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A Small Sample Correction for Estimating
Attributable Risk in Case-Control Studies

Daniel B. Rubin

Abstract

The attributable risk, often called the population attributable risk, is in many epi-
demiological contexts a more relevant measure of exposure-disease association
than the excess risk, relative risk, or odds ratio. When estimating attributable risk
with case-control data and a rare disease, we present a simple correction to the
standard approach making it essentially unbiased, and also less noisy. As with
analogous corrections given in Jewell (1986) for other measures of association,
the adjustment often won’t make a substantial difference unless the sample size
is very small or point estimates are desired within fine strata, but we discuss the
possible utility for applications.



1 Attributable risk

Although an exposure may be strongly associated with a disease, an inter-
vention removing the risk factor can produce a limited public health benefit
if the exposure is uncommon. Herein lies the interpretational problem with
the measure of exposure-disease association

RR = relative risk = pr(disease|exposed)/pr(disease|unexposed).

A different measure of association is Levin’s (1953) attributable risk

AR = {pr(disease) − pr(disease|unexposed)} /pr(disease)

= pr(exposed|disease) (1 − 1/RR) ,

where equality of the two lines can be seen from (5.1) of Jewell (2003). The
attributable risk is informally the proportion of cases that could be saved
by eliminating exposure, assuming no confounding. For instance, a value
of 0.1 suggests a tenth of cases are due to exposure. When contemplating
interventions, such knowledge can be more relevant than the relative risk.

While the attributable risk is not directly identifiable with case-control
sampling, for a rare disease it is approximately

AR? = pr(exposed|disease) (1 − 1/OR) ,

for

OR = odds ratio =
pr(exposed|disease)

pr(unexposed|disease)

pr(unexposed|disease free)

pr(exposed|disease free)
.

The reasoning behind the approximation is that

AR? − AR =
pr(exposed|disease)

RR

(
1 −

pr(disease free|exposed)

pr(disease free|unexposed)

)
,

and the factor on the right will be close to zero if the disease is uncommon for
both the exposed and unexposed. Case-control studies are most appropriate
for rare diseases, so the following discussion assumes AR? ≈ AR, and we
henceforth take AR? as our desired measure of association.
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In a case-control study, we assess exposure status for m cases and n
controls. The statistical model is

number of cases exposed = A ∼ Bin(m, q), 0 < q < 1

number of controls exposed = B ∼ Bin(n, p), 0 < p < 1, A ⊥ B

number of cases unexposed = C = m− A

number of controls unexposed = D = n − B.

We can now formally define our parameter of interest as

AR? = q

(
1 −

1 − q

q

p

1 − p

)
.

2 Small sample correction

For additional details we refer to Whittemore (1982) or Jewell (2003, section
7.4), but the usual maximum likelihood estimator is given by

ÂR =
A

A + C
−

BC

(A + C)D
.

There is ambiguity when D = 0, and if the definition is taken literally the es-
timator has bias of −∞. Since A+C = m, this part of the two denominators
does not cause problems. We propose the small sample correction

ÂRSS =
A

A + C
−

BC

(A + C)(D + 1)
.

The following theorem is proven in the appendix, and states that bias de-
creases exponentially with the number of controls.

Theorem 1. bias(ÂRSS) = E[ÂRSS ] − AR? =
(

1−q

1−p

)
pn+1 = O(e−n).

For problems in statistics where exact unbiasedness is impossible, ex-
ponentially decreasing bias is somewhat unusual. A Taylor expansion can
frequently show ratios of empirical means and the like have bias Ω(n−1),
where n is the sample size. The jackknife was originally introduced to reduce
such biases to O(n−2) (Quenouille, 1956), which is a far cry from O(e−n).
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Ideally we would only investigate exposures that are associated with dis-
ease, or at least neutral. In such a setting, the (1 − q)/(1 − p) constant in
the bias is no larger than one.

In line with its interpretation of yielding the percentage of cases due to
exposure, attributable risk is often reported to two decimal places. Hence,
say our estimator is essentially unbiased if bias is less than 0.005. If the
exposure is not ubiquitous, so less than half of controls are expected to be
exposed, then only nine controls are needed to ensure essential unbiasedness.

Table 1 compares the bias of the standard and corrected estimator. As
mentioned, the standard estimator does not even have finite bias because
D = 0 can occur in the denominator, but we level the playing field by
conditioning on {D 6= 0}. The exact bias of the standard estimator can then
be calculated by enumerating outcomes for the binomial distribution. Results
are shown for a handful of parameter values (q, p), for a small study with ten
cases and ten controls. The corrected estimator clearly seems preferable.

Table 1: Bias of the standard and corrected estimator, with m = 10 cases and
n = 10 controls, conditional on {D 6= 0}. The corrected estimator appears
to have smaller bias.

q p AR? bias(ÂR|D 6= 0) bias(ÂRSS |D 6= 0)
0.1 0.1 0.0000 -0.0127 0.0000

0.2 -0.1250 -0.0335 0.0000
0.3 -0.2857 -0.0694 0.0001
0.4 -0.5000 -0.1360 0.0009

0.2 0.1 0.1111 -0.0113 0.0000
0.2 0.0000 -0.0297 0.0000
0.3 -0.1429 -0.0617 0.0000
0.4 -0.3333 -0.1209 0.0008

0.3 0.1 0.2222 -0.0099 0.0000
0.2 0.1250 -0.0260 0.0000
0.3 0.0000 -0.0540 0.0000
0.4 -0.1667 -0.1058 0.0007

0.4 0.1 0.3333 -0.0085 0.0000
0.2 0.2500 -0.0223 0.0000
0.3 0.1429 -0.0463 0.0000
0.4 0.0000 -0.0906 0.0006
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The bias reduction would be a Pyrrhic victory if it induced a large spike
in variance. Fortunately, this does not occur because the correction tends
to stabilize things. The standard method has infinite variance since D = 0
can appear in the denominator, but even after conditioning on the estimator
being properly defined, the small sample correction still improves variance.
The following theorem makes this precise, and our proof is in the appendix.

Theorem 2. var(ÂRSS|D 6= 0) < var(ÂR)|D 6= 0).

The correction is thus meant to reduce both bias and variance, the com-
ponents of mean squared error, or the traditional measure of risk in statistical
decision theory. Our problem is a counterexample to the common situation
where bias correction is ill-advised since the variance increase is prohibitive
(Doss and Sethuraman, 1989).

3 Does the correction make a difference?

Our method has several theoretical advantages that we have discussed, it can
be implemented by hand, and we avoid definitional problems when D = 0.
The procedure could prove useful with a small sample size, or when con-
founding necessitates cross-tabulation and point estimates are desired within
relatively fine strata. However, replacing D by D+1 in the estimator will of-
ten result in a very minor perturbation, and in this sense our proposal brings
to mind the longstanding but frequently meaningless debate over whether to
multiply a sample variance by n/(n − 1).

To see the utility of our method, we should note that it is an analog of
relative risk and odds ratio corrections of Jewell (1986). Adjustments follow
from the fact that if X ∼ Bin(n, p), then (n+1)/(X +1) and X/(n−X +1)
are corrected estimators of 1/p and p/(1−p). Jewell (2003, section 7.1) states
that the “principal value of a small sample adjustment is in its alerting us to
situations where the sample size is small enough to have a noticeable impact
on an estimator, thereby suggesting that large sample approximations may
be suspicious.” This seems like good advice for attributable risk estimation,
for which our method should have a modest but positive impact.
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Appendix

Proof of Theorem 1. We begin by noting that since B ∼ Bin(n, p), we have

E

[
B

D + 1

]
= E

[
B

n − B + 1

]

=

n∑

k=0

n!

k!(n− k)!
pk(1 − p)n−k k

n − k + 1

=

n∑

k=1

n!

k!(n− k)!
pk(1 − p)n−k k

n − k + 1

=
p

1 − p

n∑

k=1

n!

(k − 1)!(n − (k − 1))!
pk−1(1 − p)n−(k−1)

=
p

1 − p

n−1∑

i=0

n!

i!(n− i)!
pi(1 − p)n−i for i = k − 1

=
p

1 − p
(1 − pr(B = n))

=
p

1 − p
−

p

1 − p
pn

=
p

1 − p
−

pn+1

1 − p
.

Further, E[A/(A + C)] = E[A/m] = q since A ∼ Bin(m, q). Likewise,
E[C/(A + B)] = 1 − q. By the independence of (A, C) and (B, D), we
conclude that

E[ÂRSS ] = E

[
A

A + C

]
−E

[
C

A + C

B

D + 1

]

= E

[
A

A + C

]
−E

[
C

A + C

]
E

[
B

D + 1

]

= q − (1 − q)
p

1 − p
+

(
1 − q

1 − p

)
pn+1.

The desired result now follows after expressing

AR? = q

(
1 −

1 − q

q

p

1 − p

)
= q − (1 − q)

p

1− p
. �
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Proof of Theorem 2. We first write

ÂR = ÂRSS +
A − m

m

(
n − D

D
−

n −D

D + 1

)
,

yielding

var(ÂR|D 6= 0) = var(ÂRSS |D 6= 0)

+ var

[
A − m

m

(
n − D

D
−

n − D

D + 1

)
|D 6= 0

]

+ 2 cov

[
ÂRSS ,

A −m

m

(
n − D

D
−

n − D

D + 1

)
|D 6= 0

]
.

Both arguments of the covariance are increasing in A and D. This implies
the covariance term is positive, and hence the desired inequality. �
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