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follow-up period coincided with Botswana’s national adoption of a universal test-and-treat strategy for HIV man-

agement. Of interest is whether, and to what extent, this change in policy (i) modified the observed preventative

effects of the study intervention and (ii) was associated with a reduction in the population-level incidence of HIV

in Botswana. To address these questions, we propose a stratified proportional hazards model for clustered interval-

censored data with time-dependent covariates and develop a composite expectation maximization algorithm that

facilitates estimation of model parameters without placing parametric assumptions on either the baseline hazard

functions or the within-cluster dependence structure. We show that the resulting estimators for the regression

parameters are consistent and asymptotically normal. We also propose and provide theoretical justification for the use

of the profile composite likelihood function to construct a robust sandwich estimator for the variance. We characterize

the finite-sample performance and robustness of these estimators through extensive simulation studies. Finally, we

conclude by applying this stratified proportional hazards model to a re-analysis of the Botswana Combination

Prevention Project, with the national adoption of a universal test-and-treat strategy now modeled as a time-dependent

covariate.

Key words: Clustered failure time data; Composite EM algorithm; Composite likelihood; HIV/AIDS; Inter-

val censoring; Marginal models; Nonparametric likelihood; Proportional hazards; Semiparametric regression; Time-

dependent covariates.

This paper has been submitted for consideration for publication in Biometrics



Marginal Proportional Hazards Models for Clustered Interval-Censored Data 1

1. Introduction

Interval-censored data naturally arise in biomedical and epidemiological studies in which the

event of interest is subject to periodic follow-up or otherwise cannot be observed directly: the

timing of this event is resolved only up to the interval between successive examinations. When

the subjects in these studies also belong to existing, non-investigator determined groups—

such as hospitals, communities, social networks, or insurance networks—the resulting data

may be both interval-censored and clustered. The conditional analysis of clustered, interval-

censored data has recently received increased attention and methodological development

(e.g., Zeng et al., 2017; Gao et al., 2019; Yang et al., 2021). Under the conditional modeling

framework, within-cluster correlation is explicitly modeled through the inclusion of latent

random effects. The parameters of this mixed-effects model are then estimated by maximizing

the corresponding full-data likelihood, found by integrating over the distribution of the

random effects, and have a cluster-conditional interpretation.

Here our interest lies instead in the marginal analysis of clustered interval-censored data,

in which marginal (population-averaged) covariate effects may be estimated without need-

ing to specify the within-cluster correlation structure. To motivate this interest, we intro-

duce the Botswana Combination Prevention Project (BCPP), a cluster-randomized trial

(CRT) evaluating whether, and to what extent, holistic combination prevention efforts

could reduce the population-level incidence of HIV in Botswana (Makhema et al., 2019).

Thirty communities across Botswana were pair-matched and then randomized within pair

to either the combination prevention package—which included expanded HIV testing and

case identification, enhanced linkage-to-care efforts, an dearly initiation of antiretroviral

therapy (ART)—or an enhanced standard of care; HIV incidence was then assessed using

a cohort of 8,551 HIV-negative individuals, who were tested on an approximately annual

basis for the onset of infection. The resulting time to HIV seroconversion was thus interval-
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censored and subject to potentially complex within-cluster correlation, with this correlation

driven by both the well-documented CRT clustering effect (Hayes and Moulton, 2017) and

the unobserved transmission networks within each community. It was also subject to an

intercurrent event: in June 2016, while the BCPP was still ongoing, the Botswana Ministry

of Health updated the national HIV treatment guidelines to include a universal test-and-

treat (UTT) strategy (WHO, 2016). The new policy recommended the immediate initiation

of ART for all individuals diagnosed with HIV. As a result, both the standard-of-care and

intervention packages provided to individuals in the BCPP communities changed over the

course of follow-up. These changes raise several questions about the effect of combination

HIV prevention in the BCPP communities and about HIV management in Botswana more

generally. In particular: (i) What implications, if any, did the mid-trial changes to the

standard-of-care and intervention packages have for the final estimated benefit of combination

HIV prevention? (ii) Was the national adoption of a UTT strategy itself associated with a

significant reduction in HIV incidence in Botswana?

Answering these questions requires contending with several methodological challenges. For

right-censored failure times, methods based on the theory of generalized estimating equations

have been developed to estimate marginal covariate effects for potentially time-dependent

covariates without needing to assume any particular underlying correlation structure (Wei

et al., 1989; Cai et al., 2000; Lin, 1994). But extending these methods to interval-censored

settings faces additional challenges. As a consequence of the interval censoring mechanism,

we observe only a partial ordering of the underlying failure times and their accompanying

risk sets, which in turn precludes construction of the familiar partial likelihood for semi-

parametric proportional hazards models. For independent interval-censored data, Satten

(1996) and Goggins et al. (1998) consider the distribution of possible rankings of failure

times that are consistent with the observed censoring intervals and thereby circumvent
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estimation of the baseline hazard function. Other estimating approaches generally involve

estimation of the baseline hazard function(s) – with the dimensionality of the corresponding

nonparametric estimator(s) growing in lockstep with the number of unique monitoring times

in the sample. Setting aside the theoretical challenges that this nonparametric estimation

poses, it also has practical consequences for the use of generalized estimating equations to

fit marginal proportional hazards models to correlated interval-censored data: each update

of the baseline hazard parameters is computationally intensive, and both the Fisher scoring

and variance estimation procedures now require the inversion of high-dimensional matrices.

Existing marginal methods thus seek to bound the dimensionality of the baseline hazard

parameters, either by assuming a parametric form for the baseline survival distribution (Cook

and Tolusso, 2009; Zhang and Sun, 2010), placing a restriction on the number of permissible

monitoring times (Goggins and Finkelstein, 2000; Kim and Xue, 2002; Tong et al., 2008;

Chen et al., 2013), or approximating the baseline hazard with a piecewise-constant function

(Zhang and Sun, 2013; Kor et al., 2013). To the best of our knowledge, no unified framework

exists for the marginal analysis of clustered interval-censored data under the proportional

hazards framework with nonparametric estimation of the baseline hazard function(s).

Here we aim to redress this gap. We draw on the theory of composite likelihood functions

in order to (i) construct a set of unbiased estimating equations for the model parameters and

(ii) develop a corresponding composite expectation maximization algorithm; neither requires

specification of any higher order moments of the observed-data distribution. Our optimization

procedure readily incorporates both time-independent and time-dependent covariates as well

as fully nonparametric estimation of the baseline hazard function(s), which we allow to be

either stratified or unstratified. It also results in closed-form updating equations for the

baseline hazard estimators, so that the estimation procedure easily scales settings such as

the BCPP in which the number of unique monitoring times in the sample may be large.
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We show that the resulting estimators for the regression parameters are consistent and

asymptotically normal. To facilitate interval estimation and inference, we develop a profile

composite likelihood-based variance estimator that is similarly robust to the within-cluster

dependence structure. We motivate this estimator by deriving the quadratic expansion of the

profile composite log-likelihood function, which extends the results of Murphy and van der

Vaart (2000)—who demonstrate that the profile likelihood forms a valid basis for inference

with semiparametric efficient estimators—to the independence composite likelihood setting.

Section 2 introduces our setting and notation, and presents the marginal proportional

hazards model of interest. Section 3 discusses estimation and inference for this model: we

introduce the robust estimating function in Section 3.1, propose an optimization algorithm

for this function in Section 3.2, and both (i) demonstrate the strong consistency and weak

convergence of the resulting estimator and (ii) develop our robust variance estimation ap-

proach in Section 3.3. We study the finite sample properties of the resulting point and

interval estimators through a series of simulation studies in Section 4, before returning to

our motivating analysis of UTT adoption in Botswana in Section 5. Section 6 concludes with

a brief summary and discussion.

2. Setting and Notation

Consider the setting in which the data comprise M clusters and let ni represent the number

of subjects within cluster i. Suppose as well that the outcome of interest is the time to some

event, such as the onset of infection, and let Tij denote this event time for subject j in cluster

i. We assume that the corresponding marginal hazard is given by

λij{t|Xij(t),Zij} = λZij(t) exp{β>Xij(t)}, (1)

where Zij is a discrete random vector containing the set of stratification factors, which we

assume takes on S ∈ N distinct levels denoted by z1, . . . ,zS; λzs(t) ≡ λs(t) is an arbitrary

stratum-specific baseline hazard function, shared among all observations with Zij = zs
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for s = 1, . . . , S; Xij(t) is a p-dimensional bounded covariate process informing the time-to-

event distribution; and β ∈ Rp is a p-dimensional vector of covariate effects. Note that model

(1) permits great flexibility in modeling the event of interest: it reduces to the traditional

stratified proportional hazards model in the event thatXij(t) is time-invariant,Xij(t) ≡Xij,

and to the traditional unstratified proportional hazards model in the event that λs(t) = λ(t)

for all levels zs of the stratification factor. It also readily incorporates additive time-varying

covariate effects, β(t) = β0 +
∑m

l=1 βlfl(t) with f1, . . . , fm being known functions of time, as

β(t)Xij ≡ β>Xij(t) under β = (β0, . . . , βm)> and Xij(t) = (Xij, f1(t)Xij, . . . , fm(t)Xij)
>.

Suppose further that the occurrence of the event of interest is monitored only through a

series of periodic examinations or tests. Let Kij be a positive, integer-valued random variable

indicating the number of examinations on subject j in cluster i, and let Yij = {Yijk : k =

1, . . . , Kij} be a vector of random length containing the corresponding sequence of monitoring

times, Yij1 < · · · < YijKij . Then Tij is known only up to the interval (Lij, Uij], where (Lij, Uij]

is defined as the interval among [0, Yij1], (Yij1, Yij2], . . . , (YijKij ,∞) that contains the true Tij.

We assume that this monitoring process is non-informative, i.e., that

{Kij,Yij : j = 1, . . . , ni} ⊥⊥ {Tij : j = 1, . . . , ni}|{Zij,Xij(·) : j = 1, . . . , ni},

and that the resulting interval-censoring occurs only to the outcome, i.e., that (Xij(t) : t 6

U∗ij) is otherwise fully observed, with U∗ij := LijI(Uij = ∞) + UijI(Uij < ∞) denoting the

total time that subject j in cluster i is under monitoring for the event of interest.

Finally, let Oij = {Lij, Uij,Zij, (Xij(t) : t 6 U∗ij)} be the full collection of observed data

for subject j in cluster i. We assume that these collections are independent across clusters,

so that Oij ⊥⊥ Oi′j′ for all i 6= i′, but make no further assumptions about the within-cluster

dependence structure. Our aim is to then use these correlated, interval-censored data to

conduct semiparametric estimation and inference for model (1).
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3. Methods

Section 3.1 provides a brief overview of composite likelihood theory, which we use to construct

an estimating function for (1) that is agnostic to the higher-order structure of the observed

data. We maximize this function using a variant of the classical expectation maximization

algorithm that has been adapted to the composite likelihood setting in Section 3.2. Section

3.3 develops asymptotic theory for the resulting maximum composite likelihood estimators

and proposes a robust variance estimator for the parametric component.

3.1 Independence Composite Likelihood for (1) Under Nonparametric Estimation of the

Baseline Hazard

The composite likelihood paradigm facilitates inference in high-dimensional or correlated-

data settings through what is effectively an act of dimension reduction: it constructs a full-

data pseudo-likelihood by multiplying together a collection of lower-dimensional component

densities (Varin et al., 2011). For example, the independence composite likelihood function

is found by multiplying together the univariate marginal density functions:

LC(θ;O) =
M∏
i=1

ni∏
j=1

f(Oij; θ). (2)

As each component of (2) is a valid density, the resulting composite score equation, u(θ) =∑M
i=1

∑ni
j=1 ∂ log f(Oij; θ)/∂θ, forms an unbiased estimating equation; the solution is called

the maximum composite likelihood estimator, θ̂CL. θ̂CL has been shown in parametric settings

to be consistent and asymptotically normal, and is robust in the sense that it provides valid

inference for the class of full-data joint distributions that are consistent with the component

densities in LC(θ;O) (Chandler and Bate, 2007; Varin et al., 2011; Xu and Reid, 2011). In

this way, the composite likelihood function allows one to conduct estimation and inference

for marginal parameters of the full-data distribution without needing to specify any of its

higher-order moments; it is thus ideally suited to the analysis of infectious disease prevention
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studies, cluster-randomized trials, and other settings in which complex dependencies may

exist between the observations.

Let θ = (β,Λ), where Λ = (Λ1, . . . ,ΛS) and Λs(·) =
∫ (·)
0
λs(t)dt. Then the independence

composite likelihood for θ is

LC(θ;O) =
M∏
i=1

ni∏
j=1

[
exp

{
−
∫ Lij

0

eβ
>Xij(t)dΛZij(t)

}
−
{
−
∫ Uij

0

eβ
>Xij(t)dΛZij(t)

}]
(3)

=
M∏
i=1

ni∏
j=1

S∏
s=1

[
exp

{
−
∫ Lij

0

eβ
>Xij(t)dΛs(t)

}
−
{
−
∫ Uij

0

eβ
>Xij(t)dΛs(t)

}]I(Zij=zs)
.

Note that, under the independence composite likelihood construction, the terms in (3) may

be reindexed and rearranged without changing LC(θ;O). To facilitate estimation of the

baseline hazard functions Λ1, . . . ,ΛS and to simplify notation, it will be advantageous to

reindex the product in LC(θ;O) so that the data are partitioned according to strata defined

by levels of Zij as opposed to clusters indexed by i; we will use this reindexing throughout

Section 3.1 and Section 3.2, but not for the asymptotic results presented in Section 3.3. In

particular, let s (s = 1, . . . , S) index the strata and v (v = 1, . . . , ns) index the subjects

within each stratum. Then (3) is equivalently given by

LC(θ;O) =
S∏
s=1

ns∏
v=1

[
exp

{
−
∫ Lsv

0

eβ
>Xsv(t)dΛs(t)

}
−
{
−
∫ Usv

0

eβ
>Xsv(t)dΛs(t)

}]
.

Finally, to present LC(θ;O) under nonparametric estimation of Λ1, . . . ,ΛS, we establish

some additional notation regarding the stratum-specific baseline hazard functions. Let τs

be the ordered set of all unique Lsv > 0 and Usv < ∞ in stratum s, and take |τs| = ρs.

The nonparametric maximum composite likelihood estimator for Λs is restricted to the class

of non-decreasing step functions with potential discontinuities at times τsr ∈ τs only; we

parametrize the step size at τsr by λsr > 0 so that Λs(t) :=
∑

τsr6t
λsr. The independence
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composite likelihood for θ = (β, λ11, . . . , λSρS)> is then

LC(θ;O) =
S∏
s=1

ns∏
v=1

exp

(
−
∑

τsr6Lsv

λsre
β>Xsvr

){
1− exp

(
−

∑
Lsv<τsr6Usv

λsre
β>Xsvr

)}I(Usv<∞)

(4)

with Xsvr ≡Xsv(τsr).

3.2 Expectation Maximization for Composite Likelihoods

Direct maximization of (4) to obtain θ̂CL is challenging. This is in large part due to the

interval censoring mechanism, which prevents observation of either the exact failure times

or their associated counting process. In other words, the observed interval-censored data, O,

represent a many-to-one function (or coarsening) of an augmented data collection, A, for

which estimation of θ would be more straightforward. In traditional maximum likelihood set-

tings, the expectation maximization (EM) algorithm recasts maximization of logL(θ;O) ≡

log f(O; θ) in terms of these augmented data by iteratively maximizing the closest approxi-

mation to logL(θ;A) ≡ log f(A; θ) given the observed data: its projection onto the observed

data model. The algorithm thus alternates between an expectation step, which constructs

the objective function Q(θ|θl) = Eθl [logL(θ;A)|O] at the current parameter estimate θl,

and a maximization step, which updates θl+1 = argmaxQ(θ|θl). Provided that it exists and

is unique, θ̂MLE = argmax logL(θ;O) is a fixed point solution of the algorithm.

Here, however, we wish to avoid specification of the higher-order moments of f(O; θ),

f(A; θ), and f(A|O; θ) when maximizing logLC(θ;O), so as to maintain the robustness

property of θ̂CL. To that end, Gao and Song (2011) propose a composite likelihood analog

of the EM algorithm, in which the observed, augmented, and conditional data distributions

are each replaced by a working composite “model” (formed, as in the composite likelihood

setting, by multiplying together a collection of component densities), and in which the

maximum composite likelihood estimator is a fixed point solution of the procedure. It requires

only that the component densities of these working models are congenial with one another,
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and makes no assumptions about their relationship to the true joint distributions. See Web

Appendix A.1 for further discussion of the composite EM algorithm and its properties.

We now present a composite EM algorithm for maximization of the independence com-

posite likelihood in (4). Following the lead of Zeng et al. (2017), we introduce for each

subject v in stratum s a collection of ρs independent Poisson random variables: Wsvr ∼

Pois{λsr exp(β>Xsvr)} for r = 1, . . . , ρs. We also define the random variables Asv :=∑
τsr6Lsv

Wsvr and Bsv := I(Usv <∞)
∑

Lsv<τsr6Usv
Wsvr.

Remark 1: To gain intuition for these augmentation variables, let Nsv(t) be a Poisson

counting process with intensity function (1). Then Wsv = {Wsvr : r = 1, . . . , ρs} can be

understood as a sequence of independent increments from this process, with Wsvr counting

the number of events in the interval (τs,r−1, τsr]. Thus Asv =
∑

τsr6Lsv
Wsvr ≡ Nsv(Lsv)

corresponds to the number of events experienced by subject v in stratum s prior to time Lsv,

and Bsv = I(Usv < ∞)
∑

Lsv<τsr6Usv
Wsvr ≡ Nsv(U

∗
sv) − Nsv(Lsv) to the number of events

between times Lsv and U∗sv. The censoring interval (Lsv, Usv] is then equivalent to the event

{Asv = 0} ∩ {Bsv = 0} for Usv = ∞ and the event {Asv = 0} ∩ {Bsv > 0} for Usv < ∞,

so that the observed censoring interval represents a coarsening of the augmented outcome

process Wsv. A formal exposition of this relationship is provided in Web Appendix A.2.

We define the individual observed and Poisson-augmented data collections by Osv =

{Lsv, Usv,Zsv, (Xsv(t) : t 6 U∗sv)} and Asv = {Lsv, Usv,Wsv,Zsv, (Xsv(t) : t 6 U∗sv)},

respectively, and construct a composite EM algorithm by iteratively (i) taking the projection

of the independence composite augmented-data log-likelihood onto the independence model

for the observed data and (ii) maximizing the resulting conditional expectation.

Towards this first (expectation) step, we note that the independence composite likelihood

for the augmented data is given by

LC(θ;A) =
S∏
s=1

ns∏
v=1

ρs∏
r=1

{
1

Wsvr!

(
λsre

β>Xsvr

)Wsvr

exp
(
−λsreβ

>Xsvr

)}I(τsr6U∗sv)
,
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so that the corresponding composite log-likelihood is, up to a constant,

logLC(θ;A) =̇
S∑
s=1

ns∑
v=1

ρi∑
r=1

I(τsr 6 U∗sv)
{
Wsvr log

(
λsre

β>Xsvr

)
− λsreβ

>Xsvr

}
.

Letting θl be the current estimate of θ, the composite EM objective function is then simply

QC(θ|θl) =
S∑
s=1

ns∑
v=1

ρi∑
r=1

I(τsr 6 U∗sv)
{
Eθl [Wsvr|Osv] log

(
λsre

β>Xsvr

)
− λsreβ

>Xsvr

}
, (5)

where

Eθl [Wsvr|Osv] =


λl,sr exp(β>l Xsvr)

1−exp{−∑
Lsv<τsr6Usv

λl,sr exp(β>l Xsvr)} for Lsv < τsr 6 U∗sv

0 otherwise

.

Details for the derivation of this conditional expectation are available in Web Appendix A.3.

To simplify notation, we use Ŵsvr for Eθl [Wsvr|Osv] throughout the remainder of Section 3.

The second (maximization) step updates the estimates of θ using a profile likelihood

approach. To that end, we first differentiate QC(θ|θl) with respect to λsr (s = 1, . . . , S; r =

1, . . . , ρs) to obtain the following formula:

λ̂sr(β) =

∑ns
v=1 I(τsr 6 U∗sv)Ŵsvr∑ns

v=1 I(τsr 6 U∗sv) exp(β>Xsvr)
. (6)

The profile composite objective function for β is then obtained by substituting (6) into (5),

QC(β, λ̂11(β), . . . , λ̂SρS(β)|θl) =

S∑
s=1

ns∑
v=1

ρi∑
r=1

I(τsr 6 U∗sv)

{
Ŵsvr log

( ∑ns
v′=1 I(τsr 6 U∗sv′)Ŵsv′r∑ns

v′=1 I(τsr 6 U∗sv′) exp(β>Xsv′r)

)
+ Ŵsvrβ

>Xsvr − Ŵsvr

}
,

and we update β by solving the corresponding score equation:

S∑
s=1

ns∑
v=1

ρs∑
r=1

I(τsr 6 U∗sv)Ŵsvr

{
Xsvr −

∑ns
v′=1 I(τsr 6 U∗sv′)Xsv′r exp(β>Xsv′r)∑ns

v′=1(τsr 6 U∗sv′) exp(β>Xsv′r)

}
set
= 0.

Let βl+1 be the resulting estimate of β. We update the remaining parameter estimates by

setting λl+1,sr = λ̂sr(βl+1) (s = 1, . . . , S; r = 1, . . . , ρs). The composite EM algorithm iterates

between these expectation and maximization steps until convergence, here defined to be

‖βl+1 − βl‖1 < εtol. We denote the final estimators by θ̂CL = (β̂, Λ̂), with Λ̂ = (Λ̂1, . . . , Λ̂S).
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3.3 Asymptotic Theory

We establish the asymptotic properties of θ̂CL under the setting in which the number of

clusters M → ∞. To do so, we first introduce some additional notation regarding the first

and second partial derivatives of the independence composite log-likelihood function. Let

m(β,Λ;Oi) = log
{∏ni

j=1 f(Oij; θ)
}

denote the individual cluster-level contribution to the

log of the independence composite likelihood function in (3) and take Λε,h to be the para-

metric submodel for Λ satisfying the relationship dΛε,h = ((1 + εh1)dΛ1, . . . , (1 + εhS)dΛS)>

for ε ∈ R, h = (h1, . . . , hS), and hs ∈ L2(µ); we take µ to be a dominating measure on the

support of the monitoring times, Y . Then

m1(β,Λ) :=
∂

∂β>
m(β,Λ;Oi) m2(β,Λ)[h] :=

∂

∂ε
m(β,Λε,h;Oi)

∣∣∣
ε=0

are the independence composite score equation for β and the independence composite score

operator for Λ, respectively, and we define

m11(β,Λ) :=
∂

∂β
m1(β,Λ) m21(β,Λ)[h] :=

∂

∂β
m2(β,Λ)[h].

The exact form of m1, m2, m11, and m21 are given in equations (S.7)–(S.10) of Web Appendix

B. Then under the regularity conditions given in Web Appendix B, we may establish the

strong consistency of θ̂CL (Theorem 1) and the asymptotic distribution of its parametric

component, β̂ (Theorem 2):

Theorem 1: Under Conditions 1–6, ‖β̂−β0‖+
∑S

s=1 ‖Λ̂s− Λ̂s0‖l∞(Y)
a.s.→ 0, where ‖ · ‖

is the standard Euclidean norm and ‖ · ‖l∞(Y) is the supremum norm on Y.

Theorem 2: Under Conditions 1–8,
√
M(β̂− β0) converges weakly to a p-dimensional

zero-mean normal random vector with covariance matrix

I∗ = Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h
∗]}−1

× Eθ0
[
{m1(β0,Λ0)−m2(β0,Λ0)[h

∗]}⊗2
]

(7)

× Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h
∗]}−1 ,
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where h∗ = (h∗1, . . . , h
∗
S), h∗s ∈ L2(µ), satisfies equation (S.13) in Web Appendix B.

Remark 2: The proofs of all theorems are deferred to Web Appendix B. Briefly, the proof

of Theorem 1 conceives of the maximum composite likelihood estimator as a semiparametric

M estimator with criterion function m(β,Λ;Oi). We establish that (β0,Λ10, . . . ,ΛS0) is a

unique and well-separated maximizer of the population version of this criterion function

and then apply the Argmax Theorem for semiparametric M estimators (Theorem 2.12 of

Kosorok, 2008) to conclude almost sure convergence of (β̂, Λ̂1, . . . , Λ̂S) to this maximizer. In

the proof of Theorem 2, we use techniques from empirical process theory to establish the

M1/3 convergence of Λ̂ and the stochastic equicontinuity of function classes related to m1

and m2; we then apply Taylor expansions to the independence composite score function and

independence composite score operator to arrive at the limiting distribution of
√
M(β̂−β0).

To arrive at an estimator for the covariance matrix of β̂, we introduce the profile composite

log-likelihood function for β:

p`C(β) := sup
Λ∈C

logLC(β,Λ;O) = logLC
{
β, Λ̂(β);O

}
, (8)

where Λ̂(β) = argmaxΛ∈C logLC(β,Λ;O) and C = C1 × · · · × CS with Cs the set of step

functions with non-negative jumps at times τsr (r = 1, . . . , ρs). Theorem 3 provides the

second-order Taylor expansion of this profile composite log-likelihood function about β0.

Theorem 3: Under Conditions 1–8, for any sequence β̃
P→ β0,

p`C(β̃) = p`C(β0)

= + (β̃ − β0)
>

M∑
i=1

{m1(β0,Λ0)−m2(β0,Λ0)[h
∗]} (Oi) (9)

=− 1

2
M(β̃ − β0)

>Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h
∗]} (β̃ − β0) + oP (1 +

√
M‖β̃ − β0‖)2.

Remark 3: Murphy and van der Vaart (2000) prove a similar asymptotic expansion for

the profile log-likelihood function under semiparametric maximum likelihood estimation and
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then use this quadratic form to justify the use of the profile likelihood function as though an

ordinary likelihood when conducting inference on low-dimensional parameters (cf. Theorem

1 of Murphy and van der Vaart (2000)). Theorem 3 extends their profile likelihood expansion

to the independence composite likelihood setting.

The asymptotic expansion in (9) suggests that I∗ is the inverse of the Godambe in-

formation about β in a single cluster under the profile composite likelihood function, a

result that parallels the form of the asymptotic covariance matrix for parametric maximum

composite likelihood estimators (see Varin et al., 2011). It thus provides an immediate

path forward for estimating Cov(β̂): the first and third terms in (7) may be estimated

by the curvature of p`C(β) at β̂ and the second term by the variance of its gradient. To

formalize this observation, let H(β) := Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h
∗]} and J(β) :=

Eθ0 [{m1(β0,Λ0)−m2(β0,Λ0)[h
∗]}⊗2] be the sensitivity and variability matrices, respec-

tively; let ek be the kth canonical vector in Rp; and let hM be a perturbation constant

of order M−1/2. Then we approximate the (k, l)th entry of the sample sensitivity matrix by[
ĤM(β̂)

]
kl

=
p`C(β̂;O)− p`C(β̂ + hMek;O)− p`C(β̂ + hMel;O) + p`C(β̂ + hMek + hMel;O)

h2M

and the sample variability matrix by

ĴM(β̂) =
M∑
i=1


{p`C(β̂ + hMe1;Oi)− p`C(β̂;Oi)}/hM

...

{p`C(β̂ + hMep;Oi)− p`C(β̂;Oi)}/hM


⊗2

,

where p`C(β;Oi) is the cluster-level contribution to the profile composite log-likelihood

function, p`C(β;Oi) = logLC(β, Λ̂(β);Oi). Then

Ĉov(β̂) = M−1Î∗ = ĤM(β̂)−1ĴM(β̂)ĤM(β̂)−1.

In order to implement this robust variance estimator, we require a means to evaluate the

profile composite log-likelihood in (8)—or, equivalently, to obtain the profile composite log-

likelihood maximizers, Λ̂(β)—at chosen values of β. We do so by implementing the composite
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EM algorithm detailed in Section 3.2, though now with β fixed at its chosen value throughout

and with only the λsr (s = 1, . . . , S; r = 1, . . . , ρs) updated during the maximization step.

The algorithm iterates until ‖ logLC{β, Λ̂l+1(β)} − logLC{β, Λ̂l(β)}‖1 < εtol.

4. Finite-Sample Performance

We conducted a series of simulation studies to assess the finite-sample performance of our

proposed point and interval estimators under a range of clustered data structures, marginal

hazard specifications, and monitoring schedules.

4.1 Primary Simulation Study

We simulated data under two scenarios for the clustering and stratification factors:

I. We assumed that the data comprised a large number of small clusters, with M ∈

{100, 200} and ni ∼ Unif(20, 30). We took the stratification factor Zij ∼ Unif{1, 2, 3, 4},

so that Zij was cluster-varying and the number of strata S = 4.

II. Drawing on the motivating pragmatic CRT setting, in which only a small number of

large clusters were randomized, we assumed that the data comprised M ∈ {15, 20}

matched pairs of communities, with community p (p = 1, 2) in matched pair i comprising

npi ∼ Unif(250, 350) subjects; then 500 6 ni 6 700. We also considered one setting in

which M = 15, npi ∼ Unif(400, 500), and 800 6 ni 6 1000. Finally, we took the

stratification factor Zij to be an indicator of matched pair membership, so that Zij was

cluster constant and the number of strata S = M .

For each scenario, we considered two within-cluster correlation structures: an exchangeable

structure, in which subjects were independent conditional on cluster membership, and a

hierarchical structure, in which subjects within each cluster were further grouped into inde-

pendent sub-clusters (representing, for example, families or sexual partnerships) whose sizes

varied according to a Pois(2) distribution with a minimum cluster size of 2; dependence

within each sub-cluster was modeled using a Clayton copula with Kendall’s τ = 0.5.
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Each subject j in cluster i was monitored for an event at Kij = 20 time points, with the

gap times Yij,k+1 − Yijk ∼ Unif(0, 16) and the maximum duration of follow-up given by

Υ = maxij Yij20. We considered the following three models for the time to event:

λij(t|Xij, Zij) = λZij(t) exp (βXij) (10)

λij(t|Xij, Zij) = λZij(t) exp {(γ1 + γ2 log t)Xij} (11)

λij{t|Xij, Pij(t), Zij} = λZij(t) exp {α1Xij + α2Pij(t) + α3XijPij(t)} (12)

where Xij was a binary covariate that was constant within clusters (scenario I) or within

communities (scenario II) and Pij(t) = I(t > υij) was a time-dependent indicator vari-

able with υij ∼ Unif(0,Υ). We generated the stratum-specific baseline hazard functions

according to the random spline method of Harden and Kropko (2019) in scenario I and

according to λs(t) = 0.01 exp(bs), bs ∼ N(0, 0.25), in scenario II. In both scenarios, we took

β = −0.3, γ = (0,−0.15)>, and α = (−0.3,−0.05, 0.2)>. For each simulated dataset, we fit

a correctly-specified stratified proportional hazards using the methods in Section 3.2 with

initial values β = 0 and λsr = 1/ρs (r = 1, . . . , ρs; s = 1, . . . , S) and with εtol = 0.0001. To

conduct the numerical approximations required for variance estimation, we set hM = cn−1/2

for n =
∑M

i=1 ni and c ∈ {0.1, 1, 10}.

Table 1 summarizes the results under scenario I with M = 100 and scenario II with

M = 15; results under M = 200, M = 20, and 800 6 ni 6 1000 are similar and are displayed

in Table S.1 in Web Appendix C.2. Our maximum composite likelihood procedure accurately

estimated β, γ, and α in all simulation settings considered: the parameter estimators had

small to negligible bias, particularly in models (10) and (12), and the extent of this bias

generally diminished as the total sample size increased, whether as a result of increasing

M or increasing n∗. Figure 1 displays the estimated baseline survival functions, Ŝs(t) :=

exp
(
−
∑

τsr6t
λ̂sr

)
, under scenario I with M = 100; these estimated curves reasonably cap-
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tured the true stratum-specific baseline survival functions, Ss(t) = exp {−Λs(t)}, regardless

of the complexity of Λ1(t), . . . ,ΛS(t) or of the parametric component of the model.

Turning to the question of inference for models (10)–(12), we see that our profile composite

likelihood variance estimator produced unbiased standard error estimates for β̂, γ̂, and

α̂ when M ∈ {100, 200}; the corresponding 95% Wald-type confidence intervals achieved

nominal empirical coverage under both the exchangeable and hierarchical within-cluster cor-

relation structures (Table 1; Table S.1). Under scenario II, where M ∈ {15, 20}, the variance

estimator remained close to unbiased, though on balance it slightly underestimated the true

variability in β̂, γ̂, and α̂. The resulting 95% Wald-type confidence intervals also slightly

under-covered, though they still achieved above 90% empirical coverage for all regression

parameters across all simulation settings. Furthermore, the magnitude of this under-coverage

was similar under both the exchangeable and hierarchical correlation structures. This is

notable because the composite likelihood function in (4) is the correctly-specified full-data

likelihood in the within-cluster independence setting and the profile variance estimator has

previously been established as valid in this context (Murphy and van der Vaart, 2000). This

suggests that the slight under-coverage we observe is the result of the small sample setting—

and of the distributional results in Section 3.3 not necessarily holding for M ∈ {15, 20}—

rather than a feature of the profile composite likelihood variance estimator itself.

[Table 1 about here.]

[Figure 1 about here.]

Finally, we note that—while the variance estimation results for models (10) and (12) were

quite stable across the three perturbation constants considered for numerical differentiation

of the profile composite likelihood function—the results for model (11) were sensitive to large

values of c (Table S.2 in Web Appendix C.3). In particular, V̂ ar(γ̂) exhibited instability

when hM = 10n−1/2, and it markedly overestimated the true variability in γ̂ under that
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choice of constant. This behavior appears to be a consequence of the shape of the profile

composite log-likelihood function for model (11): the slope and curvature of the function

in the γ2 direction are much greater than the slope and curvature in the γ1 direction, in

which the profile composite log-likelihood function is nearly flat, and the function itself is

not symmetric about either the γ1 = γ̂1 or γ2 = γ̂2 planes (Figure S.1 in Web Appendix

C.3). Thus directional derivatives of the profile composite log-likelihood function for (11)

are quite sensitive to the choice of direction; furthermore, errors of order hM = cn−1/2 that

may be acceptable in the finite differences approximation to derivatives with respect to γ2

may be too large as to be acceptable for derivatives with respect to γ1. While the choice

of c = 1 appears to perform well for the dataset sizes and model formulations considered

here, in practice we recommend inspecting the profile composite log-likelihood function and

conducting a sensitivity analysis or small simulation study to confirm the choice of hM .

4.2 Performance Under Infrequent and Covariate-Dependent Monitoring

In pragmatic CRTs and other clinical trial contexts, a subject’s monitoring times Yij may be

infrequent relative to the length of their event time due to practical or financial constraints

and the support of these monitoring times may not be dense in the support of Tij. The

distribution of (Kij,Yij) may also depend on the subject’s randomization arm: in the BCPP,

for example, the combination prevention package included an expansion of HIV testing

services, so that individuals in the intervention communities received more frequent HIV

testing. We thus conducted a second simulation study, motivated in part by our data

application, to examine the performance of our estimation and inference procedures under

an infrequent and covariate-dependent monitoring schedule.

We once again considered two scenarios for the clustering and stratification factors, focusing

on the (M = 100, S = 4) setting for scenario I and the (M = 15, S = 15) setting for scenario

II, and took the within-cluster correlation structure to be hierarchical throughout. To create
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a covariate-dependent monitoring scheme, we assumed that all subjects underwent annual

monitoring at times Yijk ∼ Unif(52k − 4, 52k + 4), k = 1, . . . , 4, and that, among those

subjects in clusters (communities) with Xij = 1, additional background monitoring occurred

at interval Yij,k+1−Yijk ∼ Unif(12, 24), k = 5, . . . , 19. We simulated times to event according

to the three models planned for the re-analysis of the BCPP,

λij(t|Xij, Zij) = λZij(t) exp (βXij) (13)

λij{t|Xij, Pij(t), Zij} = λZij(t) exp {α11Xij + α12Pij(t)} (14)

λij{t|Xij, Pij(t), Zij} = λZij(t) exp {α21Xij + α22Pij(t) + α23XijPij(t)} , (15)

with Xij and Pij(t) defined as in Section 4.1 and with the stratum-specific baseline hazard

functions again generated according to Harden and Kropko (2019). We took β = −1.0,

α1 = (−1.0,−0.5)>, and α2 = (−1.0,−0.5, 2.0)> in the scenario I simulations and β =

−0.30, α1 = (−0.3,−0.5)>, and α2 = (−0.30,−0.05, 0.20)> in the scenario II simulations.

For each simulated dataset, we fit models (13)–(15) using the point and interval estimators

from Sections 3.2 and 3.3 with c = 1 and initial values and tolerances set as in Section 4.1.

As a point of comparison, we also fit (13)–(15) under midpoint imputation of the interval-

censored failure times, which allowed us to make use of existing methods for fitting stratified

proportional hazards models with time-dependent covariates to clustered right-censored data

(Therneau and Grambsch, 2000).

Results are summarized in Table 2. Comparing these to the results of the primary sim-

ulation study in Table 1, we see that our proposed estimators performed comparably with

respect to both point and interval estimation for the regression parameters: any observed

bias in the coefficient and variance estimators was small (representing 1.6% absolute relative

bias or less for the coefficient estimators), and the corresponding 95% confidence intervals

obtained > 90% empirical coverage in all settings and appropriate nominal coverage in the

large M setting. Notably, the bias in the estimates of β̂, α̂1 and α̂2 was smaller under
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maximum composite likelihood estimation than under midpoint imputation for each data-

generating mechanism considered. This contrast was most pronounced for the coefficients

of the time-dependent covariates, Pij(t) and XijPij(t), in models (14) and (15). Midpoint

imputation produced estimates for these parameters that were consistently biased towards

the null. This, in turn, translated into (sometimes quite profound) under-coverage of the

95% confidence intervals: under maximum composite likelihood estimation, the empirical

coverage of the 95% confidence intervals for α23 was 93.4% in scenario I and 91.2% in

scenario II; under midpoint imputation of the failure times, the empirical coverage dropped

to 54.8% and 86.2%, respectively. This disparity in performance may be due to differences

in how maximum composite likelihood estimation and midpoint imputation capture person-

time contributions under Pij(t) = 1. Suppose, for example, that subject j in cluster i is

interval-censored at (Lij, Uij] and that υij occurs in the second half of this interval. Under

maximum composite likelihood estimation, this subject contributes information about risk

when Pij(t) = 0 for t ∈ (Lij, υij) and risk when Pij(t) = 1 for t ∈ [υij, Uij]. If, however, this

subject’s failure time is midpoint imputed at TMI
ij := (Lij + Uij)/2 < υij, the information

regarding Pij(t) = 1 will be lost.

[Table 2 about here.]

Figures S.2 and S.3 in Web Appendix C.4 illustrate estimation of the stratum-specific

baseline survival functions under (M = 100, S = 4) and (M = 15, S = 15), respectively.

As expected, the estimated functions reasonably capture the true stratum-specific survival

on those intervals of time to which the monitoring process assigns a non-zero probability

of inspection, but does not consistently estimate the truth on those intervals with zero

probability, e.g., for t ∈ [0, 12).

5. Quantifying the Impact of Universal Test-and-Treat Adoption in Botswana

We return now to the BCPP, a CRT of combination HIV prevention strategies that was

introduced and described in detail in Section 1. The primary analysis of the BCPP found
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evidence that combination prevention was associated with a reduction in HIV incidence in

Botswana (ĤR = 0.69; P = 0.09 by permutation test; 95% CI, 0.46 to 0.90 by Cox model),

but did not adjust for Botswana’s mid-trial adoption of a UTT policy—a policy decision

that materially changed the national standard of care for HIV testing and treatment and

that may have affected the study’s final significance (Makhema et al., 2019).

At the time that Botswana’s UTT initiative was announced, the BCPP had been underway

for 2.5 years, with all 30 communities enrolled and randomized and with two of these

communities (one matched pair) having completed all study follow-up (Figure 2). For those

individuals still under follow-up on the announcement date, this program launch occurred

at internal times ranging from 192 days to 779 days due to staggered study entry at the

cluster and individual level. Exploratory analysis suggests that the trajectory of the trial

may have changed following UTT adoption. Under midpoint imputation of the event times,

48 individuals in the standard-of-care arm and 31 individuals in the combination prevention

arm contracted HIV by the announcement date (corresponding to approximate incidence

rates of 0.0095 and 0.0062 cases/person-year, respectively); over the subsequent two years,

the standard-of-care arm reported 42 new HIV diagnoses (approximate incidence rate, 0.0089

cases/person-year) while the combination prevention arm reported 26 (approximate incidence

rate, 0.0056 cases/person-year).

[Figure 2 about here.]

We apply the methods of Sections 3.2 and 3.3 to a formal re-analysis of the BCPP, focusing

on the impact of Botswana’s changing national treatment guidelines on both the final study

conclusions and on the population-level incidence of HIV more broadly. To that end, we

consider three models for the time to HIV seroconversion: model (13), which estimates the

main effect of combination prevention (Xij) only; model (14), which estimates the main

effects of both combination prevention and UTT adoption (Pij(t)); and model (15), which
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allows for their possible interaction. For each of these models, we take

λZij(t) = λ0(t) exp
(
η>Zij

)
, (16)

where Zij indicates matched pair membership; we also consider the marginal counterparts

of (13)–(15), in which η
set
= 0. We assume (i) that matched pairs of communities are

independent of one another and (ii) that individual communities are independent of one

another conditional on matched pair membership. We thus treat each matched pair as

a distinct cluster when obtaining variance estimates for the unadjusted models and each

individual community as a distinct cluster when obtaining variance estimates for the pair-

stratified models. We set hM = n−1/2 throughout, though we also consider a sensitivity

analysis with hM = 5n−1/2 and hM = 10n−1/2 for the marginal models.

Remark 4: While the fixed effect terms in (16) still permit the baseline hazard functions

to differ from one pair of BCPP communities to another, they make stronger parametric

assumptions about the manner in which these functions vary than would a fully non-

parametric stratified baseline hazard specification (as was considered in Section 4). This

choice is necessitated by identifiability concerns. For the coefficients β of a stratified propor-

tional hazards model to be identifiable, the corresponding covariates must vary within levels

of the stratification factors. As shown in Figure 2, one matched pair completed all follow-up

prior to the adoption of UTT, so that Pij(t) = 0 ∀t ∈ [0, U∗ij] for all observations in this

matched pair. We thus cannot stratify on matched pair membership and still identify the

policy effect of Botswana’s new HIV treatment guidelines.

Results are presented in Table 3 and the estimated cumulative incidence functions in each

matched pair under model (15) are given in Figure 3. Towards addressing our first research

question, we find that randomization to combination HIV prevention was associated with

a significant reduction in the rate of new HIV cases in Botswana (adjusted ĤR = 0.639;

95% CI, 0.473 to 0.862), an effect that replicated the original findings of the BCPP and
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that persisted even after adjusting for Botswana’s new national treatment guidelines and

the resulting changes to the study interventions (models (14) and (15), respectively).

The implications for our second research question are less clear. UTT implementation

was a post-randomization event, such that any estimated policy effect may be subject to

confounding—most notably by matched pair membership itself. The trial communities were

matched into pairs on the basis of demographic factors (such as population age structure and

pre-existing health infrastructure) that were thought to affect the observed within-stratum

incidence rate (Makhema et al., 2019; see also Figure 3); community enrollment in the BCPP

was also highly staggered, such that there was large variability as to whether (and for how

long) each pair of communities contributed follow-up time under the new HIV treatment

guidelines (Figure 2). This intuition regarding confounding by matched pair is borne out in

Table 3. Under model (15) without matched pair adjustment, UTT adoption was associated

with a pronounced increase in HIV incidence in the standard of care communities, though

there was high uncertainty about this estimated association (unadjusted ĤR = 1.745; 95%

CI, 0.645 to 4.718). After accounting for matched pair membership, however, we instead

find that UTT was associated with a small estimated reduction in HIV incidence (adjusted

ĤR = 0.879; 95% CI, 0.404 to 1.913), though there remained great uncertainty about this

point estimate and the estimated reduction itself was not statistically significant (P = 0.745).

Finally, we note that—while the estimated variance of the policy effect did vary slightly

with the choice of perturbation constant for numerical differentiation—the final conclusions

in Table 3 were robust to the choice of constant (Table S.3 in Web Appendix D).

[Table 3 about here.]

[Figure 3 about here.]

6. Discussion

In this manuscript, we focused on the marginal analysis of clustered and interval-censored

data under the semiparametric proportional hazards framework, with immediate exten-
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sions to both stratified proportional hazards models and proportional hazards models with

time-dependent covariates. To permit estimation of these models under arbitrarily complex

within-cluster correlation structures and nonparametric estimation of the baseline hazard

function(s), we developed a composite EM algorithm that (i) did not require specifying any

second-order or higher-order moments of the data and that (ii) resulted in computationally-

efficient closed-form updating equations for the baseline hazard estimator. We then estab-

lished the asymptotic properties of the resulting maximum composite likelihood estimators:

drawing on results from empirical process theory and semiparametric M-estimation theory,

we demonstrated the consistency of (β̂, Λ̂) and the asymptotic normality of β̂ as the number

of clusters M →∞. To facilitate inference for β, we also developed a robust, sandwich-type

variance estimator based on the Godambe information of the profile composite likelihood

function. We motivated this estimator by deriving the asymptotic quadratic expansion of

the profile composite log-likelihood function and extending the Taylor expansion results of

Murphy and van der Vaart (2000) to the independence composite likelihood setting.

We found that our composite EM algorithm and robust variance estimator performed

well across a range of simulated data settings. They yielded point estimates with near-

negligible bias under all data-generating mechanisms considered—even when M was small or

when the monitoring schedule was infrequent and covariate-dependent—and yielded interval

estimates with the appropriate nominal coverage when M was sufficiently large and the

asymptotic normal approximation for β̂ reasonably held. We did observe some sensitivity

to the choice of perturbation constant for numerical differentiation in the robust variance

estimator, particularly in the model incorporating time-varying covariate effects. While hM =

n−1/2 generally performed well in our simulation studies and data application, we nevertheless

recommend visually inspecting the profile composite log-likelihood function and conducting

a sensitivity analysis or small simulation study to validate the choice of hM .
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As previously noted, both the composite EM algorithm and the profile composite likelihood

variance estimator require specification of the individual marginal time-to-event distributions

only, and so do not impose any assumptions or restrictions on the within-cluster correlation

structure. This robustness makes our work uniquely well-suited to the analysis of the BCPP

and other infectious disease treatment and prevention CRTs, wherein the dependence be-

tween subjects may be informed by transmission along existing sexual, social, or injection

drug use networks and is thus difficult to model directly. However, our model formulation

and estimation approach are sufficiently broad as to be useful in a number of other important

contexts. For example, stepped-wedge CRTs (SW-CRTs) are a modification of traditional

cluster-randomized designs in which all clusters begin the trial in the standard-of-care arm

and sequentially cross over to the intervention until all clusters are treated (Hemming et

al., 2015). Treatment assignment is thus a time-dependent covariate, and model (1) would

be a natural choice for the monitoring and analysis of closed-cohort SW-CRTs and other

crossover trials with interval-censored time-to-event endpoints. Our proposed estimation

and inference procedures also have important applications to research conducted during

the coronavirus 2019 (COVID-19) pandemic. The NIH Collaboratory recently published a

set of guidelines for addressing COVID-19 impacts on research studies (NIH Collaboratory,

2021); these guidelines included modifying the primary analysis to adjust for the stage of

the pandemic (as defined, e.g., by local COVID-19 dynamics or by impacts on research

conduct) and evaluating for possible treatment effect heterogeneity (i.e., interaction effects)

by pandemic stage. In open-cohort trials with a short duration of follow-up, pandemic stage

might naturally be viewed as a stratification factor, while in closed-cohort trials with a

longer duration of participant follow-up, pandemic stage might instead be conceived of as

a time-dependent covariate. In either event, our maximum composite likelihood framework

facilitates fitting these models for studies with clustered, interval-censored outcomes.



Marginal Proportional Hazards Models for Clustered Interval-Censored Data 25

While our proposed methods reasonably estimate β across a range of true marginal and

joint data-generating distributions, the corresponding variance estimates for β̂ tend to be

slightly anti-conservative in the small M setting. A similar phenomenon has been noted

for the generalized estimating equation sandwich variance estimator and several corrections

have been proposed to address this small-sample bias (e.g., Kauermann and Carroll, 2001;

Mancl and DeRouen, 2001). It would be useful to derive similar small-sample corrections in

the current setting.

Finally, as noted in Section 2 and explored further in the simulation studies in Section

4, a broad class of additive time-varying covariate effects may be (i) reformulated as time-

dependent covariate processes and then (ii) readily estimated using our proposed composite

EM algorithm. However, this reformulation requires making parametric assumptions about

the form of β(t) that may not be tenable or verifiable; this is particularly the case for the

marginal analysis of pragmatic CRTs, in which the intervention effect may vary naturally

over time due to gradual intervention roll-out, or may respond in unpredictable ways to

external policy decisions and forces. In light of this, extending our composite EM algorithm

to consider marginal proportional hazards models with nonparametric estimation of β(t)

(for example, through either kernel density estimation or local linear approximations) would

present a promising avenue for more flexible monitoring and analysis of CRTs.
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Figure 1. Comparison of 100 randomly selected estimated stratum-specific baseline sur-
vival functions (in gray) with the true data-generating functions (in color) under model (10)
(column A), model (11) (column B), and model (12) (column C) with M = 100 and S = 4.
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Figure 2. Duration of follow-up for each community in the Botswana Combination
Prevention Project, measured as the time from the earliest recorded study visit to the last
recorded study visit across all community members. Intervention assignment is indicated by
line type (standard of care, solid; combination prevention, dashed) and pair membership by
color; the shaded region corresponds to the time during which the national universal-test-
and-treat (UTT) policy was in effect.
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Table 1
Finite sample performance of the maximum composite likelihood estimators and profile composite likelihood variance

estimators under hM = n−1/2.

Within-Cluster Independence Copula Dependence Model

Point Est. Bias Emp. SE Est. SE CP Point Est. Bias Emp. SE Est. SE CP

Scenario I: S = 4, M = 100, 20 6 ni 6 30

Model (10)
β = -0.30 -0.303 -0.003 0.061 0.063 95.3% -0.305 -0.005 0.112 0.107 93.3%

Model (11)
γ1 = -0.00 -0.034 -0.034 0.153 0.156 94.8% -0.027 -0.027 0.285 0.289 95.0%
γ2 = -0.15 -0.158 -0.008 0.040 0.039 94.5% -0.156 -0.006 0.063 0.064 95.2%

Model (12)
α1 = -0.30 -0.301 -0.001 0.083 0.082 94.1% -0.304 -0.004 0.117 0.116 93.7%
α2 = -0.05 -0.049 -0.001 0.136 0.138 94.6% -0.049 -0.001 0.098 0.098 95.5%
α3 = -0.20 -0.197 -0.003 0.175 0.179 95.1% -0.205 -0.005 0.132 0.136 95.7%

Scenario II: S = 15, M = 15, 500 6 ni 6 700

Model (10)
β = -0.30 -0.301 -0.001 0.026 0.024 90.9% -0.302 -0.002 0.047 0.045 93.0%

Model (11)
γ1 = -0.00 -0.025 -0.025 0.089 0.094 95.0% -0.031 -0.031 0.124 0.123 93.3%
γ2 = -0.15 -0.157 -0.007 0.024 0.025 95.5% -0.159 -0.009 0.031 0.032 93.5%

Model (12)
α1 = -0.30 -0.301 -0.001 0.030 0.027 91.8% -0.305 -0.005 0.050 0.046 90.4%
α2 = -0.05 -0.049 -0.001 0.045 0.043 91.5% -0.051 -0.001 0.047 0.044 91.9%
α3 = -0.20 -0.200 -0.000 0.059 0.056 91.6% -0.203 -0.003 0.065 0.062 91.5%

Point Est., empirical average of the parameter estimator; Bias, empirical average of the bias; Emp. SE, empirical
standard error; Est. SE, empirical average of the standard error estimator; CP, empirical coverage probability of the

corresponding 95% Wald-type confidence interval. All results are summarized across 1000 simulation replicates.



34 Biometrics, *** ***

Table 2
Finite sample performance of the maximum composite likelihood estimators and profile composite likelihood variance

estimators relative to midpoint imputation in the Botswana Combination Prevention Project setting.

Maximum Composite Likelihood Midpoint Imputation

Point Est. Bias Emp. SE Est. SE CP Point Est. Bias Emp. SE Est. SE CP

Scenario I: S = 4, M = 100, 20 6 ni 6 30

Model (13)
β = -1.00 -0.996 -0.004 0.103 0.099 94.4% -0.986 -0.014 0.105 0.100 94.4%

Model (14)
α11 = -1.00 -1.011 -0.011 0.105 0.102 95.2% -0.962 -0.038 0.103 0.103 93.6%
α12 = -0.50 -0.500 -0.000 0.074 0.076 96.4% -0.438 -0.062 0.066 0.070 86.6%

Model (15)
α21 = -1.00 -1.016 -0.016 0.111 0.106 93.6% -1.047 -0.047 0.111 0.105 91.4%
α22 = -0.50 -0.507 -0.007 0.092 0.094 94.8% -0.480 -0.020 0.093 0.095 95.0%
α23 = -2.00 -2.028 -0.028 0.128 0.125 93.4% -1.786 -0.214 0.121 0.120 54.8%

Scenario II: S = 15, M = 15, 500 6 ni 6 700

Model (13)
β = -0.30 -0.302 -0.002 0.049 0.047 91.2% -0.287 -0.013 0.049 0.051 93.6%

Model (14)
α11 = -0.30 -0.303 -0.003 0.051 0.048 91.2% -0.327 -0.027 0.052 0.063 94.6%
α12 = -0.50 -0.503 -0.003 0.035 0.034 92.6% -0.458 -0.042 0.034 0.032 72.8%

Model (15)
α21 = -0.30 -0.304 -0.004 0.053 0.051 91.4% -0.239 -0.061 0.053 0.056 79.4%
α22 = -0.05 -0.050 -0.000 0.049 0.047 91.8% -0.028 -0.022 0.044 0.043 90.6%
α23 = -0.20 -0.201 -0.001 0.068 0.062 91.2% -0.158 -0.042 0.063 0.059 86.2%

Point Est., empirical average of the parameter estimator; Bias, empirical average of the bias; Emp. SE, empirical
standard error; Est. SE, empirical average of the standard error estimator; CP, empirical coverage probability of the

corresponding 95% Wald-type confidence interval. All results are summarized across 500 simulation replicates.
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Table 3
Analysis of the Botswana Combination Prevention Project, accounting for both randomization to combination HIV

prevention and the mid-trial adoption of a national universal test-and-treat policy (UTT).

Marginal Model Adjusted for Pair Membership

ĤR 95% CI P-value ĤR 95% CI P-value

Model (13)

Combination prevention 0.629 (0.430, 0.921) 0.017 0.639 (0.473, 0.862) 0.003

Model (14)

Combination prevention 0.629 (0.426, 0.930) 0.020 0.638 (0.473, 0.861) 0.003
Universal test-and-treat adoption 1.173 (0.490, 2.807) 0.721 0.661 (0.014, 30.350) 0.832

Model (15)

Combination prevention
Prior to UTT adoption 0.871 (0.467, 1.624) 0.664 0.792 (0.569, 1.102) 0.166
Post UTT adoption 0.392 (0.179, 0.861) 0.020 0.408 (0.180, 0.925) 0.032

Universal test-and-treat adoption 1.745 (0.645, 4.718) 0.273 0.879 (0.404, 1.913) 0.745

ĤR, estimated hazard ratio exp(β̂); CI, confidence interval.
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Web Appendix A. Composite Expectation Maximization under the

Independence Composite Likelihood

A.1 Review of Existing Literature on Composite Expectation Maximization

Suppose that the data consist of M independent clusters (indexed by i = 1, . . . ,M), with ni

possibly dependent observations in cluster i (indexed by j = 1, . . . , ni). Let O denote the full

collection of observed data, and suppose that the univariate margins of its joint distribution

are parametrized by θ ∈ Θ. Then the independence composite likelihood function for θ is

given by

LC(θ;O) =
M∏
i=1

ni∏
j=1

f(Oij; θ). (S.1)

To facilitate maximization of (S.1), suppose that the observed data collection for observa-

tion j in cluster i is (or may be conceived as) a many-to-one function of some augmented

data vector, Aij, so that

f(Oij; θ) =

∫
{Aij :O(Aij)=Oij}

f(Aij; θ)µ(dAij). (S.2)

We then define the following working composite models for the observed, augmented, and

conditional data distributions, with each composite model formed by multiplying together a

collection of congenial univariate densities:

f ∗(O; θ) :=
M∏
i=1

ni∏
j=1

f(Oij; θ)

f ∗(A; θ) :=
M∏
i=1

ni∏
j=1

f(Aij; θ)

f ∗(A|O; θ) :=
M∏
i=1

ni∏
j=1

f(Aij|Oij; θ),

where f(Aij|Oij; θ) = f(Aij; θ)/f(Oij; θ). Then the composite EM algorithm identifies sta-

tionary points of (S.1) by iteratively (i) constructing the objective function

QC(θ|θl) = E∗θl [log f ∗(A; θ)|O] =
M∑
i=1

ni∑
j=1

Eθl [log f(Aij; θ)|Oij],
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where E∗θl [·|O] and Eθl [·|Oij] denote expectations taken with respect to f ∗(A|O; θl) and

f(Aij|Oij; θl), respectively, and then (ii) updating θl+1 = argmaxQC(θ|θl).

This independence composite EM algorithm retains all of the key attributes of the tra-

ditional EM procedure, namely the ascent property (reprinted as Theorem S.1 below for

reference) and the convergence of the algorithm to a stationary point of the independence

composite likelihood (reprinted as Theorem S.2 below for reference). These results are special

cases of the results presented in Gao and Song (2011) for more general composite EM

algorithms, and the structure of their proofs is identical to those in Dempster et al. (1977)

and Wu (1983) for traditional EM algorithms, though with the joint distributions of O, A,

and A|O now replaced by their working composite models.

Theorem S.1: Let θl and θl+1 be successive iterations of the composite EM algorithm.

Then logLC(θl+1;O) > logLC(θl;O) for all l ∈ N, with equality if and only if both QC(θl+1|θl) =

QC(θl|θl) and f ∗(A|O; θl+1) = f ∗(A|O; θl) a.e.

Theorem S.2: Let (θl)l∈N be a sequence of composite EM updates, and suppose that

i. Θ0 = {θ : logLC(θ;O) > logLC(θ0;O)} is compact for all logLC(θ0;O) > −∞

ii. logLC(θ;O) is continuous in θ and differentiable on the interior of Θ

iii. QC(θ|θl) is continuous in both θ and θl.

Then the sequence (logLC(θl;O))l∈N converges monotonically to `∗ = logLC(θ∗;O) for some

stationary point, θ∗. Let S (`∗) be the set of all stationary points for which logLC(θ;O) = `∗.

If S (`∗) contains only a single point, then it also follows that θl → θ∗.

Note that the ascent property guarantees the independence composite likelihood for the

observed data is monotone non-decreasing across each iteration of the composite EM al-

gorithm, while Theorem S.2 establishes sufficient conditions under which the sequence of

independence composite EM updates converges to some stationary point θ∗ of (S.1). As with
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the classical EM algorithm, there is no general guarantee that the limiting θ∗ for any given

realization of the composite EM algorithm is equal to the global maximizer, θ̂CL, unless the

composite likelihood function is strictly concave.

A.2 Poisson Data Augmentation Produces a Composite EM Algorithm

Although the composite likelihood function, LC(θ;O), and the corresponding composite EM

objective function, QC(θ|θl), are derived as either the product or the sum of independent

cluster-level contributions, the adoption of a working independence model for these cluster-

level contributions implies that all terms in LC(θ;O) and QC(θ|θl) are exchangeable and

thus may be rearranged and reindexed. In the main manuscript, we rearrange LC(θ;O)

and QC(θ|θl) as a matter of convenience so that observations are partitioned into strata

(determined by levels of the stratification factors, Zij) as opposed to clusters (determined

by i):

LC(θ;O) =
M∏
i=1

ni∏
j=1

f(Oij; θ) ≡
S∏
s=1

ns∏
v=1

f(Osv; θ)

QC(θ|θl) =
M∑
i=1

ni∑
j=1

Eθl [log f(Aij; θ)|Oij] ≡
S∑
s=1

ns∑
v=1

Eθl [log f(Asv; θ)|Osv],

where s = 1, . . . , S indexes stratum membership and v = 1, . . . , ns indexes study subjects

within stratum s. In what follows, we will establish that Poisson augmentation leads to

a composite EM algorithm using cluster-level indexing of LC(θ;O) and QC(θ|θl). Given

that these arguments rely only on (i) the continuity of QC(θ|θl), (ii) the boundedness of

logLC(θ;O), and (iii) the nature of the coarsening relationship between Aij and Oij—all of

which are trivially preserved under reindexing from (i, j) to (s, v)—they will also hold for

the iterative estimation procedure proposed in Section 3.2 of the main manuscript.

We now verify that Poisson augmentation does indeed produce an independence composite

EM algorithm satisfying the conditions of Theorems S.1 and S.2 above. To that end, we note
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that the observed data for individual j in cluster i is given by

Oij = {(Lij, Uij],Zij, (Xij(t) : t 6 U∗ij)},

where (Lij, Uij] is the censoring interval containing the true time to event Tij, Xij(t) is a p-

dimensional bounded covariate process informing the time-to-event distribution, and Zij is a

set of stratification factors taking on S ∈ N distinct levels (denoted by z1, . . . ,zS). Then the

individual observed data density function under the marginal stratified proportional hazards

model in equation (1) of the main text,

λij{t|Xij(t),Zij} = λZij(t) exp{β>Xij(t)}, (S.3)

is given by

f(Oij; θ) = exp

{
−
∫ Lij

0

eβ
>Xij(t)dΛZij(t)

}
− exp

{
−
∫ Uij

0

eβ
>Xij(t)dΛZij(t)

}
=

S∏
s=1

[
exp

{
−
∫ Lij

0

eβ
>Xij(t)dΛs(t)

}
− exp

{
−
∫ Uij

0

eβ
>Xij(t)dΛs(t)

}]I(Zij=zs)
.

To simplify notation, we assume without loss of generality that Zij = zs. Then under

nonparametric estimation of the baseline hazard function Λs, which restricts Λs to the class

of step functions Λs(t) =
∑

τsr6t
λsr with non-negative jumps λsr at times τsr (r = 1, . . . , ρs),

we may write

f(Oij; θ) = exp

− ∑
τsr6Lij

λsre
β>Xijr

1− exp

− ∑
Lij<τsr6Uij

λsre
β>Xijr


I(Uij<∞)

for Xijr ≡Xij(τsr).

To maximize this expression, we introduce for each subject a collection of independent

Poisson random variables, Wijr ∼ Pois(λsr exp{β>Xijr}) (r = 1, . . . , ρs). The augmented

data collection for individual j in cluster i is then

Aij = {(Lij, Uij],Zij, (Xij(t) : t 6 U∗ij), {Wijr : r = 1 . . . , ρs; τsr 6 U∗ij}}
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and the associated augmented data density is given by

f(Aij; θ) =

ρs∏
r=1

{
1

Wijr!

(
λsre

β>Xijr

)Wijr

exp
(
−λsreβ

>Xijr

)}I(τsr6U∗ij)
.

We first establish that the coarsening relationship in (S.2) holds for Aij and Oij in the

stratified proportional hazards setting. To that end, we define Aij :=
∑

τsr6Lij
Wijr and

Bij := I(Uij < ∞)
∑

Lij<τsr6Uij
Wijr, and note that (Lij, Uij] is represented by the event

{Aij = 0}∩{Bij = 0} when Uij =∞ and by the event {Aij = 0}∩{Bij > 0} when Uij >∞.

Considering first the case when Uij =∞, we have that

f(Oij; θ)
?
=

∫
{Aij :O(Aij)=Oij}

f(Aij; θ)µ(dAij)

=
∑

{Wij :Aij=0}

ρs∏
r=1

{
1

Wijr!

(
λsre

β>Xijr

)Wijr

exp
(
−λsreβ

>Xijr

)}I(τsr6U∗ij)

=
∑

I(Aij = 0)×
ρs∏
r=1

{
1

Wijr!

(
λsre

β>Xijr

)Wijr

exp
(
−λsreβ

>Xijr

)}I(τsr6U∗ij)
= P (Aij = 0)

X
= exp

(
−

∑
τsr6Lsk

λsre
β>Xijr

)
,

where the last equality follows from the observation thatAij ∼ Pois{
∑

τsr6Lij
λsr exp(β>Xijr)}.

Similarly, when Uij <∞, we find

f(Oij; θ)
?
=

∫
{Aij :O(Aij)=Oij}

f(Aij; θ)µ(dAij)

=
∑

{Wij :Aij=0∩Bij>0}

ρs∏
r=1

{
1

Wijr!

(
λsre

β>Xijr

)Wijr

exp
(
−λsreβ

>Xijr

)}I(τsr6U∗ij)

=
∑

I(Aij = 0 ∩Bij > 0)×
ρs∏
r=1

{
1

Wijr!

(
λsre

β>Xijr

)Wijr

exp
(
−λsreβ

>Xijr

)}I(τsr6U∗ij)
= P (Aij = 0)P (Bij > 0)

X
= exp

(
−
∑

τsr6Lij

λsre
β>Xijr

){
1− exp

(
−

∑
Lij<τsr6Uij

λsre
β>Xijr

)}
,

where the second-to-last equality follows from the independence of {Wijr : τsr 6 Lij} and
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{Wijr : Lij < τsr 6 Uij}, and the last equality follows from the observation that Bij =

I(Uij < ∞)
∑

Lij<τsr6Uij
Wijr ≡

∑
Lij<τsr6Uij

Wijr ∼ Pois{
∑

Lij<τsr6Uij
λsr exp(β>Xijr)}.

So the coarsening relationship in (S.2) holds with respect to the proposed augmentation

variables, and, given the congeniality of the marginal distributions for Oij, Aij, and Aij|Oij,

the estimation procedure in Section 3.2 of the main text is a composite EM algorithm

satisfying Theorem S.1.

We next consider Theorem S.2, which concerns the convergence of the composite EM

algorithm to some stationary point θ∗ of the independence composite log-likelihood function.

The composite EM objective function is

QC(θ|θl) =
M∑
i=1

ni∑
j=1

S∑
s=1

I(Zij = zs)

[
ρs∑
r=1

I(τsr 6 U∗ij)
{
Ŵijr log

(
λsre

β>Xijr

)
− λsreβ

>Xijr

}]
,

with

Ŵijr = Eθl [Wijr|Oij] =


λl,sr exp(β>l Xijr)

1−exp
{
−

∑
Lij<τsr6Uij

λl,sr exp(β>l Xijr)
} for Lij < τsr 6 U∗ij

0 otherwise

.

Given that QC(θ|θl) is continuous in both θ and θl; that logLC(θ;O) is a bounded, con-

tinuous, and differentiable function of θ; and under the assumption that the stratified

proportional hazards model is identifiable under the independence composite likelihood

construction (see Condition 6 in Web Appendix B.1), the proposed Poisson augmentation

algorithm also satisfies the conditions of Theorem S.2 and so its iterates θl → θ∗. While this

limiting θ∗ is guaranteed to be a stationary point of the composite log-likelihood function,

we do not have a general guarantee that it will be the global maximum.

A.3 Projection onto the Working Composite Observed Data Model

To evaluate the projection Eθl [Wijr|Oij] for those r = 1, . . . , ρs such that τsr 6 U∗ij, we first

note that U∗ij = LijI(Uij = ∞) + UijI(Uij < ∞) represents the total time during which

subject j in cluster i is under monitoring for the event of interest. For all observations, this
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active monitoring time includes the interval (0, Lij]; for those observations with Uij <∞, it

also includes the interval (Lij, Uij]. We thus consider two separate cases for Eθl [Wijr|Oij]: (i)

when the corresponding τsr 6 Lij, and (ii) when the corresponding Lij < τsr 6 U∗ij.

(i) A necessary condition for Lij to be the left endpoint of the observed censoring interval

is that no event occurs prior to that time, i.e., that Aij = 0, which occurs if and only if

Wijr = 0 for all τsr 6 Lij. Thus Eθl [Wijr|Oij] = 0 for all τsr 6 Lij.

(ii) Consider now Lij < τsr 6 U∗ij, which is a non-empty subset of τs only when U∗ij =

Uij <∞. For these observations, we note that the observed censoring interval (Lij, Uij]

is equivalent to the event {Aij = 0} ∩ {Bij > 0}, so that

Eθl [Wijr|Xij(t)] = Eθl [Wijr|Aij = 0,Xij(t)]

= Eθl [Wijr|Aij = 0, Bij > 0,Xij(t)]P (Bij > 0|Xij(t))

+ Eθl [Wijr|Aij = 0, Bij = 0,Xij(t)]P (Bij = 0|Xij(t))

= Eθl [Wijr|Oij]P (Bij > 0|Xij(t)) + 0.

Rearranging, we find

Eθl [Wijr|Oij] =
Eθl [Wijr|Xij(t)]

P (Bij > 0|Xij(t))
=

λl,sr exp(β>l Xijr)

1− exp{
∑

Lij<τsr6Uij
λl,sr exp(β>l Xijr)}

.

The expression shown in Section 3.2 of the main text follows as a result of reindexing the

data with respect to stratum and subjects within stratum, (s, v), as opposed to cluster and

subjects within cluster, (i, j).

Web Appendix B. Asymptotic Results

B.1 Setting and Regularity Conditions

Let Yij1 < · · · < Yij,Kij be the sequence of monitoring times for subject j in cluster i, and

set Yij0 = 0, Yij,Kij+1 = ∞, and δijk = I(Yijk < Tij 6 Yij,k+1) for k = 0, . . . , Kij. Then the

observed censoring interval (Lij, Uij] is that interval among {(Yijk, Yij,k+1] : k = 0, . . . , Kij}
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for which δijk = 1, and the full-data independence composite likelihood function for (S.3)

may be written as

LC(θ;O) =
M∏
i=1

ni∏
j=1

f(Oij; θ)

=
M∏
i=1

ni∏
j=1

S∏
s=1

[
exp

{
−
∫ Lij

0

eβ
>Xij(t)dΛs(t)

}
− exp

{
−
∫ Uij

0

eβ
>Xij(t)dΛs(t)

}]I(Zij=zs)

=
M∏
i=1

ni∏
j=1

S∏
s=1

Kij∏
k=0

[
exp

{
−
∫ Yijk

0

eβ
>Xij(t)dΛs(t)

}

− exp

{
−
∫ Yij,k+1

0

eβ
>Xij(t)dΛs(t)

}]δijkI(Zij=zs)

.

The independence composite log-likelihood function is then given by

`C(θ;O) =
M∑
i=1

ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log

[
exp

{
−
∫ Yijk

0

eβ
>Xij(t)dΛs(t)

}

− exp

{
−
∫ Yij,k+1

0

eβ
>Xij(t)dΛs(t)

}] ,

and the maximum composite likelihood estimator under nonparametric estimation of the

baseline cumulative hazard functions, θ̂CL = (β̂, Λ̂) with Λ̂ = (Λ̂1, . . . , Λ̂S), satisfies

θ̂CL = argmax
θ∈B×C

`C(θ;O), (S.4)

where B ⊂ Rp and C = C1 × · · · × CS with Cs the set of step functions with non-negative

jumps at times τsr (r = 1, . . . , ρs).

We establish the asymptotic properties of (β̂, Λ̂) under the setting in which the number

of clusters M →∞ and assuming the following regularity conditions, adapted from Zeng et

al. (2017) and Gao et al. (2019):

Condition 1: The maximum cluster size n = n(M) = max16i6M ni is bounded above

by a positive constant n∗ for all M and ni is independent of {Tij : j = 1, . . . , ni} and

{Kij,Yij : j = 1, . . . , ni} conditional on {Zij,Xij(t) : j = 1, . . . , ni}.

Condition 2: The number of potential monitoring times Kij is positive with E(Kij) <∞,
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and the monitoring times themselves have finite support Y with least upper bound τ . In

addition, there exists some positive constant ξ such that P{min06k<Kij(Yij,k+1 − Yijk) >

ξ|Kij,Xij,Zij} = 1. Finally, there exists a probability measure µ on Y such that the bivariate

distribution function of (Yijk, Yij,k+1) conditional on (Kij,Xij,Zij) is dominated by µ × µ

and its Radon-Nikodym derivative, denoted by f̃k(u, v;Kij,Xij,Zij), can be expanded to a

positive and twice-continuously differentiable function in the set {(u, v) : 0 6 u 6 τ, 0 6 v 6

τ, v − u > ξ}.

Condition 3: The set of stratification factors Zij is a discrete random vector taking on

finitely many distinct values, {zs : s = 1, . . . , S}, with S fixed.

Condition 4: With probability 1, Xij(·) has bounded total variation in Y . If there exists a

constant vector a1 ∈ Rp and a deterministic function a2(t) such that a>1Xij(t) + a2(t) = 0

for any t ∈ Y with probability 1, then a1 = 0 and a2(t) = 0 for any t ∈ Y .

Condition 5: The true value of β, denoted by β0, lies in the interior of a known compact set

B ⊂ Rp. For s = 1, . . . , S, the true value Λs0(·) of Λs(·) is strictly increasing and continuously

differentiable on [0, τ ] with Λs0(0) = 0.

Condition 6: If there exists β∗ ∈ B and strictly increasing and continuously differentiable

Λs∗(t) for s = 1, . . . , S and t ∈ Y with Λs∗(0) = 0 such that

ni∏
j=1

S∏
s=1

Kij∑
k=0

δijk

[
exp

{
−
∫ Yijk

0

eβ
>
∗ Xij(u)dΛs∗(u)

}
− exp

{
−
∫ Yij,k+1

0

eβ
>
∗ Xij(u)dΛs∗(u)

}]I(Zij=zs)

=

ni∏
j=1

S∏
s=1

Kij∑
k=0

δijk

[
exp

{
−
∫ Yijk

0

eβ
>
0 Xij(u)dΛs0(u)

}
− exp

{
−
∫ Yij,k+1

0

eβ
>
0 Xij(u)dΛs0(u)

}]I(Zij=zs)

with probability 1, then β∗ = β0 and Λs∗(t) = Λs0(t) for s = 1, . . . , S and t ∈ Y .

Let PM denote the empirical measure for M independent clusters, P denote the true prob-

ability measure, and GM =
√
M(PM − P ) denote the corresponding empirical process. We

reformulate maximum composite likelihood estimation under the independence composite

likelihood as an M-estimation task in Web Appendix B.2, and then establish the consistency
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of θ̂CL in Web Appendix B.3, the asymptotic normality of the parametric component β̂ in

Web Appendix B.4, and the form of the quadratic expansion of the profile composite log-

likelihood function for β in Web Appendix B.5. These proofs make use of three additional

lemmas, which are presented and proved in Web Appendix B.6.

B.2 Reformulation of the Maximum Composite Likelihood Estimator as a Semiparametric

M-Estimator

Denote the individual cluster-level contribution to the independence composite log-likelihood

function by m(β,Λ;Oi) = mθ(Oi), where

mθ(Oi) :=

ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log

[
exp

{
−
∫ Yijk

0

eβ
>Xij(t)dΛs(t)

}

− exp

{
−
∫ Yij,k+1

0

eβ
>Xij(t)dΛs(t)

}] ,

(S.5)

and define the empirical and population criterion functions as

AM(θ) := PMmθ and A(θ) := Pmθ,

respectively, for all θ ∈ Θ, where the parameter space Θ = B × D with D = D1 × · · · × DS

and Ds = {Λs : Λs is a non-decreasing function with Λs(0) = 0 and Λs(τ) < ∞}. We equip

B with the standard Euclidean norm,

d(β,β0) := ‖β − β0‖ =
√

(β1 − β10)2 + · · ·+ (βp − βp0)2 for β,β0 ∈ B,

and Ds with the supremum norm on Y ,

d(Λs,Λs0) := ‖Λs − Λs0‖l∞(Y) = sup {|Λs(t)− Λs0(t)| : t ∈ Y} for Λs,Λs0 ∈ Ds.

Note that AM(θ) is proportional to `C(θ;O), so that the maximum composite likelihood

estimator defined in (S.4) likewise maximizes AM(θ):

AM(θ̂CL) = sup
θ∈B×C

AM(θ).
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Thus the maximum composite likelihood estimator θ̂CL is a type of semiparametric M

estimator, and the asymptotic behavior of θ̂CL may be understood through the lens of semi-

parametric M-estimation theory, with the consistency of θ̂CL and the asymptotic normality

of β̂ closely related to properties of the function class M := {mθ(·) : θ ∈ Θ}.

B.3 Consistency of the Maximum Composite Likelihood Estimator

Theorem 1: Under Conditions 1–6, ‖β̂ − β0‖+
∑S

s=1 ‖Λ̂s − Λ̂s0‖l∞(Y)
a.s.→ 0.

Proof. Using Lemma S.1 and similar arguments to those in Zeng et al. (2017), we find that

the nonparametric maximum composite likelihood estimator Λ̂ satisfies lim supM Λ̂s(τ−ε) <

∞ with probability 1 for any ε > 0 and for any s = 1, . . . , S. By choosing a decreasing

sequence {εn : n ∈ N} such that εn ↓ 0, we may then use Helly’s selection theorem to

conclude that Λ̂s converges pointwise to some Λs∗ ∈ Ds on any compact interior subset of Y .

Thus for M large enough we may restrict our attention to estimators Λ̂s ∈ Ds, s = 1, . . . , S.

We next establish that the population criterion function A(θ) has a well-separated and

unique maximum at θ0. To that end, note that mθ(Oi) may be rewritten as

mθ(Oi) =

ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log
[
P
{
Yijk < Tij 6 Yij,k+1|Kij,Yij,Xij(t),Zij; θ

}]
=

ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log {pijk(θ)}

 ,
so that the population criterion function is given by

A(θ) = Pmθ

= E

Eθ0

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log {pijk(θ)}

∣∣∣∣∣Ki,Yi,Xi(t),Zi


= E

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

Eθ0
{
I(Yijk < Tij 6 Yij,k+1)

∣∣Ki,Yi,Xi(t),Zi

}
log {pijk(θ)}


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= E

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

pijk(θ0) log {pijk(θ)}

 .
Without loss of generality, we assume (for the moment) that S = 1, so that

A(θ) = E


ni∑
j=1

Kij∑
k=0

p0,ijk log (pijk)

 , (S.6)

where we have used the shorthand p0,ijk = pijk(θ0) and pijk = pijk(θ). The integrand in (S.6)

is the negative cross-entropy between the collection of true marginal probabilities, p0 =

{p0,ijk : k = 0, . . . , Kij; j = 1, . . . , ni}, and the collection of predicted marginal probabilities,

p = {pijk : k = 0, . . . , Kij; j = 1, . . . , ni}. This expression will then be maximized at p =

p0 ⇐⇒ pijk = p0,ijk ∀j, k =⇒ θ = θ0, where the last implication follows from the

identifiability of the stratified proportional hazards model under the independence composite

likelihood construction (Condition 6). Thus θ0 represents the unique maximizer of A(θ).

Given that A(θ) is a continuous function of θ, it also follows that this maximizer is well-

separated.

Finally, we note that the function classM = {mθ(·) : θ ∈ Θ} is P -Glivenko-Cantelli given

Lemma S.1. Then

sup
θ∈Θ
|PMmθ − Pmθ| = sup

θ∈Θ
|AM(θ)− A(θ)| a.s.→ 0,

and it follows from an application of the Argmax Theorem (see Kosorok (2008), Theorem

2.12) that d(θ̂CL, θ0) := ‖β̂ − β0‖+
∑S

s=1 ‖Λ̂s − Λ̂s0‖l∞(Y)
a.s.→ 0.

B.4 Asymptotic Normality of the Parametric Component

To study the limiting distribution of the parametric component β̂ of the maximum composite

likelihood estimator θ̂CL, we first characterize the first and second partial derivatives of the

criterion function mθ(Oi) under the parametric submodel Λε,h that satisfies the relationship

dΛε,h = ((1 + εh1)dΛ1, . . . , (1 + εhS)dΛS)>
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for ε ∈ R, h = (h1, . . . , hS), and hs ∈ L2(µ); to simplify notation, we also introduce the

following expressions:

S(v;β,Λ) = exp

{
−
∫ v

0

eβ
>X(u)dΛ(u)

}
B(t, v;β,Λ) = −I(v > t)S(v;β,Λ)eβ

>X(t)

C(t, v, w;β,Λ) =
B(t, v;β,Λ)−B(t, w;β,Λ)

S(v;β,Λ)− S(w;β,Λ)

D(t, u, v, w;β,Λ) =
[−I(v > t)B(u, v;β,Λ) + I(w > t)B(u,w;β,Λ)]eβ

>X(t)

S(v;β,Λ)− S(w;β,Λ)
.

Then the composite score function for β is given by

m1(β,Λ) :=
∂

∂β>
m(β,Λ;Oi)

=

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)Xij(t)dΛs(t)

 (S.7)

and the composite score operator for Λ along the submodel dΛε,h is given by

m2(β,Λ)[h] :=
∂

∂ε
m(β,Λ,h;Oi)

∣∣∣
ε=0

=

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)hs(t)dΛs(t)

 . (S.8)

Note that, in M estimation contexts such as the one we consider here, a natural extension

of (S.8) takes derivatives along the p-dimensional submodel Λε,h instead, where dΛε,h =(
(1 + ε>h1)dΛ1, . . . , (1 + ε>hS)dΛS

)>
for ε ∈ Rp, h = (h1, . . . ,hS), and hs a p-dimensional

vector of functions in L2(µ); in what follows, whether we refer to the score operator for Λ

under the one- or p-dimensional submodel should hopefully be clear from context.

We may similarly define

m11(β,Λ) :=
∂

∂β
m1(β,Λ) (S.9)

=

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)Xij(t)
⊗2dΛs(t)


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=−
ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk

{∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)Xij(t)dΛs(t)

}⊗2


= +

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δij

∫ τ

0

∫ τ

0

D(t, u, Yijk, Yij,k+1;β,Λs)Xij(t)Xij(u)>dΛs(u)dΛs(t)


m21(β,Λ)[h] :=

∂

∂β
m2(β,Λ)[h] (S.10)

=

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λshs(t)Xij(t)
>dΛs(t)


=−

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)

× C(u, Yijk, Yij,k+1;β,Λs)hs(t)Xij(u)>dΛs(u)dΛs(t)

}

= +

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

∫ τ

0

D(t, u, Yijk, Yij,k+1;β,Λs)hs(t)Xij(u)>dΛs(u)dΛs(t)


m12(β,Λ)[h] :=

∂

∂ε
m1(β,Λε,h)

∣∣∣
ε=0

(S.11)

=

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)Xij(t)hs(t)
>dΛs(t)


=−

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)

× C(u, Yijk, Yij,k+1;β,Λs)Xij(t)hs(u)>dΛs(u)dΛs(t)

}

= +

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

∫ τ

0

D(t, u, Yijk, Yij,k+1;β,Λs)Xij(t)hs(u)>dΛs(u)dΛs(t)


m22(β,Λ)[h][h̃] =

∂

∂ε
m2(β,Λε,h̃)[h]

∣∣∣
ε=0

(S.12)

=

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)hs(t)h̃s(t)
>dΛs(t)


=−

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

∫ τ

0

C(t, Yijk, Yij,k+1;β,Λs)
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× C(u, Yijk, Yij,k+1;β,Λs)hs(t)h̃s(u)>dΛs(u)dΛs(t)


= +

ni∑
j=1

S∑
s=1

I(Zij = zs)


Kij∑
k=0

δijk

∫ τ

0

∫ τ

0

D(t, u, Yijk, Yij,k+1;β,Λs)hs(t)h̃s(u)>dΛs(u)dΛs(t)

 .

Note that (S.11) and (S.12) may be extended in a similar fashion to (S.8) to consider

derivatives along the p-dimensional submodel with h = (h1, . . . ,hS) and h̃ = (h̃1, . . . , h̃S)

for hs, h̃s p-dimensional vectors of functions in L2(µ).

Remark 1: From our construction of θ̂CL as the maximizer of AM(θ) = PMmθ, it also

follows that

PMm1(β̂, Λ̂) = 0 and PMm2(β̂, Λ̂)[h] = 0

for all h = (h1, . . . , hS) with hs ∈ L2(µ).

In order to establish the weak convergence of
√
M(β̂ − β0), we make two additional

assumptions regarding the behavior and properties of mθ(Oi) under P :

Condition 7: There exists some h∗ = (h∗1, . . . ,h
∗
S) with h∗s a p-dimensional vector of

functions in L2(µ) such that, for any h = (h1, . . . ,hS) with hs a p-dimensional vector

of functions in L2(µ),

Eθ0(m12(β0,Λ0)[h]−m22(β0,Λ0)[h∗][h]) = 0. (S.13)

Furthermore, each element of h∗s (s = 1, . . . , S) can be expanded to be a continuously

differentiable function in [0, τ ] with bounded total variation.

Condition 8: The matrix Eθ0{m11(β0,Λ0)−m21(β0,Λ0)[h∗]} is symmetric and invertible,

and the matrix

I∗ = Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h∗]}−1

× Eθ0
[
{m1(β0,Λ0)−m2(β0,Λ0)[h∗]}⊗2

]
(S.14)
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× Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h∗]}−1 ,

satisfies 0 < det(I∗) <∞.

Remark 2: Equation (S.13) in Condition 7 is analogous to the projection of the score

equation for β onto the closed linear span of the nuisance score operators for Λ in the

semiparametric maximum likelihood estimation context and its solution h∗ is analogous to

the corresponding least favorable direction (cf. Chapter 25 of Van der Vaart (2000)). This h∗

will exist provided that m22(β0,Λ0)[·][h] is a bounded linear operator with bounded inverse.

That each element of h∗s, s = 1, . . . , S, may be expanded into a continuously differentiable

function with bounded total variation on [0, τ ] is necessary for establishing Glivenko-Cantelli

and Donsker results. Condition 8 guarantees the existence, finiteness, and non-singularity of

the asymptotic variance for β̂.

Theorem 2: Under Conditions 1–8,
√
M(β̂− β0) converges weakly to a p-dimensional

zero-mean normal random vector with covariance matrix I∗.

Proof. We begin by noting that, given Condition 7 and by similar arguments to those in

Lemma S.2, the function classes

M1 := {m1(β,Λ) : β ∈ B,Λ ∈ D∗}

and

M2 := {m2(β,Λ)[h∗] : β ∈ B,Λ ∈ D∗}

are both P -Donsker. As a result, the associated empirical processes GM {m1(β,Λ)} and

GM {m2(β,Λ)[h∗]} are both stochastically equicontinuous, with

sup
‖β−β0‖6δM , d(Λ,Λ0)6C∗M−1/3

∣∣∣√M(PM − P ){m1(β,Λ)−m1(β0,Λ0)}
∣∣∣ = oP (1)
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and

sup
‖β−β0‖6δM , d(Λ,Λ0)6C∗M−1/3

∣∣∣√M(PM − P ){m2(β,Λ)[h∗]−m2(β0,Λ0)[h∗]}
∣∣∣ = oP (1)

for any δM ↓ 0 and any C∗ > 0. Furthermore, by Theorem 1, θ̂C = (β̂, Λ̂) is consistent for

θ0 = (β0,Λ0), so that for M large enough we may find C < ∞ such that Λ̂s(τ) 6 C for

s = 1, . . . , S. Thus m1(β̂, Λ̂) and m2(β̂, Λ̂)[h∗] belong to M1 and M2, respectively, and we

may write

GM

{
m1(β̂, Λ̂)

}
= GM {m1(β0,Λ0)}+ oP (1)

=⇒ −
√
MP

{
m1(β̂, Λ̂)

}
=
√
M(PM − P ) {m1(β0,Λ0)}+ oP (1)

=⇒
√
MP

{
m1(β̂, Λ̂)−m1(β0,Λ0)

}
= −
√
MPM {m1(β0,Λ0)}+ oP (1) (S.15)

and

GM

{
m2(β̂, Λ̂)[h∗]

}
= GM {m1(β0,Λ0)[h∗]}+ oP (1)

=⇒ −
√
MP

{
m2(β̂, Λ̂)[h∗]

}
=
√
M(PM − P ) {m2(β0,Λ0)[h∗]}+ oP (1)

=⇒
√
MP

{
m2(β̂, Λ̂)[h∗]−m2(β0,Λ0)[h∗]

}
= −
√
MPM {m2(β0,Λ0)[h∗]}+ oP (1).

(S.16)

We take Taylor series expansions of the left-hand sides of (S.15) and (S.16) about (β0,Λ0),

using the results of Lemma S.3 to bound the second-order terms. In particular, we have

P
{
m1(β̂, Λ̂)−m1(β0,Λ0)

}
= P {m11(β0,Λ0)} (β̂ − β0) + P

{
m12(β0,Λ0)[Λ̂−Λ0]

}
= + Eθ0

O(1)

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

{
Λ̂s(Yijk)− Λs0(Yijk)

}2

+O(1)‖β̂ − β0‖2


= Eθ0 {m11(β0,Λ0)} (β̂ − β0) + Eθ0

{
m12(β0,Λ0)[Λ̂−Λ0]

}
+OP

(
M−2/3 + ‖β̂ − β0‖2

)
,

where m12(β,Λ)[Λ̂ − Λ0] denotes the derivative of m1(β,Λ) along the submodel dΛ0 +

εd(Λ̂−Λ0), which is given by equation (S.11) with hs(u)dΛs(u) replaced by d(Λ̂s−Λs0)(u),
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and

P
{
m2(β̂, Λ̂)[h∗]−m2(β0,Λ0)[h∗]

}
= P {m21(β0,Λ0)[h∗]} (β̂ − β0) + P

{
m22(β0,Λ0)[h∗][Λ̂−Λ0]

}
= + Eθ0

O(1)

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

{
Λ̂s(Yijk)− Λs0(Yijk)

}2

+O(1)‖β̂ − β0‖2


= Eθ0 {m21(β0,Λ0)[h∗]} (β̂ − β0) + Eθ0

{
m22(β0,Λ0)[h∗][Λ̂−Λ0]

}
+OP

(
M−2/3 + ‖β̂ − β0‖2

)
,

where m22(β,Λ)[h∗][Λ̂ − Λ0] denotes the derivative of m2(β,Λ)[h∗] along the submodel

dΛ0 + εd(Λ̂ − Λ0), which is given by equation (S.12) with h̃s(u)dΛs(u) replaced by d(Λ̂s −

Λs0)(u). Then (S.15) may be written as

Eθ0 {m11(β0,Λ0)} (β̂ − β0) +
√
MEθ0

{
m12(β0,Λ0)[Λ̂−Λ0]

}
= −
√
MPM {m1(β0,Λ0)}+OP (

√
M‖β̂ − β0‖2) +OP (M−1/6) + oP (1)

and (S.16) as

Eθ0 {m21(β0,Λ0)[h∗]} (β̂ − β0) +
√
MEθ0

{
m22(β0,Λ0)[h∗][Λ̂−Λ0]

}
= −
√
MPM {m2(β0,Λ0)[h∗]}+OP (

√
M‖β̂ − β0‖2) +OP (M−1/6) + oP (1).

Subtracting the above displays and noting that

Eθ0
{
m12(β0,Λ0)[Λ̂−Λ0]−m22(β0,Λ0)[h∗][Λ̂−Λ0]

}
= 0

by Condition 7, we find

√
MEθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h∗]} (β̂ − β0)

= −
√
MPM {m1(β0,Λ0)−m2(β0,Λ0)[h∗]}+OP (

√
M‖β̂ − β0‖2) +OP (M−1/6) + oP (1).

From Condition 8 and the consistency results of Theorem 1, it follows that

√
M(β̂−β0) = −

√
MEθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h∗]}−1 PM {m1(β0,Λ0)−m2(β0,Λ0)[h∗]}+oP (1).
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Thus
√
M(β̂ − β0) converges to a zero-mean normal random vector with covariance matrix

I∗ given by (S.14) in Condition 8.

B.5 Quadratic Expansion of the Profile Composite Log-Likelihood Function

Note that the joint maximization problem in (S.4) might naturally be reformulated so that

the supremum is taken in two steps,

(S.4) : θ̂CL = argmax
θ∈B×C

`C(θ;O)

= argmax
β∈B

{
argmax

Λ∈C
`C(β,Λ;O)

}
,

meaning that the maximum composite likelihood estimator may equivalently be found by

first maximizing `C(θ;O) over C for a fixed value of β and then by maximizing over B. In

particular, let

Λ̂(β) := argmax
Λ∈C

`C(β,Λ;O)

and define the profile composite log-likelihood function by

p`C(β) := sup
Λ∈C

`C(β,Λ;O) =
M∑
i=1

m
{
β, Λ̂(β);Oi

}
. (S.17)

Then the maximum composite likelihood estimator for β is given by

β̂ = argmax
β∈B

p`C(β) = argmax
β∈B

PM
[
m
{
β, Λ̂(β)

}]
and the maximum composite likelihood estimator for Λ is given by Λ̂ = Λ̂(β̂).

Theorem 3 below provides the second-order asymptotic expansion of the profile composite

log-likelihood function p`C(β̃) about β0 for any sequence β̃
P→ β0 We use this result to

motivate our proposed profile composite log-likelihood variance estimator in Section 3.3 of

the main text.
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Theorem 3: Under Conditions 1–8, for any sequence β̃
P→ β0,

p`C(β̃) = p`C(β0)

= + (β̃ − β0)>
M∑
i=1

{m1(β0,Λ0)−m2(β0,Λ0)[h∗]} (Oi) (S.18)

=− 1

2
M(β̃ − β0)>Eθ0 {m11(β0,Λ0)−m21(β0,Λ0)[h∗]} (β̃ − β0) + oP (1 +

√
M‖β̃ − β0‖)2.

Proof. We begin by introducing the following map from a neighborhood of β ∈ Rp into

the parameter set D = D1,∞ × · · · × DS,∞ for Λ:

ε 7→ Λε(β,Λ) =


Λε(β,Λ1) =

∫ (·)
0
{1 + (β − ε)>h∗1(t)}dΛ1(t)

...

Λε(β,ΛS) =
∫ (·)

0
{1 + (β − ε)>h∗S(t)}dΛS(t)

 , (S.19)

where ε ∈ Rp and h∗ = (h∗1, . . . ,h
∗
S), h∗s a p-dimensional vector of functions in L2(µ), is

the least favorable direction satisfying equation (S.13) in Condition 7. Note that this map

satisfies: (i) Λε(β,Λ) ∈ D for all ‖ε − β‖ sufficiently small and (ii) Λβ(β,Λ) = Λ for any

(β,Λ) ∈ B ×D.

Let η(ε,β,Λ) := m{ε,Λε(β,Λ)} under the submodel in (S.19). Then

η(ε,β,Λ) =

ni∑
i=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log [S {Yijk; ε,Λε(β,Λs)} − S {Yij,k+1; ε,Λε(β,Λs)}]

 ,

and using simple algebra we find that

η̇(ε,β,Λ) := (∂/∂ε)η(ε,β,Λ) = m1{ε,Λε(β,Λ)} −m2{ε,Λε(β,Λ)}[h∗]

and

η̈(ε,β,Λ) := (∂/∂ε)η̇(ε,β,Λ) = m11{ε,Λε(β,Λ)} −m21{ε,Λε(β,Λ)}[h∗],

where m1, m2, m11, and m21 have the forms given in equations (S.7), (S.8), (S.9), and

(S.10), respectively. We note that the maps (ε,β,Λ) 7→ η̇(ε,β,Λ)(Oi) and (ε,β,Λ) 7→

η̈(ε,β,Λ)(Oi) are continuous at (β0,β0,Λ0) P -a.e., and that under (ε,β,Λ) = (β0,β0,Λ0),
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these reduce to

η̇(β0,β0,Λ0) = m1{β0,Λβ0(β0,Λ0)} −m2{β0,Λβ0(β0,Λ0)}[h∗]

= m1(β0,Λ0)−m2(β0,Λ0)[h∗]

η̈(β0,β0,Λ0) = m11{β0,Λβ0(β0,Λ0)} −m21{β0,Λβ0(β0,Λ0)}[h∗]

= m11(β0,Λ0)−m21(β0,Λ0)[h∗].

Thus by arguments similar to those in Lemma S.1 and Lemma S.2, we have that, for some

neighborhood V of (β0,β0,Λ0), the class of functions

M1 := {η̇(ε,β,Λ) : (ε,β,Λ) ∈ V }

is P -Donsker and the class of functions

M2 := {η̈(ε,β,Λ) : (ε,β,Λ) ∈ V }

is P -Glivenko-Cantelli. Finally, the arguments in Lemma S.3 may be used to show more

generally that

Eθ0

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

{
Λ̂s(Yijk; β̃)− Λs0(Yijk)

}2

 = Op(M
−2/3) +O(‖β̃ − β0‖2).

for any (possibly random) sequence β̃
P→ β0, so that Λ̂(β̃)

P→ Λ0 for any sequence β̃
P→ β0;

these convergence rate results may also be used in conjunction with Taylor expansions to

show that

P
[
η̇
{
β0, β̃, Λ̂(β̃)

}]
= oP (‖β̃ − β0‖+M−1/2).

Then all conditions of Theorem 1 of Murphy and Van der Vaart (2000) are met, and the

quadratic expansion in (S.18) holds by similar arguments.
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B.6 Additional Lemmas

Lemma S.1: Under Conditions 1–6, the class of functions

M =


ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log

[
exp

{
−
∫ Yijk

0

eβ
>Xij(t)dΛs(t)

}

− exp

{
−
∫ Yij,k+1

0

eβ
>Xij(t)dΛs(t)

}] : β ∈ B,Λ ∈ D


is P -Glivenko-Cantelli, with D = D1×· · ·×DS and Ds = {Λs : Λs is a non-decreasing function

with Λs(0) = 0 and Λs(τ) <∞}.

Proof. The result follows using the arguments in Lemma 1 of Zeng et al. (2017).

Lemma S.2: Under Conditions 1–6, the class of functions

M∗ =


ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

δijk log

[
exp

{
−
∫ Yijk

0

eβ
>Xij(t)dΛs(t)

}

− exp

{
−
∫ Yij,k+1

0

eβ
>Xij(t)dΛs(t)

}] : β ∈ B,Λ ∈ D∗


is P -Donsker, with D∗ = D1,C × · · · × DS,C and Ds,C = {Λs : Λs is a non-decreasing

function with Λs(0) = 0 and Λs(τ) 6 C}.

Proof. The result follows using the arguments in Lemma 2 of Zeng et al. (2017).

Lemma S.3: Under Conditions 1–6,

Eθ0

 ni∑
j=1

S∑
s=1

I(Zij = zs)

Kij∑
k=0

{
Λ̂s(Yijk)− Λs0(Yijk)

}2

 = Op(M
−2/3) +O(‖β̂ − β0‖2).

Proof. Let

m(β,Λ) := log

[
exp{m(β,Λ)}+ exp{m(β0,Λ0)}

2

]
= log

{
LC(β,Λ) + LC(β0,Λ0)

2

}
,

where LC(β,Λ) is the composite likelihood function for a single cluster, and let

M∗
:= {m(β,Λ) : β ∈ B,Λ ∈ D∗} .
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It follows from Lemma S.2 and the preservation of the Donsker property under Lipschitz

continuous transformations thatM∗
is P -Donsker. Noting further that the class of functions

{eβ>Xij(u) : β ∈ B} is a VC class with VC-index V , we may use similar arguments to those

in Lemma 2 of Zeng et al. (2017) to find that the L2(P ) bracketing integral

N[]{ε,M
∗
, L2(P )} = O

{
exp

(
ε−2V/(V+2)

)}
× C/ε.

Letting

ϕ(δ) :=

∫ δ

0

√
1 + logN[]{ε,M

∗
, L2(P )}dε,

it then follows that ϕ(δ) 6 O(δ1/2).

Given that Λ̂ is consistent for Λ (Theorem 1), there exists some finite constant C such

that Λ̂s(τ) 6 C for s = 1, . . . , S and for large enough M. Thus m(β̂, Λ̂) belongs to M∗
.

From Theorem 3.4.4 of Van der Vaart and Wellner (1996), we then have that

P
{
m(β̂, Λ̂)−m(β0,Λ0)

}
6 −cH2

{
(β̂, Λ̂), (β0,Λ0)

}
,

where c is some positive constant and H
{

(β̂, Λ̂), (β0,Λ0)
}

is the Hellinger distance on the

class of independence composite likelihoods, which we note form a class of valid (albeit

misspecified) density functions for Oi:

H {(β,Λ), (β0,Λ0)} =

[∫ {
LC(β,Λ)1/2 − LC(β0,Λ0)1/2

}2
dµ

]1/2

.

The above results, along with the consistency of (β̂, Λ̂) from Theorem 1 and the observation

that (β̂, Λ̂) also maximizes PMm(β,Λ), imply that all conditions in Theorem 3.4.1 of Van

der Vaart and Wellner (1996) hold. Thus H
{

(β̂, Λ̂), (β0,Λ0)
}

= OP (r−1
M ) for rM satisfying

r2
Mϕ(r−1

M ) 6
√
M . In particular, we can choose rM = O(M1/3), so thatH

{
(β̂, Λ̂), (β0,Λ0)

}
=

OP (M−1/3).

The remainder of the proof follows using the arguments in Lemma 3 of Zeng et al. (2017).
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Web Appendix C. Additional Simulation Results

C.1 Details on Baseline Hazard Generation According to Harden and Kropko (2019)

To highlight both (i) the robustness of the composite EM procedure and profile composite

likelihood variance estimator to the shape of the stratum-specific baseline hazard functions

and (ii) the ability of the composite EM algorithm to capture arbitrarily complex forms

for these baseline functions, we generated λs(t), s = 1, . . . , S according to the random

spline method of Harden and Kropko (2019) for the scenario I simulations. Briefly, this

method generates flexible forms for the stratum-specific baseline survival functions, Ss(t) =

exp{−
∫ t

0
λs(v)µ(dv)}, by:

(1) partitioning the support [0,Ψ] of the time to event into (κ+1) non-overlapping intervals

based on κ randomly selected knot points, {tl : l = 1, . . . , κ}, with t0 = 0 and tκ+1 = Ψ;

(2) generating κ uniform random variables, {ul : l = 1 . . . , κ}, and setting y0 = 1, yκ+1 = 0,

and yl = u(κ−l+1) for l = 1, . . . , κ and u(l) the lth order statistic of u; and

(3) fitting a monotonic cubic spline to the points {(tl, yl) : l = 0, . . . , κ+ 1} to form Ss(t).

The baseline density fs(t) may then be found by taking the derivative of Ss(t), and the

baseline hazard function λs(t) by taking fs(t)/Ss(t). Under models (10)–(12) in the main

text, the resulting individual survival functions for subject j in cluster i with Zij = zs are

then

(10) S(t|Xij) = Ss(t)
exp(βXij)

(11) S(t|Xij) = exp

[
−
∫ t

0

λs(u) exp{(γ1 + γ2 log u)Xij}du
]

(12) S{t|Xij, Pij(t)} =


Ss(t)

exp(α1Xij) if t < υij

Ss(υij)
exp(α1Xij)−exp{α2+(α1+α3)Xij}Ss(t)

exp{α2+(α1+α3)Xij} if t > υij

for Pij(t) = I(t > υij). For the simulation studies in Section 4 of the main text, we generated

the stratum-specific baseline hazard functions using Ψ = 320 and κ = 8. To simulate times
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to event Tij under models (10)–(12)—each of which lacks a tractable closed-form expression

for both the individual survival function and its inverse—we applied the inverse probability

integral transform method to a piecewise-constant approximation to Sij(t), which we denote

here by S∗ij(t), and its generalized inverse, which we define as S∗−1
ij (ω) := inf{t : S∗ij(t) 6 ω}.

The number of piecewise components used in this approximation was on the order of 3×106.

C.2 Performance of Point and Interval Estimators Under Increasing M and n∗

Table S.1 presents additional simulation results under two different sets of asymptotics on

n =
∑M

i=1 ni. The first two sets of results in Table S.1, corresponding to scenario I with

(S = 4,M = 200, 20 6 ni 6 30) and scenario II with (S = 20,M = 20, 500 6 ni 6 700),

consider an increased M relative to the results in Table 1 of the main text; the third set of

results in Table S.1, corresponding to scenario II with (S = 15,M = 15, 800 6 ni 6 1000),

considers an increased n∗.

[Table 1 about here.]

C.3 Sensitivity of the Profile Composite Likelihood Variance Estimator to the Perturbation

Constant

Table S.2 summarizes the performance of the profile composite likelihood variance estimator

under numerical differentiation with hM = cn−1/2 for c ∈ {0.1, 1, 10}; results are presented

for scenario I with (S = 4,M = 100, 20 6 ni 6 30). Figure S.1 displays the profile composite

log-likelihood surface under model (11), in which there is a time-varying covariate effect, for

a single simulated dataset under (S = 4,M = 100, 20 6 ni 6 30) and τ = 0.5.

[Table 2 about here.]

[Figure 1 about here.]
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C.4 Baseline Hazard Estimation Under Infrequent and Covariate-Dependent Monitoring

Figures S.2 and S.3 illustrate the performance of the stratum-specific baseline survival

estimators under model (15) when M = 100 and S = 4 (Figure S.2) and when M = S = 15

(Figure S.3). Estimation results for models (13) and (14) are similar but not shown.

[Figure 2 about here.]

[Figure 3 about here.]

Web Appendix D. Sensitivity Analysis for the Botswana Combination

Prevention Project Results

Table S.3 evaluates the sensitivity of the marginal (matched-pair-unadjusted) analysis of the

Botswana Combination Prevention Project to the choice of perturbation direction hM when

conducting numerical differentiation for the profile composite likelihood variance estimator.

[Table 3 about here.]
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(a) Surface plot of the PCLL. (b) Contour plot of the PCLL.

(c) PCLL along γ2 = γ̂2. (d) PCLL along γ1 = γ̂1.

Figure S.1: Sample profile composite log-likelihood function (PCLL) for model (11) of the
main text, in which β(t) = γ1 + γ2 log t. The white lines in Figure S.1b denote the maximum
composite likelihood estimators for γ1 and γ2, which in this dataset were γ̂1 = 0.028 and
γ̂2 = −0.132. The maximum PCLL was -3590.926.
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Figure S.2: Comparison of 50 randomly selected estimated stratum-specific baseline survival
functions (in gray) with the true data-generating functions (in color) under model (15) with
M = 100 and S = 4.
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Table S.1: Finite sample performance of the maximum composite likelihood estimators and
profile composite likelihood variance estimators under hM = n−1/2.

Within-Cluster Independence Copula Dependence Model

Point Est. Bias Emp. SE Est. SE CP Point Est. Bias Emp. SE Est. SE CP

Scenario I: S = 4, M = 200, 20 6 ni 6 30

Model (10)
β = -0.30 -0.301 -0.001 0.041 0.042 95.1% -0.301 -0.001 0.076 0.077 95.0%

Model (11)
γ1 = -0.00 -0.037 -0.037 0.195 0.197 94.2% -0.029 -0.029 0.161 0.168 96.3%
γ2 = -0.15 -0.158 -0.008 0.045 0.045 93.8% -0.158 -0.008 0.040 0.040 94.7%

Model (12)
α1 = -0.30 -0.299 -0.001 0.043 0.043 94.9% -0.303 -0.003 0.079 0.080 95.6%
α2 = -0.05 -0.051 -0.001 0.057 0.055 94.2% -0.049 -0.001 0.073 0.072 94.5%
α3 = -0.20 -0.203 -0.003 0.076 0.074 94.5% -0.195 -0.005 0.098 0.098 95.4%

Scenario II: S = 20, M = 20, 500 6 ni 6 700

Model (10)
β = -0.30 -0.300 -0.000 0.021 0.021 94.0% -0.301 -0.001 0.042 0.039 92.3%

Model (11)
γ1 = -0.00 -0.024 -0.024 0.075 0.080 94.6% -0.031 -0.031 0.106 0.107 93.2%
γ2 = -0.15 -0.157 -0.007 0.019 0.022 95.7% -0.159 -0.009 0.028 0.028 93.4%

Model (12)
α1 = -0.30 -0.301 -0.001 0.026 0.024 92.3% -0.300 -0.000 0.043 0.041 92.4%
α2 = -0.05 -0.050 -0.000 0.039 0.037 93.2% -0.051 -0.001 0.041 0.039 91.8%
α3 = -0.20 -0.201 -0.001 0.052 0.049 92.4% -0.200 -0.000 0.056 0.054 93.7%

Scenario II: S = 15, M = 15, 800 6 ni 6 1000

Model (10)
β = -0.30 -0.301 -0.001 0.021 0.020 92.2% -0.302 -0.002 0.037 0.036 91.5%

Model (11)
γ1 =-0.00 -0.018 -0.018 0.072 0.075 95.0% -0.025 -0.025 0.098 0.099 93.4%
γ2 = -0.15 -0.155 -0.005 0.019 0.020 94.4% -0.156 -0.006 0.025 0.026 94.6%

Model (12)
α1 = -0.30 -0.302 -0.002 0.024 0.022 91.1% -0.303 -0.003 0.041 0.038 91.3%
α2 = -0.05 -0.050 -0.000 0.035 0.034 93.6% -0.051 -0.001 0.038 0.036 90.3%
α3 = -0.20 -0.201 -0.001 0.047 0.045 92.0% -0.204 -0.004 0.054 0.050 90.5%

Point Est., empirical average of the parameter estimator; Bias, empirical average of the bias; Emp. SE, empirical
standard error; Est. SE, empirical average of the standard error estimator; CP, empirical coverage probability of the

corresponding 95% Wald-type confidence interval. All results are summarized across 1000 simulation replicates.
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Table S.2: Comparison of the profile composite likelihood variance estimator under three
choices of perturbation constant for numerical differentiation, hM = cn−1/2. Results shown
for scenario I with M = 100 under both exchangeable (τ = 0) and hierarchical (τ = 0.5)
correlation structures.

c = 0.1 c = 1 c = 10

Point Est. Emp. SE Est. SE CP Est. SE CP Est. SE CP

Model (10)

β = -0.30
τ = 0.0 -0.303 0.061 0.063 95.5% 0.063 95.3% 0.063 95.7%
τ = 0.5 -0.305 0.112 0.107 93.4% 0.107 93.3% 0.106 93.2%

Model (11)

γ1 = -0.00
τ = 0.0 -0.034 0.153 0.165 94.4% 0.156 94.8% 0.379 100.0%
τ = 0.5 -0.027 0.285 0.321 93.5% 0.289 95.0% 46.543 100.0%

γ2 = -0.15
τ = 0.0 -0.158 0.040 0.042 94.8% 0.039 94.5% 0.105 100.0%
τ = 0.5 -0.156 0.063 0.072 94.3% 0.064 95.2% 11.534 100.0%

Model (12)

α1 = -0.30
τ = 0.0 -0.301 0.083 0.086 94.3% 0.082 94.1% 0.081 94.3%
τ = 0.5 -0.304 0.117 0.118 93.7% 0.116 93.7% 0.118 94.3%

α2 = -0.05
τ = 0.0 -0.049 0.136 0.151 94.3% 0.138 94.6% 0.131 93.0%
τ = 0.5 -0.049 0.098 0.102 95.5% 0.098 95.5% 0.098 95.6%

α3 = -0.20
τ = 0.0 -0.197 0.175 0.200 95.1% 0.179 95.1% 0.162 93.6%
τ = 0.5 -0.205 0.132 0.141 95.5% 0.136 95.7% 0.126 94.6%

Point Est., empirical average of the parameter estimator; Emp. SE, empirical standard error; Est. SE, empirical
average of the standard error estimator; CP, empirical coverage probability of the corresponding 95% Wald-type

confidence interval. All results are summarized across 1000 simulation replicates.
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