





and Poisson regression. A time-to-event survival analysis requires a format detailing
chronologically each possible transition per row, whether the transition was observed,
and the time to transition (Figure 3). Poisson regression requires transition-type spe-
cific total counts of occurrence and total time at risk (tar) for those counts, which is
straightforwardly borne of summing the observed (obs) and time-to-event (tte) vari-
ables of the properly constructed survival analysis format, respectively, by transition-

type (shift).

Figure 3: Sleep hypnograms of the same sleep trajectory as represented in 5-stage,
3-stage, and 2-stage sleep resolution with accompanying Poisson and survival analysis
data formats.

Figure 3 depicts three hypnogram resolutions for one subject’s 10-epoch portion
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of sleep, visualized with spaghetti plots. For populations of sleep hypnograms, visu-
alizing several hypnogram trajectories in a spaghetti plot is prone to over-plotting.
A lasagna plot, by contrast, is a heat map of a matrix where element .S;; is the state
occupied by the " subject at the j™ epoch (Swihart et al., 2010). Therefore, a
lasagna plot is a heatmap that displays clustered longitudinal data, with clusters in
the rows and time in the columns and eliminates the overlapping of trajectories that
plagues spaghetti plots. In addition, lasagna plots are capable of dynamic sorting.
Figure 4 displays three lasagna plots for each of three different state resolutions for
5598 subjects over 1218 epochs (10 hours, 9 minutes). The top panel for a given
resolution is unsorted with respect to subjects. The middle panel shows the same
lasagna plot where subjects are organized into the four SDB groups (in descending
order of severity) and within SDB group by total sleep time. The bottom panel is
a within-column within-SDB-group sorting of the lasagna plot in the middle panel,
which shows group-level temporal behavior. Note, as the legends of Figure 4 col-
lapse (from left to right) how much information is lost: Stage Slow-wave has well
defined peaks that alternate with REM across disease severity, and the prevalence of
each group being in Stage 1 in the first epoch of sleep onset is decidedly over 50%,

decreasing drastically and then stabilizing over the night.

2.2 Collapsing States and Information Mapping

The hypnogram is a 5-state stochastic process, comprising of Wake and 4 distinct
stages of sleep. However, a 2-state stochastic process can be rendered by collapsing
all the non-Wake stages into an “Asleep” state. With the 2-state rendering, there
are only two transition types to consider: Wake to Asleep (WA) and Asleep to Wake
(AW). The transitions can recur through the night and there are no competing risks

—1i.e., when in the Asleep stage, the only transition that can occur is the one to Wake.
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WAKE REM sSws WAKE REM NREM WAKE ASLEEP

Figure 4: Lasagna plots for 5-state, 3-state, and 2-state sleep. Each lasagna plot has
5598 rows (subjects) and 1218 columns (epochs). The top row of lasagna plots display
subjects in no particular order. The second row shows subjects grouped into SDB
severity group (absent to severe; top to bottom within the plot) and ranked by total
sleep time within severity group. The bottom row of lasagna plots are those of the
middle row sorted within columns within ggverity group, highlighting the group-level
temporal dynamics of Stage Slow-wave in dark purple.
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A less aggressive summary of the 5-state is the 3-state hypnogram, where Stage 1,
Stage 2, and Stage Slow-wave are condensed into Non-REM sleep (NREM) whereas
REM along with Wake is left as-is. The 3-state hypnogram has a maximum of 6
pairwise transition-types: NREM to REM (NR), NREM to Wake (NW), REM to
NREM (RN), REM to Wake (RW), Wake to NREM (WN), Wake to REM (WR).
Unlike the 2-state process, the 3-state process has competing risks. For example,
whilst in Wake, a sleeper is simultaneously at risk for WN and WR. With 5 states,
there are 20 different transition-types. The collapsing scheme of the states dictates
that NR of 3-state has its information mapped to the analogue set of {1R, 2R, SR}
in 5-state, and likewise NW has {1W, 2W, SW} RN has {R1, R2, RS}, RW has
{RW}, WN has {W1, W2, WS}, and WR has {WR}. The remaining transitions are
intra-NREM and have no analogue in 3-state: {S1, S2, 12, 1S, 21, 2S}.

Regardless of resolution, the key features of hypnogram fragmentation are repre-
sented in terms of all pairwise state transitions and their frequency, as well as the time
at risk for the observed and potentially observed transition-types for each observed
transition. These features of the hypnogram represent the stability of a sleep state:
fewer counts along with more time at risk for transition-types originating in the same
state indicate fewer exits of and longer durations in that state. Contrariwise, more

counts in less time at risk indicates less state stability.

2.3 Group definitions

The task is to model the outcome of a relative measure of sleep stage transitioning
as a function of group membership. In order to get transition-type specific group
comparisons, the interaction between design variables representing group membership
and transition-type are necessitated. For G' groups and H transition-types, a model

will produce (G — 1) x H estimates of interest. For each transition-type h, the G — 1
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group comparisons can be seen as a “dose-response” or “trend” pattern relating the
association of the underlying group defining characteristic and the stability of the

starting state with respect to transition-type h.

2.4 Statistical Analysis

The estimates of focus are relative transition-type specific transition rates among
the group-defined populations, which necessitate the inclusion of interactions of bi-
nary indicator variables for the transition-types and non-reference groups. In each
of the following two models discussed, main effects play a different role. In a multi-
state survival model stratified on transition-type, the interaction between group and
transition-type essentially becomes the group indicator in that stratum, rendering
the inclusion of the group main effect unnecessary, as well of course the main effect
for transition-type. The baseline hazard acts as the referent group. However, in the
log-linear analysis, the model is not stratified and thus the main effects of group
and transition-type are included to provide backing for the interaction terms. For
instance, if the main-effects were omitted in the log-linear analysis, the effect for the
design variable for g : h would be the transition rate for group ¢ of transition-type h
compared to all other transition-types {1,...,h —1,h+1,..., H} for the reference
group. That is, without stratification to restrict the comparison, the effect is not fully

transition-type specific.
2.4.1 Multi-state survival models

For a survival analysis yielding a transition-type specific log-hazard ay,(t) and effect
Bg:n, the Cox regression model is stratified on transition type h and regressed upon

the interaction term involving h:
an(t) = ano(t) + g : h,
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where g : h represents the interaction terms sans the main effects, as discussed in
Therneau and Grambsch (2000). Sleep viewed as a transitory multi-state system
requires a stratified, recurrent event, competing risks proportional hazards model.
Ultimately, the proportional hazards assumption is precariously situated by giving
each transition-type a hazard and there being potentially many transition-types. A
violation of this assumption can be tested. Such a test involves testing for the inclusion
of variables that are the interaction of log(t) x (g : h). If the test suggests the global

inclusion is significant, then inclusion is the remedy for the violation.
2.4.2 Log-linear GEE model

The mean of a Poisson process can be modeled log-linearly with a log-offset of the

total time at risk (tar),
log A" = g + h 4 g : h + offset{log(tary)}.

The quantity A" is the rate for group ¢ and type h and will yield relative rates (rr)
of the overall counts between groups for transition-type h.

Noting that each individual has the same number of rows and that each (or-
dered) row within individual corresponds to the same attribute (transition-type),
these log-linear models are well-suited for fitting with generalized estimating equa-
tions (GEEs). The method of GEE modeling is widely used, computationally fast,
and can potentially model correlation structure. The H x H correlation matrix con-
veys the correlation of the time-adjusted frequencies of a transition-type occurring.
Intuitively, negative correlations could be expected due to the competing risks na-
ture of transition-types sharing the same starting state; whereas positive correlation
could be anticipated for transition-types that share the same state as their ending and
starting state. Common structures (“exchangeable” or “AR-1") do not admit both

negative and positive correlations, and the unstructured specification is computation-
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ally difficult. The realization that correlation is a nuisance in the GEE framework
and that the analytic goals are point estimates and confidence intervals gives moti-
vation to initially take an independent structure. Consistent estimates are produced
regardless of correlation structure, and the possibility of bootstrapping subjects to
correct confidence intervals is explored. Further discussion on this approach is found

in section 5.

3 Pre-application considerations
3.1 Statistical challenges and solutions

The modeling task is to quantify transition-type-specific transition rates as a function
of the group defining condition. To anchor the task in the display of Figure 4, consider
the middle panel lasagna plot, which is organized into four SDB severity groups.
We wish to quantify all rates of one color changing to another for each group and
have inference for whether the rates differ between the groups. Prima facie, the
task of modeling population-level transition-rates as a function of group status seems
straightforward and well established, however there are nuances and subtleties that
warrant special consideration in this case study. While one may be tempted to proceed
by choosing a resolution, data format, and format-corresponding model — the science
of sleep, data size, and computational feasibility add some twists and turns to the

analysis path.

3.1.1 Hypnogram resolution and the science of sleep

Hypnogram resolution of the analytic dataset is not a convenience of choice. A higher
resolution reveals a finer structure of sleep. The associations of a finer level may not
persist to the coarser level, due to the combining of transition-types when states col-

lapse as well as the complete loss of information for transitions within the collapsed
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state. Figure 3 highlights some key observations: higher resolution hypnograms po-
tentially contain more information. Comparing the higher resolution 5-stage to the
lower resolution 3-stage hypnogram in Figure 3 demonstrates the correspondence of
transition-types in different resolutions. The states {1,2,S} are collapsed into {N},
and thus transition-types {1R, 2R, SR} are combined into {NR} (compare the first
three rows of the Poisson format at 5-stage to 3-stage resolution). Likewise, {1W,
2W, SW} are combined into {NW}, {R1, R2, RS} are combined into {RN}, and
{W1, W2, WS} are combined into {WN}. Exhaustively, {RW} and {WR} remain
unaffected, diametrically opposite of the intra-NREM 5-state transition-types {SI,
S2, 12, 1S, 21, 2S} which have no analogue in 3-state sleep. Rooting the concept in
the hypnograms of Figure 3, the intra-NREM information lost to the lower resolution
includes the time at risk and the occurence of the two {21} transitions and the {12}
transition.

Figure 4 demonstrates a similar loss of information at the population and group-
level when states are aggregated. The bottom panel lasagna plot displays group-level
temporal information, highlighting slow-wave sleep temporal dynamics for 5-state
resolution. The first two peaks (dark purple) are very distinct across SDB groups and
are completely lost at lower resolutions. The resolution-level stands to be impactful
on the associations being modeled by virtue of the combining of states and subsequent
loss of transition information. Thus, choosing an analytic resolution should not be
done a priori but rather as a result from comparing the associations of different

resolutions and determining how compatibly the underlying process is represented.
3.1.2 Data format and data size

Hypnogram resolution is a determining factor in data size and affects the two data

formats differentially. As put forth in the previous section, lowering the resolution
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is not an option for data reduction prior to an analysis as a full analysis of these
data encompasses the analyses of varying levels of resolution. The size of population
hypnogram data does not depend on the number of subjects alone, but grows as more
states and thus more transition-types are considered. The higher the resolution, the
larger the survival analysis dataset becomes per individual, involving greater numbers
of competing risks for each observed transition. Contrastingly, the Poisson format’s
size is robust to the number of observed transitions and stays fixed at the number of
transition-types.

Treating the data as repeated measures count data in the Poisson format, the
growth is straightforward because the number of rows per individual is the number
of transition-types considered. A data set of N subjects having a S-state hypnogram
will have N x H rows, where H = S(S — 1) transition-types. Considering the size
of the data set when the hypnogram data is modeled with a multistate survival
model is a little more complex, as it is a function for each individual of how many of
each transition-type was observed, C’Z-(h), and how many transitions-types were at-risk,

(S —1). Thus, the total number of rows in a multistate survival analysis would be

N H
(S=1 > ™.

For éﬁe hS?IHS, 6369 polysomnograms were processed into 5-state hypnograms.
The Poisson format dataset has 6369 x 20 = 127,380 rows and the survival for-
mat 3,075,248 rows, which brings the average observed number of transitions to
3,075,248/(6369 * (5 — 1)) ~ 121. Lowering the resolution by collapsing to a 3-
state hypnogram yields smaller datasets, 6369 x 6 = 38,214 and 839, 154 rows for

the Poisson and survival formats, respectively. Consequently, the average number of

transitions observed in 3-state sleep is 839, 154/(6369 * (3 — 1)) ~ 66.
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3.1.3 Computational feasibility and model choice

A method of analysis is proposed for each data format: Generalized Estimating Equa-
tions (GEE) for the Poisson format and a proportional hazards survival model for
the time-to-event format. Each are widely available, accessible and shovel-ready with
respect to the corresponding dataset. Fitting GEEs is much more computationally
feasible than multi-state survival models and give strikingly similar results. This ad-
vantage of GEEs is largely due to the more compact data size of the Poisson format,
robustness properties, and fewer modeling assumptions. Prudent software and hard-
ware choices are explored (in SAS and R) and can facilitate the fitting of both models

to the full data, rendering population-level associations.

4 Application to the SHHS data

A two-model analysis is conducted each on 3-state and 5-state resolution data. The
two models are competitors, in a sense: the stratified, recurrent event, competing
risks multi-state survival analysis stands to honor the sleep process better, but may be
more computationally intensive and/or fickle in terms of algorithm convergence. The
application will show GEE gives computationally faster yet similar results. The two
resolutions are competitors as well. If the 3-state analogues of the 5-state estimates
reflect direction, magnitude, and significance of results then consideration could be
given to using the 3-state resolution of sleep, as collapsing states did not obscure
finer-level effects. In addition to comparing the analogues, the 5-state resolution
transition-types with no 3-state analogue must also be analyzed for effects when
deciding to use exclusively a lower resolution.

The subjects are standardized for each model-resolution combination. In the Sleep

Heart Health Study, 6369 subjects had polysomnograms, and 5639 had polysomno-
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grams of high enough quality to be reliably processed into 5-state hypnograms. Of
the 5639, 5598 had complete demographic and covariate information (age, race, rdidp,
sex, and smoking status). For the 5-state resolution, all 20 possible transition-types
were formulated into a Poisson format dataset (111,960 rows) and a survival for-
mat (2,716,188 rows). For the 3-state resolution, all 6 possible transition-types were
formulated into a Poisson format (33,588 rows) and a survival format (728,966 rows).

Each model will be adjusted for the covariate information of age, sex, race and
smoking status as well as model the association between sleep structure and increasing
SDB severity. SDB typically is categorized into 4 bins of rdidp events/hr: [0,5), [5,15),
[15, 30), [30, c0), with [0,5) (SDB-absent) serving as the reference group.

For each transition-type, the three groups’ 95% confidence intervals and point
estimates of the relative rate ratios (RR) for the GEE models and Hazard Ratios
(HR) for the survival models can be clustered as three vertical lines, left-to-right
increasing in terms of SDB severity. Those clusters by transition-type can then be
organized in plots with other clusters to give view of the modeled relationship of SDB
on sleep itself. As given by the two models, these dose response clusters are visualized
in Figure 5, using an entering-exiting state arrangement for the 5-state resolution. An
entering-exiting state arrangement gathers all the transition-types involving one state.
For instance, the top left panel of Figure 5 displays the three group comparisons for
each of the 4 transition-types entering Wake and the 4 transition-types exiting Wake
in the same plot. Looking at the information from a state-centric point of view
helps give a sense for what SDB severity is doing to the sleep process. For instance,
in the middle plot displaying the entering-exiting transition-types for Stage 2, SDB
severity increases the rate of exiting Stage 2 to lighter stages of sleep (Wake and
Stage 1, increasing clusters in green) and concurrently decreases the exiting from

Stage 2 to REM and Stage Slow-wave (decreasing in green). A 3-state resolution
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would completely omit the relationship seen for intra-NREM transitions of type 21
and 2S. Given they visually show such a strong trend gives weight to analyzing the 5-
state as opposed to the 3-state. The two columns of plots look very similar, indicating
that using a GEE approach with independence working correlation will give similar
results to the multi-state survival approach.

To explore the connection between resolutions, analogue plots can be made. Fig-
ure 6 shows the 1 member set to 3 member set mappings for the 3-state and 5-state
models. In the top left panel, we see that for most severe SDB groups, there is a
discordance of significant findings in 5-state sleep (1R and SR are significantly higher
rates in severe SDB relative to SDB-free; 2R is significantly lower) and they “cancel”
out in 3-state sleep as seen by the NR insignificance across SDB severities. As for the
other plots, we see similar shapes between the resolutions, possibly indicating that

1W and 2W are drivers of NW; R1 of RN; and W1 and W2 of NW.

5 Modeling insights

To fit the survival analysis model, prudent software and hardware choices are sug-
gested. Regardless of OS platform, 64-bit SAS and R are recommended. To remedy
a violation of proportional hazards with log(¢) interactions requires R version 2.13 or
later of coxph() for its implementation of tt(). Running 64-bit SAS in Windows
utilizing a 3.40 GHz quad-core processor with 16 GB of RAM, the 5-state resolution
GEE with independent working correlation structure of the previous section took
13 seconds compared to 8.5 hours for the multistate model (13 hours for log(time)
interactions proportional hazards correction). Given the GEE gave similar results,
the GEE can be used quickly and repeatedly as an exploratory tool for an investiga-
tion, and when a final model is suspected then fit the corresponding survival model

or bootstrap subjects for corrected GEE intervals (bootstrapping 1000 times was on
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Figure 5: On the left, Relative Rates as a function of sleep disordered breathing. On
the right, Hazard Ratios. Each of the 5 plots in a column is made displaying the 8
transition-types involving the entering and exiting of a state (top to bottom: Wake,
Stage 1, Stage 2, Slow-wave, REM). Comparing plots within rows demonstrates how
similar the estimates are between the modeling approaches.
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Figure 6: Compare the estimated trends of 3-state resolution (in black) to the corre-
sponding 5-state analogues.

par computationally with fitting the survival model) (Sherman and le Cessie, 1997).
Modeling of the correlation can be attempted, but proves challenging. The unstruc-
tured working correlation structure has many parameters and the specifiable common
structures struggle to reflect the competing risks nature of the process. If estimating
the unstructured correlation specification is prohibitive, a sample correlation matrix
(or, an appropriately found nearest positive definite matrix to that data-based calcu-
lation) can be “user-specified”.

Matching has the benefit of reducing the data size thereby easing computational
burden, however matching changes the generalizability of the results. Data reduction
via fewer subjects is not a guaranteed gain in computational feasibility. The plenti-
tude of subjects in the full sample eases the problem of rare transition-types in this
transition-type specific analysis. Not all transition-types occur equally, and the dis-
crepancy is exacerbated at higher resolutions, which is where data reduction via fewer

subjects would be most helpful in terms of computational feasibility. For instance,
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transitioning from REM-Slow-wave (RS) is so rare that only 80 subjects experienced
at least one and no one experienced more than 6 in their sleep (distribution: 0-6269,
1-66, 2-10, 3-2, 4-1, 5-0, 6-1). From 5-state to lower resolution 3-state sleep, {RS}
is combined with more common transitions {R1, R2} to render {RN}, which has
only 671 individuals experiencing 0. In addition, matching for groups of more than
two levels is involved, and often diagnostic groupings are of more than two-levels. If
matching is desired in a two-group situation, one can use propensity score methods
(Ho et al., 2011).

The survival model parameterization requires no linear combinations, however,
PROC PHREG requires that interaction variables be manually coded. The log-linear
GEE predictor requires linear combinations of the group main effect and interaction
terms (see web appendix). Handling multiple groups in the group-defining condition
and several transition-types for when comparing resolutions takes organizational care.
We advocate keeping rows of different resolutions analogous to one another for ease
of comparison among the resolutions as well as making entering-exiting state plots
for learning the “story” of the data analysis.

For situations that could be of interest to model counts without the temporal
information as a function of group status, a third model could be fitted. The mean

of a Poisson process can be modeled without the log-offset term:
log A" =g+ h+g:h,

can easily be considered and gives only relative count information exclusive of any

temporal information.
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6 Discussion

The equivalence between a log-linear GLMM with log(time at risk) and multistate
survival modeling assuming exponential survival times and piecewise constant hazards
is well known. Thus, middle ground exists between the GEE and survival models put
forth, but implementation is not as straightforward (Swihart et al., 2012). The im-
plementation is computationally more feasible than the proportional hazards model,
but requires extensive data manipulation and must be manually coded in WinBUGS.

The methods put forth stand to aid the investigation of sleep itself with sleep-
related and non-sleep-related health outcomes. In the application we analyzed SDB
predicting changes in sleep stage structure. Future work would be to continue down
hypothesized causal pathways and connect the transition-type-specific count, time at
risk, and rate features of sleep and predict a non-sleep related outcome, say, heart
rate variability. Another direction of research would be to account for the longitu-
dinal aspects of SHHS, as the sleep-EEG feature extraction work has (Crainiceanu
et al., 2009). Doing so may ultimately provide better diagnostic tools and further our

understanding of how sleep interacts with our health.
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