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Summary: The pattern of the difference between two survival curves we often observe in randomized clinical trials

for evaluating immunotherapy is not proportional hazards; the treatment effect typically appears several months after

the initiation of the treatment (i.e., delayed difference pattern). The commonly used logrank test and hazard ratio

estimation approach will be suboptimal concerning testing and estimation for those trials. The long-term restricted

mean survival time (LT-RMST) approach is a promising alternative for detecting the treatment effect that potentially

appears later in the study. A challenge in employing the LT-RMST approach is that it must specify a lower end of

the time window in addition to a truncation time point that the RMST requires. There are several investigations and

suggestions regarding the choice of the truncation time point for the RMST. However, little has been investigated

to address the choice of the lower end of the time window. In this paper, we propose a flexible LT-RMST-based

test/estimation approach that does not require users to specify a lower end of the time window. Numerical studies

demonstrated that the potential power loss by adopting this flexibility was minimal, compared to the standard LT-

RMST approach using a prespecified lower end of the time window. The proposed method is flexible and can offer

higher power than the RMST-based approach when the delayed treatment effect is expected. Also, it provides a robust

estimate of the magnitude of the treatment effect and its confidence interval that corresponds to the test result.
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1. Introduction

The recent clinical success of the immune checkpoint inhibitors (CTLA-4, PD-1, and PD-

L1 antagonists) has brought tremendous excitement and hope for patients with cancer

(Emens et al., 2017). Cancer immunotherapy is now one of the primary treatment options

for many cancer types; it has dramatically changed the treatment landscape. Nowadays,

immunotherapy is one of the most exciting areas of cancer clinical research. In fact, as of

November 26, 2021, 141 Phase 3 clinical trials for cancer immunotherapy are open and

recruiting patients (ClinicalTrials.gov). It is expected that more immunotherapy trials will

be conducted in the future for further indications or optimizations in combination with other

therapies and biomarkers.

While other cancer treatments are usually developed to attack cancer directly, immunother-

apy directs the immune system to do so. This unique mechanism has brought us several

new challenges in assessing the efficacy of immunotherapy. Valuable summaries regarding

statistical issues on immunotherapies were reported in recent publications (Chen, 2013;

Huang, 2018). Among those new challenges, the one we specifically focus on in this paper

is evaluating the treatment effect on time-to-event outcomes. In recent randomized clinical

trials in oncology, the conventional logrank/hazard-ratio test/estimation method has been

used in almost all trials (Uno et al., 2020). The logrank test is an asymptotically valid non-

parametric test. It offers the highest power when the pattern of difference is the proportional

hazards (PH). Also, the standard partial likelihood inference for hazard ratio (HR) provides

a quantitative summary about the magnitude of treatment effect that corresponds to the

logrank test. However, this routinely used approach is unlikely optimal for immunotherapy

trials because we often observe that the PH assumption is unlikely valid. For example, Figure

1 shows the Kaplan-Meier curves for progression-free survival (PFS) with the data from

a recently conducted randomized controlled trial to compare nivolumab plus ipilimumab
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and sunitinib in patients with advanced renal cancer (Motzer et al., 2018). This represents

a typical delayed difference pattern we often see in immunotherapy trials. In such non-

proportional hazards (NPH) cases, the logrank test does not offer the highest power, and

the interpretation of the HR estimate derived through the standard Cox’s procedure is not

obvious because it depends on an underlying study-specific censoring time distribution (Uno

et al., 2014; Horiguchi et al., 2019).

[Figure 1 about here.]

Several alternative approaches to the conventional logrank/HR approach have been dis-

cussed to detect the delayed treatment effect. A simple approach would be using a weighted

logrank (WLR) test that gives more weight to the tail part (Fleming and Harrington,

1991). For example, Xu et al. (2017) recently proposed the piecewise weighted logrank test

that gives zero weight at early times when two survival curves seem identical. One of the

drawbacks of the WLR test-based approach is that the treatment effect summary measure

that corresponds to the test will be an HR-type measure and thus have the same issues as

Cox’s HR. Specifically, one may use the weighted Cox’s model to estimate a weighted HR

using the same weight used for the WLR test. The resulting weighted HR estimate will then

be coherent to the test result. However, the adequacy of the model assumption would still

be required for the resulting weighted HR to be independent of a study-specific censoring

distribution. In addition, this approach does not convey the specific numbers from the two

groups that yield the ratio. Reporting only a ratio without each group’s absolute hazard

”value” obscures the clinical significance of the magnitude of the treatment effect (Uno et al.,

2014). Of note, the piecewise WLR test approach proposed by Xu et al. (2017) will have an

additional significant limitation. This approach is essentially a landmark analysis and does

not include all randomized patients in the analysis. Therefore, the analysis population used

for inference may not represent the entire study population or the target population very
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well. Also, because those patients who do not reach the landmark timepoint are excluded

from the analysis, the random treatment allocation may not guarantee the compatibility

of the treatment groups. Potential imbalance of patient characteristics between groups and

generalizability will be of concern.

Another class of alternative approaches is based on restricted mean survival time (RMST).

The RMST-based approach is gaining attention as an alternative to the conventional lo-

grank/HR approach (Royston and Parmar, 2011, 2013; Uno et al., 2014, 2015; Chappell and

Zhu, 2016; Saad et al., 2017). The RMST is defined as the area under the survival function

and can be estimated non-parametrically via the Kaplan-Meier method. Therefore, it is

robust and independent of study-specific censoring time distribution as long as the censoring

is non-informative. However, the RMST-based approach is less powerful for detecting delayed

treatment effects than the conventional logrank/HR approach (Tian et al., 2018). This

limitation can be a critical barrier for the standard RMST-based approach to be employed

for immunotherapy studies.

The long-term restricted mean survival time (LT-RMST) approach (Zhao et al., 2012;

Horiguchi et al., 2018; Vivot et al., 2019) or equivalently, the window mean survival time

approach (Paukner and Chappell, 2021) is a promising alternative for detecting the delayed

treatment effect. A challenge in employing the LT-RMST approach is that it needs to

prespecify the lower end of the time window as well as the upper end (i.e., truncation

time point) that the standard RMST requires. However, unfortunately, at the design stage

of a clinical trial, there would not be sufficient information to prespecify an optimal number

for the lower end in practice. In this paper, to address this practical issue, we propose a

flexible LT-RMST-based test/estimation approach that does not require users to specify a

value for the lower end of the time window (Section 2). We also assess the performance

of the proposed approach via extensive numerical studies (Section 3). We then present an
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application of the proposed methods to the PFS data from the advanced renal cancer study

(Section 4), followed by Remarks (Section 5).

2. Adaptive long-term restricted mean survival time procedure

Let Tj be a continuous non-negative random variable to denote the event time for group

j (j = 0, 1). Let Cj denote the censoring time for group j.We assume that Tj is independent of

Cj. Let {(Tji, Cji); i = 1, . . . , nj} denote independent copies from (Tj, Cj). Let Xji = Tji∧Cji

and ∆ji = I(Tji 6 Cji), where I(A) is the indicator function for event A. The observable data

is then denoted by {(Xji,∆ji); i = 1, . . . , nj, j = 0, 1} . We assume pj = limn→∞ nj/n > 0

for j = 0, 1, where n = n1 + n0.

The long-term restricted mean survival time (LT-RMST) was discussed in Zhao et al.

(2012), Horiguchi et al. (2018), and Vivot et al. (2019). More recently, Paukner and Chappell

(2021) also discussed it, calling it window mean survival time. Let Sj(·) be the survival

function for Tj. The LT-RMST is defined as

Rj(η, τ) =

∫ τ

η

Sj(s)ds,

where [η, τ ] is a fixed range on the study time (0 6 η < τ). This can be interpreted as mean

survival time during the study time from η to τ. Also, standardized by the width of the time

window,

Rj(η, τ)

τ − η
(1)

this can be interpreted as an average survival probability on [η, τ ](Zhao et al., 2012; Horiguchi

et al., 2018).

Let Ŝj(·) be the Kaplan-Meier estimator for Sj(·). A non-parametric estimator for Rj(η, τ)

is given by R̂j(η, τ) =
∫ τ
η
Ŝj(s)ds, that is the area under Ŝj(t) on t ∈ [η, τ ]. One may consider

a parametric model for estimating Sj(·), but we focus only on the non-parametric approach

in this paper. For a between-group comparison, we consider D(η, τ) = R1(η, τ) − R0(η, τ)
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as a summary measure of the treatment effect magnitude. The asymptotic properties of

D̂(η, τ) = R̂1(η, τ)− R̂0(η, τ) has been shown in Zhao et al. (2012).

A practical issue on this LT-RMST approach is how to specify (η, τ). A method that is used

in confirmatory trials should be a prespecified method. Thus, the requirement would be either

specifying a specific (η, τ) or a rule to specify (η, τ) from the data. Regarding the truncation

time point τ, there have been discussions and several proposals (Horiguchi et al., 2018; Eaton

et al., 2020; Hasegawa et al., 2020; Tian et al., 2020). For example, Tian et al. (2020) provided

the conditions for justifying empirically choosing the minimum of the maximum follow-up

times from two groups as τ. Regarding η, however, few such investigations or discussions

have been done. Although most immunotherapy studies share the same delayed separation

pattern, the point of separation differs from study to study, and the pattern after the point

of separation also differs from study to study. It would be challenging to specify a η at the

design stage because we would not have sufficient information for it in most cases. Therefore,

a procedure for choosing a reasonable η would be necessary for the LT-RMST approach to

be eventually employed in practice. This paper extends the LT-RMST approach to select an

optimal η data-dependently with the type I error rate controlled at a nominal level.

From results derived in Zhao et al. (2016), it is shown Wn(η, τ) = n1/2{D̂(η, τ)−D(η, τ)}

converges weakly to a zero-mean Gaussian process indexed by η ∈ [0, τ). The covariance

function of this process, cov{Wn(η1, τ),Wn(η2, τ)}, is given in the Appendix A. For η =

η1 = η2, we denote cov{Wn(η, τ),Wn(η, τ)} = V (Wn(η, τ)). Also, we denote estimates of

cov{Wn(η1, τ),Wn(η2, τ)} and V (Wn(η, τ)) by ˆcov{Wn(η1, τ),Wn(η2, τ)} and V̂ (Wn(η, τ)),

respectively, which can be calculated by replacing the unknown quantities involved in

cov{Wn(η1, τ),Wn(η2, τ)} and V (Wn(η, τ)) by their empirical counterparts.

Here, we assume that we cannot determine a value for η a priori but can determine a set

of candidates for η or a range where η should be included. Let B denote such a set for η. For
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example, expecting that the delayed treatment effect appears from around 6 months, one

may set B = {b | b ∈ [0, 7 months]}. For testing the null hypothesis, H0 : D(η, τ) = 0 for

all η ∈ B, we propose the following test statistic,

Q = sup
b∈B

∣∣∣∣D̂(b, τ)/

√
V̂ (Wn(b, τ))/n

∣∣∣∣ .
The reference distribution of Q under the null hypothesis can be derived by generating a

zero-mean Gaussian process with the covariance function of the process {Wn(η, τ) ; η ∈ B}.

Let { D∗1(b, τ), . . . , D∗M(b, τ); b ∈ B} be the set of the M sample paths generated randomly.

For each path, D∗m(b, τ), m = 1, . . . ,M, we calculate

Q∗m = sup
b∈B

∣∣∣∣D∗m(b, τ)/

√
V̂ (Wn(b, τ))/n

∣∣∣∣ .
A p-value is then given by M−1∑M

m=1 I(Q∗m > Q), and a corresponding (1−α) simultaneous

confidence bands for {D(b, τ); b ∈ B} can be given by{
D̂(b, τ)± cα

√
V̂ (Wn(b, τ))/n ; b ∈ B

}
,

where cα is a smallest value that satisfies M−1∑M
m=1 I(Q∗m > cα) 6 α.

A treatment effect summary that is coherent to the test result is given as follows. In the

above procedure, we choose a largest η̃ that satisfies∣∣∣∣D̂(η̃, τ)/

√
V̂ (Wn(η̃, τ))/n

∣∣∣∣ = sup
b∈B

∣∣∣∣D̂(b, τ)/

√
V̂ (Wn(b, τ))/n

∣∣∣∣ .
A (1− α) confidence interval (CI) for D(η̃, τ) is then given by

D̂(η̃, τ)± cα
√
V̂ (Wn(η̃, τ))/n.

This interval will include 0 if the test result is not significant, and will exclude 0 otherwise.

Note that, when B is not a range but a set of several candidates B = {b1, . . . , bL}, we

will not have to generate the entire sample path D∗m(b, τ) but generate D∗m(b, τ), at b =

b1, . . . , bL, for m = 1, . . . ,M. We will generate (D∗m(b1), . . . , D
∗
m(bL))′, for m = 1, . . . ,M,
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from a multivariate normal distribution with a mean zero and variance-covariance matrix
V̂ (Wn(b1, τ)) · · · ˆcov{Wn(b1, τ),Wn(bL, τ)}

...
. . .

...

ˆcov{Wn(bL, τ),Wn(b1, τ)} · · · V̂ (Wn(bL, τ))

 .

Also, note that when B = {b | b ∈ [0, τ)} is chosen, the proposed test involves tests based

on difference in RMST, R1(0, τ)− R0(0, τ), and difference in milestone survival probability

S1(τ) − S0(τ) on two extremes. The verification of these is trivial. For verifying the latter,

let η̂ be the last observed event time on [0, τ) in the cohort and consider the average survival

probability on [η̂, τ ] given by (1). Suppose Ŝ1(τ) and Ŝ0(τ) are estimable with the data.

Then, R̂1(η̂,τ)
τ−η̂ −

R̂0(η̂,τ)
τ−η̂ = Ŝ1(τ)− Ŝ0(τ), because Ŝj(η̂) = Ŝj(τ) for j = 0, 1.

3. Numerical Studies

We conducted extensive numerical studies to compare the performance of the adaptive LT-

RMST approach with other approaches, which included four kinds of WLR tests from the

Gρ,γ class (Fleming and Harrington, 1991), the combination of these WLR tests called the

Max-combo test, the piecewise WLR test proposed by Xu et al. (2017), test based on event

probability at a specific time point (or milestone survival probability), the RMST-based test,

and the standard LT-RMST-based test using a fixed η.

Note that the Gρ,γ class (Fleming and Harrington, 1991) is a subclass of the class K

statistics (Gill, 1980) ∫ ∞
0

√
n0 + n1

n0n1

Ȳ0(s)Ȳ1(s)

Ȳ0(s) + Ȳ1(s)
W (s)d(Λ̂0 − Λ̂1)(s), (2)

where Ȳj(s) is the number at risk at time s in group j, and the weight function W (·) has the

following form, W (s) = Ŝ(s−)ρ{1 − Ŝ(s−)}γ, where ρ, γ > 0 and Ŝ(·) is the Kaplan-Meier

estimator of the survival function of the pooled sample. In our simulations, we specifically

included G0,0 (i.e., logrank test), G1,0 (i.e., Peto-Prentice generalized Wilcoxon test; PPW),

G0,1, and G0,2. Because G0,1 and G0,2 give relatively more weights on the tail part of survival
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time distribution, it is expected that these tests offer higher power than G0,0 if a larger

treatment effect appears over the course of the study time.

The delayed treatment effect has been seen in most immunotherapy trials, but it is not

always the case. Also, the pattern of the difference after the separation point varies across

studies. To address possible misidentification of the pattern of difference between two sur-

vival curves, one may employ a robust (or versatile) test (Fleming and Harrington, 1991),

considering several WLR test statistics to capture various patterns of difference. In our

simulations, we included the so-called Max-combo test recommended by a cross-pharma

working group (Roychoudhury et al., 2021) for clinical trials with non-proportional hazards.

The test statistic of the Max-combo test is defined as the maximum of the test statistics of

G0,0, G1,0, G0,1 and G1,1.

The piecewise WLR test proposed by Xu et al. (2017) would be also an interesting

alternative analytic method, particularly for immunotherapy trials. It sets W (s) = 0 for

s < k and 1 for s > k in (2), where k is a pre-specified time point from which trial

investigators expect that treatment effect is onset. In our simulations, we examined this

test with several k’s. Similarly, for the standard LT-RMST, we examined its performance

with several η’s. The truncation time point τ was set at 24 for the standard RMST, the

standard LT-RMST, and adaptive LT-RMST.

The event time distributions we considered in our simulations are presented in Figure 2.

We considered four patterns of between-group differences. Pattern 2(A) was no difference

pattern. This was included to confirm the size of each test we investigated in this study.

Patterns 2(B) and 2(C) were delayed difference patterns. The separation time point was

t = 4.8 for both 2(B) and 2(C). The difference after t = 4.8 was PH for Pattern 2(B) and

NPH for Pattern 2(C). Pattern 2(D) was a PH difference from time 0. This pattern was
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included to check which tests can offer comparative power to the logrank test when the

logrank test is optimal.

[Figure 2 about here.]

Regarding censoring, we considered three kinds of common censoring time distributions

for both groups. Figure 3 shows the censoring distributions we considered in our simulations:

3(i) no censoring, 3(ii) light censoring, and 3(iii) moderate censoring, with an administrative

censoring at 24. The proportions censored at 24− were 0, 0.3, and 0.5 for 3(i), 3(ii), and 3(iii),

respectively. Thus, a total of twelve combinations of event time distributions and censoring

time distributions were considered. We considered sample sizes n=200, 300, and 500 for each

group. Size and power for each test were calculated via 5000 iterations.

[Figure 3 about here.]

Table 1 shows the results regarding the empirical type I error of each test with Pattern

2(A). When n = 200 per arm, the size of adaptive LT-RMST with B = [0, 24) was 0.06,

which was slightly over the nominal level of 0.05. Except for it, we confirmed that the size of

each test was sufficiently close to their nominal level of 0.05 for 5000 iterations. This result

suggests that adaptive LT-RMST with B = [0, 24) would require a relatively larger sample

size.

[Table 1 about here.]

Tables 2 to 4 show the results regarding the power of each test with n = 200 per arm for

the censoring distribution 3(i), 3(ii), and 3(iii), respectively. For the combination of pattern

2(B) and censoring 3(ii), the power of the logrank test was 0.837. The power of G0,1 and G0,2

were 0.919 and 0.868, respectively. Max-combo and the piecewise WLR tests offered 0.90 to

0.95 power. The PPW test was the worst for this pattern. The piecewise WLR test gave the

highest power 0.951 when the true separation time point t = 4.8 was used for k. The power
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of the test based on the event probability at τ = 24 was 0.865. The power of the standard

RMST was 0.716. This confirms that the RMST is less powerful than the logrank test for

this type of pattern (Tian et al., 2018). The power of the standard LT-RMST ranged from

0.756 to 0.856. Interestingly, the power with η = 8.8 was higher than that with η = 4.8 for

the standard LT-RMST, although the true separation time point in 2(B) was t = 4.8. The

power of adaptive LT-RMST, excluding the one with B = [0, 24), was from 0.818 to 0.841,

which was close to the highest power of the standard LT-RMST (Table 3, Column 2(B)).

For pattern 2(C), the power of the logrank test was 0.594. While G0,1 and G0,2 offered

even higher power than the logrank test for pattern 2(B), their power for the pattern 2(C)

was quite lower than the logrank test (0.387 for G0,1 and 0.164 for G0,2). The power of the

PPW test was 0.581 for this pattern. The power of the Max-combo test and the standard

RMST were 0.679 and 0.662, respectively, which were higher than that of the logrank test.

The power of the piecewise WLR tests ranged from 0.444 to 0.757 and was quite sensitive to

the specified k. The power of the test based on the event probability at τ = 24 was very low

for this pattern (0.181). The power of the standard LT-RMST ranged from 0.710 to 0.776,

which was also sensitive to the specified η but less sensitive than the piecewise WLR. The

power of adaptive LT-RMST, excluding the one with B = [0, 24), ranged from 0.762 to 0.765

and was close to the highest power of the standard LT-RMST (Table 3, Column 2(C)).

For pattern 2(D), the power of the logrank test was 0.490, which was higher than any

other tests. The tests that gave similar power to the logrank test were the Max-combo

test (0.452), the standard RMST (0.467), the standard LT-RMST (0.462 to 0.467), and the

adaptive LT-RMST (0.471 to 0.481; excluding the one with B = [0, 24)). Of those tests we

investigated, the power of the adaptive LT-RMST was closest to the power of the logrank

test for 2(D). Unlike 2(B) and 2(C), the power of the standard LT-RMST was not sensitive
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to the specified η for 2(D). Also, the power of adaptive LT-RMST was slightly higher than

the standard LT-RMST tests (Table 3, Column 2(D)).

Overall, the standard LT-RMST and adaptive LT-RMST were robust for the patterns

2(B), 2(C), and 2(D). The power of the standard LT-RMST was sensitive to the specified η

for the delayed difference patterns, 2(B) and 2(C). Adaptive LT-RMST gives us flexibility

in specifying η, but the power loss for gaining the flexibility was not remarkable.

Similar findings were obtained for censoring patterns 3(i) and 3(iii) (see Tables 2 and 4),

and for sample sizes 300 and 500 (data not shown).

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

4. Example

For illustration, we applied the adaptive LT-RMST method to the PFS data from the

advanced renal cancer study we briefly introduced in the Introduction section (Figure 1). The

study was a multinational, randomized phase III trial to compare nivolumab plus ipilimumab

with sunitinib in patients with previously untreated clear-cell advanced renal-cell carcinoma.

The primary analysis population was intermediate- and poor-risk patients. The PFS was one

of the co-primary endpoints in this study. Data from 847 patients (425 for nivolumab plus

ipilimumab and 422 for sunitinib) were served for the analyses. The primary results were

reported by Motzer et al. (2018). Because the patient-level data were not publicly available,

we reconstructed the PFS data of the 847 patients using the reported results and the method

proposed by Guyot et al. (2012).

Figure 1 shows the estimated survival curves for both groups based on the reconstructed
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data. A delayed difference pattern was observed, which suggested a violation of the PH

assumption. While the p-value of the cumulative residual test (Lin et al., 1993) was not

statistically significant (p=0.084), it is important to note that a non-significant p-value of

the PH assumption test does not imply that the PH assumption is true (Stensrud and Hernán,

2020). The HR reported by Motzer et al. (2018) was 0.82 . However, if the PH assumption

is not correct, the interpretation of HR=0.82 would be difficult because it depends on the

study-specific censoring distribution (Horiguchi et al., 2019).

Table 5 shows the results of the standard RMST, the standard LT-RMST, and the adaptive

LT-RMST. For this example, we set the truncation time point to τ=27 (months) for those

RMST’s. The RMST difference was 1.8 months (14.2 months for nivolumab plus ipilimumab

group vs. 12.5 months for sunitinib group). The corresponding 0.95 CI and p-value were (0.2

to 3.3) and 0.025, respectively.

Regarding the standard LT-RMST, we chose η=5 (months). The difference in LT-RMST

was 1.7 months (9.9 months for nivolumab plus ipilimumab vs. 8.2 months for sunitinib). The

corresponding 0.95 CI and p-value are (0.3 to 3.2) and 0.018, respectively. It is interesting to

see that the point estimate for the LT-RMST difference is almost identical to the standard

RMST difference. Still, the CI was a little tighter, and the p-value was lower than the

standard RMST-based analysis. This would be because the LT-RMST does not include the

noise on the study time from 0 to 5 months when little signal of treatment effect appears.

Although we chose η for the LT-RMST ad hoc in this example, it would not be easy

to prespecify a specific time point for η at the design stage. The proposed adaptive LT-

RMST can work around this practical issue. In this example, we chose several candidates

B = {0, 0.5, 1.0, 1.5, . . . , 7.0} (months) for η. The test result for the equality of LT-RMST

on B was p=0.014. The procedure selected η = 7 (months). The difference in the LT-RMST

with the range of (η, τ)=(7, 27) was 1.7 months (8.6 for nivolumab plus ipilimumab vs.
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6.9 for sunitinib) and corresponding 0.95 CI was 0.3 to 3.1 months. We also calculated

the RMST with the time range 0 to 7 months for reference. The estimated RMSTs were

5.6 months in nivolumab plus ipilimumab and 5.5 months in sunitinib. They were almost

identical (Difference: 0.1, 0.95 CI: -0.2 to 0.3 months, p=0.725).

[Table 5 about here.]

5. Remarks

This paper extended the LT-RMST and proposed an adaptive LT-RMST approach that does

not require users to specify η at the design stage. Numerical studies demonstrated that the

potential power loss by adopting this flexibility was minimal. The test based on the adaptive

LT-RMST is very powerful for delayed difference patterns and offers comparable power to

the logrank test for PH scenarios. Also, the proposed approach can provide a robust estimate

of the treatment effect summary that corresponds to the test result.

The proposed adaptive LT-RMST approach is the prespecified method. For a confirmatory

study, one would specify B in the study protocol and the statistical analysis plan. Based on

the empirical data, it would be reasonable to choose B to include the anticipated separation

time point. An extreme one, B = {b | b ∈ [0, τ)}, would be also an interesting choice

because it includes the tests based on difference in RMST at τ and difference in milestone

survival probability at τ as described in the end of the method section. However, based on

our numerical studies, we would not recommend using B = {b | b ∈ [0, τ)} if the sample size

is not so large, because the empirical type I error rate was slightly higher than the nominal

level with the sample size n = 200 per arm. Our numerical studies suggested a larger sample

size (e.g., 300 per arm or larger) would be required for employing B = {b | b ∈ [0, τ)}.

Further research is warranted to address the potential inflation of the type I error rate with

B = {b | b ∈ [0, τ)} when the sample size is not large. For example, transformations to
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improve the large sample approximation of the test statistic (Hashimoto and Kada, 2021),

and also using permutations to get a robust reference distribution (Horiguchi and Uno, 2020)

can be considered.

It is important to note that the η selected by the proposed procedure is not an estimate

for the true separation time point of two survival curves but the one that gives the most

significant difference in LT-RMST between the two groups. The procedure tends to select a η

larger than the true separation time point. This was seen even in the PH difference scenario

2(D) in our numerical studies, where the adaptive LT-RMST offered higher power than the

standard RMST. This phenomenon would be that the signal (i.e., area between two survival

curves) around the separation time point is still tiny compared to the noise.

As Freidlin and Korn (2019) commented in their recent paper, a limitation of versatile

tests, including the proposed adaptive LT-RMST, is that they can reject the null hypothesis

both in favor of the treatment group and in favor of the control group. For example, consider

the adaptive LT-RMST with B = {b | b ∈ [0, τ)}, which includes the tests based on difference

in RMST and difference in milestone survival probability at τ. It would not be impossible

to see such a result where the RMST supports the superiority of the treatment group and

the milestone survival probability supports the superiority of the control group statistically

significantly. For such a cross survival situation, it would be hard to determine whether the

treatment is superior to the control or not from a single test. However, for the adaptive

LT-RMST, this is unlikely to happen as long as a relatively short range of B is used and the

two survival curves in the early study time period are close to each other.

An R package (surv2sampleTest) to implement the proposed method is available on request

from the first author (email: horiguchimiki@gmail.com).
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Appendix : Covariance of Wn(η1, τ) and Wn(η2, τ)

Let Tj(τ) be
√
n
∫ τ
0
{Ŝj(u)− Sj(u)}du. From a result derived in Murray and Tsiatis (1999),

it is shown

cov{Tj(τ1), Tj(τ2)} =

∫ τ1

0

{∫ τ1

u

Sj(t)dt

}{∫ τ2

u

Sj(t)dt

}
dΛj(u)

pjπj(u)
, (A.1)

for 0 < τ1 < τ2, where πj(t) = P (Xj > t). BecauseWn(b, τ) = {T1(τ)− T1(b)}−{T0(τ)− T0(b)} ,

cov{Wn(η1, τ),Wn(η2, τ)}

=
∑
j=0,1

cov{Tj(τ), Tj(τ)} − cov{Tj(τ), Tj(η1)} − cov{Tj(τ), Tj(η2)}+ cov{Tj(η1), Tj(η2)}

=
∑
j=0,1

∫ τ

0

{
Aτj (u)− Aη1j (u)I(u < η1)

}{
Aτj (u)− Aη2j (u)I(u < η2)

} dΛj(u)

pjπj(u)
,

where Axj (u) =
∫ x
u
Sj(t)dt.
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Figure 1. Kaplan-Meier curves of the progression-free survival based on reconstructed
data from the advanced renal cancer study. Solid line, nivolumab plus ipilimumab group;
dashed line, sunitinib group.
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Figure 2. Survival functions considered in the numerical studies.
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Figure 3. Survival functions of the underlying censoring distributions considered in the
numerical studies.



23

Table 1
Size of tests evaluated in pattern 2(A) shown in Figure 2.

Sample size n=200/arm n=300/arm n=500/arm
Censoring distribution* 3(i) 3(ii) 3(iii) 3(i) 3(ii) 3(iii) 3(i) 3(ii) 3(iii)
Test

Gρ,γ class of WLR
{ρ, γ} = {0, 0} [logrank] 0.054 0.049 0.048 0.055 0.048 0.049 0.048 0.048 0.046
{ρ, γ} = {1, 0} [PPW] 0.053 0.049 0.050 0.055 0.048 0.050 0.048 0.048 0.047
{ρ, γ} = {0, 1} 0.056 0.051 0.048 0.050 0.048 0.050 0.048 0.049 0.049
{ρ, γ} = {0, 2} 0.053 0.051 0.054 0.051 0.048 0.052 0.049 0.051 0.049

Max-combo of Gρ,γ class tests∗∗ 0.056 0.051 0.048 0.054 0.048 0.051 0.051 0.047 0.050
Piecewise WLR (fixed k)
k = 3.8 0.055 0.053 0.050 0.049 0.049 0.049 0.049 0.048 0.047
k = 4.8 0.054 0.051 0.049 0.051 0.050 0.049 0.050 0.050 0.045
k = 5.8 0.050 0.051 0.048 0.052 0.047 0.047 0.048 0.045 0.047
k = 6.8 0.053 0.054 0.051 0.050 0.049 0.047 0.047 0.044 0.048

Event probability at τ ∗∗∗ 0.051 0.053 0.048 0.050 0.052 0.051 0.049 0.054 0.051
Standard RMST [0, τ ] ∗∗∗ 0.053 0.049 0.049 0.052 0.046 0.049 0.048 0.047 0.044
Standard LT-RMST (fixed range of [η, τ ])∗∗∗

η = 3.8 0.053 0.047 0.050 0.052 0.046 0.048 0.046 0.045 0.043
η = 4.8 0.052 0.047 0.050 0.051 0.047 0.048 0.047 0.046 0.044
η = 5.8 0.054 0.048 0.050 0.050 0.046 0.046 0.049 0.045 0.045
η = 6.8 0.054 0.048 0.048 0.049 0.045 0.046 0.049 0.045 0.045
η = 7.8 0.053 0.047 0.048 0.050 0.046 0.045 0.050 0.045 0.043
η = 8.8 0.054 0.049 0.048 0.049 0.045 0.047 0.049 0.044 0.043

Adaptive LT-RMST (adaptive range of [η, τ ])∗∗∗

η ∈ B = {3.0, 3.1, . . . , 7.0} 0.056 0.048 0.052 0.053 0.048 0.049 0.049 0.046 0.046
η ∈ B = {0, 0.1, . . . , 9.0} 0.058 0.051 0.053 0.055 0.049 0.052 0.052 0.049 0.047
η ∈ B = [0, 7] 0.057 0.050 0.052 0.056 0.050 0.051 0.051 0.047 0.048
η ∈ B = [0, 9] 0.058 0.051 0.053 0.055 0.049 0.051 0.051 0.048 0.046
η ∈ B = [0, 24) 0.060 0.060 0.061 0.054 0.052 0.057 0.051 0.054 0.054

∗: 3(i), no censoring; 3(ii), light censoring; 3(iii), moderate censoring (Figure 3).
∗∗: Max-combo of {ρ, γ} = {0, 0}, {1, 0}, {0, 1}, and {1, 1}.
∗∗∗: τ = 24.
Abbreviation: WLR, weighted logrank; PPW, Peto-Prentice generalized Wilcoxon; RMST, restricted mean
survival time; LT-RMST, long-term restricted mean survival time.
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Table 2
Power of tests evaluated with sample size 200 per arm in no censoring pattern shown in Figure 3(i).

Survival distribution*
Test 2(B) 2(C) 2(D)

Gρ,γ class of WLR
{ρ, γ} = {0, 0} [logrank] 0.896 0.609 0.539
{ρ, γ} = {1, 0} [PPW] 0.659 0.640 0.470
{ρ, γ} = {0, 1} 0.951 0.376 0.426
{ρ, γ} = {0, 2} 0.915 0.158 0.331

Max-combo of Gρ,γ class tests∗∗ 0.941 0.709 0.505
Piecewise WLR (fixed k)

k = 3.8 0.954 0.724 0.447
k = 4.8 0.971 0.756 0.416
k = 5.8 0.959 0.602 0.388
k = 6.8 0.948 0.447 0.363

Event probability at τ ∗∗∗ 0.924 0.224 0.420
Standard RMST∗∗∗ [0, τ ] 0.747 0.699 0.500
Standard LT-RMST∗∗∗ (fixed range of [η, τ ])

η = 3.8 0.787 0.742 0.509
η = 4.8 0.815 0.769 0.508
η = 5.8 0.839 0.798 0.511
η = 6.8 0.856 0.811 0.512
η = 7.8 0.872 0.814 0.515
η = 8.8 0.886 0.810 0.513

Adaptive LT-RMST∗∗∗ (adaptive range of [η, τ ])
η ∈ B = {3.0, 3.1, 3.2, . . . , 7.0} 0.850 0.801 0.516
η ∈ B = {0, 0.1, 0.2, . . . , 9.0} 0.875 0.801 0.527
η ∈ B = [0, 7] 0.848 0.798 0.521
η ∈ B = [0, 9] 0.874 0.801 0.526
η ∈ B = [0, 24) 0.937 0.725 0.519

∗: 2(B), PH difference after the separation time point t = 4.8; 2(C), NPH
difference after the separation time point t = 4.8; 2(D), PH difference (Figure
2).
∗∗: Max-combo of {ρ, γ} = {0, 0}, {1, 0}, {0, 1}, and {1, 1}.
∗∗∗: τ = 24.
Abbreviation: WLR, weighted logrank; PPW, Peto-Prentice generalized
Wilcoxon; RMST, restricted mean survival time; LT-RMST, long-term restricted
mean survival time; PH, proportional hazards; NPH, non-proportional hazards.
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Table 3
Power of tests evaluated with sample size 200 per arm in light censoring pattern shown in Figure 3(ii).

Test Survival distribution*
2(B) 2(C) 2(D)

Gρ,γ class of WLR
{ρ, γ} = {0, 0} [logrank] 0.837 0.594 0.490
{ρ, γ} = {1, 0} [PPW] 0.559 0.581 0.427
{ρ, γ} = {0, 1} 0.919 0.387 0.378
{ρ, γ} = {0, 2} 0.868 0.164 0.293

Max-combo of Gρ,γ class tests∗∗ 0.900 0.679 0.452
Piecewise WLR (fixed k)

k = 3.8 0.918 0.715 0.395
k = 4.8 0.951 0.757 0.364
k = 5.8 0.929 0.602 0.331
k = 6.8 0.905 0.444 0.312

Event probability at τ ∗∗∗ 0.865 0.181 0.351
Standard RMST∗∗∗ [0, τ ] 0.716 0.662 0.467
Standard LT-RMST∗∗∗ (fixed range of [η, τ ])

η = 3.8 0.756 0.710 0.467
η = 4.8 0.782 0.739 0.467
η = 5.8 0.806 0.763 0.464
η = 6.8 0.827 0.775 0.465
η = 7.8 0.842 0.776 0.464
η = 8.8 0.856 0.770 0.462

Adaptive LT-RMST∗∗∗ (adaptive range of [η, τ ])
η ∈ B = {3.0, 3.1, 3.2, . . . , 7.0} 0.820 0.764 0.471
η ∈ B = {0, 0.1, 0.2, . . . , 9.0} 0.841 0.765 0.480
η ∈ B = [0, 7] 0.818 0.762 0.477
η ∈ B = [0, 9] 0.840 0.765 0.481
η ∈ B = [0, 24) 0.897 0.674 0.473

∗: 2(B), PH difference after the separation time point t = 4.8; 2(C), NPH
difference after the separation time point t = 4.8; 2(D), PH difference (Figure
2).
∗∗: Max-combo of {ρ, γ} = {0, 0}, {1, 0}, {0, 1}, and {1, 1}.
∗∗∗: τ = 24.
Abbreviation: WLR, weighted logrank; PPW, Peto-Prentice generalized
Wilcoxon; RMST, restricted mean survival time; LT-RMST, long-term restricted
mean survival time; PH, proportional hazards; NPH, non-proportional hazards.



26

Table 4
Power of tests evaluated with sample size 200 per arm in moderate censoring pattern shown in Figure 3(iii).

Test Survival distribution*
2(B) 2(C) 2(D)

Gρ,γ class of WLR
{ρ, γ} = {0, 0} [logrank] 0.762 0.562 0.441
{ρ, γ} = {1, 0} [PPW] 0.487 0.536 0.389
{ρ, γ} = {0, 1} 0.882 0.401 0.338
{ρ, γ} = {0, 2} 0.819 0.175 0.263

Max-combo of Gρ,γ class tests∗∗ 0.858 0.653 0.410
Piecewise WLR (fixed k)

k = 3.8 0.885 0.708 0.349
k = 4.8 0.916 0.756 0.318
k = 5.8 0.893 0.593 0.293
k = 6.8 0.857 0.437 0.270

Event probability at τ ∗∗∗ 0.791 0.155 0.291
Standard RMST∗∗∗ [0, τ ] 0.684 0.634 0.427
Standard LT-RMST∗∗∗ (fixed range of [η, τ ])

η = 3.8 0.725 0.680 0.431
η = 4.8 0.750 0.708 0.428
η = 5.8 0.775 0.731 0.424
η = 6.8 0.793 0.743 0.422
η = 7.8 0.808 0.744 0.423
η = 8.8 0.821 0.734 0.421

Adaptive LT-RMST∗∗∗ (adaptive range of [η, τ ])
η ∈ B = {3.0, 3.1, 3.2, . . . , 7.0} 0.784 0.731 0.433
η ∈ B = {0, 0.1, 0.2, . . . , 9.0} 0.808 0.731 0.442
η ∈ B = [0, 7] 0.782 0.731 0.439
η ∈ B = [0, 9] 0.807 0.732 0.442
η ∈ B = [0, 24) 0.857 0.630 0.426

∗: 2(B), PH difference after the separation time point t = 4.8; 2(C), NPH
difference after the separation time point t = 4.8; 2(D), PH difference (Figure
2).
∗∗: Max-combo of {ρ, γ} = {0, 0}, {1, 0}, {0, 1}, and {1, 1}.
∗∗∗: τ = 24.
Abbreviation: WLR, weighted logrank; PPW, Peto-Prentice generalized
Wilcoxon; RMST, restricted mean survival time; LT-RMST, long-term restricted
mean survival time; PH, proportional hazards; NPH, non-proportional hazards.
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Table 5
Analysis results with the advanced renal cancer data

Treatment Control Difference

Method Range Est. Est. Est. 0.95 CI P

RMST (month) 0 to 27 14.2 12.5 1.8 0.2 to 3.3 0.025

Standard LT-RMST (month) 5 to 27 9.9 8.2 1.7 0.3 to 3.2 0.018

Adaptive LT-RMST (month) 7∗ to 27 8.6 6.9 1.7 0.3 to 3.1 0.014

∗: 7 (months) was selected among B = {0, 0.5, 1.0, . . . , 7.0}.
Abbreviation: RMST, restricted mean survival time; LT-RMST, long-term restricted mean
survival time; Est., estimate; CI, confidence interval; P, p-value.


