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Brett S. Hanscom, Susanne May, James P. Hughes
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Abstract

Pooled-testing methods can greatly reduce the number of tests needed to identify failures in a collection

of samples. Existing methodology has focused primarily on binary tests, but there is a clear need for

improved efficiency when using expensive quantitative tests, such as tests for HIV viral load in resource-

limited settings. We propose a matrix-pooling method which, based on pooled-test results, uses the EM

algorithm to identify individual samples most likely to be failures. Two hundred datasets for each of a

wide range of failure prevalence were simulated to test the method. When the measurement of interest

was normally distributed, at a failure prevalence level of 15.6% the EM method yielded a 47.3% reduction

in the number of tests needed to identify failures (as compared to testing each specimen individually).

These results are somewhat better than the reduction gained by using the Simple Search method (44.9%)

previously published by May et al. (2010). However, the EM procedure was able to identify failures

in just 2.6 testing rounds, on average, as compared to an average of 19.2 testing rounds required by

Simple Search. In settings where the turn-around time for testing services is significant, the reduction

in testing rounds provided by the EM method is substantial. Unfortunately the EM method does not

perform as well when the measurements of interest are highly skewed, as is often the case with viral load

concentrations.
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1 Introduction

Pooled-testing methods can greatly reduce the number of tests needed to identify cases of disease in

biological samples, particularly when disease prevalence is low. One drawback associated with these

methods is that they typically involve lengthy, iterative procedures requiring long turn-around times.

Another limitation is that the majority of existing pooling methods only apply to binary tests, i.e. tests

that indicate only the presence or absence of a biological agent. In some instances the question of interest

is not whether a substance is present, but whether the amount of that substance is higher that a certain

threshold. When monitoring HIV-1 viral load in patients treated with ART, for example, the presence

of HIV-1 virus is already known, and the questions is whether the concentration of HIV virus has sur-

passed a critical threshold. In resource limited settings the cost associated with viral-load tests is very

high. If pooled testing methods can sufficiently reduce the costs associated with viral-load monitoring,

it may become possible to introduce viral-load monitoring in resource limited settings. Ideally we would

like to identify ”treatment-failure” cases quickly, without the need to carry out a lengthy pooled-testing

algorithm.

Here we develop a pooled-testing method which accounts for the amount of a disease agent present in

biological samples, and rapidly identifies specific samples that have surpassed a critical threshold. Our

method combines 2-dimensional matrix pooling with the EM algorithm, and iteratively tests individual

samples. Simulation studies show that this approach can reduce the number of tests needed to identify

failures, and dramatically reduces turn-around time. The method is general and can be applied in any

setting where the test of interest yields a continuous measure of concentration.

2 Background

Pooled testing, also known as ‘group testing’, is a method that has been successfully used to reduce

the cost of identifying disease cases (or failures) in a set of individuals (or items). Pooled testing is an

intuitive method for saving time and money, and has broad application. The basic idea involves taking

small portions of each specimen, mixing them together into one or more pools, and then testing the mixed
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pools. Assuming the test is sensitive, if a pool tests negative, all individual specimens in that pool must

be negative, and the cost of multiple individual tests has been saved. If a pool test is positive, further

testing must be performed to identify positive cases in that pool. Provided that a majority of pools yield

negative tests, which will generally be true if prevalence is low, substantial cost savings can be achieved.

Dorfman (1943) first quantified the conditions under which pooled testing is useful in the context of

binary (positive/negative) tests. By formulating a simple probability model, Dorfman was able to quan-

tify the expected benefit of pooled testing, as well as to compute optimal pool configurations. Testing

each of N individual specimens separately can be thought of as the baseline (expensive) approach, and

pooled-testing methods are evaluated by the expected percent reduction in tests T required to identify all

cases, i.e. 1− E[T/N ]. Savings can be substantial, for example Dorfman found that under a prevalence

of 1% and (optimal) pool size of 11, we can expect an 80% reduction in the number of tests performed.

In general, the potential efficiency gain is larger in populations with lower disease (or failure) prevalence.

Since Dorfman’s initial paper, numerous authors have proposed a wide variety of improvements and

extensions to the basic group-testing idea. For example Phadarfod and Sudbury (1994) proposed using a

matrix-pooling approach whereby specimens are arranged into a two-dimensional matrix, and the groups

formed by combining samples from each row and each column are tested. Each specimen residing at the

intersection of a positive row and positive column is then tested individually. An important advantage to

matrix-pooling designs is that by testing both row and column pools each specimen is effectively tested

twice, and thus the probability of false-negative samples can be reduced. Phadarfod and Sudbury (1994)

showed that by implementing a simple square-array testing scheme the probability of a false-positive

sample can be reduced by more than ten-fold in many practical scenarios.

Nearly all published results regarding pooled testing are based on binary testing. Individual samples

either contain or do not contain a certain substance, and likewise a pool of individual samples either

contains or does not contain that substance. Binary testing is common in biomedical settings, and the

conceptual simplicity of binary tests lends itself well to pooled testing methods. There are instances,

however, when we are interested in how much of a compound is present. When testing for lead in lake

water, for example, one may expect to find a small amount of lead in any given water sample, but would

only be concerned if the amount in any individual sample exceeded a certain threshold. Similarly, in

the context of viral-load monitoring, all individuals are expected to have low levels of viral RNA in their

3

Hosted by The Berkeley Electronic Press



blood, but we are only concerned when viral load becomes too high.

Quantitative tests produce more detailed results than binary tests, and as a result pooled quantitative

tests can provide more information than binary tests. Exploiting this idea, May et al. (2010) developed

a sequential testing algorithm based on matrix pooled samples for identifying ART failure among HIV

patients. The algorithm takes its strength from the fact that if a pool of specimens test positive on a

binary test, there is no way to tell how many members of the pool are positive. If an individual from

that pool is tested and turns out positive, it is still necessary to test the remaining members of the

pool (perhaps by re-pooling them) to determine whether other members are positive as well. On the

other hand, if a quantitative test is performed on one member of a positive pool, and the amount of

test material found in that sample is enough to explain the amount of material observed in the pool,

then no further testing of individuals in that pool is necessary. The search algorithm developed by May

et al. (2010) is more efficient than other pooling methods at prevalence levels between about 4% and 25%.

We now propose a statistical approach that uses a matrix-pooling strategy to predict which individual

samples are most likely to have surpassed the failure threshold. By making assumptions about the dis-

tribution of the target substance, and further using the EM algorithm to estimate key parameters in this

distribution, we extend the method reported by May et al. (2010). The objective is to improve efficiency,

defined as the percent reduction in the number of tests needed to identify all cases, and also reduce the

turn-around time, defined as the number of sequential testing iterations required to identify all cases.

This method can be used for any application where quantitative testing is performed. Although we use

the term “failure” to indicate a concentration value above a critical threshold, in other settings a high

concentration may indicate “success”. The methodology is the same regardless of how a threshold breach

is labelled.

3 Methods

3.1 Overview

Our approach to testing matrix-pooled specimens is an iterative algorithm that alternates between (1)

estimating failure prevalence using Expectation-Maximization (EM), and (2) testing the individual speci-

mens that are most likely to contain failure-level concentrations. Test results from individual (non-pooled)
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specimens are then fed back into the EM procedure, prevalence is re-estimated, and further individual

specimens are identified for testing. Once no further test candidates are found, the procedure is complete.

3.2 The Model

Starting with n2 specimens arranged into an n×n array, we form 2n row and column pools, and test each

pool for the target substance. For i=1...n (rows) and j=1...n (columns) let Y = {yij} be the unobserved

concentration values for each specimen. Let Z = {zij} represent the failure status of each specimen,

where zij = 1 if the ijth specimen is a failure and zij = 0 otherwise. Assume the zijs are iid Bernoulli(p)

where p is the (unknown) failure prevalence in the population. Assume that the target quantities are

normally distributed conditional on zij ,

yij |zij ∼ N(λzij + θ(1− zij), σ2
fzij + σ2

n(1− zij)) (1)

where λ is the mean concentration among failures, θ is the mean concentration among non-failures, σf is

the standard deviation among failures and σn is the standard deviation among normals in the population.

Since the zijs are iid, then the yijs are also independent. Thus if we let y represent the values yij of the

matrix Y arranged into a single column vector (y11, y12, ..., ynn)T , then

y|Z ∼MVNn2(ν(Z),Γ(Z)) (2)

where

ν(Z) =



λz11 + θ(1− z11)

λz12 + θ(1− z12)

...

λznn + θ(1− znn)


(3)

and
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Γ(Z) =



σ2
fz11 + σ2

n(1− z11) 0 . . . 0

0 σ2
fz12 + σ2

n(1− z12) . . . 0

...
...

...

0 0 . . . σ2
fznn + σ2

n(1− znn)


(4)

We can now represent the row and column pool concentrations as a function of the individual specimen

concentrations as follows:

r

c

 = Ay + ε (5)

where

A =
1

n



1 1 . . . 1 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 . . . 0 0 . . . 0

...
...

0 0 . . . 0 0 0 . . . 0 . . . 1 1 . . . 1

1 0 . . . 0 1 0 . . . 0 . . . 1 0 . . . 0

0 1 . . . 0 0 1 . . . 0 . . . 0 1 . . . 0

...
...

0 0 . . . 1 0 0 . . . 1 . . . 0 0 . . . 1



(6)

and

ε ∼MVN2n(0, τ2I) (7)

where A has dimension 2n× n2, I is the 2n× 2n identity matrix, and ε (measurement error) is a 2n× 1

vector of iid normal random variables with variance τ2. The conditional joint distribution of the row and

column-pool measurements is then

r

c

 |Z ∼MVN2n(µ(Z),Σ(Z)) (8)
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where

µ(Z) = Aν(Z) (9)

=



1
n (λ

n∑
j=1

z1j + θ
n∑
j=1

(1− z1j))

1
n (λ

n∑
j=1

z2j + θ
n∑
j=1

(1− z2j))

...

1
n (λ

n∑
i=1

zin + θ
n∑
i=1

(1− zin))


(10)

=



λ−θ
n

n∑
j=1

z1j + θ

λ−θ
n

n∑
j=1

z2j + θ

...

λ−θ
n

n∑
i=1

zin + θ


(11)

=
λ− θ
n

 Z

ZT

1n + θ12n (12)

and

Σ(Z) = AΓ(Z)AT + τ2I =

7
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1

n2



n∑
j=1

(σ2
f )z1j (σ2

n)1−z1j . . . 0 (σ2
f )z11(σ2

n)1−z11 . . . (σ2
f )z1n(σ2

n)1−z1n

0 . . . 0 (σ2
f )z21(σ2

n)1−z21 . . . (σ2
f )z2n(σ2

n)1−z2n

...
...

...
...

0 . . .
n∑
j=1

(σ2
f )znj (σ2

n)1−znj (σ2
f )zn1(σ2

n)1−zn1 . . . (σ2
f )znn(σ2

n)1−znn

(σ2
f )z11(σ2

n)1−z11 . . . (σ2
f )zn1(σ2

n)1−zn1

n∑
i=1

(σ2
f )zi1(σ2

n)1−zi1 . . . 0

(σ2
f )z12(σ2

n)1−z12 . . . (σ2
f )zn2(σ2

n)1−zn2 0 . . . 0

...
...

...
...

(σ2
f )z1n(σ2

n)1−z1n . . . (σ2
f )znn(σ2

n)1−znn 0 . . .
n∑
j=1

(σ2
f )zin(σ2

n)1−zin



+ T

(13)

where T = τ2I. In situations where we have differential measurement error between normals and failures,

we instead let

T = diag

 n∑
j=1

(τ2
f )z1j (τ2

n)1−z1j , . . . ,
n∑
j=1

(τ2
f )znj (τ2

n)1−znj ,
n∑
i=1

(τ2
f )zi1(τ2

n)1−zi1 , . . . ,
n∑
j=1

(τ2
f )zin(τ2

n)1−zin

 (14)

where τ2
f is the measurement error variance associated with failures and τ2

n is the measurement error

variance associated with normals.

The complete data likelihood (the joint distribution of r, c, and Z) can be written as the product of

the conditional and marginal distributions as follows:

f(r, c,Z|Θ) = f(r, c|Z,Θ)f(Z|Θ) (15)

= (2π)−n|Σ|− 1
2 exp(−1

2
(

r

c

− µ(Z))TΣ(Z)−1(

r

c

− µ(Z)))

×pΣzij (1− p)Σ(1−zij) (16)

where Θ = (λ, θ, σf , σn, τ, p), and Σ represents the summation over both i and j.
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3.3 Implementing the EM Algorithm

The EM algorithm begins by maximizing the expected complete-data log likelihood over the unknown

parameters. In the context of matrix pooling the number of observed data points is small (on the order

of 2n for n between 6 and 12) and hence insufficient to estimate all six distributional parameters in this

model. We therefore assume that all parameters except p can be well estimated using pre-existing data

and scientific knowledge of testing devices. This seems especially reasonable if we imagine that the lab

is doing repeated testing from the same population and can learn about the parameters over time. The

expected complete-data log likelihood, conditional on the observed data, is

E[l(Θ|Z, r, c])|r, c,Θ] = E[log(f(r, c,Z|Θ))|r, c,Θ]

= E[−nlog(2π)− 1

2
log|Σ|

−1

2
(

r

c

− µ(Z))TΣ(Z)−1(

r

c

− µ(Z))

+Σzij log(p) + Σ(1− zij)log(1− p)|r, c,Θ]

= −nlog(2π)− 1

2
log|Σ|

−1

2
E[(

r

c

− µ(Z))TΣ(Z)−1(

r

c

− µ(Z))|r, c,Θ]

+log(p)ΣE[zij |r, c,Θ]

+log(1− p)(n2 − ΣE[zij |r, c,Θ]) (17)

Only the final two terms

log(p)ΣE[zij |r, c,Θ] + log(1− p)(n2 − ΣE[zij |r, c,Θ]) (18)

are associated with the unknown parameter of interest p, and so, the expected complete-data likelihood,

conditional on r, c and parameter estimates is a linear function of

9
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E[Z|r, c,Θ]. (19)

However, the marginal distribution of r and c, f(r, c|Θ) is not known and can only be computed by

summing over all 2n
2

values of Z, and hence it would be difficult to compute E[Z|r, c,Θ] analytically.

Instead we estimate the expectation by summing over only the configurations of Z which could potentially

yield the observed row and column values. All other configurations would have very low probability, and

hence would contribute very little to the expectation equation.

3.4 Approximate expectation of Z (E Step)

For each row and column we first estimate the number of failures based on measured concentrations ri

and cj and on our preliminary estimates λ̂ and θ̂ of λ and θ. Let fri be the approximate number of

failures that would be expected to yield the observed value of ri. Choose fri so that

1/n(λ̂(fri − 1) + θ̂(n− fri + 1) ≤ ri ≤ 1/n(λ̂fri + θ̂(n− fri), (20)

unless

ri ≤ 1/n(λ̂+ θ̂(n− 1)) (21)

in which case fri = 1 if ri > (t∗/n) and fri = 0 otherwise, where t∗ is the failure threshold. For each

column j, estimate the number of failures fcj the same way. This method will tend to overestimate the

numbers of failures in each row and column, and, ignoring measurement error, will prevent any failures

from being missed. Let {Z ′} be the set of all n×n matrix configurations of failures and non-failures (1’s

and 0’s) such that the number of failures in each row and column is less than or equal to fri and fcj .

Then compute (19) as
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E[Z|r, c,Θ] =
∑
{Z′}

Z ′f(Z ′|r, c,Θ) (22)

where

f(Z|r, c,Θ) ≈ f(r, c,Z|Θ)/
∑
{Z′}

f(r, c,Z ′|Θ) (23)

3.5 The M-Step

At each iteration of the E-M algorithm we then maximize the expected complete-data log likelihood over

p. Differentiaing (17) by p, and defining ẑij = E[Z|r, c,Θ]ij , we have

∂

∂p
E[l(Θ|Z, r, c])|r, c,Θ] =

1

p
Σẑij −

1

1− p
(n2 − Σẑij) (24)

which, after setting equal to 0 and solving for p gives

p̂ =
1

n2
Σẑij . (25)

EM estimation proceeds as usual by choosing starting values Θ(0) = (λ̂, θ̂, σ̂, τ̂ , p(0)), and estimating

E[log(f(r, c,Z|Θ))|r, c,Θ(0)] by using the method described in Section 3.4. Then maximize over the

unknown portion of the parameter space to get Θ̂(1), re-estimate the expected log likelihood by estimating

E[Z|r, c, Θ̂(1)], and so on, iterating until the parameter estimates converge. “Convergence” is defined as

the iteration where p̂(n) changes by less than 0.0001 from one iteration to the next.

3.6 Test individual specimens, and repeat EM

Once the EM algorithm has converged, identify the failure configuration Z ′ with the highest conditional

probability, and test each individual specimen indicated in Z ′ by a 1. Let y∗ be the k × 1 vector of

measurements for all individually tested specimens, and let z∗ be the corresponding elements of Z. Now

repeat the EM algorithm by finding
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E[log(f(r, c,y∗,Z|Θ))|r, c,y∗,Θ] (26)

which again reduces to finding

E[Z|r, c,y∗,Θ(0)] =
∑
{Z′}

Z ′f(Z ′|r, c,y∗,Θ(0)) (27)

(28)

where Θ(0) is set equal to the final Θ(n) from the prior round of EM. From (3.2) we can derive that


y∗

r

c

 |Z ∼MVN2n+k(µ(Z)∗,Σ(Z)∗) (29)

where

µ(Z)∗ =


λz∗ + θ(1k − z∗)

λ−θ
n

 Z

ZT

1n + θ12n

 (30)

and Σ(Z)∗ is straightforward expansion of (13). The set {Z ′} now depends on the observed values y∗.

Define r′i as the approximate concentration in the ith row pool if the target substance in the tested cells

were removed:

r′i = ri −
1

n

n∑
j=1

y∗ij . (31)

For the ith row, estimate the number of failures in untested cells by choosing f ′ri such that

1/n(λ̂(f ′ri − 1) + θ̂(n− f ′r1 + 1) ≤ r′i ≤ 1/n(λ̂f ′ri + θ̂(n− f ′r1), (32)
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unless

r′i ≤ 1/n(λ̂+ θ̂(n− 1)) (33)

in which case f ′ri = 1 if r′i > (t∗/n) and f ′ri = 0 otherwise. Now the estimated number of failures in row

i is

fri =
n∑
j=1

1[y∗ij>t
∗] + f ′ri , (34)

and the updated number of failures in each column is compute similarly.

Upon convergence of each subsequent round of the EM algorithm, identify the most probable config-

uration Z ′ and test any indicated specimens that have not previously been tested. If there are no further

candidate specimens to test, the process is complete.

4 Simulation studies

In order to determine whether this methodology can reduce turn-around time and improve efficiency as

compared to previously studied pooling methods, we simulate random samples of n2 specimens for a va-

riety of different values of n and prevalence p. We compare the EM method to the Simple Search method

(May et al., 2010) and to a modified version of the Simple Search, comparing efficiency, turn-around time,

Sensitivity, and Negative Predictive Value (NPV). “Efficiency” is defined as the percent reduction in the

number of tests needed to detect all failures, as compared to testing each individual separately.

4.1 Comparable Methods

The “Simple Search” method developed by May et al. (2010) involves testing the row and column pools

of a n × n matrix array and then testing the individual cell at the intersection of the row and column

with the highest combined concentration that exceeds the failure threshold t divided by n. The tested

value is then subtracted from the corresponding row and column pool values, and the cell with the next
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highest combined row and column concentration is tested. This process continues, testing one cell at a

time, until there are no cells having both a row and column that exceed t/n.

The “Modified Simple Search” is a variation on the Simple Search method designed to reduce turn-

around time. Whereas the Simple Search method identifies and tests the single cell with the highest

combined row and column value, the Modified Simple Search further identifies and tests additional cells

in unique rows and columns. Once the first cell is selected, the cell with the next highest combined

row and column value is chosen from the remaining cells in distinct rows and columns. This process

is repeated until approximately n/2 cells are identified for testing, and all n/2 cells are tested at once.

Because more individual cells are identified for testing at each round, fewer testing rounds are necessary.

4.2 Normally distributed data

For the first set of simulation studies, target values were generated as a mixture of normal random vari-

ables with distinct means and variances, and with a common, small, measurement error variance. Two

hundred simulated datasets were generated for each of a variety of fixed prevalence levels ranging from

0.01 to 0.16. Target values were simulated according to model (3.2), with λ = 3000, θ = 200, σf = 200,

σn = 50, and τ = 5. The modelling procedure used the following parameter estimates: λ̂ = 3100

σ̂f = 210, θ̂ = 220, σ̂n = 48 and τ̂ = 5, with failure threshold t∗ = 1000. Efficiency, turn-around time

and sensitivity results are shown in Table 1 and Appendix A.

Table 1: Simulation results for 8x8 matrix pools. Normally distributed data, with 200 simulated datasets
per prevalence level. (Efficiency and Sensitivity are percents)

Prevalence (%)

1.6 3.1 4.7 6.2 7.8 9.4 10.9 12.5 14.1 15.6

Rounds - EM 1.0 1.3 1.4 1.7 1.9 2.1 2.4 2.4 2.5 2.6

Rounds - Mod. Simple Search 1.0 1.0 1.5 2.1 2.5 3.2 3.9 4.4 5.0 5.7

Rounds - Simple Search 1.0 2.4 3.7 5.7 7.7 10.0 12.6 14.3 16.8 19.2

Efficiency - EM 73.4 71.1 68.9 66.1 62.9 59.8 56.4 54.1 50.8 47.4

Efficiency - Mod. Simple Search 73.4 69.3 67.7 64.3 61.2 57.1 52.6 49.4 45.8 41.6

Efficiency - Simple Search 73.4 71.3 69.2 66.2 63.0 59.4 55.3 52.6 48.8 44.9

Sensitivity - EM 100 100 100 100 100 100 99.7 100 100 100

Sensitivity - Mod. Simple Search 100 100 100 100 100 100 99.9 100 100 100

Sensitivity - Simple Search 100 100 100 100 100 100 99.9 100 100 100

Sensitivity - Individual Testing 100 100 100 100 100 100 99.9 100 100 100
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For prevalences less than about 6% all three methods perform similarly well in terms of efficiency.

For prevalences above 10% the EM outperforms both Simple Search methods, with the advantage of EM

increasing for higher prevalences. At the highest prevalence level tested (15.6%, or 10 failures in an 8× 8

matrix), the EM method achieved 47.4% efficiency, while the SS and MSS methods were only 44.9% and

41.6% efficient, respectively.

In terms of turn-around time the EM method outperforms Simple Search methods even at low

prevalances, and the benefit increases dramatically with increasing prevalence. At 15.6% prevalence

the EM cuts the turn-around time in half as compared to the MSS, and improves on the SS method by

86%.

4.3 Skewed Data - HIV-1 Viral Load Example

In resource-wealthy settings, HIV-infected individuals who are being treated with anti-retroviral medica-

tions (ART) are routinely monitored for virologic failure, defined as a detectable proliferation of HIV virus

in the blood despite treatment. Individuals experiencing virologic failure may decline into worse health

and experience AIDS, and they also may present an increased risk of transmitting treatment-resistant

virus to sexual partners. In the context of low-income countries, regular viral-load testing (performed by

reverse transcriptase polymerase chain reaction (RT PCR)) is expensive and time consuming. Limited

HIV funds must also be allocated to identifying HIV cases and providing treatment, education, prevention

interventions, and a host of other services. It is critical therefore in these settings to minimize the cost

of viral monitoring.

In general we do not expect true viral-load values to follow a normal distribution. Empirical data sug-

gest that viral-load values tend to be skewed and are often well described by the lognormal distribution.

In addition, assay measurement error tends to be constant on the log scale, with assay standard devia-

tions of approximately 0.12 on the log10 scale (Brambilla et al., 1999), suggesting substantial variation

for large viral loads. To test robustness to distributional assumptions, we also ran a simulation study

where viral load values are not assumed to follow a normal mixture.

Simulated values for individuals with supressed viral load values were generated as exponential ran-

dom variables with a mean of 50. Failure values were generated as lognormal with mean 3.2 and standard
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deviation 0.25 (on the log10 scale), and shifted by +1000, giving an actual mean of about 2,585. Mea-

surement error was generated on the log10 scale as normal with mean 0 and standard error 0.12. Because

measurement error is applied on the log10 scale, we use the second measurement-error variance term T

as specified in (14), which accommodates the much larger measurement error among failures on the stan-

dard scale. When running the EM modeling procedure, the following parameter estimates were assumed:

λ̂ = 2800, σ̂f = 750, τ̂f = 900, θ̂ = 50, σ̂n = 50 and τ̂n = 5, with failure threshold t∗ = 1000.

Two hundred datasets were generated for each prevalence level, with prevalence levels fixed so that

each dataset contained the same, known, number of failures. Simulation results are displayed in Table

2. Although turn-around times and efficiency look favorable for the EM method, these promising values

come at the expense of a dramatic loss in sensitivity. All three methods show reduced sensitivity as

compared with the normal-data simulations, however sensitivity for the the EM method is particularly

low, at only 74% at the 16% prevalence level.

Table 2: Simulation results for 8x8 matrix pools. Skewed data, with 200 simulated datasets per prevalence
level. (Efficiency and Sensitivity are percents) (Note - these results are not final. Simulations for higher
prevalence levels were not completed (stopped due to futility). n for top three prevalence levels are 197,
84, 4.)

Prevalence (%)

1.6 3.1 4.7 6.2 7.8 9.4 10.9 12.5 14.1 15.6

Rounds - EM 0.9 1.2 1.5 2.0 2.4 3.0 3.2 3.7 4.0 4.0

Rounds - Mod. Simple Search 1.0 1.0 1.6 2.2 2.8 3.5 4.0 4.7 5.3 6.0

Rounds - Simple Search 1.1 2.4 4.0 5.9 7.8 10.2 12.3 14.5 17.0 19.2

Efficiency - EM 73.5 71.2 68.5 65.3 62.2 58.5 56.0 52.4 50.3 50.0

Efficiency - Mod. Simple Search 73.1 69.4 66.8 63.2 59.5 54.9 51.6 47.5 43.9 39.5

Efficiency - Simple Search 73.3 71.3 68.7 65.8 62.7 59.0 55.8 52.3 48.4 44.9

Sensitivity - EM 89.5 90.5 90.2 87.8 87.2 84.8 80.0 77.5 74.7 62.5

Sensitivity - Mod. Simple Search 98.5 99.5 96.5 96.2 94.4 93.7 91.7 90.8 89.3 95.0

Sensitivity - Simple Search 98.5 96.5 94.5 94.2 93.6 92.2 90.9 90.2 89.0 92.5

Sensitivity - Individual Testing 99.5 100 98.7 98.9 99.7 99.2 99.0 99.3 99.2 100

5 Discussion

These results suggest that for biological samples with normally distributed assay values, the EM-Matrix

Pooling approach is quite effective. Although the cost savings associated with this approach is not sub-

stantial (about 3% at high prevalence levels), the time savings associated with shorter turn-around times
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is large (about 85% compared to Simple Search and 50% compared to Modified Simple Search). In cases

where observed assay data is likely skewed such as HIV-1 viral load concentrations which tend to be

lognormal, and particularly where measurement error is quite large, this method breaks down and does

not yield high enough sensitivity to warrant use. The problem seems to be that the testing algorithm

finishes too quickly, and is unable to recognize that additional, untested failures are present in the matrix.

Perhaps it should not be surprising that large measurement error associated with pooled data would make

inference about individual samples very difficult.

We did run simulations where the assay data was assumed to be lognormal, but the measurement

error was small, and the the EM method performed well in terms of sensitivity and turn-around time.

However, efficiency was not improved as compared to the Simple Search methods. (Results not shown.)

Still, in situations where each round of testing requires a substantial amount of time, this method could

be quite useful.

One limitation to our method is the requirement that most of the distributional parameters are known

or well estimated. Although it would be nice to estimate or update these parameters based on pooled

data, it is unlikely that the very sparse data associated with matrix-pooled measurements would pro-

vide good information. However, in a laboratory setting where large numbers of biological samples are

processed each day, it would be quite reasonable to estimate distributional parameters for populations

that are sampled regularly over time. In addition, it would not be difficult to obtain repeated tests on

certain samples in order to estimate measurement-error distributions. Assay calibration may require this.

Further investigation with normally distributed assay data should include an assessment of model per-

formance under varying degrees of overlap between the failure distribution and non-failure distribution.

The simulated examples reported here use distributions that have little overlap. An important limiting

factor will be the need for the failure mean λ divided by n to be larger than the non-failure mean θ. If

this is not the case, then a row with a single failure and the rest undetectable would be indistinguishable

from a row of all non-failures with average concentrations. In general, it will likely be the case that for

a given λ and θ, only pooling matrices of size n∗ or less would be feasible, where n∗ is the largest n for

which λ/n > cθ for some constant c. A reasonable value of c would need to be investigated. Sensitivity

to larger measurement error should also be explored.
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In conclusion, this method was developed in the hope that HIV-1 viral load monitoring could be made

faster and more efficient. Although the method works for normal data with minimal measurement error,

unfortunately it does not seem to work well for skewed data with substantial measurement error, such as

HIV-1 viral loads.

Appendix A - Simulation results for varying matrix sizes.

Table 3: Simulation results for 5x5 matrix pools. Normally distributed data, with 200 simulated datasets
per prevalence level. (Efficiency and Sensitivity are percents)

Prevalence (%)

4 8 12 16 20 24 28 32 36 40

Rounds - EM 1.0 1.2 1.4 1.6 1.7 1.8 1.9 1.9 2.0 2.1

Rounds - Mod. Simple Search 1.0 1.2 1.9 2.3 2.9 3.5 4.1 4.6 5.1 5.5

Rounds - Simple Search 1.0 2.3 3.8 5.4 7.1 8.8 10.2 11.9 13.5 15.0

Efficiency - EM 56.0 50.4 44.9 38.8 32.9 26.9 21.8 17.2 10.3 5.1

Efficiency - Mod. Simple Search 56.0 48.6 42.5 35.1 28.6 21.4 14.5 8.4 2.7 -1.6

Efficiency - Simple Search 56.0 50.7 44.9 38.3 31.7 24.7 19.1 12.6 5.9 -0.0

Sensitivity - EM 100 100 100 99.9 100 100 100 100 99.8 100

Sensitivity - Mod. Simple Search 100 100 100 99.9 100 100 100 100 99.9 100

Sensitivity - Simple Search 100 100 100 99.9 100 100 100 100 99.9 100

Sensitivity - Individual Testing 100 100 100 99.9 100 100 100 100 99.9 100

Table 4: Simulation results for 6x6 matrix pools. Normally distributed data, with 200 simulated datasets
per prevalence level. (Efficiency and Sensitivity are percents)

Prevalence (%)

2.8 5.6 8.3 11.1 13.9 16.7 19.4 22.2 25 27.8

Rounds - EM 1.0 1.1 1.4 1.6 1.8 1.9 2.0 2.2 2.2 2.3

Rounds - Mod. Simple Search 1.0 1.0 1.5 2.0 2.5 3.0 3.6 4.1 4.5 4.9

Rounds - Simple Search 1.0 2.2 3.9 5.5 7.6 9.5 11.1 13.2 14.9 16.4

Efficiency - EM 63.9 60.3 55.9 51.4 46.6 43.2 38.1 32.7 29.0 25.2

Efficiency - Mod. Simple Search 63.9 57.3 53.6 48.4 42.3 36.7 30.5 24.7 20.5 16.3

Efficiency - Simple Search 63.9 60.4 55.9 51.4 45.7 40.4 35.8 30.1 25.3 21.2

Sensitivity - EM 100 100 100 99.5 100 99.8 99.7 100 99.6 100

Sensitivity - Mod. Simple Search 100 100 100 100 100 99.9 99.9 100 99.9 100

Sensitivity - Simple Search 100 100 100 100 100 99.9 99.9 100 99.9 100

Sensitivity - Individual Testing 100 100 100 100 100 99.9 99.9 100 99.9 100
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Table 5: Simulation results for 7x7 matrix pools. Normally distributed data, with 200 simulated datasets
per prevalence level. (Efficiency and Sensitivity are percents)

Prevalence (%)

2 4.1 6.1 8.2 10.2 12.2 14.3 16.3 18.4 20.4

Rounds - EM 1.0 1.2 1.4 1.6 1.9 2.0 2.2 2.4 2.3 2.5

Rounds - Mod. Simple Search 1.0 1.0 1.5 2.0 2.5 3.1 3.7 4.3 4.8 5.3

Rounds - Simple Search 1.0 2.3 3.8 5.7 7.9 9.7 12.1 13.9 16.0 18.1

Efficiency - EM 69.4 66.6 63.5 60.2 56.0 52.7 49.1 44.8 42.1 38.2

Efficiency - Mod. Simple Search 69.4 64.4 62.0 57.8 53.1 48.6 43.5 38.7 35.0 30.9

Efficiency - Simple Search 69.4 66.7 63.7 59.8 55.3 51.7 46.7 43.0 38.8 34.5

Sensitivity - EM 100 100 99.8 100 99.4 99.6 100 100 99.9 100

Sensitivity - Mod. Simple Search 100 100 99.8 100 99.8 99.9 100 100 99.9 100

Sensitivity - Simple Search 100 100 99.8 100 99.8 99.9 100 100 99.9 100

Sensitivity - Individual Testing 100 100 99.8 100 99.8 99.9 100 100 99.9 100

Table 6: Simulation results for 9x9 matrix pools. Normally distributed data, with 200 simulated datasets
per prevalence level. (Efficiency and Sensitivity are percents)

Prevalence (%)

1.2 2.5 3.7 4.9 6.2 7.4 8.6 9.9 11.1 12.3

Rounds - EM 1.0 1.2 1.5 1.8 2.0 2.2 2.4 2.6 2.8 2.9

Rounds - Mod. Simple Search 1.0 1.0 1.4 2.0 2.3 2.9 3.4 3.9 4.4 5.0

Rounds - Simple Search 1.0 2.4 3.9 6.0 7.9 10.4 13.1 15.3 17.4 20.1

Efficiency - EM 76.5 74.7 72.7 70.4 68.1 65.5 62.8 59.8 56.7 54.5

Efficiency - Mod. Simple Search 76.5 73.3 71.0 68.4 65.9 62.3 59.1 55.8 53.5 49.3

Efficiency - Simple Search 76.5 74.9 73.0 70.4 68.0 64.9 61.6 58.9 56.2 52.9

Sensitivity - EM 100 100 100 99.5 100 100 99.6 100 100 100

Sensitivity - Mod. Simple Search 100 100 100 100 100 100 99.9 100 100 100

Sensitivity - Simple Search 100 100 100 100 100 100 99.9 100 100 100

Sensitivity - Individual Testing 100 100 100 100 100 100 99.9 100 100 100
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Table 7: Simulation results for 10x10 matrix pools. Normally distributed data, with 200 simulated
datasets per prevalence level. (Efficiency and Sensitivity are percents)

Prevalence (%)

1 2 3 4 5 6 7 8 9 10

Rounds - EM 1.1 1.2 1.5 1.9 2.1 2.4 2.6 2.7 2.9 3.0

Rounds - Mod. Simple Search 1.0 1.0 1.3 1.8 2.2 2.6 3.1 3.5 4.0 4.5

Rounds - Simple Search 1.1 2.5 4.1 6.1 8.2 10.5 13.2 15.8 18.3 20.3

Efficiency - EM 78.9 77.6 75.9 74.0 72.0 69.8 66.9 65.1 62.6 60.3

Efficiency - Mod. Simple Search 78.3 75.6 73.5 71.8 69.2 66.7 63.8 61.5 57.9 55.3

Efficiency - Simple Search 78.9 77.5 75.9 73.9 71.8 69.5 66.8 64.2 61.7 59.7

Sensitivity - EM 100 90.0 90.0 94.6 95.2 97.8 99.6 100 100 100

Sensitivity - Mod. Simple Search 100 100 99.8 100 99.9 100 100 100 100 100

Sensitivity - Simple Search 100 100 99.8 100 99.9 100 100 100 100 100

Sensitivity - Individual Testing 100 100 99.8 100 99.9 100 100 100 100 100
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