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Abstract

Characterizing features of the viral rebound trajectories and identifying
host, virological, and immunological factors that are predictive of the viral
rebound trajectories are central to HIV cure research. In this paper, we inves-
tigate if key features of HIV viral decay and CD4 trajectories during antiretro-
viral therapy (ART) are associated with characteristics of HIV viral rebound
following ART interruption. Nonlinear mixed effect (NLME) models are used
to model viral load trajectories before and following ART interruption, incor-
porating left censoring due to lower detection limits of viral load assays. A
stochastic approximation EM (SAEM) algorithm is used for parameter esti-
mation and inference. To circumvent the computational intensity associated
with maximizing the joint likelihood, we propose an easy-to-implement three-
step method. We evaluate the performance of this method through simulation
studies and apply it to data from the Zurich Primary HIV Infection Study. We
find that some key features of viral load during ART (e.g., viral decay rate)
are significantly associated with important characteristics of viral rebound fol-
lowing ART interruption (e.g., viral set point).

Key words: censoring, HIV/AIDS studies, longitudinal data, stochastic approxima-
tion EM (SAEM) algorithm
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1 Introduction
Characterizing features of the viral rebound trajectories and identifying host, viro-
logical, and immunological factors that are predictive of the viral rebound trajec-
tories are central to HIV cure research (Richman et al., 2009; Li et al., 2015; Julg
et al., 2019). After the initiation of an antiretroviral therapy (ART), viral loads typ-
ically decline over time and subsequently drop below the assay’s detection limit,
i.e., the viral loads may be left censored. If the ART is discontinued, viral loads
usually rise rapidly to peak values, then decrease and stabilize at a level commonly
referred to as a viral set point. There are many barriers to curing HIV. Efforts have
been focusing on either a functional cure (lowering viral set points) or a sterilizing
cure (eliminating all HIV-infected cells), with the former being a more realistic goal
(Rouzioux et al., 2015).

To date, a number of biomarkers have been found to be predictive of the
timing of viral rebound or viral set point after treatment interruption including ART
initiation during acute/early HIV infection (Von Wyl et al., 2011; Namazi et al.,
2018), pre-ATI (analytic treatment interruption) CA-RNA (cell-associated RNA)
levels (Li et al., 2015;2016), and T-cell exhaustion markers measured prior to ART
(Hurst et al., 2015). So far, to the best of our knowledge, most studies focused on
predictors that reflect values at a single time point (e.g., age at the start of treatment
interruption), or provide simple summaries of observed values over history (e.g.,
nadir CD4 count, changes in numbers of cytotoxic T-lymphocytes) (Oxenius et al.,
2002; Wang et al., 2020; Bing et al., 2020; Conway et al., 2019). Here we investi-
gate the effect of longitudinal biomarkers on features of viral rebound, leveraging
rich information from the Zurich Primary HIV Infection Study, where viral load
and CD4 cell counts were measured longitudinally since seroconversion.

The Zurich Primary HIV Infection Study consists of participants presenting
with acute or recent HIV-1 infection between November 2002 and July 2008. This
study was described in details in Gianella et al. (2011). In brief, acutely and re-
cently HIV-1 infected individuals were offered immediate standard first line combi-
nation ART (cART) according to treatment recommendations of that time (Thomp-
son et al., 2010), and after at least one year of viral suppression below detection
limits (< 50 HIV-1 RNA copies/mL of plasma), they could elect to stop therapy.
Reinitiation of cART was based on CD4 count criteria of that time. Figure 1 shows
entire viral load (HIV-1 RNA copies/mL of plasma, in log10-scale) trajectories dur-
ing ART and following ART interruption for all subjects and for 5 randomly se-
lected subjects respectively (for data following ART interruption, we only show
the first 36 weeks of data because viral load levels typically stabilize before then).
We see that viral loads decline rapidly during ART and then may rebound quickly
following ART interruption, and that viral loads after reaching peak points during

2



Figure 1: Viral load (log10-scale) trajectories before and following ART interrup-
tion. Left censored values are denoted by triangle dots on the bottom horizontal
line with the censored values imputed by the detection limit. Observed values are
denoted by circle dots. Data during ART are in black, and data following ART inter-
ruption are in blue. The dashed vertical lines in gray indicate times when the ART
was interrupted. Figure (A) shows data from all subjects, and Figure (B) shows data
from 5 randomly selected subjects.

rebound exhibit large variations between subjects. Our main objective is to study
if key features of viral decay during ART, such as individual-specific viral decay
rates, are associated with important characteristics of viral rebound following ART
interruption, such as individual-specific viral rebound rates or set points.

Mixed effects models are well-suited to model longitudinal data with large
variations between individual viral load trajectories, since random effects in the
models can be used to incorporate the between-individual variations, as well as
individual-specific inference. To model viral load trajectories during ART, Wu and
Ding (1999) proposed nonlinear mixed effects (NLME) models based on reasonable
biological arguments, and the proposed exponential decay models have been shown
to fit viral load data during ART very well. For viral rebound trajectories following
ART interruption, Wang et al. (2020) proposed a different NLME model where
the key features of viral rebounds are represented by the model parameters. Thus,
here we use these two NLME models to model viral load before and after ART
interruptions respectively. Mixed effects models with left censored responses have
also been studied in the literature (Hughes, 1999; Wu, 2002; Vaida et al., 2007;
Vaida and Liu, 2009).

Statistical inference for NLME models is typically based on the likelihood
method (Wu, 2009). Due to unobservable random effects and nonlinearity of the
models, exact likelihood estimation based on the numerical integration methods or
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Monte Carlo Expectation-Maximization (MCEM) algorithm can be computation-
ally intensive and may suffer from convergence problems (Wu, 2009). A widely
used and computationally more efficient approximate method is the linearization
method of Lindstrom and Bates (Lindstrom and Bates, 1990), but its performance
can be less satisfactory in some cases (Comets et al., 2017). Here we consider the
Stochastic Approximation Expectation-Maximization (SAEM) algorithm for pa-
rameter estimation and inference of NLME models (Comets et al., 2017; Delyon
et al., 1999; Samson et al., 2006). The SAEM algorithm is computationally more
efficient than the MCEM algorithm and it performs well in the sense of producing
reasonable estimates and fast convergence.

In this article, we consider three mixed effects models: two NLME models
with left censored responses – one NLME model for viral dynamics during ART
and another NLME model for viral rebound following ART interruption, and a lin-
ear mixed effects (LME) model for CD4 data during ART. The three models are
linked through shared random effects. To reduce the computational burden, we
fit the three models separately based on a three-step method, using the SAEM al-
gorithm. We use a parametric bootstrap method to obtain standard errors of all
parameter estimates and incorporate estimation uncertainty from separate model
fittings. Our contributions are: (i) to our knowledge, our work is the first to study
the relationship between viral declines during ART and viral rebound after ART
based on NLME models; (ii) the proposed three-step method is simple, and can
be implemented with existing software; (iii) the proposed method is based on ex-
act likelihood method, so there is no concern about approximation accuracies as
in other approximate methods such as linearization methods, and it is also com-
putationally feasible; and (iv) the proposed method performs well, as shown in
simulations, and clearly outperforms a common naive method that uses an imputed
value for censored observations and model-based standard errors.

The article is organized as follows. In Section 2, we describe the models
motivated by the real dataset, and we propose a three-step method for parameter es-
timation. Section 3 presents a comprehensive data analysis. The proposed method
is evaluated in Section 4 via simulations. We conclude the article with some dis-
cussion in Section 5.

2 Models for Data Before and Following ART Inter-
ruption

In this section, we first consider an NLME model for viral decay and an LME model
for CD4 trajectories during ART. Then, the random effects in these two models,
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which summarize individual-specific CD4 and viral load trajectories, are used as
“covariates” in the viral rebound NLME model following ART interruption. Our
goal is to exam if the individual-specific viral rebound characteristics following
ART interruption are associated with individual-specific CD4 and viral load profiles
during ART.

2.1 Models for viral load and CD4 during ART

First, we model viral load trajectories during ART. Let Yi j be the (log10-transformed)
viral load value (in copies/mL) of individual i measured at time ti j during ART. Let
yi j be the observed value of Yi j, and let yi = (yi1,yi2, · · · ,yini)

T , i = 1,2, · · · ,n, j =
1,2, · · · ,ni. We use similar notation for other variables. The values of Y may be
left censored due to the assay’s lower detection limit. Based on possible virus elim-
ination and production processes, Wu and Ding (1999) showed that the viral load
trajectories during ART typically exhibit exponential decay patterns and may be
modelled by NLME models.

A general NLME model can be written as follows:

yi j = g(xi j,η,bi)+ ei j, (1)
bi ∼ N(0,B), ei ∼ N(0,Σi), i = 1,2, · · · ,n, j = 1,2, · · · ,ni,

where g(·) is a known nonlinear function, xi j is a vector containing covariates in-
cluding time, η is a vector containing fixed effect parameters, bi = (b1i, · · · ,bqi)

T

contains random effects, ei = (ei1,ei2, · · · ,eini)
T contains within-individual random

errors, and B and Σi are covariance matrices. The random effects bi and the random
errors ei are assumed to be independent. When the function g(·) is a linear func-
tion, the NLME model (1) reduces to an LME model. It is common to assume that
the within-individual errors are conditionally independent given the random effects,
i.e., Σi = σ2Ini , where Ini is the ni×ni identity matrix.

For the viral load data during ART, as shown in Figure 1, we consider the
following NLME model (Wu and Ding, 1999)

yi j = log10(e
P1i−λ1iti j + eP2i−λ2iti j)+ ei j, i = 1,2, · · · ,n, j = 1,2, · · · ,ni, (2)

P1i = P1 +b1i, P2i = P1 +b2i, λ1i = λ1 +b3i, λ2i = λ2 +b4i,

where bi = (b1i,b2i,b3i,b4i)
T are random effects, λ1 is the first-phase viral decay

rate, which corresponds to the rapid decay phase reflecting decay of productively,
long-lived and/or latently infected cells, λ2 is the second-phase viral decay rate
during ART, which corresponds to the slow decay phase reflecting decay of long-
lived and/or latently infected cells and other residual infected cells, log10(e

P1 +eP2)
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is typical viral load value at the start of ART. This NLME model is rooted from
a biological compartment model describing the interaction between HIV and its
host cells and has been shown to provide a good fit to the viral decay phase after
ART initiation (Wu and Ding, 1999). Figure 2(A) shows the viral decline profile
for a typical subject based on model (2). Random effects are introduced to each
parameter to incorporate large variations between individuals. As shown in Figure
1, some viral load values are left censored or below the detection limit. In estimating
the parameters in the above NLME model, the censored viral load values must be
taken into account to avoid biased results (Hughes, 1999; Wu, 2002).

In addition to viral loads, CD4 cell count during ART may be also associ-
ated with viral rebounds, due to the known association between CD4 and viral load.
The observed CD4 values are highly variable, reflecting both short-term biological
variation and measurement error. To address measurement errors in the observed
CD4 values, we may model the observed CD4 longitudinal data empirically to es-
timate true CD4 values. Specifically, let zi j be the observed CD4 cell count (in
cells/mm3) of individual i measured at time ti j, i = 1,2, · · · ,n, j = 1,2, · · · ,mi. We
may consider the following general LME model for CD4 data

zi j = uT
i jα+vT

i jai + εi j ≡ z∗i j + εi j, i = 1,2, · · · ,n, j = 1,2, · · · ,mi, (3)

where vectors ui j and vi j contain covariates including time, vector α contains fixed
effect parameters, vector ai contains random effects with ai ∼ N(0,A), z∗i j is the
assumed (unobserved) true CD4 value whose corresponding observed error-prone
value is zi j based on the classical measurement error model, and εi j is the measure-
ment error, with εi j’s are i.i.d. ∼N(0,δ 2). We may take appropriate transformations
of the observed CD4 values, such as a log-transformation or a √zi j-transformation
so that the transformed data are more compatible with the normality and constant
variance assumptions. We compare different models based on observed/predicted
plots, normal QQ-plots, and residual plots (see Appendix), as well as the simplicity
of the model and its interpretation. We find that a √zi j-transformation of CD4 pro-
vides satisfactory results since it produces similar results as the log-transformation
and it is widely used in the analysis of datasets from the AIDS Clinical Trials Group
network (ACTG) (see, e.g. Noubary and Hughes, 2012).

Note that the general LME model (3) includes nonparametric mixed effects
models which may be useful if the CD4 trajectories are complicated without clear
patterns, since we can use a basis-based approach to approximate the nonparametric
mixed model by an LME model (Wu, 2009). Thus, the general LME model (3) is
quite flexible for modelling complex CD4 longitudinal data.

For the motivating dataset shown in Section 1, we considered several empir-
ical polynomial LME models for CD4 data during ART. We find that the following
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Figure 2: (A) Typical viral dynamic profiles during ART based on model (2). (B)
Typical viral rebound profiles following ART interruption based on model (5).

simple empirical LME model fits the CD4 data reasonably well (see Appendix)

zi j = α1i +α2iti j + εi j, α1i = α1 +a1i, α2i = α2 +a2i, (4)

whereα= (α1,α2)
T are fixed effects and ai = (a1i,a2i)

T are random effects. More
complex models, such as a quadratic LME model zi j =α1i+α2iti j+α3it2

i j+εi j with
α3i =α3+a3i, do not improve the model fit substantially but they are more complex
and less stable. Thus, we choose the simpler LME model (4) for the (square root
transformed) CD4 data.

2.2 A Viral Rebound Model following ART interruption

We now model viral rebound data following ART interruption. Let wi j be the (log10-
transformed) viral load value of individual i measured at time t∗i j, i= 1,2, · · · ,n, j =
1,2, · · · ,n∗i , where t∗i j is the time since ART interruption (not since the start of
ART). After ART interruption, the viral load trajectories typically rise to a peak
value followed by a decrease to a viral load set point. Wang et al. (2020) proposed
an NLME model with a flexible functional form to capture this non-linear trajec-
tory and provide biological insights regarding the rebound process. In compari-
son to non-parametric modeling approaches such as the use of penalized smoothing
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splines (Zhao et al., 2021), key features of viral rebound trajectories are represented
by the parameters in the model, which provides a means to assess the covariate ef-
fects on each of these model parameters and allows us to identify critical pre-ATI
predictors for these features directly. Comparison of this parametric NLME model
to a dynamic viral model (Prague et al., 2019) found that both modeling approaches
led to good individual fits and consistent conclusions regarding the features of the
viral rebound process (Bing et al., 2020).

Following Wang et al. (2020) (with minor modification), we consider the
following NLME model for modelling the viral rebound following ART interrup-
tion

wi j = β1i
t∗i j

t∗i j + exp(β2i−β3it∗i j)
+β4i +ξi j, (5)

βi = Riβ+τi, i = 1,2, · · · ,n, j = 1,2, · · · ,n∗i , (6)

where vector βi = (β1i, · · · ,β4i)
T contains individual-specific parameters, vector

β = (β1, · · · ,βq)
T contains fixed effect parameters, Ri is a 5×q design matrix con-

tains covariates, and τi = (τ1i, · · · ,τ5i)
T ∼ N(0,G) contains random effects with G

being a covariance matrix, and ξi j is within-individual random error. We assume
that the random effects τi and the random error ξi j are independent, and ξi j are
i.i.d. ∼ N(0,ω2). Here the modification from Wang et al. (2020) is to replace the
term that describes the decline of the viral load from peak to set-point by a constant
parameter. The reason for this modification is that our viral load data after their
peaks during rebound exhibit large between-subject variations without a clear pat-
tern, so the parameter in the original model of Wang et al. (2020) that characterizes
the ‘dip’ after the leak may not be estimated well; including such parameter in the
model may also lead to non-convergences issues. In our current setting, we focus
on modeling the rate of rise and viral set points. While the simplification with a
constant term in the above model limits our ability to estimate the peak and the
decline from the peak, it provides a good fit to the data and allows the parameters
of primary interest (rate of rise and viral set point) to be estimated well.

Note that the above NLME model (5) - (6) may be viewed as a two-stage
model: In stage 1, model (5) describes the viral rebound trajectories within an in-
dividual; and in stage 2, model (6) assumes that the between-individual variations
in the individual-specific parameters in model (5) may be partially explained by
covariates in Ri as well as random effects τi.

The parameters in NLME model (5) have the following attractive interpre-
tations (Wang et al., 2020): parameter β1 represents set point after rebound, param-
eter β2 and β3 respectively characterize the timing and rate of rise in viral rebound,
and parameter β4 denotes initial viral load value at the start of rebound. Figure
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2(B) shows the viral load rebound profile for a typical subject based on model (5).
Therefore, each of the four parameters denotes an important characteristic of the
viral rebound trajectories following ART interruption.

As noted in Section 1, our main objective is to assess if key features of
viral load or CD4 trajectories after ART initiation may be associated with impor-
tant characteristics of viral rebounds following ART interruption. We may use the
second-stage model (6) to evaluate such possible associations. Note that the ran-
dom effects bi in NLME model (2) for viral load data during ART may be viewed
as individual-specific characteristics of the viral load trajectories during ART. Thus,
we may use the random effects bi as “covariates” in the rebound model (6) to see
if these “covariates” may partially explain the large variations in the individual-
specific parameters βi during viral rebound. Similarly, we may consider the random
effects ai in the CD4 model (4) during ART and use them as possible “covariates”
in the NLME model (6) for viral load following ART interruption. Specifically,
in the NLME model (5) model for viral rebound, we may consider the following
second-stage model for (6)

βki = βk + γk1b1i + γk2b2i + γk3b3i + γk4b4i + γk5a1i + γk6a2i + γk7vi + τki, (7)
β ji = β j + τ ji j 6= k, j,k = 1, · · · ,4, i = 1, · · · ,n,

where βk’s are fixed effects parameters, γkl’s are fixed effect parameters associated
with the corresponding random effects respectively, and vi denote other baseline
covariates.

For the motivating dataset shown in Figure 1, the sample size is small. In
this case, we may simplify the second-stage model (7) to reduce the number of
parameters and only focus on the key features of viral decay and viral rebound. For
example, to see if the initial viral decay rate λ1i = λ1 + b3i in NLME model (2)
during ART may be associated with the values of setpoints β1i after viral rebound,
we may consider the following second-stage model

β1i = β1 + γ13b3i + τ1i, βki = βk + τki, k = 2,3,4. (8)

Then, testing H0 : γ13 = 0 versus H1 : γ13 6= 0 allows us to assess possible association
between b3i and β1i. Similarly, we can evaluate other possible associations.

2.3 Parameter Estimation and Inference

In the previous section, we describe two NLME models and an LME model for viral
load and CD4 longitudinal data before and following ART interruption respectively.
A challenge in data analysis is that some viral loads are left censored in the later
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period during ART and in the early period after ART interruption. In other words,
both NLME models for viral loads must incorporate left censored data. In this
section, we consider a likelihood method for parameter estimation and inference,
incorporating left censoring. Note that we may consider the (joint) likelihood for
all observed data under the three models. However, such a unified approach can
be computationally very intensive, as will be discussed later in this section. To
circumvent the computational burden, here we consider likelihood methods for the
three models separately, but accounting for shared random effects linking these
models. Then we propose a simple three-step method for parameter estimation and
inference.

We first consider the NLME model (2) for viral dynamics during ART. Sup-
pose that the lower detection limit of viral load is di for subject i, i.e., viral load
values smaller than di cannot be observed. The observed value of viral load yi j
for individual i at time ti j can then be written as (yo

i j,ci j), where ci j is the cen-
soring indicator such that yi j = yo

i j is observed if ci j = 0 and yi j is left censored
if ci j = 1, i = 1,2, · · · ,n; j = 1,2, · · · ,ni. Let ci = (ci1, . . . ,cini)

T , let yo
i denote

the observed components of yi = (yi1, . . . ,yini)
T , and let ycen,i denote the censored

components of yi. The observed data of viral load before ART interruption are
{(yo

i ,ci), i = 1, . . . ,n}. Let f (·) denote a generic density function and F(·) denote
the corresponding cumulative density function (cdf). Let θ 1 be the collection of all
unknown parameters in the NLME model (2). The likelihood for the observed viral
load data during ART based on the NLME model (2) can be written as

Lo(θ 1) =
n

∏
i=1

∫ { ni

∏
j=1

(
f (yi j| bi,θ 1)

)1−ci j (F(di | bi,θ 1))
ci j
}

f (bi|B) dbi

=
n

∏
i=1

∫ ∫ { ni

∏
j=1

f (yi j| bi,θ 1) f (bi|B)
}

dycen,i dbi.

We see that the likelihood Lo(θ 1) involves an intractable integration, since the di-
mension of (ycen,i,bi) is high and the model is nonlinear.

To evaluate Lo(θ 1), a commonly used method is the Monte Carlo expectation-
maximization (MCEM) algorithm (Wei and Tanner, 1990), treating the left censored
values ycen,i and random effects bi as “missing data” (Hughes, 1999; Wu, 2002).
Specifically, the E-step at the k-th EM iteration can be written as

Q(θ 1|θ
(k)
1 ) =

∫ ∫ [
log f (yi|bi,θ

(k)
1 )+ log f (bi|θ (k)

1 )
]

f (yi,bi|yo
i ,ci,θ

(k)
1 ) dycen,i dbi,

where θ
(k)
1 is the parameter estimate from previous EM iteration (k = 1,2, · · · ).

To evaluate Q(θ 1|θ
(k)
1 ) in the E-step, we can use Monte Carlo methods to simu-

late a large number of “missing data” (ycen,i,bi) from the conditional distribution
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f (yi,bi|yo
i ,ci,θ

(k)
1 ), and then approximate Q(θ 1|θ

(k)
1 ) by the empirical mean based

on the simulated values. This simulation step can be implemented by Gibbs sam-
pler along with rejection sampling methods or the importance sampling method or
other Markov Chain Monte Carlo (MCMC) methods (Wu, 2009). The M-step can
be based on the Newton-Raphson method. This MCEM algorithm can be computa-
tionally intensive since the dimension of the “missing data” (ycen,i,bi) can be high,
so simulating large numbers from the conditional distribution f (yi,bi|yo

i ,ci,θ
(k)
1 )

can be very slow.
Alternatively, a computationally more efficient method than the MCEM

algorithm is the stochastic approximation EM (SAEM) algorithm (Delyon et al.,
1999). The SAEM algorithm replaces the E-step of the MCEM algorithm by a sin-
gle draw from the conditional distribution f (yi,bi|yo

i ,ci,θ
(k)
1 ) based on an MCMC

method, and then use a stochastic approximation to update Q(θ 1|θ
(k)
1 ). Delyon

et al. (1999) shows theoretically that SAEM converges to a (local) maximum of
the likelihood under general conditions. The SAEM algorithm for NLME models
has been implemented in the software “Monolix” (Comets et al., 2017; Kuhn and
Lavielle, 2005). Samson et al. (2006) extends the SAEM method to NLME models
with left censoring, based on simulating the left-censored values ycen,i from a right-
truncated Gaussian distribution f (ycen,i, |yo

i ,bi,θ
(k)
1 ) based on the Gibbs sampling

in the E-step of the SAEM algorithm.
Similarly, the foregoing SAEM method can be used for the NLME model

(5) and (6) for viral rebound data following ART interruption. In fact, we may con-
sider the SAEM algorithm for all three models simultaneously based on the joint
likelihood of all observed data. However, such a joint likelihood method can be dif-
ficult to implement and computationally extremely intensive, since the dimension
of the “missing data” (ycen,i,wcen,i,bi,τi,ai) is very high so even a single simula-
tion using an MCMC method can be computationally over-whelming, where wcen,i
denotes the censored components of wi = (wi1,wi2, · · · ,win∗i )

T . Therefore, here we
propose to use SAEM for each NLME model with left censoring separately to re-
duce the computation burden. Specifically, we propose the following three-step
(TS) method:

• Step 1: For data during ART, fit the NLME model (2) for viral load with
censoring using the above SAEM algorithm and fit the LME model for CD4
using the standard method respectively, and then obtain the maximum like-
lihood estimates (MLEs) of the fixed parameters and the empirical Bayes
estimates of the random effects, b̂i and âi, respectively;
• Step 2: For viral rebound data following ART interruption, fit the NLME

model (5) with left censoring using the above SAEM algorithm, with the
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random effects ai and bi in the second-stage model (7) substituted by their
empirical Bayes estimates b̂i and âi from Step 1;
• Step 3: Obtain the standard errors of the parameter estimates based on a

(parametric) bootstrap method, which incorporates the estimation uncertainty
of random effect estimates b̂i and âi in Step 1.

The parametric bootstrap method works as follows:

1. Simulate CD4 and viral load data with left censoring, based on the fitted LME
and two NLME models using the above three-step method, where the model
parameters are replaced by their estimates.

2. For the simulated CD4 and viral load data, fit all three models again using the
above three-step method and obtain all parameter estimates.

3. Repeat the above process B times (say, B = 100), we obtain B estimates for
each parameter. The sample standard deviation of these B estimates of each
parameter is the parametric bootstrap estimate of standard error of the corre-
sponding parameter estimate.

The above bootstrap method incorporates the estimation uncertainty of the param-
eter and random effect estimates in the TS method with separate model fitting, so it
should produce more reliable standard errors of the parameter estimates than those
from separate model fitting. Note that, in Step 2 of the above TS method, we use
the empirical Bayes estimates of the random effects. An alternative approach is to
sample from the posterior distribution of the random effects, but this approach may
introduce additional variability from the sampling.

3 Results of Data Analysis
In this section, we analyze the dataset shown in Figure 1 using the proposed TS
method and a naive (NV) method, which still uses the SAEM algorithm but the
censored values are substituted by half the detection limit and inference is based on
model-based standard errors. There are 75 patients in the study. Viral loads and
CD4 are repeatedly measured on patients during ART and following ART interrup-
tion, with the longest time of 58.4 months and shortest time of 16.73 months. After
ART interruption, viral load usually increases to a peak within 6–10 weeks, then
decrease to a stable level over a time scale of months. Therefore, we restrict our
attention to data within week 36 (9 months). We excluded individuals with 2 or less
repeated measurements either during ART or following ART interruption (n = 5)
or individuals with un-suppressed viral load values at the first time point following
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ART interruption (n = 4). For remaining viral load data during ART, the minimum
number of repeated measurements is 5, and the maximum number of repeated mea-
surements is 19, with an average number of repeated measurements being 9.32. For
viral load data following ART interruption, the minimum number of repeated mea-
surements is 3, and the maximum number of repeated measurements is 23, with
an average number of repeated measurements being 6.63. The proportions of vi-
ral load measurements that are left censored (below the detection limit) before or
after ART interruption are 59.9% or 10.5%, respectively. From Figures 1, we can
see that the viral load trajectories during ART exhibit clear patterns of viral decay.
Following ART interruption, the viral loads rebound quickly, but their trajectories
become complicated after reaching peak points, with substantial between-subject
variations.

For viral load data during ART, we fit the NLME model (2) of Wu and Ding
(Wu and Ding, 1999), with left-censored data addressed by the SAEM method. The
bi-exponential decay NLME model (2) fits the viral load data very well. Figure 3(A)
(top four figures) shows the fitted values versus the corresponding observed values
for four randomly selected subjects during ART. For the CD4 data during ART, the
CD4 trajectories do not appear to exhibit clear patterns, with large between-subject
variations, possibly due to substantial measurement errors. However, there seems
an overall upward trend. Thus, we fit the LME model (4) to the CD4 data, which
captures a rough upward trend before ART interruption.

For viral load data following ART interruption, we consider the following
NLME model

wi j = β1i
ti j

ti j + exp(β2i−β3iti j)
+β4i +ξi j, (9)

β1i = β1 + γ11b1i + γ12b2i + γ13b3i + γ14b4i + γ15a1i + γ16a2i + τ1i,

β ji = β j + τ ji, j > 1,

where β1i is the viral set point during rebound and the random effects (bli,aki) are
defined in model (7) (e.g., b3i is the random effect associated with the initial viral
decay rate λ1i during viral decay before ART interruption). We again address left-
censored data by the SAEM method. We use the parametric bootstrap method with
B = 100 to estimate the standard errors of all the fixed effect parameter estimates.
This NLME model for viral rebound also fits the data reasonably well. Figure 3(B)
(bottom four figures) shows the fitted values versus the corresponding observed
values for four randomly selected subjects during viral rebound.

Table 1 shows parameter estimation results for models (2) and (9) (the time
unit in data analysis is month). We see that parameters γ13 and γ14, which link the
initial viral decay rates λ1i and λ2i during ART to viral setpoints β1i following ART
interruption for individual i, suggest an association among these features (p-value
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Figure 3: Observed and fitted viral load trajectories before (top four figures) and
following (bottom four figures) ART interruption for 4 randomly selected subjects
respectively. The red vertical bars represent left-censored viral loads.
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= 0.029 and 0.000 respectively). Specifically, the initial viral decay rates during
ART appears to be negatively associated with the viral setpoints following ART
interruption: the faster the viral decay after start of ART, the lower the setpoints
following ART interruption. In addition, the second-phase viral decay rates during
ART appears to be negatively associated with the viral setpoints following ART
interruption: the faster the viral decay in the slow decay phase during ART, the
lower the setpoints following ART interruption. The naive method produces similar
estimates but different standard errors (we only show naive SE in Table 1 since naive
estimates are similar). We will evaluate the two methods via simulation in the next
section.

We may also consider the following second stage model associated with the
NLME model (9) for viral rebound following ART interruption:

β3i = β3 + γ31b1i + γ32b2i + γ33b3i + γ34b4i + γ35a1i + γ36a2i + τ3i, (10)
β ji = β j + τ ji, j 6= 3.

The analysis results are presented in Table 2. We see that the rate of rise during
viral rebound following ART interruption β3i appears to be negatively correlated
with initial viral decay rate (γ33) and positively correlated with initial viral load
values (γ31). That is, the faster the initial viral decline during ART or the lower the
initial viral loads, the slower the viral rising following ART interruption.

In summary, the analysis results show that some key characteristics of the
viral load trajectories during ART, especially the initial viral decay rates after the
start of ART, appear to be associated with some important features of the viral
rebound following ART interruption, such as viral setpoints and rates of viral rising.
The CD4 data during ART do not seem to be associated with important features of
the viral rebound following ART interruption.
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Table 1: Parameter estimates with a second-stage model for setpoint β1i.

Parameter Estimate Naive SE Bootstrap SE z-value p-value
P1 11.258 0.283 0.167 67.449 0.000
λ1 4.790 0.380 0.362 13.244 0.000
P2 3.271 0.117 0.206 15.872 0.000
α1 0.087 0.007 0.017 5.178 0.000
α2 24.080 0.517 0.438 54.985 0.000
λ2 0.225 0.027 0.019 11.788 0.000
β1 2.828 0.161 0.243 11.651 0.000
γ11 0.144 0.073 0.075 1.911 0.056
γ12 -0.027 0.559 0.755 -0.035 0.972
γ13 -0.252 0.079 0.116 -2.177 0.029
γ14 -97.574 50.944 26.294 -3.711 0.000
γ15 -0.026 0.033 0.035 -0.728 0.467
γ16 0.811 1.290 4.291 0.189 0.850
β2 1.588 1.308 0.694 2.289 0.022
β3 3.360 1.614 0.828 4.056 0.000
β4 0.783 0.119 0.151 5.195 0.000

Note: Naive SE is the standard error based on separate model fitting without
bootstrap, z-value is the ratio of Estimate/Bootstrap SE, and p-value is based on
the z-value and the standard normal tail probability for a two-sided test.
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Table 2: Parameter estimates with a second-stage model for rebound rate β3i.

Parameter Estimate Naive SE Bootstrap SE z-value p-value
P1 11.258 0.283 0.204 55.176 0.000
λ1 4.790 0.380 0.236 20.321 0.000
P2 3.271 0.117 0.167 19.575 0.000
α1 0.087 0.007 0.011 7.765 0.000
α2 24.080 0.517 0.518 46.456 0.000
λ2 0.225 0.027 0.019 11.627 0.000
β1 2.946 0.375 0.127 23.196 0.000
β2 1.542 1.040 0.419 3.680 0.000
β3 3.280 – 0.448 7.327 0.000
γ31 0.837 0.053 0.211 3.971 0.000
γ32 -4.589 0.177 2.691 -1.705 0.088
γ33 -1.110 0.008 0.317 -3.501 0.000
γ34 -221.564 12.712 116.409 -1.903 0.057
γ35 -0.106 0.023 0.109 -0.969 0.333
γ36 -0.090 0.445 8.458 -0.011 0.991
β4 0.772 0.448 0.057 13.625 0.000

Note: Naive SE is the standard error based on separate model fitting without
bootstrap, z-value is the ratio of Estimate/Bootstrap SE, and p-value is based on
the z-value and the standard normal tail probability for a two-sided test. A naive
SE is unavailable, possibly due to parameters being unidentifiable.
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4 Simulation Study
In this section, we conduct extensive simulations to evaluate the proposed TS method
and compare it with the naive method used in data analysis. We choose sim-
ilar NLME models to those in the data analysis section, but we omit the CD4
model for simplicity. The true values of the model parameters are set to be sim-
ilar to those estimated in the data analysis section. The sample size is set to be
N = 50 individuals. For the within-individual longitudinal measurements, to mimic
the real dataset, for half the sample we choose 10 repeated measurements during
ART and 9 repeated measurements following ART interruption, while for the re-
maining half the sample we choose 11 repeated measurements during ART and
11 repeated measurements following ART interruption. The measurement times
are chosen to be similar to those in the real dataset. Two sets of measurement
times during ART are t1 = (0.5,1.6,2.3,3,4.6,6.5,7.6,11.2,14.9,19.1) and t2 =
(0.5,0.7,1.7,3,4.4,5.9,7.9,9.6,11.7,14,16.5). Two sets of measurement times fol-
lowing ART interruption are t∗1 = (0.1,1.1,1.6,2.4,2.8,3.3,3.7,4.2,5.2) and t∗2 =
(0.2,0.6,1.1,1.6,2.1,2.5,3,3.5,4,4.4,4.9).

We generate the viral load data during ART based on the following NLME
model

yi j = log10(e
P1i−λ1iti j + eP2i−λ2iti j)+ ei j (11)

P1i = P1 +b1i, P2i = P1 +b2i, λ1i = λ1 +b3i, λ2i = λ2 +b4i,

where ei j i.i.d. ∼ N(0,σ2
1 ) and bi = (b1i,b2i,b3i,b4i)

T ∼ N(0,D). The true values
are P1 = 17.0, P2 = 2.6, λ1 = 4, λ2 = 0.05, and σ1 = 0.5. The detection limit is set
to be d = 1.60. For the viral load data following ART interruption, we generate the
data based on the following NLME model

wi j = β1i
ti j

ti j + exp(β2i−β3iti j)
+β4i +ξi j,

β1i = β1 +b3iγ3 + τ1i, β2i = β2 + τ2i, β3i = β3 + τ3i, β4i = β4 + τ4i,

where b3i is the random effect from model (11), ξi j ∼ N(0,σ2
3 ), and τi ∼ N(0,G).

The true parameter values are β1 = 3.2, β2 = 5.6, β3 = 10, β4 = 1, γ3 = 1, σ3 = 0.5,

D=


1.7 −0.4 0.06 −0.003
−0.4 1.5 −0.1 0.005
0.06 −0.1 0.05 −0.002
−0.003 0.005 −0.002 0.0002

 , and G=


0.5 0.03 0.2 0.03

0.03 2.3 −0.3 −0.04
0.2 −0.3 11.8 0.06

0.03 −0.04 0.06 0.006

 .
We evaluate the proposed TS method based on bias, mean square error

(MSE), and coverage rates of 95% confidence intervals. For a parameter β and
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its estimate β̂ , the bias and root MSE (rMSE) are defined as bias = E(β̂ )− β ,
rMSE =

√
MSE, and the coverage rate is the proportion of confidence intervals

which covers the true value. We compare the TS method to a naive method which
replaces censored viral loads by half the detection limits and uses the model-based
standard errors for inference. For the TS method, the number of bootstrap sam-
ples is B = 100. The simulations are repeated 100 times. While a larger number
of repetitions may be more desirable, the computation involving bootstrap is inten-
sive and the 100 repetitions results seem sufficient to allow us to make reasonable
conclusions (Morris et al., 2019).

The simulation results are shown in Table 3. We see that the proposed TS
method performs quite well and clearly outperforms the naive method: estimates
based on the TS method are approximately unbiased with estimated coverage prob-
abilities close to the nominal level 0.95, while estimates based on the naive method
may sometimes produce biased results with estimated coverage probabilities way
below the nominal level 0.95. Despite the simulation results, both methods seem
to produce similar results on the real data analysis in the previous section. Note
that the SE’s based on the naive method may be under estimate the true variation
since the naive method ignores the uncertainties of the censored values and the sep-
arate NLME model fitting, therefore the naive method may lead to smaller MSE’s
but lower coverage probabilities. On the other hand, the proposed TS method in-
corporates the uncertainty of the censored values by the SAEM algorithm and the
separate NLME model fitting by bootstrap, so it may lead to larger MSE’s but cor-
rect coverage probabilities.

Since the performance of MLEs of mixed effects models depend both on
the sample size and the number of repeated measurements, we also conduct another
simulation study by choosing more frequent repeated measurements, with other
true parameter values remaining the same. The measurement times are chosen to
be close to those in the real dataset with additional measurement times in between.
Specifically, the new set of measurement times during ART are chosen to be t1 =
(0.4,1.2,1.6,2.1,3.2,4.6,5.3,7.8,10.4,13.4,17), and the new set of measurement
times following ART interruption are chosen to be t∗1 = (0,0.6,0.8,1.2,1.4,1.7,
1.9,2.1,2.6,3.1,3.8,4.5,5.4,6). The simulation results are shown in Table 4. The
proposed TS method again outperforms the naive method.

5 Conclusions and Discussion
We have shown that key features of viral decay during ART may be associated
with important features of viral rebound following ART interruption. For example,
the faster the viral decay after start of ART, the lower the setpoints following ART
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Table 3: Simulation results.
Parameter True value Method Estimate SE Bias rMSE Coverage

P1 17.0 TS 17.097 0.425 0.097 0.435 0.95
Naive 17.088 0.257 0.088 0.272 0.91

λ1 4.0 TS 4.092 0.240 0.092 0.257 0.91
Naive 4.137 0.216 0.137 0.256 0.91

P2 2.6 TS 2.794 0.398 0.194 0.442 0.95
Naive 2.222 0.111 -0.378 0.394 0.39

λ2 0.1 TS 0.040 0.081 -0.010 0.081 0.95
Naive 0.029 0.009 -0.021 0.023 0.40

β1 3.2 TS 3.267 0.140 0.067 0.155 0.95
Naive 3.324 0.130 0.124 0.180 0.86

γ3 1.0 TS 0.986 0.096 -0.014 0.097 0.94
Naive 0.999 0.083 -0.001 0.083 0.92

β2 5.6 TS 5.588 1.187 -0.012 1.187 0.94
Naive 6.370 1.354 0.770 1.558 0.84

β3 10.0 TS 10.079 2.062 0.079 2.064 0.94
Naive 11.170 2.650 1.170 2.897 0.88

β4 1.0 TS 0.930 0.092 -0.070 0.115 0.85
Naive 0.861 0.072 -0.139 0.157 0.62
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Table 4: Simulation results with more frequent repeated measurements.

Parameter True value Method Estimate SE Bias rMSE Coverage
P1 17.0 TS 16.820 0.733 -0.180 0.755 0.93

Naive 16.981 0.259 -0.019 0.260 0.89
λ1 4.0 TS 4.011 0.288 0.011 0.288 0.92

Naive 4.103 0.202 0.103 0.227 0.85
P2 2.6 TS 2.968 0.705 0.368 0.796 0.95

Naive 2.273 0.142 -0.327 0.357 0.51
λ2 0.1 TS 0.096 0.186 0.046 0.191 0.95

Naive 0.041 0.012 -0.009 0.015 0.34
β1 3.2 TS 3.223 0.132 0.023 0.134 0.94

Naive 3.304 0.121 0.104 0.159 0.87
γ3 1.0 TS 0.986 0.095 -0.014 0.096 0.97

Naive 0.996 0.089 -0.004 0.089 0.96
β2 5.6 TS 5.553 0.873 -0.047 0.874 0.95

Naive 6.258 0.676 0.658 0.943 0.79
β3 10.0 TS 9.757 1.460 -0.243 1.481 0.96

Naive 10.715 1.166 0.715 1.368 0.82
β4 1.0 TS 0.980 0.079 -0.020 0.081 0.88

Naive 0.886 0.048 -0.114 0.124 0.63
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interruption. Such a finding may provide insights into HIV cure research. Recent
findings suggest that HIV-1 latent reservoir is primarily established near the time of
ART initiation (Abrahams et al., 2019); interventions in addition to ART to inhibit
the formation of latent reservoir may subsequently lead to a lower viral set point –
a key goal of the HIV functional cure. A limitation of our dataset is that the sample
size is somewhat small.

In the future, if we are able to obtain a larger dataset, we may be able to
identify more interesting associations between features of viral decay and viral re-
bound. Another issue is the frequencies of the repeated measurements within each
individual. If the longitudinal data were collected more frequently over time, the
mixed effects model parameters might be estimated more accurately in the sense of
possibly smaller standard errors, allowing us to identify more interesting associa-
tions. It would also be of interest to investigate optimal study design, e.g., how to
schedule measurement times, to improve efficiency of data analysis.

We have considered two NLME models with left censoring and an LME
model, and we estimate the model parameters separately using an SAEM algorithm
and a bootstrap method, called a three-step method. Similar ideas have appeared
in the context of measurement error literature (Carroll et al., 2006). A major ad-
vantage of the proposed three-step method is that it is easy to implement and is
computationally efficient. A disadvantage is that the parameter estimates may not
be most efficient if the assumed models hold, since the model parameters are es-
timated separately. In addition, other possible useful covariates, such as the time
from viral suppression to ART interruption, are not included in the models in or-
der to keep the models relatively simple, and the possible association between the
random effects in the viral load models and the CD4 model is ignored for sim-
plicity, due to small sample sizes. One may also consider simultaneous likelihood
inference based on the joint likelihood of all three models via an Monte Carlo EM
algorithm (e.g. Wu, 2009), but such a method can be computationally very inten-
sive and may encounter convergence issues, since the dimensions of unobservable
random effects and censored values are high. Alternatively, we may consider ap-
proximate joint likelihood inferences based on the so-called h-likelihood (Lee et al.,
2017) or based on Laplace approximations (Vonesh et al., 2002), but the accuracy
of these approximations could be a potential issue. Another promising approach is
to use Bayesian methods (e.g. Dey et al., 1997; Huang et al., 2018), which will be
investigated separately.

In this article, we have focused on studying the associations among the in-
dividual viral dynamic characteristics during ART and following ART interruption,
such as the individual viral decay rates and setpoints. Another important direction is
to study the association between the individual viral dynamic characteristics during
ART and times to viral rebound or times to setpoints after ART is stopped. For ex-
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ample, are individuals with faster viral declines during ART associated with slower
viral rebounds after the therapy is stopped? Such questions may be answered using
joint inference for an NLME model for viral dynamics during ART and a time-
to-event model such as a Cox proportional hazards model. There is an extensive
literature on joint models for longitudinal and survival data and modelling times to
viral rebound (e.g. Yu et al., 2018; Hill et al., 2016; Conway et al., 2019). We will
explore this direction separately.

The models can be extended in different ways. For example, we may con-
sider semiparametric NLME models for viral rebound data since the viral rebound
trajectories after reaching peak points may not be easily modelled parametrically
due to large between-individual variations without clear patterns. In the article, we
have assumed that the left censored viral loads follow the same distribution as the
observed viral loads. Such an assumption is not testable based on the observed data.
We may consider an approach which does not make such assumption, e.g., treating
the censored values as point masses as in Yu et al. (2018).
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Appendix: Model selection and diagnostics
In this section, we consider model selection and diagnostics for CD4 models. These
viral load models are well studied in the literature (e.g., Wang et al. 2000, Wu and
Ding 1999, Wu 2009). For the CD4 data, we considered log-transformation and
square root transformation so that the transformed data are more compatible with
the normality and constant variance assumptions. We find that these two transfor-
mations lead to similar results. More complex transformations, such as those based
on the Box-Cox transformations, do not appear to improve the results substantially,
and they are harder to interpret. Therefore, in the paper, we choose the square root
transformation of CD4 counts since it is widely used in ACTG data analyses.

For CD4 model selections, since the CD4 model is secondary in the paper
and CD4 data are measured with errors, we focus on the simplicity and goodness-of-
fit of the candidate models. We find that a simple linear mixed effects (LME) model
captures the main features of the CD4 trajectories and it also fits the observed CD4
data reasonably well, i.e., in the paper, we choose the CD4 model:√

CD4i j = α1i +α2iti j + εi j, αki = αk +aki, k = 1,2

where CD4i j is the original CD4 count for subject i measured at time ti j, αk’s are
fixed effects, and aki’s are random effects. Note that this simple CD4 model may
also be interpreted as a classic measurement error model, where z∗i j = α1i +α2iti j
may be interpreted as the unobserved true (transformed) CD4 value for subject i
at time ti j. The AIC (BIC) values for the CD4 models with a quadratic term (and
a random effect) and without a quadratic term are 2690 (2733) and 2733 (2759),
respectively. Thus, adding a quadratic term t2

i j does not appear to improve the model
substantially but it may make the model more complicated and less stable.

Figure 4 shows the observed/fitted CD4 values for four randomly selected
subjects. We see that the CD4 model captures the main features of the CD4 tra-
jectories. Figure 5 shows the normal QQ-plots for the estimated random effects in
the intercepts and slopes of the CD4 model. We see that the normality assumptions
are mostly reasonable. Figure 6 shows the overall residual plots of the CD4 model.
These model diagnostics indicate that the simple CD4 model is a reasonable choice.
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Figure 4: Observed/fitted CD4 values for four randomly selected subjects. The
solid lines represent individual fitted CD4 models, and the dots represent observed
CD4 values.

Figure 5: Normal QQ-plots for random effects in intercepts and slopes in the CD4
model.
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Figure 6: Residual plot for the CD4 model.
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