
University of California, Berkeley
U.C. Berkeley Division of Biostatistics Working Paper Series

Year  Paper 

Targeted Maximum Likelihood Estimation: A
Gentle Introduction

Susan Gruber∗ Mark J. van der Laan†

∗UC Berkeley, sgruber65@yahoo.com
†University of California - Berkeley, laan@berkeley.edu

This working paper is hosted by The Berkeley Electronic Press (bepress) and may not be commer-
cially reproduced without the permission of the copyright holder.

http://biostats.bepress.com/ucbbiostat/paper252

Copyright c©2009 by the authors.



Targeted Maximum Likelihood Estimation: A
Gentle Introduction

Susan Gruber and Mark J. van der Laan

Abstract

This paper provides a concise introduction to targeted maximum likelihood es-
timation (TMLE) of causal effect parameters. The interested analyst should gain
sufficient understanding of TMLE from this introductory tutorial to be able to ap-
ply the method in practice. A program written in R is provided. This program
implements a basic version of TMLE that can be used to estimate the effect of a
binary point treatment on a continuous or binary outcome.



Targeted Maximum Likelihood Estimation:
A Gentle Introduction

Susan Gruber and Mark J. van der Laan
Division of Biostatistics, University of California, Berkeley

sgruber@berkeley.edu, laan@berkeley.edu

Abstract

This paper provides a concise introduction to targeted maximum likeli-
hood estimation (TMLE) of causal effect parameters. The interested analyst
should gain sufficient understanding of TMLE from this introductory tutorial
to be able to apply the method in practice. A program written in R is pro-
vided. This program implements a basic version of TMLE that can be used
to estimate the effect of a binary point treatment on a continuous or binary
outcome.

Hosted by The Berkeley Electronic Press



1 Causal Inference
The counterfactual framework described in Rubin (1974), provides a basis for defin-
ing causal effects, such as the difference in mean outcomes between treatment and
control groups, relative risk, etc. These causal parameter definitions refer to a full,
unobserved, counterfactual dataset containing outcomes for each subject for all pos-
sible treatment assignments. In practice the data we measure only contains an out-
come value corresponding to the treatment actually assigned. However, the remain-
ing, unobserved outcome(s), can be estimated from observed data to ”fill in” the
missing, unobserved values, providing that two assumptions, described next, hold.
When they do, subsequent parameter estimation from the estimated full dataset is
straightforward.

The first assumption, coarsening at random (CAR) , implies that conditional
on measured covariates, treatment assignment is independent of the outcome. The
second assumption, the experimental treatment assignment (ETA) assumption, re-
quires that the conditional probability of receiving treatment is bounded away from
0 and 1. In other words, observations within strata defined by W have a probability
greater than 0 of receiving treatment at all possible levels of the treatment assign-
ment, ∀a ∈ A, P (A = a|W ) > 0. We use the term ”theoretical ETA violation” to
describe the situation when this assumption does not hold. A ”practical ETA viola-
tion” occurs when ,∃a ∈ A, P (A = a|W ) < ε, for some small ε, typically ranging
between (0.1 and 0.01), depending on the number of observations.

In the case of a theoretical ETA violation the causal parameter of interest is not
identifiable without additional model assumptions due to a lack of support in the
data. When there is a practical ETA violation the parameter of interest is borderline
identifiable. Traditional regression techniques are said to “borrow information” to
estimate the parameter of interest, but again, this relies on the untestable assumption
that the specified model is correct. On the occasions when this modeling assump-
tion is violated, the estimate is biased and the corresponding variance estimates are
overly optimistic. It is well-accepted by statisticians that the model is rarely, if
ever, correct. Freedman (2005) provides an interesting overview of this topic. A
more realistic, non-model-based, causal effect estimate of a borderline-identifiable
parameter is likely to have a much larger variance, reflecting the true level of un-
certainty in the data.

2 Causal Effect Estimation
We restrict the discussion to estimating the marginal additive effect of a binary
point treatment, A, on outcome Y . Given a full (counterfactual) dataset consisting

http://biostats.bepress.com/ucbbiostat/paper252



of n i.i.d. copies of Ofull = (W,Y (1), Y (0)), where Yi(1) corresponds to the
outcome observed when subject i is assigned to the treatment group (Ai = 1) and
Yi(0) corresponds to the outcome observed when subject i is assigned to the control
group (Ai = 0), we can define our parameter of interest as ψ0 = E(Y (1)− Y (0)),
the marginal additive treatment effect.

Given observed data, Oobs = (W,A, Y ), we estimate ψ0 as:

ψ̂ = ψn = ÊW (Ê(Y |A = 1,W )− Ê(Y |A = 0,W )).

If the outcome or treatment assignment is missing for some observations, the
data structure can be expanded to Oobs = (W,A,∆,∆Y ), where ∆ = 1 when Y is
observed, 0 otherwise. In this setting the definition of ψ0 remains unchanged, but
the parameter is estimated as:

ÊW (Ê(Y |A = 1,W,∆ = 1)− Ê(Y |A = 0,W,∆ = 1)),

where the outer expectation is over all observations.
Common non-parametric or semi-parametric estimators for this problem in-

clude the G-computation estimator (Robins, 1986), the inverse-probability-of-treat-
ment (IPTW) estimator (Hernan et al., 2000; Robins, 2000b), the double robust
IPTW estimator (Robins and Rotnitzky, 2001; Robins et al., 2000; Robins, 2000a),
and targeted maximum likelihood estimation (TMLE) (van der Laan and Rubin,
2006; van der Laan and Gruber, 2009), also doubly-robust. The next section pro-
vides an overview of targeted maximum likelihood estimation. The final section
describes companion TMLE software for estimating this parameter, written for the
R statistical programming environment (R Development Core Team, 2009). Source
code is provided in the appendix, along with data analysis examples.

3 Targeted Maximum Likelihood Estimation
Maximum likelihood estimation fits a model to data, minimizing a global measure,
such as mean squared error (MSE). When we are interested in one particular param-
eter of the data distribution and consider the remaining parameters to be nuisance
parameters, we would prefer an estimate that has smaller bias and variance for the
targeted parameter, at the expense of increased bias and/or variance in the estima-
tion of nuisance parameters. Targeted maximum likelihood estimation targets the
MLE estimate of the parameter of interest in a way that reduces bias. This bias
reduction is sometimes accompanied by an increase in the variance of the estimate,
but the procedure often reduces variance as well in finite samples. Asymptotically,
TMLE is maximally efficient when the model and nuisance parameters are correctly
specified.

Hosted by The Berkeley Electronic Press



An orthogonal factorization of the likelihood of the data provides the basis for
TMLE estimation.

L(O) = P (Y | A,W )P (A | W )P (W ).

We define:

Q(Y,A,W ) ≡ E(Y | A,W ),

g(A,W ) ≡ P (A | W ),

whereQ(Y,A,W ) is estimable from the data, g(A,W ) is a nuisance parameter that
may further factorize into treatment, missingness, and censoring mechanisms, and
the empirical distribution ofW is the MLE of P (W ). For some applications certain
factors of g may be known, (e.g., treatment assignment in RCT data), but estimation
from the data is common, and can lead to increased efficiency in some cases even
when g is known (Moore and van der Laan, 2007). The TMLE estimator is given
by:

ψTMLE
n =

1

n

n∑
i=1

Q∗
n(1,Wi)−Q∗

n(0,Wi).

Though this parameter is estimated from the Q portion of the likelihood alone,
obtaining Q∗

n(A,W ), a targeted estimate of the density, involves estimation of nui-
sance parameter g(A,W ) as well.

Super Learner (van der Laan et al., 2007) provides a machine learning ap-
proach to data-adaptive estimation of Q0

n, an initial estimate of Q. The Dele-
tion/Substitution/Addition (DSA) algorithm described in (Sinisi and van der Laan,
2004; Molinaro and van der Laan, 2004) is a less aggressive data-adaptive approach
that searches over a large space of polynomial generalized linear models. Alter-
natively, given a specified parametric model, Q0

n can be estimated using standard
regression software.This initial estimate is fluctuated in a manner designed to create
the largest change in the targeted parameter of the distribution,

Q1
n = Q0

n + εh(A,W ),

where h(A,W ), a function of the nuisance parameter, depends on the influence
curve of the parameter of interest.

The MLE for ε is obtained by regressing Y on h(A,W ), with offset Q0
n(A,W ).

Note that the magnitude of ε determines the degree of perturbation of the initial es-
timate, and is a direct function of the degree of residual confounding. This targeting
step maximizes the change in the parameter of interest, but only to the extent that
the estimate is confounded along this dimension. It is important to avoid overfitting
Q0

n, as this minimizes the signal in the residuals needed for bias reduction.

http://biostats.bepress.com/ucbbiostat/paper252



3.1 Inference
TMLE estimators are asymptotically normally distributed with mean µ = ψ0 and
variance σ2/n, where σ2 is the variance of the influence curve for Ψ(Q). For the
parameter of interest specified above, σ2 is estimated from the data as:

σ̂2 =
1

n

n∑
i=1

ÎC
2
(Oi),

ÎC(Q∗
n, g,Ψ(Q∗

n)) = h(A,W )(Y −Q∗
n(A,W ))

+Q∗
n(1,W )−Q∗

n(0,W )− ψn(Q∗
n),

h =
∆

P (∆ = 1 | A,W )

(
I(A = 1)

g(1,W )
− I(A = 0)

g(0,W )

)
Ninety-five percent confidence intervals, calculated as ψn(Q∗

n) ± 1.96σ̂/
√
n,

are theoretically well-grounded, and have been shown to provide good coverage in
practice across a wide variety of simulated datasets.

A test statistic can be used to test a null hypothesis of the form H0 : ψ0 = 0:

T =
ψn√
σ̂2/n

3.2 Collaborative targeted maximum likelihood estimation
Theoretical findings outlined in van der Laan and Gruber (2009) indicate that it is
not always necessary to adjust for the full g0 in order to obtain unbiased, efficient
results. The double robustness property of TMLE estimators guarantees consistent
estimation if at least one of Q0 or g0 is estimated consistently. Therefore, when
Q0

n = Q0, adjusting for g0 is unnecessary. Similarly, when the initial fit for Q
contains no information, (Q0−Q0

n = Q0), consistent estimation of g0 is necessary.
When Q0

n falls somewhere in the middle of these two extremes, adjusting for an
essential subset of g0 allows maximal bias reduction, since the only remaining bias
is the residual confounding inQ0−Q0

n. CTMLE builds candidate TMLE estimators
indexed by (Q0

n, gn,k(Q0
n)), and selects among using the penalized cross-validated

likelihood.
For each stage one estimator, stage two constructs increasingly non-parametric

nuisance parameter estimators, gn,1, . . . , gn,k, leading to construction of k updated
estimates, Q1

n,1, . . . , Q
1
n,k, and a corresponding series of candidate TMLE estimates

(ψn,1(Q
1
n,1), . . . , ψn,k(Q1

n,k)).

Hosted by The Berkeley Electronic Press



3.2.1 Construction of estimators {gn,1, ...gn,k}

The nature of the candidate estimators for g varies depending on the goodness of
fit of the stage one estimate of Q0

n. When Q0
n poorly estimates Q0, initial estimates

of g closely approximate g0. When Q0
n is a good fit for Q0, the series of candidate

estimators of g grows slowly towards estimation of the full g0. The collaborative
nature of the estimation of g is the key difference between standard TMLE and
CTMLE.

Though it is a more complex and time-consuming analysis, CTMLE provides
two practical advantages over TMLE. First, collaborative, data-adaptive estimation
of g leads to reduced variance in the estimate whenever the machine learning pro-
cedure determines that adjustment for the full g0 is unnecessary.

The second advantage occurs in datasets for which the ETA assumption is vi-
olated. When there are ETA violations the standard TMLE estimator described
above, and the estimated variance, blow up, signaling the lack of identifiability.
The CTMLE procedure attempts to remedy the situation by choosing not to adjust
for covariates leading to ETA violations. Whether these covariates confound the
relationship between treatment and outcome is not knowable from the data. In any
case, the CTMLE algorithm will not select a model for g that contains unnecessary
covariates, nor will it select a covariate that causes the variance to blow up. This
behavior suggests that it is important to understand the reason behind a covariate’s
exclusion from the model for g. Interpretability plots show the effect on the esti-
mate and the variance of including these covariates in the model. When there is
little change in the estimate, we can conclude that the excluded covariate does not
bias the estimate. When there is a large change in the estimate and or the variance,
we can conclude that there is an ETA violation, but cannot determine from the data
the extent of the bias, or even whether the omitted covariate is a true confounder.

4 Discussion
TMLE is a general methodology that can be applied to estimation of many types
of causal effect parameters, including but not limited to those involving point treat-
ment effects, survival analysis, longitudinal data analysis, and genomics data. This
very generality, and the flexibility allowed for obtaining estimates of the Q and g
portions of the likelihood, can perhaps make it difficult for a researcher to under-
stand exactly how to begin analyzing data using TMLE. We endeavor to include
just enough information in this paper to allow an interested analyst to begin. To
facilitate the process, we developed an R package that defines an implementation of
TMLE that can be used to estimate the marginal effect of a binary point treatment on

http://biostats.bepress.com/ucbbiostat/paper252



a continuous or binary outcome, even in the presence of missing data. Source code
for the relevant functions is provided in the Appendix. We hope it, too, provides a
gentle introduction to the application of targeted maximum likelihood estimation to
the estimation of causal efffects.

References
D.A. Freedman. Linear statistical models for causation: A critical review. Wiley

Encyclopedia of Statistics in Behavioral Science, 2005.

M. A. Hernan, B. Brumback, and J. M. Robins. Marginal structural models to
estimate the causal effect of zidovudine on the survival of HIV-positive men.
Epidemiology, 11(5):561–570, 2000.

A. Molinaro and M.J. van der Laan. Deletion/substitution/addition algorithm for
partitioning the covariate space in prediction. Technical report, Division of Bio-
statistics, University of California, Berkeley, 2004.

K.L. Moore and M.J. van der Laan. Covariate adjustment in randomized trials with
binary outcomes. Technical report 215, Division of Biostatistics, University of
California, Berkeley, April 2007.

R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2009. URL
http://www.R-project.org. ISBN 3-900051-07-0.

J. M. Robins and A. Rotnitzky. Comment on the Bickel and Kwon article, “In-
ference for semiparametric models: Some questions and an answer”. Statistica
Sinica, 11(4):920–936, 2001.

J. M. Robins, A. Rotnitzky, and M.J. van der Laan. Comment on “On Profile Like-
lihood” by S.A. Murphy and A.W. van der Vaart. Journal of the American Sta-
tistical Association – Theory and Methods, 450:431–435, 2000.

J.M. Robins. Robust estimation in sequentially ignorable missing data and causal
inference models. In Proceedings of the American Statistical Association, 2000a.

J.M. Robins. A new approach to causal inference in mortality studies with sustained
exposure periods - application to control of the healthy worker survivor effect.
Mathematical Modelling, 7:1393–1512, 1986.

Hosted by The Berkeley Electronic Press



J.M. Robins. Marginal structural models versus structural nested models as tools
for causal inference. In Statistical models in epidemiology, the environment,
and clinical trials (Minneapolis, MN, 1997), pages 95–133. Springer, New York,
2000b.

D.B. Rubin. Estimating causal effects of treatments in randomized and nonrandom-
ized studies. J. Educ Psychol, 64:688–701, 1974.

S. Sinisi and M.J. van der Laan. The deletion/substitution/addition algorithm in
loss function based estimation: Applications in genomics. Journal of Statistical
Methods in Molecular Biology, 3(1), 2004.

M.J. van der Laan and S. Gruber. Collaborative double robust penalized targeted
maximum likelihood estimation. The International Journal of Biostatistics, 2009.

M.J. van der Laan and D. Rubin. Targeted maximum likelihood learning. The
International Journal of Biostatistics, 2(1), 2006.

M.J. van der Laan, E. Polley, and A. Hubbard. Super learner. Statistical Applica-
tions in Genetics and Molecular Biology, 6(25), 2007. ISSN 1.

Appendices
A software package, tmleLite, is available for academic use at

http://www.stat.berkeley.edu/˜laan/Software/. The source code,
written for the R statistical environment, is provided in Appendix A. The program
can be used to estimate point treatment effects by calling the function tmle with the
correct arguments.

Examples illustrating several options for calling the function are provided in
Appendix B. The simplest approach is demonstrated in Appendix B, example 1.
The tmle function is called with arguments, Y, A, W, where Y and A are vectors
containing the outcome and treatment assignment, respectively. W is a matrix or
dataframe where each column corresponds to a potential confounder. The tmle
function will use the Deletion-Substitution-Addition (DSA) algorithm to estimate
Q, gA, the treatment mechanism, and gM , the missingness mechanism. This op-
tion requires installation of the DSA package, also available from http://www.
stat.berkeley.edu/˜laan/Software/. If the DSA package is not in-
stalled, Q is estimated with a main terms regression, using glm.

Alternatively, the user can provide working models or numerical values for es-
timation of any subset of (Q, gA, gM), and the program will estimate any that are
not user-supplied, see examples 3 and 4. A complete list of arguments is shown

http://biostats.bepress.com/ucbbiostat/paper252



in Table 1. The function returns an object of class tmle, which can be viewed by
calling the summary function.

Table 1: Arguments to function tmle. Defaults for optional arguments are listed in
parentheses. (*) indicates required argument.

Argument Description

Y* Outcome variable, continuous or binary. Missing values allowed.

A* Binary treatment indicator, 1 - treatment, 0 - control. Missing values allowed.

W* Baseline covariate,. numerical vector, matrix, or dataframe.

Delta
(1 for all obs)

Indicator of missingness for (Y,A), 1 - observed, 0 - missing

id
(1 to n)

identify repeated measures

Q
(DSA estimation)

E(Y |A, W ), specified in one of three ways:
1. NULL - defaults to DSA estimation of E(Y |A = a, W, ∆)
2. matrix of values containing three columns:
(E(Y |A = a, W, ∆), E(Y |A = 1, W, ∆), E(Y |A = 0, W, ∆)
3. formula for estimation of E(Y |A, W, ∆), to use with glm

g A
(DSA estimation)

P (A = 1|W ), treatment mechanism specified in one of three ways:
1. NULL - defaults to DSA estimation of P (A = 1|W )
2. vector of values P (A = 1|W )
3. formula for estimation of P (A = 1, W ), to use with glm

g M
(DSA estimation)

P (∆ = 1|W ), missingness mechanism for (A, Y ) specified in one of three ways:
1. NULL - defaults to DSA estimation of P (∆ = 1|W )
2. vector of values P (∆ = 1|W )
3. formula for estimation of P (∆ = 1, W ), to use with glm

wts
(1 for all obs)

weights for observations

DSAargs a list containing settings for DSA estimation. Defaults:
DSAargs$formula = Y ∼ A, DSAargs$maxsumofpow = 2,
DSAargs$maxorderint = 2, DSAargs$vfold = 5, DSAargs$family = gaussian
DSAargs$maxsize=min(2*ncol(W),15) (model size capped at 15),
DSAargs$nsplits=1, DSAargs$Dmove=FALSE, DSAargs$Smove=FALSE

Hosted by The Berkeley Electronic Press



Appendix A: R implementation of TMLE

The tmleLite software package can be downloaded for academic use from
http://www.stat.berkeley.edu/˜laan/Software.

#-------------.verify_args------------------
.verify_args <- function(Y,A,W,Delta){

ok1 <- length(Y) == length(A) & length(A) == nrow(W)
ok2 <- all(A[!is.na(A)] %in% 0:1)
if (!ok1) {warning("’Y’, ’A’, ’W’ must contain the same number of observations")}
if (!ok2) {warning("’A’ must be binary (0,1)")}
return(ok1&ok2)

}

#-----------.set_DSAargs----------------
.set_DSAargs <- function(DSAargs, wts){

if(is.null(DSAargs$maxsumofpow)){DSAargs$maxsumofpow <- 2}
if(is.null(DSAargs$maxorderint)){DSAargs$maxorderint <- 2}
if(is.null(DSAargs$maxsize)) {DSAargs$maxsize <- 15} # arbitrary limit
if(is.null(DSAargs$Dmove)) {DSAargs$Dmove <- FALSE}
if(is.null(DSAargs$Smove)) {DSAargs$Smove <- FALSE}
if(is.null(DSAargs$vfold)) {DSAargs$vfold <- 5}
if(is.null(DSAargs$formula)){DSAargs$formula <- Y˜A}
if(is.null(DSAargs$family)){DSAargs$family <- "gaussian"}
if(is.null(DSAargs$wts)) {DSAargs$wts <- matrix(data=rep(wts, DSAargs$vfold+1),

byrow=TRUE, nrow=DSAargs$vfold+1)}
if(is.null(DSAargs$nsplits)) {DSAargs$nsplits <- 1}

if(is.null(DSAargs$silent)) {DSAargs$silent <- -1}
return(DSAargs)

}

#-----------function .logit---------
# convert probability to .logit
# truncate probability passed in
#-------------------------------
.logit <- function(x){

x[x>1] <-1
x[x<0] <-0
return(-log(1/x - 1))

}

http://biostats.bepress.com/ucbbiostat/paper252



#-----------estimate_Q----------------
# figure out if Q is one of three things:
# 1. a matrix of values, QAW, Q1W, Q0W
# 2. a model to use glm on
# 3. null - estimate with DSA if available, otherwise main terms with glm
# returns matrix of linear predictors for Q(A,W), Q(1,W), Q(0,W)
#----------------------------------------
estimate_Q <- function (Q, DSAargs, Y,A,W, Delta, family, wts, id) {

m <- NULL
if(is.matrix(Q)){

if (family == "binomial") {Q <- .logit(Q)}
coef <- NA

} else {
if (is.null(Q)){

if(require(DSA)){
DSAargs <- .set_DSAargs(DSAargs, wts)
m <- DSA(formula=DSAargs$formula, data=data.frame(Y,A,W)[Delta==1,],

weights=DSAargs$wts[,Delta==1], id=id[Delta==1],
maxsumofpow=DSAargs$maxsumofpow, maxorderint=DSAargs$maxorderint,
maxsize=DSAargs$maxsize, Dmoves=DSAargs$Dmove, Smove=DSAargs$Smove,
family=family, candidate.rank=DSAargs$candidate.rank,
rank.cutoffs = DSAargs$rank.cutoffs, usersplits=DSAargs$usersplits,
userseed=DSAargs$userseed, vfold=DSAargs$vfold,
nsplits=DSAargs$nsplits, silent=DSAargs$silent )

} else {
warning("DSA not found, running main terms regression for ’Q’ using glm")
form <- paste("Y˜A", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family=family, data=data.frame(Y,A,W, wts, Delta),

weights=wts, na.action=na.exclude, subset=Delta==1)
}

} else {
form <- try(as.formula(Q))
if(class(form)== "formula") {

m <- glm(form, family=family, data=data.frame(Y,A,W, wts, Delta),
weights=wts, na.action=na.exclude, subset=Delta==1)

} else {
warning("invalid formula supplied, running main terms

regression for ’Q’ using glm")
form <- paste("Y˜A", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family=family, data=data.frame(Y,A,W, wts, Delta),

weights=wts, na.action=na.exclude, subset=Delta==1)
}

}
QAW <- predict(m, newdata=data.frame(Y,A,W))
Q1W <- predict(m, newdata=data.frame(Y,A=1,W))
Q0W <- predict(m, newdata=data.frame(Y,A=0,W))
Q <- cbind(QAW, Q1W, Q0W)
coef <- coef(m)

}
return(list(Q=Q, coef=coef, type=class(m)[1]))

}

Hosted by The Berkeley Electronic Press



#-----------estimate_g----------------
# Estimate any factor of g
#----------------------------------------
estimate_g <- function (g, DSAargs,A,W, Delta, wts, id) {

m <- NULL
if (!is.numeric(g)){

if (all(A==A[1])){
g1W <- 1
coef<- NA

} else {
if (is.null(g)){

if(require(DSA)){
DSAargs <- .set_DSAargs(DSAargs, wts)
m <- DSA(formula=DSAargs$formula, data=data.frame(A,W)[Delta==1,],

weights=DSAargs$wts[,Delta==1], id=id[Delta==1],
maxsumofpow=DSAargs$maxsumofpow, maxorderint=DSAargs$maxorderint,
maxsize=DSAargs$maxsize, Dmoves=DSAargs$Dmove, Smove=DSAargs$Smove,
family="binomial", candidate.rank=DSAargs$candidate.rank,
rank.cutoffs = DSAargs$rank.cutoffs, usersplits=DSAargs$usersplits,
userseed=DSAargs$userseed, vfold=DSAargs$vfold, nsplits=DSAargs$nsplits,
silent=DSAargs$silent )

} else {
warning("DSA not found, running main terms regression for ’g’ using glm")
form <- paste("A˜1", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family="binomial", data=data.frame(A,W, wts, Delta),

weights=wts, na.action=na.exclude, subset=Delta==1)
}

} else {
form <- try(as.formula(g))
if(class(form)== "formula") {

form <- update.formula(form, A˜.)
m <- try(glm(form, family="binomial", data=data.frame(A,W, wts, Delta),

weights=wts, na.action=na.exclude, subset=Delta==1))
if (class(m)[1]=="try-error"){

warning("invalid formula supplied, running main terms regression for ’g’ using glm")
form <- paste("A˜1", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family="binomial", data=data.frame(A,W, wts, Delta),

weights=wts,na.action=na.exclude, subset=Delta==1)
}

} else {
form <- paste("A˜1", paste(colnames(W), collapse = "+"), sep="+")
m <- glm(form, family="binomial", data=data.frame(A,W, wts, Delta),

weights=wts, na.action=na.exclude, subset=Delta==1)
}

}
g1W <- predict(m, newdata=data.frame(A,W,wts), type="response")
coef <- m$coef

}
} else {

g1W <- g
coef <- NA

}
return(list(g1W=g1W, coef=coef, type=class(m)[1]))

}

http://biostats.bepress.com/ucbbiostat/paper252



#-------------------------------tmle----------------------------------------
# estimate marginal treatment effect for binary point treatment
# accounting for missing outcomes.
# arguments:
# Y - outcome
# A - binary treatment indicator, 1-treatment, 0 - control
# W - vector, matrix or dataframe containing baseline covariates
# Delta - indicator of missing outcome or treatment assignment. 1 - observed, 0 - missing
# id - id identifying repeated measures
# Q - E(Y|A,W), specified in one of three ways:
# 1. NULL - defaults to DSA estimation of E(Y|A=a, W), with A forced into the model
# 2. matrix of values containing three columns. 1: E(Y|A=a,W), 2: E(Y|A=1,W), 3: E(Y|A=0,W)
# 3. formula for estimation of E(Y|A, W), suitable for call to glm
# g_A - binary treatment mechanism, specified in one of three ways:
# 1. NULL - defaults to DSA estimation of P(A=1|W)
# 2. vector of values P(A=1|W)
# 3. formula for estimation of P(A=1,W), suitable for call to glm
# g_M - missingness mechanism, specified in one of three ways:
# 1. NULL - defaults to DSA estimation of P(Delta=1|W)
# 2. vector of values P(Delta=1|W)
# 3. formula for estimation of P(Delta=1,W), suitable for call to glm
# wts - optional weights on observations
# DSAargs - optional settings for DSA estimation
# defaults: maxsumofpow = 2, maxorderint = 2, maxsize=min(2*ncol(W),15)(model size capped at 15),
# vfold = 5, nsplits=1, Dmove=FALSE, Smove=FALSE
# family - family specification for regression model for Y, defaults to gaussian
# Returns
# psi, treatment effect estimate,
# pvalue, 2-sided p-value
# var - estimated variance of parameter estimate,
# epsilon - coefficient used in targeting step
# coefficients and predicted values for Q_nˆ0(A,W), g_A(1,W), g_M(1,A,W)
#-------------------------------------------------------------------------------

tmle <- function(Y,A,W,Delta=rep(1,length(Y)), id=1:length(Y), Q=NULL, g_A=NULL, g_M=NULL,
wts=rep(1, length(Y)), DSAargs=NULL, family="gaussian", epsilon=NULL,...) {

psi.tmle <- varIC <- CI <- pvalue <- NA
W <- as.matrix(W)
if(.verify_args(Y,A,W,Delta)){

Q <- estimate_Q(Q, DSAargs, Y,A,W, Delta, family, wts, id)
DSAargs$formula <- A˜1
g_A <- estimate_g(g_A, DSAargs, A, W, Delta, wts, id)
g_M <- estimate_g(g_M, DSAargs, A=Delta, W, Delta=rep(1,nrow(W)), wts, id)
g1W <- g_A$g1W
h <- h1W <- 1/g1W * Delta/g_M$g1W
h0W <- -1/(1-g1W) * Delta/g_M$g1W
h[A==0] <- h0W[A==0]
if(is.null(epsilon)) {

epsilon <- coef(glm(Y˜-1 + offset(Q$Q[,1]) + h, family=family,
weights=wts, subset=Delta==1))

}
QAW <- Q$Q[,1] + epsilon*h
Q1W <- Q$Q[,2] + epsilon*h1W
Q0W <- Q$Q[,3] + epsilon*h0W
if (identical(family, binomial) | identical(family,"binomial")) {

QAW <- plogis(QAW)
Q1W <- plogis(Q1W)
Q0W <- plogis(Q0W)

}
psi.tmle <- mean(Q1W) - mean(Q0W)

Hosted by The Berkeley Electronic Press



Y[is.na(Y)] <- QAW[is.na(Y)] # keeps arithmetic from failing
IC <- (Y-QAW)*h*Delta + Q1W - Q0W - psi.tmle
IC <- as.vector(by(IC, id, mean))
IC[is.nan(IC)|is.infinite(IC)] <- Inf
varIC <- var(IC)
var.psi = varIC/length(unique(id))
CI <- c(psi.tmle-1.96*sqrt(var.psi), psi.tmle+1.96*sqrt(var.psi))
pvalue <- 2*pnorm(-abs(psi.tmle/sqrt(var.psi)))

}
Qcounter <- cbind(Q1W, Q0W)
colnames(Qcounter) <- c("Q1W", "Q0W")
returnVal <- list(psi=psi.tmle, var = var.psi, pvalue=pvalue, CI=CI, epsilon=epsilon,

Q=Q, g_A=g_A, g_M=g_M, Qcounterfactual=Qcounter)
class(returnVal) <- "tmle"
return(returnVal)

}

Appendix B: Sample calls to tmle function

Note: Examples supplied with the package can be run within the R environment after the package is loaded with the command
example(tmle).

#------------------------------------------------------------------------------------
# tmle examples
# use with function tmle in package tmleLite
# Susan Gruber
# sgruber@berkeley.edu
# December 15, 2009

# Important: Generate data before running the examples!
# psi_0 = 1

#------------generate data --------------

set.seed(10)
n <- 500
W <- matrix(rnorm(n*3), ncol=3)
A <- rbinom(n,1, 1/(1+exp(-(.1*W[,1] - .1*W[,2] + .5*W[,3]))))
Y <- A + 2*W[,1] + W[,3] + W[,2]ˆ2 + rnorm(n)

colnames(W) <- paste("W",1:3, sep="")

#--------------------------------------------------------
# Example 1, default function invocation
# invokes DSA to estimate Q, g_A, g_M,
# because Delta argument is not supplied, assumes (Y,A) observed for all obs

result1 <- tmle(Y,A,W)

#--------------------------------------------------------
# Example 2: Binary outcome, DSA estimates Q
# known g_A = 0.5 is user-supplied,
#

A.ex2 <- rbinom(n,1,.5)
Y.ex2 <- A.ex2 + 2*W[,1] + W[,3] + W[,2]ˆ2 + rnorm(n)
result2 <- tmle(Y=Y.ex2,A=A.ex2,W, g_A =rep(.5, length(Y)))

http://biostats.bepress.com/ucbbiostat/paper252



#--------------------------------------------------------
# Example 3: Supplying an indicator for observations missing the outcome
# set Delta to 1 for obs where Y is observed, 0 when Y is missing
# In this example, Delta is set to indicate 20% missing values, MCAR
# DSA to estimate Q, g_A, g_M,

Delta <- rbinom(n,1,.8)
result3 <- tmle(Y,A,W, Delta=Delta)

#--------------------------------------------------------
# Example 4: User-supplied (misspecified) model for Q, DSA estimates for g_A, g_M
# approx. 20% missing, MAR

Delta <- rbinom(n, 1, 1/(1+exp(-(1.7-1*W[,1]))))
result4 <- tmle(Y,A,W, Delta=Delta, Q=Y˜A+W1+W2+W3)

#--------------------------------------------------------
# Example 5: User-supplied models for g_A and missingness mechanism g_M,
# DSA estimates Q.
# 100 unique IDs supplied
# Usage note: use "A" for dependent variable name in the formula for g_M

Delta <- rbinom(n, 1, 1/(1+exp(-(1.6-1*W[,1]))))
result5 <- tmle(Y,A,W, Delta=Delta, g_A=A˜W1+W2+W3, g_M=A˜W1, id=rep(1:100, length=n))

#--------------------------------------------------------

# use summary to view the results
summary(result1)
summary(result2)
summary(result3)
summary(result4)
summary(result5)

Hosted by The Berkeley Electronic Press


	text.pdf.1263577078.titlepage.pdf.zPemO
	tmp.1263577078.pdf.fPDXp

