methods are usually not practical in such cases. Recently, 

powerful robust semiparametric methods have been proposed in the context of mediation 

analysis (Goetgeluk et al. 2008, Tchetgen Tchetgen and Shpitser 2012). A doubly robust (DR) 

estimator of the EAM is constructed based on two standard approaches, the regression-based 

estimator and the inverse probability weighting (IPW) estimator. The proposed DR estimator 

operates on the union of the two semiparametric model spaces and is therefore less sensitive to 

model misspecification. Furthermore, our DR estimator is consistent and asymptotically 

normal. As demonstrated by extensive simulation studies, the DR estimator results in less bias 

and a higher coverage rate than the regression-based and IPW estimators do in settings where 

the model of the outcome or exposure is misspecified. 

The remainder of this article is organized as follows: Section 2 introduces the definitions, 

assumptions, and identifications of the EAM with two ordered mediators. Section 3 proposes 

the DR estimators of the EAM and demonstrates its asymptotic properties. Section 4 presents 

an extension to an arbitrary number of ordered mediators. Section 5 discusses the relation 

between the EAM and the CME. Section 6 presents the results of a simulation study conducted 

to evaluate the performance of the proposed estimators. Section 7 applies the EAM to the 

dataset of the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer 

(REVEAL) from Taiwan. Finally, in Section 8, we conclude our study, discussing our 

contributions and the limitations of our method. 

2. EAMs with two causally ordered mediators 

2.1. Definitions of the EAM  



 

For simplicity, we introduce the EAM for two ordered mediators in this section. Extension 

to an arbitrary number of multiple ordered mediators is discussed in Section 4.  

Let 𝐴 denote the exposure, 𝑌 the outcome of interest, and 𝑀1 and 𝑀2 the two ordered 

mediators—where 𝑀1  affects 𝑀2 . All confounders among 𝐴 , 𝑀1 , 𝑀2 , and 𝑌  are 

comprehensively collected in the baseline confounder 𝐶0, and in the time-varying confounders 

𝐶1 and 𝐶2. The causal relationship among 𝐴, 𝑀1, 𝑀2, 𝑌, and all confounders is shown in 

Figure 1(a). The counterfactual model (also called the potential outcome model) is introduced 

as follows (Little and Rubin 2000). Let 𝑌(𝑎) be the hypothetical value of 𝑌 given that 𝐴 is 

set equal to 𝑎; 𝑌(𝑎,𝑚1) be the hypothetical value of 𝑌 given that 𝐴 and 𝑀1 are set equal 

to 𝑎 and 𝑚1, respectively; 𝑌(𝑎,𝑚2) be the hypothetical value of 𝑌 given that 𝐴 and 𝑀2 

are set equal to 𝑎 and 𝑚2, respectively; and 𝑌(𝑎,𝑚1, 𝑚2) be the hypothetical value of 𝑌 

given that 𝐴, 𝑀1, and 𝑀2 are set equal to 𝑎, 𝑚1, and 𝑚1, respectively. 

Robins and Greenland (1992) and Pearl (2001) have defined the CDE for a single mediator. 

Herein, we introduce CDEs in the presence of two mediators as follows. 

Definition 1. (CDE with two mediators) 

Suppose that 𝑀1 and 𝑀2 are mediators and 𝑎, 𝑎∗, 𝑚1 , and 𝑚2 are given values. The 

CDEs are defined as follows: 

𝐶𝐷𝐸1(𝑚1) ≡ 𝜑1(𝑎,𝑚1) − 𝜑1(𝑎
∗, 𝑚1), 

𝐶𝐷𝐸2(𝑚2) ≡ 𝜑2(𝑎,𝑚2) − 𝜑2(𝑎
∗, 𝑚2), and 

𝐶𝐷𝐸3(𝑚1,𝑚2) ≡ 𝜑3(𝑎,𝑚1, 𝑚2) − 𝜑3(𝑎
∗, 𝑚1, 𝑚2), 

where 𝜑1(𝑎,𝑚1) ≡ 𝐸(𝑌(𝑎,𝑚1)) , 𝜑2(𝑎,𝑚2) ≡ 𝐸(𝑌(𝑎,𝑚2)) , and 𝜑3(𝑎,𝑚1, 𝑚2) ≡

𝐸(𝑌(𝑎,𝑚1, 𝑚2)). 

Hereafter, 𝜑1(𝑎,𝑚1), 𝜑2(𝑎,𝑚2), and 𝜑3(𝑎,𝑚1, 𝑚2) are referred to as the multimediation 

parameters. CDE1(𝑚1)  represents the effect of 𝐴  on  𝑌  that is not attributable to 𝑀1 . 

Likewise, CDE2(𝑚2) measures the effect of 𝐴 on 𝑌 that is not attributable to 𝑀2. Finally, 

CDE3(𝑚1,𝑚2)  represents the effect of 𝐴  on 𝑌  that is not attributable to 𝑀1  or 𝑀2 . 



 

Additionally, the TE is required for the establishment of the EAMs and is defined as TE ≡

𝜑𝑇𝐸(𝑎) − 𝜑𝑇𝐸(𝑎
∗), where 𝜑𝑇𝐸(𝑎) ≡ 𝐸(𝑌(𝑎)) (Pearl 2001). 

Subsequently, we simplify the representations of the CDEs and TE into mediator-set-

specific expressions, and the EAMs are defined accordingly. 

Definition 2. (EAM with two mediators) 

Based on the CDEs in Definition 1 and TE, the EAMs are given as follows:  

𝐸𝐴𝑀𝑃0(𝑚1,𝑚2) ≡ 𝐶𝐷𝐸3(𝑚1,𝑚2), 

𝐸𝐴𝑀𝑃1(𝑚1,𝑚2) ≡ 𝐶𝐷𝐸2(𝑚2) − 𝐶𝐷𝐸3(𝑚1, 𝑚2), 

𝐸𝐴𝑀𝑃2(𝑚1,𝑚2) ≡ 𝐶𝐷𝐸1(𝑚1) − 𝐶𝐷𝐸3(𝑚1,𝑚2), and 

𝐸𝐴𝑀𝑃3(𝑚1,𝑚2) ≡  𝑇𝐸 + 𝐶𝐷𝐸3(𝑚1,𝑚2) − 𝐶𝐷𝐸1(𝑚1) − 𝐶𝐷𝐸2(𝑚2),  

where 𝑃0, 𝑃1, 𝑃2, and 𝑃3 are the null set, {𝑀1}, {𝑀2}, and {𝑀1, 𝑀2}, respectively.  

In Definition 2, 𝐸𝐴𝑀𝑃0(𝑚1, 𝑚2), which is defined as CDE3(𝑚1, 𝑚2), measures the alteration 

of 𝑌 directly caused by 𝐴 when 𝑀1 and 𝑀2 are set equal to 𝑚1 and 𝑚2, respectively. In 

general, 𝐸𝐴𝑀𝑃0(𝑚1,𝑚2) is the effect that is not due to either interaction or mediation of 𝑀1 

and 𝑀2.  

𝐸𝐴𝑀𝑃1(𝑚1,𝑚2) measures the contrast between the effect of 𝐴 on 𝑌 when 𝑀1 is set 

equal to 𝑚1 and the effect of 𝐴 on 𝑌 when 𝑀1 is not intervened on and when 𝑀2 is set 

equal to 𝑚2. That is, 𝐸𝐴𝑀𝑃1(𝑚1, 𝑚2) is the effect eliminated by setting 𝑀1 equal to 𝑚1 

when 𝑀2  is set equal to 𝑚2 . Conversely, 𝐸𝐴𝑀𝑃1(𝑚1,𝑚2)  can also be interpreted as the 

effect solely attributable to 𝑃1 = {𝑀1}  through the mechanism, which is mediation, 

interaction, or both. Similarly, 𝐸𝐴𝑀𝑃2(𝑚1, 𝑚2) measures the contrast between the effect of 

𝐴 on 𝑌 when 𝑀2 is set equal to 𝑚2 and the effect of 𝐴 on 𝑌 when 𝑀2 is not intervened 

on when 𝑀1 is set equal to 𝑚1. Thus, 𝐸𝐴𝑀𝑃2(𝑚1,𝑚2) is the effect eliminated by setting 

𝑀2 equal to 𝑚2 when 𝑀1 is set equal to 𝑚1, which can be interpreted as the effect solely 

attributable to 𝑃2 = {𝑀2} through the mechanism.  

Finally, we provide the interpretation of 𝐸𝐴𝑀𝑃3(𝑚1,𝑚2) . To this end, we rewrite the 



 

formulation of 𝐸𝐴𝑀𝑃3(𝑚1, 𝑚2) to the following: 

𝐸𝐴𝑀𝑃3(𝑚1,𝑚2) ≡ [𝑇𝐸 − CDE1(𝑚1)] − [CDE2(𝑚2) − CDE3(𝑚1,𝑚2)]. 

𝑇𝐸 − CDE1(𝑚1) represents the difference between the effect when 𝑀1 is intervened on and 

the effect when 𝑀1  is not intervened on. CDE2(𝑚2) − CDE3(𝑚1, 𝑚2)  represents the 

difference between the effect when 𝑀1  is intervened on and the effect when 𝑀1  is not 

intervened on under the case that 𝑀2  is intervened on as 𝑚2 . When the effect mediated 

sequentially through 𝑀1  and 𝑀2  and the effect of the 𝐴 − (𝑀1, 𝑀2)  interaction on the 

outcome are both zero, the difference between different settings for 𝑀2  is zero. Thus, 

𝐸𝐴𝑀𝑃3(𝑚1,𝑚2) captures the effect through the mechanism attributable to 𝑃3 = {𝑀1, 𝑀2}.  

   

 
Figure 1. Causal relationships illustrated by direct acyclic graphs (DAGs). (a) Causal relationship among 

exposure, two causally ordered multiple mediators, outcome variable, baseline confounder, and time-varying 

confounders, which are denoted by A, (𝑀1, 𝑀2), Y, 𝐶0, and (𝐶1, 𝐶2), respectively. (b) DAG illustrating 

the causal relationship for multiple mediators (𝑀1,𝑀2, … ,𝑀𝐾), in which (𝐶1, 𝐶2, 𝐶3, … , 𝐶𝐾) denotes the 

corresponding time-varying confounders. 

 

2.2. Assumptions and identification  

By definition, the identification of all EAMs can be achieved through the identification of 

CDE1(𝑚1) , CDE2(𝑚2) , CDE3(𝑚1,𝑚2) , and the TE. The following two sets of 

exchangeability assumptions must be satisfied: 

(A1) No unmeasured confounding among the exposure and outcome,  

i.e., (A1.1), 𝑌(𝑎,𝑚1) ⫫ 𝐴|𝐶0; (A1.2), 𝑌(𝑎,𝑚2) ⫫ 𝐴|𝐶0; (A1.3), 𝑌(𝑎,𝑚1, 𝑚2) ⫫ 𝐴|𝐶0; and  

(A1.4) 𝑌(𝑎) ⫫ 𝐴|𝐶0 



 

(A2) No unmeasured confounding among the mediators and outcome,  

i.e.,  (A2.1), 𝑌(𝑎,𝑚1) ⫫ 𝑀1|𝐶0, 𝐴, 𝐶1; (A2.2), 𝑌(𝑎,𝑚2) ⫫ 𝑀2|𝐶0, 𝐴, 𝐶1,𝑀1, 𝐶2;  

(A2.3), 𝑌(𝑎,𝑚1, 𝑚2) ⫫ 𝑀1|𝐶0, 𝐴, 𝐶1; and (A2.4), 𝑌(𝑎,𝑚1, 𝑚2) ⫫ 𝑀2|𝐶0, 𝐴, 𝐶1, 𝑀1, 𝐶2. 

We further define the following consistency assumption: 

𝑌(𝑎,𝑚1,𝑚2) = 𝑌, if 𝐴 = 𝑎, 𝑀1 = 𝑚1 and 𝑀2 = 𝑚2; 

𝑀1(𝑎) = 𝑀1, if 𝐴 = 𝑎; and 𝑀2(𝑎,𝑚1) = 𝑀2, if 𝐴 = 𝑎 and 𝑀1 = 𝑚1. 

Assuming (A1.4) and the consistency assumption, 𝜑𝑇𝐸(𝑎) can be immediately identified as 

∫ 𝐸(𝑌|𝑎, 𝑐0)𝑑𝐹(𝑐0)𝑐0
 . The identification of the multimediation parameters, 𝜑1(𝑎,𝑚1) , 

𝜑2(𝑎,𝑚2), and 𝜑3(𝑎,𝑚1, 𝑚2), is detailed in Theorem 1. 

Theorem 1. (Identification of multimediation parameters) 

Suppose that the causal structure among 𝐴, 𝑀1, 𝑀2, 𝑌, 𝐶0, 𝐶1, and 𝐶2 follows the structure 

shown in Figure 1. Then, under (A1.1), (A2.1), and the consistency assumption, 𝜑1(𝑎,𝑚1) is 

identified as  

∫ 𝐸(𝑌|𝑐0, 𝑎, 𝑐1, 𝑚1, 𝑐2, 𝑚2)𝑑𝐹(𝑚2|𝑐0, 𝑎, 𝑐1, 𝑚1, 𝑐2)
𝑐0,𝑐1,𝑐2,𝑚2

 

 × 𝑑𝐹(𝑐2|𝑐0, 𝑎, 𝑐1,𝑚1)𝑑𝐹(𝑐1|𝑐0, 𝑎)𝑑𝐹(𝑐0); 

under (A1.2), (A2.2), and the consistency assumption, 𝜑2(𝑎,𝑚2) is identified as  

∫ 𝐸(𝑌|𝑐0, 𝑎, 𝑐1, 𝑚1, 𝑐2, 𝑚2)𝑑𝐹(𝑐2|𝑐0, 𝑎, 𝑐1, 𝑚1)
𝑐0,𝑐1,𝑚1,𝑐2

 

 × 𝑑𝐹(𝑚1|𝑐0, 𝑎, 𝑐1)𝑑𝐹(𝑐1|𝑐0, 𝑎)𝑑𝐹(𝑐0); 

and under (A1.1), (A2.3), (A2.4), and the consistency assumption, 𝜑3(𝑎,𝑚1, 𝑚2) is identified 

as  

∫ 𝐸(𝑌|𝑐0, 𝑎, 𝑐1, 𝑚1, 𝑐2, 𝑚2)𝑑𝐹(𝑐2|𝑐0, 𝑎, 𝑐1, 𝑚1)
𝑐0,𝑐1,𝑐2

𝑑𝐹(𝑐1|𝑐0, 𝑎)𝑑𝐹(𝑐0), 

where 𝑎, 𝑚1, and 𝑚2 are the prespecified values. 

Theorem 1 follows from the g formula for causal effects (Pearl 2001, Pearl and Robins 1995, 

Robins 1987, Robins 1986). The proof for Theorem 1 is presented in Appendix A. The 

identifiability of the EAMs can be derived from the linear combinations of multimediation 

parameters based on Definition 2. 

Similar to the identification of the CDEs (VanderWeele 2011), identifying the EAMs only 

requires the assumptions of no exposure–outcome confounding and no mediator–outcome 



 

confounding. The assumptions of exposure–mediator and mediator–mediator 

unconfoundedness are not required. This constitutes a significant advantage for investigating 

causal mechanisms with multiple mediators because the exposure–mediator confounders and 

mediator–mediator confounders are sometimes difficult to collect comprehensively. In addition, 

all the EAMs—or, equivalently, 𝜑1, 𝜑2, and 𝜑3—can be verified through RCTs. For example, 

𝜑3(𝑎,𝑚1, 𝑚2)  and 𝜑3(𝑎
∗, 𝑚1,𝑚2)  can be estimated, respectively, by 

𝐸(𝑌|𝐴 = 𝑎,𝑀1 = 𝑚1, 𝑀2 = 𝑚2) and 𝐸(𝑌|𝐴 = 𝑎∗, 𝑀1 = 𝑚1, 𝑀2 = 𝑚2) in an RCT when 𝐴 

is randomly assigned to 𝑎  and 𝑎∗  and (𝑀1,𝑀2)  is assigned to (𝑚1, 𝑚2 ). By contrast, all 

causal estimands in causal mediation analysis are defined based on cross-world counterfactuals, 

which cannot be verified through RCTs.  

3. Robust estimation 

 In this section, we present an estimation procedure for  

Φ = {𝜑1(𝑎,𝑚1), 𝜑2(𝑎,𝑚2), 𝜑3(𝑎,𝑚1, 𝑚2), 𝜑𝑇𝐸(𝑎)}. 

The estimation of the EAMs can immediately be achieved through a linear transformation 

between the EAMs and Φ . Subsequently, we propose three approaches to develop the 

estimators of Φ  in different model spaces. Given the corresponding model space, the 

estimators are consistent and asymptotically normal. Importantly, the DR estimators are less 

sensitive to the model misspecification that the regression-based and IPW estimators are. 

 Theorem 1 shows that estimating Φ requires estimating the conditional expectation of 

the outcome and the conditional densities for mediators and time-varying confounders. 

Moreover, in some of the following approaches, we must specify the density function of the 

exposure. Accordingly, we consider the following two model spaces: 

(A) ℳ𝐴: the models for the outcome, mediators, and time-varying confounders are correctly 

and separately specified; 

(B) ℳ𝐵: the models for the exposure and mediators are correctly and separately specified. 



 

Let 𝑓(𝑚2|𝑐0, 𝑎, 𝑐1, 𝑚1, 𝑐2; 𝜷𝟐) denote the density function of 𝑀2|𝐶0, 𝐴, 𝐶1, 𝑀1, 𝐶2 evaluated 

at 𝑐0 , 𝑎 , 𝑐1 , 𝑚1 , and 𝑐2  with parameter 𝜷𝟐 . Similarly, let 𝑓(𝑐2|𝑐0, 𝑎, 𝑐1,𝑚1; 𝜸𝟐) , 

𝑓(𝑚1|𝑐0, 𝑎, 𝑐1; 𝜷𝟏) , 𝑓(𝑐1|𝑐0, 𝑎; 𝜸𝟏) , and 𝑓(𝑎|𝑐0; 𝜹)  be the conditional density functions of 

𝐶2  with parameter 𝜸𝟐 , 𝑀1  with parameter 𝜷𝟏 , 𝐶1  with parameter 𝜸𝟏 , and 𝐴  with 

parameter 𝜹, respectively. 𝐸(𝑌|𝑐0, 𝑎, 𝑐1,𝑚1, 𝑐2, 𝑚2; 𝜶) is the expectation of 𝑌 evaluated at 

𝑐0, 𝑎, 𝑐1, 𝑚1, and 𝑐2 with parameter 𝜶.  

We propose parametric estimation as the first approach. This approach adopts the 

maximum likelihood estimator (MLE) when parametric models are specified for 𝑀2, 𝐶2, 𝑀1, 

and 𝐶1, and an empirical distribution is specified for 𝐶0. In causal inference, the parametric 

estimation relies on the regression model. Thus, this approach is referred to as the regression-

based estimation approach. By the plug-in principle (Casella and Berger 2002) and Theorem 1, 

the MLEs of 𝜑𝑇𝐸(𝑎), 𝜑1(𝑎,𝑚1), 𝜑2(𝑎,𝑚2), and 𝜑3(𝑎,𝑚1, 𝑚2), are given by  

𝜑̂𝑇𝐸(𝑎) = ℙ𝑛(𝐸(𝑌|𝑎, 𝐶0))            

𝜑̂1
𝑅𝑒𝑔(𝑎,𝑚1) = ℙ𝑛[∫ 𝐸(𝑌|𝐶0, 𝑎, 𝑐1, 𝑚1, 𝑐2, 𝑚2; 𝜶̂)𝑑𝐹(𝑚2|𝐶0, 𝑎, 𝑐1, 𝑚1, 𝑐2; 𝜷̂𝟐)

𝑐1,𝑐2,𝑚2

 

× 𝑑𝐹(𝑐2|𝐶0, 𝑎, 𝑐1,𝑚1; 𝜸̂𝟐)𝑑𝐹(𝑐1|𝐶0, 𝑎; 𝜸̂𝟏) ], 

𝜑̂2
𝑅𝑒𝑔(𝑎,𝑚2) = ℙ𝑛[∫ 𝐸(𝑌|𝐶0, 𝑎, 𝑐1,𝑚1, 𝑐2, 𝑚2; 𝜶̂)

𝑐1,𝑐2,𝑚1

𝑑𝐹(𝑐2|𝐶0, 𝑎, 𝑐1,𝑚1; 𝜸̂𝟐) 

× 𝑑𝐹(𝑚1|𝐶0, 𝑎, 𝑐1; 𝜷̂𝟏)𝑑𝐹(𝑐1|𝐶0, 𝑎; 𝜸̂𝟏)], and 

𝜑̂3
𝑅𝑒𝑔(𝑎,𝑚1, 𝑚2) = ℙ𝑛[∫ 𝐸(𝑌|𝐶0, 𝑎, 𝑐1, 𝑚1, 𝑐2, 𝑚2; 𝜶̂)

𝑐1,𝑐2

𝑑𝐹(𝑐2|𝐶0, 𝑎, 𝑐1, 𝑚1; 𝜸̂𝟐) 

× 𝑑𝐹(𝑐1|𝐶0, 𝑎; 𝜸̂𝟏) ], 

where ℙ𝑛[∙] = 𝑛
−1∑ [∙]𝑖𝑖  is the empirical average operator, and 𝜶̂, 𝜷̂𝟏, 𝜷̂𝟐, 𝜸̂𝟏, and 𝜸̂𝟐 are 

the MLEs of 𝜶 ,  𝜷𝟏 , 𝜷𝟐 , 𝜸𝟏 , and 𝜸𝟐 , respectively. The regression-based estimators are 

consistent only when the density functions of mediators, time-varying confounders, and the 

outcome are correctly specified (i.e., the model space is assumed to be ℳ𝐴). 

 Next, we propose the IPW estimators of the EAMs. Lemma 1 supports the construction 

of IPW estimators. 



 

Lemma 1. (IPW) 

Suppose that the model space is ℳ𝐵. If the first moment of (𝑌, 𝐶0, 𝐴, 𝐶1, 𝑀1, 𝐶2, 𝑀2) is finite, 

then 

ℙ𝑛 [
𝐼(𝐴 = 𝑎)

𝑓(𝐴|𝐶0; 𝜹)
𝑌]  

    𝑝    
→   𝜑

𝑇𝐸
(𝑎), 

ℙ𝑛 [
𝐼(𝑀1 = 𝑚1)𝐼(𝐴 = 𝑎)

𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷𝟏)𝑓(𝐴|𝐶0; 𝜹)
𝑌]   

    𝑝    
→   𝜑

1
(𝑎,𝑚1), 

ℙ𝑛 [
𝐼(𝑀2 = 𝑚2)𝐼(𝐴 = 𝑎)

𝑓(𝑀2|𝐶0, 𝐴, 𝐶1,𝑀1, 𝐶2; 𝜷𝟐)𝑓(𝐴|𝐶0; 𝜹)
𝑌]

    𝑝    
→    𝜑

2
(𝑎,𝑚2), 𝑎𝑛𝑑 

ℙ𝑛 [
𝐼(𝑀1 = 𝑚1, 𝑀2 = 𝑚2)𝐼(𝐴 = 𝑎)

𝑓(𝑀2|𝐶0, 𝐴, 𝐶1,𝑀1, 𝐶2; 𝜷𝟐)𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷𝟏)𝑓(𝐴|𝐶0; 𝜹)
𝑌]  

    𝑝    
→   𝜑

3
(𝑎,𝑚1, 𝑚2), 

when 𝑛 →  ∞ . In these expressions, 𝑎 , 𝑚1 , and 𝑚1  are prespecified, 𝐼(∙)  and 𝑓(∙) 

represent the indicator function and density function, respectively, and ℙ𝑛[∙] = 𝑛
−1∑ [∙]𝑖𝑖 . 

The four expressions in Lemma 1 provide an unbiased estimator of Φ. The poof is shown in 

Appendix B. Based on this unbiasedness, the asymptotic properties directly follow from the 

weak law of large numbers. Thus, the IPW estimators are defined as  

𝜑̂
𝑇𝐸
(𝑎) = ℙ𝑛 [

𝐼(𝐴 = 𝑎)

𝑓(𝐴|𝐶0; 𝜹̂)
𝑌], 

𝜑̂
1
𝐼𝑃𝑊(𝑎,𝑚1) = ℙ𝑛 [

𝐼(𝑀1 = 𝑚1)𝐼(𝐴 = 𝑎)

𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷̂𝟏)𝑓(𝐴|𝐶0; 𝜹̂)
× 𝑌], 

𝜑̂
2
𝐼𝑃𝑊(𝑎,𝑚2) = ℙ𝑛 [

𝐼(𝑀2 = 𝑚2)𝐼(𝐴 = 𝑎)

𝑓(𝑀2|𝐶0, 𝐴, 𝐶1,𝑀1, 𝐶2; 𝜷̂𝟐)𝑓(𝐴|𝐶0; 𝜹̂)
𝑌] , and 

𝜑̂
3
𝐼𝑃𝑊(𝑎,𝑚1,𝑚2) = ℙ𝑛 [

𝐼(𝑀1 = 𝑚1, 𝑀2 = 𝑚2)𝐼(𝐴 = 𝑎)

𝑓(𝑀2|𝐶0, 𝐴, 𝐶1,𝑀1, 𝐶2; 𝜷̂𝟐)𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷̂𝟏)𝑓(𝐴|𝐶0; 𝜹̂)
𝑌], 

where 𝜷̂𝟏 , 𝜷̂𝟐 , and 𝜹̂  are the MLEs of 𝜷𝟏 , 𝜷𝟐 , and 𝜹 , respectively. Essentially, the IPW 

estimator is semiparametric. Given standard regularity conditions, IPW estimators are 

consistent under ℳ𝐵 . The asymptotic variance of IPW estimators can be consistently 

estimated using the sandwich estimator. 

Regression-based and IPW estimators may be severely biased if their corresponding 

models are misspecified. That is, IPW estimators generally fail to be consistent when their 

models of the exposure and mediators are misspecified, even if the model of the outcome is 

correct. Similarly, regression-based estimators must have correct density functions of the 



 

outcome and mediators for estimation consistency. Therefore, a robust estimator is required 

that remains consistent when one, but not necessarily both, of ℳ𝐴  and ℳ𝐵  is correctly 

specified. We derive the DR estimators of Φ on the union model space ℳ𝑈 = ℳ𝐴 ∪ℳ𝐵. To 

avoid lengthy formulations, we focus on deriving the DR estimator of 𝜑1(𝑎,𝑚1) in the main 

context. The derivations for the remaining parts of Φ are provided in Appendix C. Consider 

the following estimating equation:  

𝑈1(𝜇, 𝜽;𝑚1, 𝑎) =
𝐼(𝑀1 = 𝑚1)𝐼(𝐴 = 𝑎)

𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷𝟏)𝑓(𝐴|𝐶0; 𝜹)
{𝑌 − 𝑄1(𝑎,𝑚1; 𝜶, 𝜸𝟏)} 

+{𝑄1(𝑎,𝑚1; 𝜶, 𝜸𝟏) − 𝜇}, 

where 𝜽 = {𝜶, 𝜷𝟏, 𝜸𝟏, 𝜹} and 

𝑄1(𝑎,𝑚1; 𝜶, 𝜸𝟏) = ∫ 𝐸(𝑌|𝐶0, 𝑎, 𝑐1,𝑚1; 𝜶)
𝑐1

𝑑𝐹(𝑐1|𝐶0, 𝑎; 𝜸𝟏). 

We define 𝑈̂1(𝜇, 𝜽̂;𝑚1, 𝑎)  as 𝑈1(𝜇, 𝜽;𝑚1, 𝑎)  evaluated at 𝜶̂ , 𝜷̂𝟏 , and 𝜹̂ . By solving 

ℙ𝑛[𝑈̂1(𝜇, 𝜽̂;𝑚1, 𝑎)] = 0, the proposed DR estimator of 𝜑1(𝑎,𝑚1) is defined as 

𝜑̂1
𝐷𝑅(𝑎,𝑚1) = ℙ𝑛[ 

𝐼(𝑀1 = 𝑚1)𝐼(𝐴 = 𝑎)

𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷̂𝟏)𝑓(𝐴|𝐶0; 𝜹̂)
{𝑌 − 𝑄1(𝑎,𝑚1; 𝜶̂, 𝜸̂𝟏)} 

+𝑄1(𝑎,𝑚1; 𝜶̂, 𝜸̂𝟏) ]. 

According to following theorem, 𝜑̂1
𝐷𝑅(𝑎,𝑚1) is consistent and asymptotically normal (CAN) 

under the union model space of ℳ𝐴 and ℳ𝐵. 

Theorem 2. (Asymptotic property) 

Suppose that assumptions (A1), (A2), and consistency hold and that the regularity conditions 

of Theorem A.1 in Robins et al. (1992) hold. Then, 𝜑̂1
𝐷𝑅(𝑎,𝑚1) is regular and asymptotically 

linear under ℳ𝑈 =ℳ𝐴 ∪ℳ𝐵 with the influence function  

𝜁1(𝜇
∗, 𝜽∗; 𝑚1, 𝑎) 

= 𝑈1(𝜇
∗, 𝜽∗; 𝑚1, 𝑎) + 𝐸(

𝜕𝑈1(𝜇
∗, 𝜽;𝑚1, 𝑎)

𝜕𝜽𝑻
)𝐸(
𝜕Λ𝟏(𝜽;𝑚1, 𝑎)

𝜕𝜽𝑻
)−1Λ 𝟏(𝜽;𝑚1, 𝑎)|

𝜽=𝜽∗
, 

where 𝜇∗ = 𝜑1(𝑎,𝑚1), 𝜽
∗ is the probability limit of 𝜽̂, and Λ𝟏(𝜽;𝑚1, 𝑎) is the collection 

of score functions for the MLEs of 𝑓(𝑀1|𝐶0, 𝐴, 𝐶1; 𝜷𝟏) , 𝑓(𝐴|𝐶0; 𝜹) , 𝑓(𝐶1|𝐶0, 𝑎; 𝜸𝟏) , and 

𝐸(𝑌|𝐶0, 𝐴, 𝐶1, 𝑀1, 𝐶2, 𝑀2; 𝜶). Consequently, by the central limit theorem and Slutsky’s theorem, 



 

𝜑̂1
𝐷𝑅(𝑎,𝑚1) is a CAN estimator of 𝜑1(𝑎,𝑚1) under the union model space ℳ𝑈. 

According to Theorem 2, 

√𝑛(𝜑̂1
𝐷𝑅(𝑎,𝑚1) − 𝜑1(𝑎,𝑚1)) = √𝑛 (∑ 𝜁1𝑖(𝜇

∗, 𝜽∗; 𝑚1, 𝑎)
𝑖

) + 𝑜𝑝(1), 

where 𝑜𝑝(1) converges to zero probability and 𝜁1𝑖 is the influence function 𝜁1 evaluated at 

the ith observation. Consequently, we have √𝑛(𝜑̂1
𝐷𝑅(𝑎,𝑚1) − 𝜑1(𝑎,𝑚1))

𝑑
→𝑁(0, 𝜎𝜇∗

2 ), where 

𝜎𝜇∗
2 = 𝐸(𝜁1(𝜇

∗, 𝜽∗; 𝑚1, 𝑎)
2). The proof of Theorem 2 is provided in Appendix C. Theorem 2 

and Appendix C offer the DR estimators of 𝜑1(𝑎,𝑚1) , 𝜑2(𝑎,𝑚2) , 𝜑3(𝑎,𝑚1, 𝑚2) , and 

𝜑𝑇𝐸(𝑎), which are referred to as 𝜑̂1
𝐷𝑅(𝑎,𝑚1), 𝜑̂2

𝐷𝑅(𝑎,𝑚2), 𝜑̂3
𝐷𝑅(𝑎,𝑚1, 𝑚2), and 𝜑̂𝑇𝐸

𝐷𝑅(𝑎), 

respectively.  

4. EAM with an arbitrary number of multiple causally or-

dered mediators 

4.1. General formulation of the EAMs  

In this section, we provide the general formulations of EAMs when the number of 

mediators is arbitrary. The exposure 𝐴 , outcome 𝑌 , and baseline confounder 𝐶0  are still 

assumed. Additionally, we assume 𝐾  causally ordered multiple mediators 𝐌 =

(𝑀1, 𝑀2, … ,𝑀𝐾)  and 𝐾  time-varying confounders 𝐂 = (𝐶1, 𝐶2, 𝐶3, … , 𝐶𝐾) , where 𝐶𝑘 

represents the confounders among 𝑀𝑘 and 𝑌 for 𝑘 ∈ {1, 2, … , 𝐾}. The causal relationships 

between these variables are illustrated in the DAG in Figure 1(b).  

For 𝐾 mediators, we consider 2𝐾 − 1 distinct CDEs and 2𝐾 EAMs. To clearly define 

each CDE and EAM, we introduce a definitional system for a generalized setting. For the dth 

EAM, the vector of binary variables 𝑃𝑑 = (𝑝𝑑(𝑀1), … , 𝑝𝑑(𝑀𝐾))  represents the 

correspondence to a subset of {𝑀1, … ,𝑀𝐾} that is attributed to the dth EAM. In 𝑃𝑑, 𝑝𝑑(𝑀𝑘) 

is an indicator function where 𝑝𝑑(𝑀𝑘) = 1  if the dth EAM is attributable to 𝑀𝑘  and 

𝑝𝑑(𝑀𝑘) = 0  otherwise. Because (𝑝𝑑(𝑀1), … , 𝑝𝑑(𝑀𝐾))  has a one-to-one relation with the 



 

subscript d, we set 𝑑 = ∑ 𝑝𝑑(𝑀𝑘)
𝐾
𝑘=1 × 2𝑘−1 . Hence, we have 𝑑 ∈ {0,1,2, … , 2𝐾 − 1} . We 

subsequently define the following set: 

   ℚ = {𝑃𝑑|𝑃𝑑 = (𝑝𝑑(𝑀1), … , 𝑝𝑑(𝑀𝐾)) 𝑎𝑛𝑑  𝑑 = ∑ 𝑝𝑑(𝑀𝑘)
𝐾
𝑘=1 × 2𝑘−1}. 

Based on ℚ, we further define ℊ𝑑(𝑚(1,𝐾)) as a regime of 𝑀1,…, 𝑀𝐾 corresponding to 𝑃𝑑 

under a specified value 𝑚(1,𝐾) = (𝑚1, … ,𝑚𝐾). In the regime ℊ𝑑(𝑚(1,𝐾)), we set 𝑀𝑘 equal 

to 𝑚𝑘 when 𝑝𝑑(𝑀𝑘) = 1, and we do not intervene in 𝑀𝑘 when 𝑝𝑑(𝑀𝑘) = 0. Eventually, 

each regime other than ℊ0(𝑚(1,𝐾)) corresponds to a CDE, and ℊ0(𝑚(1,𝐾)) represents the TE. 

Based on ℚ, we provide the definition for the generalized CDE as follows: 

Definition 3. (Generalized CDE) 

Suppose that (𝑀1, … ,𝑀𝐾)  are 𝐾  ordered mediators and 𝑎 , 𝑎∗ , and 𝑚(1,𝐾) =

(𝑚1,𝑚2, … ,𝑚𝐾)  are specified values. Given a regime ℊ𝑑(𝑚(1,𝐾)) , the corresponding 

multimediation parameter 𝜑𝑑(𝑎,𝑚(1,𝐾)) is defined as 

𝜑𝑑(𝑎,𝑚(1,𝐾)) ≡ 𝐸(𝑌(𝑎, ℊ𝑑(𝑚(1,𝐾)))). 

Accordingly, the corresponding generalized CDE is defined as  

𝐶𝐷𝐸𝑑(𝑚(1,𝐾)) = 𝜑𝑑(𝑎,𝑚(1,𝐾)) − 𝜑𝑑(𝑎
∗, 𝑚(1,𝐾)). 

To provide the intuition underlying these notations, we rewrite them in the case with two 

mediators, as detailed in Section 2. 𝑃0 corresponds to the vector (𝑝0(𝑀1), 𝑝0(𝑀2)) = (0,0), 

and ℊ0(𝑚1,𝑚2) thus represents the situation in which neither mediator is intervened on. For 

the corresponding counterfactuals in Definition 3, 𝑌(𝑎, ℊ0(𝑚(1,2)))  is identical to 𝑌(𝑎) . 

Likewise, 𝑃1  and 𝑃2  correspond to the vectors (𝑝1(𝑀1), 𝑝1(𝑀2)) = (1,0)  and 

(𝑝2(𝑀1), 𝑝2(𝑀2)) = (0,1) , respectively. In the regimes ℊ1(𝑚1,𝑚2)  and ℊ2(𝑚1,𝑚2) , one 

mediator is intervened on, and the other mediator is not intervened on. Thus, 

𝑌(𝑎, ℊ1(𝑚(1,2))) = 𝑌(𝑎,𝑚1)  and 𝑌(𝑎, ℊ2(𝑚(1,2))) = 𝑌(𝑎,𝑚2) . 𝑃3  corresponds to the 

vector (𝑝3(𝑀1), 𝑝3(𝑀2)) = (1,1) . In regime ℊ0(𝑚1,𝑚2) , all mediators are intervened on. 

The corresponding counterfactual 𝑌(𝑎, ℊ3(𝑚(1,2))) is identical to 𝑌(𝑎,𝑚1, 𝑚2). 

The general formulations of the EAMs are given in Definition 4.  

Definition 4. (Generalized EAM) 



 

Based on ℚ, we have  

(

𝐶𝐷𝐸0(𝑚(1,𝐾))

⋮
𝐶𝐷𝐸2𝐾−1(𝑚(1,𝐾), )

) = 𝐻(

𝐸𝐴𝑀𝑷𝟎(𝑚(1,𝐾))

⋮
𝐸𝐴𝑀𝑷

𝟐𝑲−𝟏
(𝑚(1,𝐾))

) 

where 𝐻  is a transformation matrix with 𝐻𝑗1𝑗2 = 𝐼(< 𝑃𝑗1−1, 𝑃𝑗2−1 >= 0)  . 𝐼(⋅)  represents 

the indicator function, and <⋅,⋅> is the inner product. 

Thus, the generalized EAMs are defined as  

(

𝐸𝐴𝑀𝑃0(𝑚(1,𝐾))

⋮
𝐸𝐴𝑀𝑃

2𝐾−1
(𝑚(1,𝐾))

) = 𝐻−1(

𝐶𝐷𝐸0(𝑚(1,𝐾))

⋮
𝐶𝐷𝐸2𝐾−1(𝑚(1,𝐾))

). 

Because H is invertible, the generalized EAMs in Definition 4 are well-defined. In Definition 

4, 𝐸𝐴𝑀𝑃𝑑(𝑚(1,𝐾)) is interpreted as the effect of 𝐴 on 𝑌 through the mechanism attributable 

to the 𝑃𝑑-defined subset of {𝑀1, … ,𝑀𝐾}.  

4.2. Identification  

 Similar to the identification process presented in Section 2, we must specify the 

assumptions for identifying generalized EAMs. The following two assumptions are required: 

(B1) No unmeasured confounding among the exposure and outcome,  

𝑌(𝑎, ℊ𝑑(𝑚(1,𝐾))) ⫫ 𝐴|𝐶0. 

(B2) No unmeasured confounding among the mediators and outcome  

𝑌(𝑎, ℊ𝑑(𝑚(1,𝐾))) ⫫ 𝑀𝑘|𝐶(0,𝑘), 𝐴,𝑀(1,𝑘−1) if 𝑝𝑑(𝑀𝑘) = 1 for 𝑘 ∈ {1,2, … , 𝐾}, 

where 𝑋(𝑝,𝑞) represents the vector (𝑋𝑝, … , 𝑋𝑞) if 𝑝 ≤ 𝑞, and 𝑋(𝑝,𝑞) is a null set if 𝑝 > 𝑞. 

(B1) and (B2) are the generalized versions of (A1) and (A2), respectively. We further adopt the 

following consistency assumption: (1) for the outcome, 𝑌(𝑎,𝑚(1,𝐾)) = 𝑌  if 𝐴 = 𝑎  and 

𝑀(1,𝐾) = 𝑚(1,𝐾) ; (2) for the mediators, 𝑀𝑘(𝑎,𝑚(1,𝑘−1)) = 𝑀𝑘  if 𝐴 = 𝑎  and 𝑀(1,𝑘−1) =

𝑚(1,𝑘−1)  for 𝑘 ∈ {1,2, … , 𝐾} . The identification of multimediation parameters is given in 

Theorem 3. 

Theorem 3. (Identification of 𝜑𝑑(𝑎,𝑚(1,𝐾))) 

Under (B1), (B2), and the consistency assumption, the multimediation parameter 

𝜑𝑑(𝑎,𝑚(1,𝐾)) in Definition 1 can be nonparametrically identified as follows: 



 

𝜑𝑑(𝑎,𝑚(1,𝐾)) = ∫ ∫ 𝐸(𝑌|𝑐0, 𝑎, 𝑐(1,𝐾), 𝑚(1,𝐾))Å𝑑𝑐(0,𝐾)
  

 ×∏ (1 − 𝑝𝑑(𝑀𝑘))𝑑𝐹(𝑚𝑘|𝑐0, 𝑎, 𝑐(1,𝑘),𝑚(1,𝑘−1))
𝐾
𝑘=1   

 ×∏ 𝑑𝐹(𝑐𝑘|𝑐0, 𝑎, 𝑐(1,𝑘−1), 𝑚(1,𝑘−1))
𝐾
𝑘=1 𝑑𝐹𝐶0,  

where 𝑝𝑑(𝑀𝑘)  represents the kth element of 𝑷𝒅  and Å𝑑 = {(1 − 𝑝𝑑(𝑀𝑘)) × 𝑚𝑘|𝑘 =

1, … , 𝐾}. 

The proof of Theorem 3 is presented in Appendix D.  

5. Relation to CME 

Although the CDE, natural direct effect, and natural indirect effect (Pearl 2001) are well-

defined, no generally applicable definition of the controlled indirect effect is available. 

VanderWeele (2011) first proposed the complete-mediation condition, under which CME is 

well-defined. In the case of two mediators, the CME of 𝐴 on 𝑌 through 𝑀1 controlling for 

𝑀2  at 𝑚2  is defined as CME𝑀1(𝑚2) = 𝐸(𝑌(𝑎,𝑚2)) − 𝐸(𝑌(𝑎
∗, 𝑚2)) . Likewise, 

CME𝑀2(𝑚1) is defined as 𝐸(𝑌(𝑎,𝑚1)) − 𝐸(𝑌(𝑎
∗, 𝑚1)), which represents the CME of 𝐴 on 

𝑌  through 𝑀2  controlling for 𝑀1  at 𝑚1 . CME𝑀2(𝑚1)  and CME𝑀1(𝑚2)  are 

mathematically identical to CDE1(𝑚1) and CDE2(𝑚2), respectively. In the framework of our 

proposed method, the complete-mediation condition indicates that 𝐸𝐴𝑀𝑃0(𝑚1, 𝑚2) = 0. Thus, 

we can derive CME𝑀2(𝑚1) = 𝐸𝐴𝑀𝑃1(𝑚1,𝑚2) and CME𝑀1(𝑚2) = 𝐸𝐴𝑀𝑃2(𝑚1,𝑚2). Based 

on Definition 2, TE − CME𝑀2(𝑚1) − CME𝑀1(𝑚2) is equivalent to 𝐸𝐴𝑀𝑃3(𝑚1,𝑚2). That is, 

the CME cannot capture 𝐸𝐴𝑀𝑃3(𝑚1, 𝑚2), which is the effect of the exposure on the outcome 

jointly attributable to 𝑀1 and 𝑀2. Thus, 𝐸𝐴𝑀𝑃3(𝑚1, 𝑚2) fills the gap between the TE and 

CME.  

Empirically, the complete-mediation condition is an extremely strong assumption for 

clinical studies or biological experiments in which a few mediators are collected. As shown in 

the application to liver disease in Section 7, it is unrealistic to assume that the effect of hepatitis 

C virus infection on mortality is completely mediated through the level of alanine 



 

aminotransferase and through liver cancer status. Thus, the CME is not applicable in such cases, 

whereas the proposed EAM is unrestricted to the complete-mediation condition. If the 

mediators are collected comprehensively, the complete-mediation condition can be 

approximately satisfied. In this case, a general formulation of the CME with an arbitrary 

number of mediators is required. However, the original paper lacks a general formulation of 

the CME. Fortunately, as explained above in this section, the CMEs are equivalent to some of 

the EAMs if the complete-mediation condition is satisfied. The generalized EAM can improve 

the utility of the CME. Thus, the proposed EAM generalizes the CME by relaxing the 

complete-mediation condition, allowing for an arbitrary number of mediators, and filling the 

gap between the TE and CME. 

Furthermore, for identification, VanderWeele (2011) adopted two assumptions, namely 

𝑌(𝑎,𝑚2) ⫫ 𝐴|𝐶0 and 𝑌(𝑎,𝑚2) ⫫ 𝑀2|𝐶0, 𝐴, 𝐶2, to identify CME𝑀1(𝑚2) as 

∫ 𝐸(𝑌|𝑐0, 𝑎, 𝑐2, 𝑚2)
𝑐0,𝑐2

𝑑𝐹(𝑐2|𝑐0, 𝑎)𝑑𝐹(𝑐0) − ∫ 𝐸(𝑌|𝑐0, 𝑎
∗, 𝑐2, 𝑚2)

𝑐0,𝑐2

𝑑𝐹(𝑐2|𝑐0, 𝑎
∗)𝑑𝐹(𝑐0). 

Under 𝑌(𝑎,𝑚1) ⫫ 𝐴|𝐶0 and 𝑌(𝑎,𝑚1) ⫫ 𝑀1|𝐶0, 𝐴, 𝐶1, CME𝑀2(𝑚1) is identified as 

∫ 𝐸(𝑌|𝑐0, 𝑎, 𝑐1, 𝑚1)
𝑐0,𝑐1

𝑑𝐹(𝑐1|𝑐0, 𝑎)𝑑𝐹(𝑐0) − ∫ 𝐸(𝑌|𝑐0, 𝑎
∗, 𝑐1,𝑚1)

𝑐0,𝑐1

𝑑𝐹(𝑐1|𝑐0, 𝑎
∗)𝑑𝐹(𝑐0). 

These identifications are detailed in (VanderWeele 2011). These identification results are 

restricted to the parallel mediation structure, in which mediators are causally independent. If 

𝑀1  is the cause of 𝑀2 , then the assumption 𝑌(𝑎,𝑚2) ⫫ 𝑀2|𝐶0, 𝐴, 𝐶2  is not valid. This 

follows from the nonparametric structural equation model (Appendix E). Therefore, with 

respect to identification and assumptions, the CME is a special case of the EAM because the 

EAM allows for dependent mediators.  

6. Simulation  

 We conducted three simulation studies with different model settings to compare the 

performance of three proposed estimators. The data generation for the simulations proceeded 



 

as follows: 

𝐶0~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.5)), 

𝐴|𝐶0~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.5𝐶0)), 

𝐶1|𝐶0, 𝐴~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.1 − 0.5𝐶0 − 0.5𝐴)), 

𝑀1|𝐶0, 𝐴, 𝐶1~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.1 − 0.5𝐶0 + 𝐴 − 0.5𝐶1)), 

𝐶2|𝐶0, 𝐴, 𝐶1, 𝑀1~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.1 − 0.5𝐶0 + 0.5𝐴 − 0.5𝐶1 − 0.5𝑀1)), 

𝑀2|𝐶0, 𝐴, 𝐶1,𝑀1, 𝐶2~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.1 − 0.5𝐶0 − 𝐴 − 0.1𝐶1 − 0.1𝑀1 − 0.1𝐶2)), 

𝑌|𝐶0, 𝐴, 𝐶1, 𝑀1, 𝐶2, 𝑀2~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.1 − 0.5𝐶0 − 𝐴 − 0.5𝐶1 +𝑀1 − 0.5𝐶2 − 0.5𝑀2)), 

where 𝐵𝑒𝑟 denotes the Bernoulli distribution function and 𝑒𝑥𝑝𝑖𝑡 denotes the expit function. 

Following the DAG in Figure 1(a), we generated, as the covariates of the outcome 𝑌, a baseline 

confounder 𝐶0, two time-varying confounders 𝐶1 and 𝐶2, and two mediators 𝑀1 and 𝑀2. 

All variables were set as binary variables to adhere to the conditions of the motivating example. 

Simulations were performed 1,000 times with the sample sizes of 500 and 1,000. The 

performance of each of the three proposed estimators was evaluated separately under the 

following scenarios: 

Scenario (1): the model of the outcome is correct; the model of the exposure is correct; 

Scenario (2): the model of the outcome is incorrect; the model of the exposure is correct; 

Scenario (3): the model of the outcome is correct; the model of the exposure is incorrect. 

Specifically, Scenario (1) considers the case in which all models are correctly specified 

according to the simulation setting; Scenario (2) considers the case in which first, the model of 

𝑌 is fitted by the Binomial distribution with the probit link function rather than with the expit 

link function and second, the remaining models are correctly specified; and Scenario (3) 

considers the case in which first, the model of 𝐴 is fitted by the Binomial distribution with the 

probit link function rather than with the expit link function and second, the remaining models 

are correctly specified. Simulations under Scenarios (2) and (3) enable assessment of the 

robustness of the three proposed estimators when models are misspecified. The results are 

summarized in Table 1 for the sample size of 1,000 and in Appendix F for the sample size of 



 

500. In the simulations, the interventions of mediators for the EAM are set equal to 0. 

 The results confirmed that the three estimators were consistent under Scenario (1) for the 

sample sizes of both 500 and 1,000. By contrast, the regression-based and IPW estimators were 

biased in Scenarios (2) and (3), respectively. In particular, the regression-based estimator 

exhibited dramatic model misspecification. For example, in Scenario (2), the coverage of the 

95% confidence interval of the regression-based estimator was considerably lower than 0.95, 

whereas, in Scenario (3), the coverage of the 95% confidence interval of the IPW estimator 

was close to 0.95. Therefore, the IPW estimator is less biased than the regression-based 

estimator is when the model specification of some variables is uncertain. Furthermore, the 

results of our simulation studies demonstrated that the DR estimators of the EAMs and TE are 

guaranteed to be robust to model misspecification. In terms of bias and coverage rate, the DR 

estimator outperformed the IPW and regression-based estimators across all three scenarios. 

 

Table 1. Simulation results (sample size = 1000) 

  
Doubly robust estimator 

Inverse probability 

weighting estimator 

Regression-based 

estimator 

  Bias SE COV Bias SE COV Bias SE COV 

Scenario (1): the model of outcome is correct; the model of exposure is correct. 

 𝐄𝐀𝐌𝐏𝟎  <0.001 0.010 0.945 <0.001 0.031 0.946 <0.001 0.029 0.951 

 𝐄𝐀𝐌𝐏𝟏 0.001 0.013 0.947 0.001 0.022 0.952 <0.001 0.012 0.955 

 𝐄𝐀𝐌𝐏𝟐 -0.001 0.011 0.955 -0.001 0.018 0.963 0.001 0.012 0.948 

 𝐄𝐀𝐌𝐏𝟑 <0.001 0.016 0.953 <0.001 0.011 0.957 <0.001 0.010 0.955 

 TE 0.001 0.007 0.954 0.001 0.023 0.957 0.001 0.031 0.946 

Scenario (2): the model of outcome is incorrect; the model of exposure is correct. 

 𝐄𝐀𝐌𝐏𝟎  0.001 0.012 0.962 <0.001 0.031 0.953 0.051 0.021 0.340 

 𝐄𝐀𝐌𝐏𝟏 0.002 0.012 0.953 0.001 0.022 0.947 0.002 0.008 0.936 

 𝐄𝐀𝐌𝐏𝟐 0.001 0.009 0.953 0.002 0.018 0.949 -0.014 0.007 0.404 

 𝐄𝐀𝐌𝐏𝟑 -0.002 0.012 0.949 -0.002 0.010 0.958 0.002 0.007 0.229 

 TE 0.001 0.006 0.951 0.001 0.023 0.951 0.041 0.021 0.527 

Scenario (3): the model of outcome is correct; the model of exposure is incorrect. 

 𝐄𝐀𝐌𝐏𝟎  0.003 0.010 0.944 0.031 0.027 0.918 0.002 0.029 0.944 

 𝐄𝐀𝐌𝐏𝟏 -0.001 0.013 0.949 0.012 0.021 0.949 0.001 0.012 0.951 



 

P0 is the null set; P1: {M1}; P2: {M2}; P3, {M1, M2};  

SE, standard error; CI, confidence interval; TE, total effect; EAM, effect attributable to mediators; COV, coverage of the 

95% confidence interval. 

 

7. Application  

A study of hepatitis C virus (HCV)-induced liver disease motivated the present work. The 

development of an HCV vaccine faces challenges, and a vaccine capable of protecting against 

hepatitis C is not available. Thus, an intervention to prevent HCV infection cannot be 

implemented, and researchers have focused on intervention on mediators. Multiple risk factors 

of liver disease have been confirmed by association studies (Chen et al. 2008, Harman et al. 

2015). Some risk factors, such as abnormal alanine aminotransferase (ALT) level and 

hepatocellular carcinoma (HCC), are potential mediators in the effect of HCV infection on 

mortality. Because treatments have been developed for abnormal liver function and early 

diagnosed HCC, intervention in these mediators is not only applicable but also critical for 

patients with HCV-positive status. 

We applied the proposed EAM to the REVEAL nationwide population-based cohort study 

in Taiwan, and we investigated the effect of HCV infection on mortality (Chen, Yang, Yang, 

Liu, Chen, You, Wang, Sun, Lu and Chen 2008) by intervening in ALT and HCC. In REVEAL, 

23,820 participants aged 30 to 65 years were recruited from seven townships of Taiwan during 

1991 to 1992. After removing missing values, 23,724 samples were retained for the analysis. 

HCV infection status and ALT were measured at baseline. HCC status and death were 

confirmed through computerized data linkages with the national cancer registry and death 

certification system, respectively, in 2008. HCV, ALT, and HCC were coded as binary 

variables according to the following rules: HCV = 1 indicates HCV infection and HCV = 0 

indicates no HCV infection; ALT = 1 indicates abnormal ALT level (>40 U/L) and ALT = 0 

 𝐄𝐀𝐌𝐏𝟐 <0.001 0.010 0.951 -0.003 0.017 0.938 -0.001 0.011 0.964 

 𝐄𝐀𝐌𝐏𝟑 <0.001 0.015 0.944 -0.002 0.009 0.947 <0.001 0.010 0.944 

 TE 0.002 0.007 0.951 0.038 0.014 0.751 0.002 0.031 0.944 



 

indicates normal ALT level; HCC = 1 indicates HCC diagnosis and HCC = 0 indicates no HCC 

diagnosis. For individual outcomes, Y = 1 indicates death and Y = 0 indicates survival. 

Additionally, age, gender, smoking status, and alcohol status were included as baseline 

confounders. We did not consider any time-varying confounders in this application. The causal 

diagram is shown in Figure 2.  

We applied EAMs to this application by intervening in two mediators and setting them to 

normal status (i.e., ALT = 0 and HCC = 0). Four subsets of {ALT, HCC} are defined as follows: 

P0 is the null set; P1 = {ALT}; P2 = {HCC}; and P3 = {ALT, HCC}. All variables were fitted 

by logistic regression models according to the causal relationship shown in Figure 2. 

Subsequently, four EAMs and the TE were estimated by using the DR, IPW, and regression-

based estimators. The estimates, 95% confidence intervals (CIs), and p values are listed in 

Table 2. First, the three approaches yielded similar estimates of TE, and the results of the DR, 

IPW, and regression-based methods were 0.096 (95% CI: 0.087–0.106), 0.097 (95% CI: 0.083–

0.110), and 0.092 (95% CI: 0.071–0.114), respectively. For the estimation of EAMs, Table 2 

indicates that the results of the DR, IPW, and regression-based approaches were slightly 

different. As discussed in Section 3, the DR estimator is theoretically more robust than the IPW 

and regression-based estimators are when an incorrect model specification of the outcome or 

exposure occurs. In addition, the result of the DR estimation is relatively plausible for 

explaining the mechanism of HCV-induced liver injury. The host immune response to HCV 

infection usually leads to active hepatitis, along with abnormal ALT level, thus contributing to 

the development of cancer.  

In the results of the DR estimation, the three estimates of the EAMs differed significantly 

from zero. EAM̂P0 = 0.048 (95% CI: 0.045–0.051) corresponds to the effect of HCV infection 

on mortality without any mechanisms attributable to mediators. EAM̂P1  = 0.015 (95% CI: 

0.012–0.017) corresponds to the effect of HCV infection on mortality attributable to abnormal 



 

ALT level. EAM̂P3 = 0.023 (95% CI: 0.009–0.037) corresponds to the effect of HCV infection 

on mortality jointly attributable to abnormal ALT level and HCC. Therefore, HCV-induced 

mortality was 15.6% (=1.5/9.6) for that attributable to ALT solely and 24% (=2.3/9.6) for that 

attributable to ALT level and HCC jointly, indicating that intervention in both risk factors is 

potentially more powerful and cost-effective compared with just intervening in one risk factor. 

 

 
Figure 2. Causal diagram of HCC cohort. Black arcs represent the paths of interest.  
Abbreviations: HCV, hepatitis C virus; ALT, abnormal alanine aminotransferase; HCC, hepatocellular 

carcinoma. 
 
 
Table 2. Estimation of TE and all EAMs in HCC cohort.  

Set: P0 is the null set; P1:{ALT}; P2: {HCC}; P3: {ALT, HCC}. 

SE, standard error; CI: confidence interval; TE, total effect; EAM, effect attributable to mediators; HCV, hepatitis C virus; 

ALT, abnormal alanine aminotransferase; HCC, hepatocellular carcinoma. 

 

 

8. Discussion 

 
Doubly robust estimator 

Inverse probability 

weighting estimator 
Regression-based estimator 

 
Estimate 

(SE) 
95% CI P-value 

Estimate 

(SE) 
95% CI P-value 

Estimate 

(SE) 
95% CI P-value 

𝐄𝐀𝐌𝐏𝟎  
0.048 

(0.002) 
(0.045, 0.051) <0.001 

0.058 

(0.008) 
(0.042, 0.074) <0.001 

0.041 

(0.010) 
(0.022, 0.060) <0.001 

𝐄𝐀𝐌𝐏𝟏 
0.015 

(0.001) 
(0.012, 0.017) <0.001 

0.005 

(0.006) 
(-0.007, 0.018) 0.394 

0.006 

(0.002) 
(0.002, 0.010) 0.002 

𝐄𝐀𝐌𝐏𝟐 
0.011 

(0.006) 
(-0.001, 0.022) 0.069 

0.011 

(0.001) 
(0.008, 0.014) <0.001 

0.021 

(0.003) 
(0.015, 0.027) <0.001 

𝐄𝐀𝐌𝐏𝟑 
0.023 

(0.007) 
(0.009, 0.037) 0.002 

0.023 

(0.002) 
(0.019, 0.027) <0.001 

0.024 

(0.003) 
(0.017, 0.030) <0.001 

TE 
0.096 

(0.005) 
(0.087, 0.106) <0.001 

0.097 

(0.007) 
(0.083, 0.110) <0.001 

0.092 

(0.011) 
(0.071, 0.114) <0.001 



 

 In this article, we propose the EAM as an alternative approach for effect decomposition 

in addition to causal mediation analysis in settings with multiple causally ordered mediators. 

The EAM relaxes the assumptions, required in previous methods, that are related to cross-

world counterfactuals and identification (Daniel, De Stavola, Cousens and Vansteelandt 2015, 

Lin 2019, Lin and VanderWeele 2017). Under the assumption of no interaction, the EAMs are 

identical to the causal effects mediated through mediation paths. Because the EAM enables 

intervention in multiple mediators affecting the whole population at the statuses of interest, the 

development of the EAM contributes to both policy making and mechanism investigation. In 

the analysis of the REVEAL dataset, we estimated the EAMs of the effects of HCV on mortality 

attributable to ALT level and HCC; this can facilitate the implementation of health promotion 

policies. 

 Although the proposed EAM focuses on the risk difference scale, extending the EAM to 

the risk ratio scale or the odds ratio scale is trivial. The major limitation of this work is that the 

proposed method does not apply to longitudinal studies. In a longitudinal study, time-varying 

exposures and death-truncation are two primary issues that should be addressed. Moreover, the 

extension to survival outcomes is critical in medical and biological research. More generalized 

methods that fit all circumstances will be developed in future studies. Finally, the EAM 

methodology was implemented using the statistical software R, and the algorithm is available 

for download. 
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