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Change Point Testing in Logistic Regression

Models with Interaction Term

Youyi Fong∗†, Chongzhi Di‡, Sallie Permar§

January 10, 2014

Abstract

The threshold effect takes place in situations where the relationship
between an outcome variable and a predictor variable changes as the pre-
dictor value crosses a certain threshold/change point. Threshold effects
are often plausible in a complex biological system, especially in defining
immune responses that are protective against infections such as HIV-1,
which motivates the current work. We study two hypothesis testing prob-
lems in change point models. We first compare three different approaches
to obtaining a p-value for the maximum of scores test in a logistic regres-
sion model with change point variable as a main effect. Next, we study
the testing problem in a logistic regression model with the change point
variable both as a main effect and as part of an interaction term. We
propose a test based on the maximum of likelihood ratio statistics and
show that the correct significance level can be obtained by transforming
random samples from a multivariate normal distribution. In simulation
studies, we show the optimality of the maximum of likelihood statistics
test among change point model-based methods, and demonstrate the per-
formance trade-off when compared to dichotomizing the predictor variable
at median across a range of true thresholds. We illustrate the utility of
the change point model-based testing methods with a real data example
from a recent study of immune responses that are associated with the risk
of mother to child transmission (MTCT) of HIV-1.

Keywords. change point testing, effect modifier, maximum of score statistics,
maximum of likelihood ratio statistics, mother to child transmission of HIV-1

1 Background

In this paper we study a change point model, also known as a threshold model, in
which a covariate has no effect before reaching an unknown threshold and has a
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constant effect after that. This type of change point model is a popular approach
for handling nonlinearity in the relationship between two variables without over-
parameterization, and have been widely used in econometrics, quality control,
human genetics, and many more fields of study. Our interests in change point
models arise from the study of immune responses to HIV-1 in subjects vacci-
nated with a HIV-1 vaccine [1] and HIV-1-infected mothers [2] and their associ-
ation with HIV-1 infection risk. Several factors motivate us to consider change
point models. First, it is often unclear how to properly transform a continu-
ous immune response variable to be used in the regression. Second, we often
create score variables which are combinations of individual immune response
measurements. The relationship between the outcome variable and a score is
more likely to be nonlinear than individual components of the score. Third,
our current understanding of how immune systems operate is consistent with
the existence of threshold effect, i.e. only an immune response above a certain
quality and quantity threshold can result in protection from HIV-1 infection or
transmission. Scientific considerations also prompt us to study change point
models with interaction term because each immune response variable measures
one aspect of the immune responses and different aspects of the multifaceted
immune responses may need to work together synergistically to offer protection.
Alternatively, one aspect of the immune responses may prevent other aspects of
the immune responses from working effectively against the virus [1].
A particular challenge of the change point model testing problem is that

under the null hypothesis, the threshold parameter becomes unidentifiable. This
type of problems are often referred to as the Davies problems [3, 4, 5], and have
motivated many previous works in the biostatistical literature on change point
testing [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14]. However, some methods, e.g. [4],
don’t apply to the model we study in this paper, which is discontinuous in the
change point variable. Furthermore, some of the proposed methods, e.g. [11],
do not have simulation studies to demonstrate the actual Type I error rates
in finite samples. To provide a practical guidance on how to choose a method
for performing a maximum of scores test in a logistic regression model with
a change point variable as a main effect, in Section 2, we compare the finite
sample performance of three different procedures for obtaining the p-value. In
Section 3, we study a logistic regression model in which the change point variable
appears both as a main effect and in an interaction term. We propose a test
based on the maximum of likelihood ratio statistics, and use the same principle
as in Section 2 to obtain the p-value associated with the test statistic. Of
particular relevance to Section 3 is the work by [7], which was concerned with
identifying a change point in a predictor that modifies the effect of treatment
in a randomized two-arm clinical trial. Also of interest is [10], which proposed
a maximum of likelihood ratio test in a different context which do not involve
interaction terms. In Section 4, we conduct two simulation studies to study the
Type I error rates and powers of the proposed tests. In Section 5, we use a real
data example from a study of humoral immune responses that are associated
with the risk of HIV-1 MTCT to illustrate the use of the proposed methods.
We end with a discussion in Section 6.
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2 Change Point Tests for Models with Main Ef-

fect Only

We first review the asymptotic theory for the score statistics in a logistic model
with a change point variable as a main effect. Consider the following model

logit {Pr (Y = 1)} = αT z + βI (x > e) , (1)

where Y is a binary variable, z is a vector of covariates, x is the change point
variable. α is the vector of coefficients associated with z, β is the effect size
associated with the change point variable, and e is the threshold parameter.
We are interested in testing the null hypothesis β = 0. The score test, which
is based on the behavior of the test statistic under the null, is a natural choice
here because the score statistics are asymptotically normally distributed. Let
Li denote the log likelihood for the i

th observation. The score with respect to
β evaluated at β = 0 is

∂Li
∂β

∣∣∣∣
β=0

= I (xi > e)

{
yi −

1

1 + exp (−αT zi)

}
= I (xi > e) (yi − µi) ,

where µi = expit
(
αT zi

)
. For a given e, let k = # {xi > e}. Denote wi (e) = 1/k

if xi > e and 0 otherwise. Let w (e) = [w1 (e) , ..., wn (e)]
T
. Plug in the maximum

likelihood estimate for α under the null model and we have the score statistics,
as a function of e,

S1 (e) = w (e)
T
(Y − µ̂) = 1

k

∑

i:xi>e

(yi − µ̂i) . (2)

The score statistics is simply the sum of residuals for all observations with x
greater than the threshold. This makes intuitive sense because when the data
are from a model with β > 0, the residuals are likely to be greater than 0
for observations with x greater than the true threshold and less than 0 for
observations with x less than the true threshold.
The score statistics depends on the threshold parameter which can not be

estimated under the null because it is not part of the null model. If there is
knowledge about the plausible value for e in a specific application, we will wish
to use that knowledge. More often we have no idea where the threshold may
be, a common strategy is to take the maximum of the score statistics evaluated
at a sequence of M thresholds e1, ..., eM for a fixed M . The asymptotic joint

distribution of
[
S1 (e1) · · · S1 (eM )

]T
under the null model is given by

the following theorem. The proof is straightforward using standard generalized
linear model theory.

Theorem 1 Denote W1 =
[
w (e1) . . . w (eM )

]
. Under the null,

√
n
[
S1 (e1) · · · S1 (eM )

]T
=
√
nWT

1
(Y − µ̂)⇒ N (0, V1)

where V1 =W
T
1
ADATW1, D = diag {µ (1− µ)} and A = I−DZ

(
ZTDZ

)−1
ZT .
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There are many ways to conduct the test based on the above theory. We will
examine four and compare their performance with a Monte Carlo study. Let
D̂ = diag {µ̂ (1− µ̂)} and V̂1 (e) = w (e)T ÂD̂Âw (e). The first testing method is
based on individually standardized score statistics, T (e) =

√
n |S1 (e)| /

√
V̂1 (e).

Each of the marginal distributions of
[
T (e1) · · · T (eM )

]T
can be approx-

imated by a normal distribution of mean 0 and variance 1. We take the test
statistics to be

Tmax = max {T (e1) , · · · , T (eM )} .
The distribution of Tmax can be approximated by the maximum of a multivariate
normal distribution with mean 0, variance 1 and a correlation matrix derived
from V̂1, and the p-value can be obtained by comparing Tmax with random
samples from this multivariate normal distribution.
The first method requires the simulation of a multivariate normal distribu-

tion with an estimated correlation matrix. In the second method, we explore
the use of more asymptotic theory to bypass the need to perform random sam-
pling during testing. One potential approach is to apply formula (2.2) from
[4] to derive an upper bound for the tail probability Pr (Tmax > c). This ap-
proach would not work however because it requires taking derivative of T (e)
with respect to e and the upper bound explodes. Instead we apply results from
[11], which provides an analytical approximation of the tail probability of the
maximum of a normalized score statistics evaluated at a grid of thresholds. Let

TA
max

= max

{
|S1 (e)| /

√
1T D̂1k (n− k) /n

}
. By Theorem 3.1 and Remark 3.2

of [11], we have

Pr

(
TA
max

<
√
2 log log n+

log log logn

2
√
2 log log n

+
t− 1

2
log π√

2 log log n

)
→ exp {−2 exp (−t)}

as n→∞. Let t =
√
2 log log nTA

max
− 2 log log n− 1

2
log log logn+ 1

2
log π. The

p-value associated with an observed TA
max

is then 1− exp {−2 exp (−t)}.
The third method we explore also does not require Monte Carlo sampling.

Let U = V̂
−1/2
1

√
n
[
S1 (e1) · · · S1 (eM )

]T
. The distribution of U can be

approximated by a multivariate standard normal distribution, and we obtain a
p value by comparing UTU with a chi-squared distribution of degree M .

3 Maximum of Likelihood Ratio Test for Change

Point Models with Interaction Term

We now consider a logistic regression model with the change point variable
appearing both as a main effect and as part of an interaction term

logit {Pr (Y = 1)} = αT z + β1I (x > e) + β2z1I (x > e) , (3)

where z1 is a component of the covariate vector z, β1 is the effect size associated
with the main effect of the change point variable, and β2 is the effect size
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associated with the interaction term involving the change point variable. We
are interested in testing β1 = β2 = 0. Although the null model is the same as
the null model in testing β = 0 in model (1), the test here can potentially be
a more powerful test against the null because sometimes we may fail to detect
a weak main effect, but succeed in detecting a weak main effect and a weak
interaction effect together.
The score vector with respect to β1 and β2 evaluated at β1 = β2 = 0 are

[
∂Li/∂β1
∂Li/∂β2

]∣∣∣∣
β1=β2=0

=

[
1
zi,1

]
I (xi > e) (yi − µi) .

Plug in the estimate for µi in the null model and we have a vector of score
statistics

[
S1 (e) S2 (e)

]
, where S1 (e) is as defined in (2) and S2 (e) is defined

as follows:

S2 (e) = (w ∗ z1)T (Y − µ̂) =
1

k

∑

i:xi>e

z1,i (yi − µ̂i) , (4)

where w∗z1 is elementwise multiplication of two vectors w and z1. For a sequence
of M potential thresholds, we can form a score statistics vector of length 2M .
Its asymptotic joint distribution under the composite null β1 = β2 = 0 is given
by the following theorem. The proof is similar to the proof of theorem 1 and
follows from generalized linear model theory.

Theorem 2 Denote W3 =
[
w (e1) w (e1) ∗ z1 . . . w (eM ) w (eM ) ∗ z1

]
.

Under the null β1 = β2 = 0,

√
n
[
S1 (e1) S2 (e1) · · · S1 (eM ) S2 (eM )

]T
=
√
nWT

3
(Y − µ̂)⇒ N (0, V3) ,

where V3 =W
T
3
ADATW3, D = diag {µ (1− µ)} and A = I−DZ

(
ZTDZ

)−1
ZT .

One approach to testing, based on the lessons learned in testing the main
effect, is to let the test statistics be the maximum element of the standardized
multivariate score statistics, namely

TMI
max

= max

{
[
S1 (e1) S2 (e1) · · · S1 (eM ) S2 (eM )

]
/

√
diag

(
V̂3

)}

,

where diag
(
V̂3

)
is the diagonal of the estimated covariance matrix V̂3 and the

division is elementwise division. The p-value can be obtained by comparing
TMI
max

with random samples of maximum of a multivariate normal distribution
with mean 0, variance 1 and a correlation matrix derived from V̂3.
There are two related issues with tests based on TMI

max
. The first issue is that

the test p value for the same dataset changes with affine transformation of the
covariate z1. The second issue is that tests based on T

MI
max

are not as powerful as
it can be. These two issues are connected by the fact that if we let z∗

1
denote the

5
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standardized z1 and S̄2 (e) denote the corresponding score statistics. S2 (e) can
be expressed as a linear combination of S1 (e) and S̄2 (e) depending on the affine
transformation of z1 Different linear combinations have different powers. The
best combination is a function of β1 and β2 when the data is generated from the
model (3). Without knowing the true β1 and β2, we could try maximizing over
a grid of thresholds and linear combinations. This is computationally intensive,
however. We can achieve a similar level of performance by realizing that under
a fixed e∗, model (3) becomes

logit {Pr (Y = 1)} = αT z + β1I (x > e∗) + β2z1I (x > e∗) , (5)

and we are interested in testing β1 = β2 = 0. It is well known that for reg-
ular models, the likelihood ratio test, Wald test and score test are asymptoti-
cally equivalent under the null; yet likelihood ratio test often has better power.
Hence we propose a maximum of likelihood ratio test. For each e∗, we fit
model (5) and obtain a likelihood ratio statistics Q (e∗) against the null model
logit {Pr (Y = 1)} = αT z. Our test statistics is

Qmax = max {Q (e1) , · · · , Q (eM )} .
To obtain the reference distribution for Qmax, we use the fact that under the

null, each Q (e) can be asymptotically expressed as

Q (e) =
[
S1 (e) S2 (e)

]
Î−1ββ.α (e)

[
S1 (e)
S2 (e)

]
+ op (1) ,

where Îββ.α (e) is a plug-in estimate of Iββ.α (e), Iββ.α (e) = Iββ (e)−Iβα (e) I−1αα (e) Iαβ (e)
and

[[
Iαα (e) Iβα (e)

]T [
Iαβ (e) Iββ (e)

]T ]
is a partition of the Fisher

information matrix for model (5) with β =
[
β1 β2

]
here. Let J denote a

2M×2M block diagonal matrix with Î
−1/2
ββ.α (e) on the diagonal. Denote by V4 the

variance-covariance matrix of
[ [

S1 (e1) S2 (e1)
]
Î
−1/2
ββ.α (e1) . . .

[
S1 (eM ) S2 (eM )

]
Î
−1/2
ββ.α (eM )

]
.

V4 can be approximated by JV3J asymptotically. Because the diagonal of V4 are
1’s, in practice, better performance can be obtained by approximating V4 with
the correlation matrix derived from JV3J . Hence, to obtain random samples
that approximate the reference distribution of Qmax, we simulate from a mul-
tivariate normal distribution with mean 0, variance 1, and correlation matrix
corresponding to JV3J . Each random sample is a vector of 2M elements and
can be viewed as a sequence of M pairs of random variables. Taking the sum
of squares for each pair, the distribution of the maximum of the M sums of
squares approximates the distribution of Qmax.

4 Simulation Studies

4.1 Main effect only

We simulate data from

logit {Pr (Y = 1)} = α+ log (1.4)Z

6
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where [Z,X]
T
comes from a bivariate normal distribution with mean 0, variance

1 and correlation ρ. We test two values for ρ: 0 and 0.3. α is chosen so that
the proportion of cases in the dataset is 1/3. The sample size is 250. We test
whether there is a threshold effect in x with a nominal Type 1 error rate of 5%.
The Type 1 error rate estimates from 10,000 replicates are shown in Table 1.
The standard deviation of the estimate at the nominal rate is 0.22%.

Results in Table 1 show that approximating the distribution of Tmax using
the estimated covariance matrix gives Type I error rates that are close to the
nominal level. Approximating the distribution of TA

max
with the asymptotic

expression from [11] leads to a conservative test. Testing with UTU is also
conservative, presumably due to the difficulty in estimating the full variance-
covariance matrix. Additional simulation results (not shown) show that the
higher M , the number of thresholds examined, is, the more conservative the
test becomes. From now on, our method of choice for change point model-based
testing will be Tmax.
We compare the maximum of score test based on the change point model

with two other tests not based on change point models. In one, we encode the
covariate x as a binary variable dichotomized at median, and use a Wald test
to test the coefficient associated with the variable. In the other, we encode the
covariate x as a trichotomous variable with cut points chosen as the 33% and
67% percentiles, and use a generalized Wald test to test the overall hypothesis
that there is no association between the outcome and x. The estimated Type I
error rates for the two tests from 10,000 replicates are 5.11 and 4.89, respectively.
To examine the powers of these tests, we simulate data from

logit {Pr (Y = 1)} = α+ log (1.4)Z + βI (X > e)

where Z ∼ N (0, 1), X ∼ N (4.7, sd = 1.6) and the correlation ρ between Z and
X is either 0 or 0.3. Let e take values from 3.4 to 6. β is chosen from three levels
of odds ratios: log (0.8), log (0.6) and log (0.4). α is chosen so that the proportion
of cases in each dataset is 1/3 on average. The estimated powers from 2,000
replicates for all methods are shown in Table 2 and Figure 1. The results suggest
that the performance of the tests based on binary encoding depends greatly on
how close the true threshold is to the median of the covariate distribution. For
example, when the true odds ratio is 0.4 and ρ = 0, the powers of the tests based
on binary encoding range from 85% to 24%. On the other hand, under the same
setting, the powers of the tests based on change point models vary much less,
ranging from 48% to 80%. In other words, at a price of slightly less power when
the true threshold is close to the median, the change point method guarantees a
relatively high level of power when the true threshold is away from the median
of the covariate. Thus, the maximum of score test based on the change point
model is an omnibus procedure that is powerful against alternatives under a
wide range of threshold values. Trichotomizing the covariate x is more powerful
than dichotomization when the true threshold is away from the median, but
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almost always inferior to the change point method. Results from other β’s and
ρ = 0.3 are similar.

4.2 Main effect plus interaction

We now study the performance of the testing procedures for interaction model.
We simulate data from

logit {Pr (Y = 1)} = α+ log (1.4)Z + β1I (X > e) + β2 × Z × I (X > e) ,

where the covariates are simulated as previously described. α is chosen so that
the proportion of cases in the dataset is 1/3. The sample size is 250. We test the
null hypothesis that β1 = β2 = 0 at 5% alpha level. Based on 10,000 replicates,
the estimated Type 1 error rates for TMI

max
-based test are 5.1% and 5.0% for

ρ = 0 and 0.3, respectively, the estimated Type 1 error rates for Tmax-based
test are 5.0% and 4.9% for ρ = 0 and 0.3, respectively, and the estimated Type
1 error rates for Qmax-based test are slightly elevated at 5.9% for both ρ = 0
and 0.3, respectively. We compare the change point-based testing methods
with setting threshold at median and use a likelihood ratio test to test the null
hypothesis. The estimated Type I error rate are 5.0% and 4.6% for ρ = 0 and
0.3, respectively, based on 10,000 replicates.
To examine the powers of the test, we simulate data from two β1: {log (1.5) ,− log (1.5)}

and three β2: {log (0.8) , log (0.6) , log (0.4)}. Results from 2,000 replicates are
shown in Table 3 and Figure 1. First, let us focus on ρ = 0 and β1 = log (0.67).
When the odds ratio for the interaction term, exp (β2), is 0.8, the change point
testing method based on Tmax is slightly more powerful than the change point
testing method based on TMI

max
and Qmax. As the odds ratio for the interaction

term drops to 0.6 and 0.4, the powers of tests based on Tmax remain relatively
constant, while the powers of tests based on TMI

max
and Qmax become significantly

more powerful. This suggests that jointly testing the main effect and interaction
of terms can be more powerful than testing the main effect marginally, in the
presence of a moderate to strong interaction effect. Tests based on Qmax are
consistently more powerful than tests based on TMI

max
, making Qmax our most

preferred choice among these tests. The difference in performance between the
tests based on binary encoding and TMI

max
is similar to the difference in the pre-

vious subsection, namely that the change point tests trade some power loss at
the median threshold for greater power gain at the more extreme thresholds.
Results from β1 = − log (0.67) and ρ = 0.3 are similar.

5 Data Examples

In this section, we illustrate the use of change point model-based testing meth-
ods using the Mother To Child HIV-1 Transmission (MTCT) humoral immune
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correlates study [2]. Every year more than 300,000 infants acquire HIV-1 de-
spite the fact that there now exist effective antiretroviral prophylaxis regimens.
Development of maternal or infant HIV-1 vaccine will undoubtedly hasten the
elimination of pediatric HIV-1. To further our understanding of effective human
immune responses that will prevent HIV-1 infection, the MTCT immune cor-
relates study was carried out to identify maternal HIV-1 specific immunologic
biomarkers that are associated with the risk of HIV-1 MTCT. The study used
samples from the historical Women and Infants Transmission Study cohort of
U.S. HIV-infected mother-infant pairs enrolled prior to the availability of an-
tiretroviral drugs in an observational study of vertical HIV-1 transmission and
pathogenesis. Eight-three HIV-transmitting mothers and 165 nontransmitting
mothers with available plasma samples were selected for the study. None of the
mothers breast-fed or received any antiretroviral prophylaxis.
One immune response variable of particular interest is V3_score. This vari-

able is a linear combination of several variables measuring the strength of IgG
antibody binding to the variable loop (V3) region [15] of several variants of
HIV-1 Envelope proteins. We examined the association between HIV-1 trans-
mission and V3_score via three models. All models include several clinical
factors known to be associated with the risk of vertical transmission including
viral load, gestational age etc., and they differ in how V3_score is encoded. In
the first model, V3_score is treated as a continuous variable; in the second, it is
treated as a binary variable dichotomized at median; and in the third, it is mod-
eled as a change point variable. The p-values from Wald tests in the first two
models are 0.04 and 0.35, respectively. The discrepancy of the two results can
be explained by the result from the third model, where the maximum of score
test p value is 0.04 and the threshold that yields the maximum score statistics
is at 10% of the V3_score distribution, far from the median.
Different immune biomarkers measure distinct aspects of the immune re-

sponse to HIV-1. To have an effective defense against HIV-1, these different
aspects of the immune response may have to work together synergistically.
This suggests that it is important to study the interaction between immune
biomarkers. For illustration, we focus on the interactions between a variable
NAb_score, which measures the amount and breadth of neutralizing antibodies
[16], and eight other continuous immune response variables selected for their
scientific importance [2]. NAb_score by itself does not have a significant as-
sociation with transmission risk whether it is studied as a continuous variable,
median-dichotomized variable or change point variable. When NAb_score is
studied as a continuous variable or as a median-dichotomized variable, only one
immune response variable, IgG_Mngp41, is found to interact with it, which
measures the IgG antibody binding to the gp41 protein of the HIV-1 Envelope.
When NAb_score is studied as a change point variable using the maximum
of likelihood ratio statistics, three more variables in addition to IgG_Mngp41
are found to interact with it. These variables measure antibody avidity, IgG
antibody binding to the gp120 protein on the HIV-1 Envelope and IgA anti-
body binding to the gp41 protein on HIV-1 Envelope, respectively, and they
do not show significant association with transmission risk on their own. The

9

Hosted by The Berkeley Electronic Press



broad pattern of interaction uncovered by the change point method accentuates
the importance of eliciting multiple immune responses for any successful HIV-1
vaccine.

6 Discussion

This paper is motivated by the need to detect threshold effect in the study of
synergistic human immune responses to HIV-1 virus. First, we compare three
methods for computing p values for maximum of score tests in a logistic regres-
sion model with a main effect modulated by a change point. Second, we study
testing methods for models containing a change point variable both as a main
effect and as part of an interaction term. We propose a test based on the max-
imum of likelihood ratio statistics and a method to approximate its asymptotic
distribution. Through simulation study, we show that the proposed methods
have proper Type I error rates. The powers of the proposed maximum of score
tests and maximum of likelihood ratio tests are much less sensitive to the value
of the true threshold than simply dichotomizing a variable at its median. We
apply the proposed methods to a study of the impact of immune responses in
HIV-1 carrying mothers on the risks of transmitting HIV-1 to infants. Tests
based on maximum of likelihood ratio statistics reveal multiple significant inter-
actions, suggesting the importance of eliciting multiple immune responses when
designing a HIV-1 vaccine. The proposed testing methods have been imple-
mented in a R package chngpt, and can be downloaded from the Comprehensive
R Archive Network (CRAN).
We often apply a change point model in a two stage process. First, we per-

form hypothesis testing to see if there is a threshold effect; second, we fit a change
point model to obtain estimates of the threshold and the regression coefficients.
In such a context, the parameter estimates from the second stage may be biased
towards greater absolute values and do not follow the established asymptotic
theory for the sampling distribution of the parameter estimates under change
point models [17]. Establishing valid confidence intervals for parameter esti-
mates in a change point model is currently under investigation.
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ρ Tmax Antoch UTU
0 5.2 0.7 1.6
0.3 5.1 2.0 1.3

Table 1: Type I error rates (percent) of hypothesis testing procedures for logistic
regression models with change point variable as a main effect. ρ: correlation of
predictor Z and X.
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ρ = 0 ρ = 0.3
e (quantile) 0.21 0.36 0.46 0.58 0.79 0.21 0.43 0.53 0.65 0.82
β = log (0.8)
trichotomized 7.0 10.0 9.3 9.4 7.5 7.1 9.2 8.2 7.4 6.3
dichotomized 6.3 9.2 11.6 10.6 6.7 6.1 8.5 11.6 10.1 6.2
Tmax-based 8.1 10.0 10.7 10.0 7.4 8.2 9.0 8.8 8.8 7.0
β = log (0.6)
trichotomized 15.8 31.4 27.1 25.1 14.4 14.8 28.9 24.3 23.2 13.6
dichotomized 11.9 27.2 40.9 34.3 11.8 11.9 24.4 37.8 31.6 10.8
Tmax-based 23.4 31.1 32.2 30.6 18.6 21.9 28.2 29.8 27.6 17.5
β = log (0.4)
trichotomized 41.2 77.6 69.7 68.0 33.1 37.4 75.3 66.5 65.6 32.2
dichotomized 28.4 65.8 85.0 77.9 24.3 24.6 61.1 82.8 76.5 22.9
Tmax-based 62.2 76.3 80.2 76.8 48.2 60.0 74.7 77.5 73.3 47.6

Table 2: Powers of hypothesis testing procedures for logistic regression models
with change point variable as a main effect. ρ: correlation of predictor Z and
X.
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Figure 1: Powers of hypothesis testing procedures for logistic regression models
with change point variable as a main effect only (β = log(0.4), left) and both as
a main effect and as part of an interaction term (β1 = log(0.67), β2 = log(0.4),
right). Correlation of predictor Z and X: ρ = 0.
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ρ = 0 ρ = 0.3
e (quantile) 0.21 0.36 0.46 0.58 0.79 0.21 0.43 0.53 0.65 0.82
β1 = log (0.67) , β2 = log (0.8)
dichotomized 8.9 18.4 26.6 23.9 9.4 7.6 16.4 23.6 22.9 9.4
Tmax-based 16.3 21.8 22.1 21.3 12.8 12.8 18.1 20.9 21.2 16.7
TMI
max

-based 14.3 18.6 19.1 19.3 11.0 11.2 15.8 18.1 18.1 14.6
Qmax-based 14.9 19.1 21.0 20.9 13.6 12.6 17.2 18.7 19.5 16.3
β1 = log (0.67) , β2 = log (0.6)
dichotomized 13.3 31.6 47.6 41.2 12.8 10.5 27.2 42.9 43.4 16.2
Tmax-based 15.8 21.1 22.0 21.8 13.6 9.2 15.4 19.7 24.5 22.2
TMI
max

-based 23.2 32.6 32.4 31.5 18.9 14.0 23.6 28.1 32.2 27.5
Qmax-based 26.9 38.1 39.1 37.9 22.8 19.8 30.7 35.6 39.4 30.2
β1 = log (0.67) , β2 = log (0.4)
dichotomized 27.0 66.1 84.4 76.6 22.1 21.8 59.7 80.2 77.8 25.7
Tmax-based 15.2 19.4 18.8 18.5 10.9 7.8 13.5 17.1 24.4 27.0
TMI
max

-based 56.5 73.2 73.9 71.7 44.5 43.1 62.4 66.6 71.2 55.3
Qmax-based 60.0 77.1 78.0 77.2 51.3 49.6 69.2 73.9 77.7 60.1

β1 = − log (0.67) , β2 = log (0.8)
dichotomized 8.9 16.8 26.3 23.8 9.2 10.1 17.6 26.2 22.0 7.8
Tmax-based 13.8 19.2 20.2 20.3 14.7 16.0 20.5 21.0 19.1 11.9
TMI
max

-based 11.4 15.6 18.0 18.4 13.5 14.8 17.7 18.1 16.8 10.0
Qmax-based 14.4 19.5 21.3 20.5 13.8 17.8 20.8 21.1 19.7 12.3
β1 = − log (0.67) , β2 = log (0.6)
dichotomized 13.7 33.7 52.4 46.2 14.5 17.7 36.5 50.0 42.2 11.8
Tmax-based 13.8 20.4 21.2 20.9 15.5 24.8 25.0 22.8 17.9 8.3
TMI
max

-based 21.4 32.5 35.7 33.6 23.7 33.4 38.5 36.2 29.5 13.8
Qmax-based 27.2 41.3 44.4 41.6 26.9 35.8 43.0 43.2 38.6 20.7
β1 = − log (0.67) , β2 = log (0.4)
dichotomized 28.6 67.5 87.4 82.3 27.3 36.1 70.5 86.2 77.5 22.9
Tmax-based 14.5 18.7 19.8 20.5 16.4 33.1 29.3 23.9 16.4 6.3
TMI
max

-based 56.2 74.5 76.7 76.0 55.2 71.5 77.3 77.4 71.0 37.6
Qmax-based 60.1 79.0 81.3 81.5 60.2 69.0 80.0 81.0 77.5 47.6

Table 3: Powers of hypothesis testing procedures for logistic regression models
with change point variable both as a main effect and as part of an interaction
term. ρ: correlation of predictor Z and X.

16

http://biostats.bepress.com/uwbiostat/paper400


	1-13-2014
	Change Point Testing in Logistic Regression Models with Interaction Term
	Youyi Fong
	Chongzhi Di
	Sallie Permar
	Suggested Citation


	Change Point Testing in Logist.pdf

