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Causal Inference for Nested Case-Control
Studies using Targeted Maximum Likelihood

Estimation

Sherri Rose and Mark J. van der Laan

Abstract

A nested case-control study is conducted within a well-defined cohort arising out
of a population of interest. This design is often used in epidemiology to reduce the
costs associated with collecting data on the full cohort; however, the case control
sample within the cohort is a biased sample. Methods for analyzing case-control
studies have largely focused on logistic regression models that provide conditional
and not marginal causal estimates of the odds ratio. We previously developed a
Case-Control Weighted Targeted Maximum Likelihood Estimation (TMLE) pro-
cedure for case-control study designs, which relies on the prevalence probability
q0. We propose the use of Case-Control Weighted TMLE in nested case-control
samples, with either known q0 or q0 estimated from the full cohort. We show that
this procedure is efficient for a reduced data structure, the data structure where
covariate information is not collected or available on non-case-control subjects,
and recognize that it is not fully efficient for the full data. However, in many com-
mon scenarios, the full data is not available, thus our procedure is maximally effi-
cient for the data given. For statistical inference, we view the nested case-control
sample as a missing data problem (Robins et al., 1994). Case-Control Weighted
TMLE on the reduced data structure is illustrated in simulations for cohorts with
and without right censoring and also effect modification in randomized controlled
trials.



1 Introduction

Nested case-control studies are conducted within a well-defined cohort arising
out of a population of interest. Typically, all of the subjects that develop
disease in the cohort (i.e., the cases) are selected along with a random sampling
of non-diseased subjects. Controls may be selected at the time each case
becomes a case from the population without an event at that time but at risk
for the event or at the end of the study. These two groups of subjects then
comprise the nested case-control sample, where it is common for additional
information to be collected, such as the exposure of interest (Mantel, 1973;
Kupper et al., 1975; Liddell et al., 1977; Breslow et al., 1983; Rothman and
Greenland, 1998). This design is increasingly used in public health, medicine,
and genomics to study relationships between exposures and disease in large
observational cohorts and effect modification in randomized controlled trials
(Rothman and Greenland, 1998; Essebag et al., 2003, 2005). Nested designs
may reduce the costs associated with collecting data on the full cohort with
only a nominal loss in efficiency (Ernster, 1994; Rothman and Greenland, 1998;
Hak et al., 2004; Vittinghoff and Bauer, 2006).

However, whether nested within a large observational cohort or a random-
ized controlled trial, the case-control study nested within the full cohort is
biased since the proportion of cases in the sample is not the same as the pop-
ulation of interest. Methods for analyzing case-control studies have largely
focused on logistic regression models (Breslow and Cain, 1988). These mod-
els provide conditional and not marginal (causal) estimates of the odds ratio.
We have developed a Case-Control Weighted Targeted Maximum Likelihood
Estimation (TMLE) procedure for case-control samples, which relies on the
prevalence probability q0 ≡ P ∗0 (Y = 1). TMLE is a general procedure for esti-
mation, and can be used for any full data model and parameter of interest. It
is a two-step method where one first obtains an estimate of the data-generating
distribution and then in second stage updates the initial fit in a bias-reduction
step targeted towards the parameter of interest, instead of the overall den-
sity. For case-control data, we simply employ the use of case-control weights
in Case-Control Weighted TMLE. We propose the extension of Case-Control
Weighted TMLE in nested case-control samples, with either known q0 or q0

estimated from the full cohort. We show that this procedure is efficient for a
reduced data structure, the data structure where covariate information is not
collected or available on non-case-control subjects, and recognize that it is not
fully efficient for the full data. However, in many common scenarios, the full
data is not available, thus our procedure is maximally efficient for the data
given. For statistical inference, we view the nested case-control sample as a
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missing data problem Robins et al. (1994). We are able to estimate a variety
of parameters with Case-Control Weighted TMLE, including the marginal ex-
posure effect adjusted for confounders. These parameters can be viewed as the
analogues of causal inference parameters, but for observational data. We refer
to these parameters as variable importance parameters if we are not willing
to make causal assumptions. We illustrate Case-Control Weighted TMLE on
the reduced data structure in simulations for cohorts with and without right
censoring and also effect modification in randomized controlled trials.

2 Background

2.1 Literature and Existing Methodology

Nested case-control studies were introduced in Mantel (1973) and further dis-
cussed and developed in Kupper et al. (1975), Liddell et al. (1977), Thomas
(1977), and Breslow et al. (1983). Advantages include reduction in costs as-
sociated with collecting data on the entire cohort, minimal losses in efficiency,
and having the cases and controls come from the same population (Ernster,
1994; Rothman and Greenland, 1998; Essebag et al., 2003; Hak et al., 2004;
Vittinghoff and Bauer, 2006). The latter is frequently not the case in indepen-
dent case-control study designs. Nested case-control designs have also been
shown to have similar estimates for parameters such as the standardized mor-
bidity ratio when compared to an analysis of the full cohort (Liddell et al.,
1977; Breslow et al., 1983; Lubin, 1986).

Much of the literature for analysis of nested case-control studies focuses on
logistic regression models. The use of conditional logistic regression, treating
the nested case-control study as a sample matched on time, is frequently dis-
cussed (Breslow and Cain, 1988; Flanders and Greenland, 1991; Ernster, 1994;
Barlow et al., 1999; Szklo and Nieto, 1999). Samuelsen (1997) constructs pseu-
dolikelihoods for nested case-control study designs using the conditional prob-
ability that a subject will be selected as a control to build a general paramet-
ric regression estimator and a semiparametric proportional-hazards estimator.
Proportional hazards models have also been discussed elsewhere (e.g., Lubin,
1986). An important reference for our methodology is Robins et al. (1994).
Their paper includes a discussion of a missingness framework for the esti-
mation of inverse probability of treatment weighted (IPTW) marginal causal
parameters for nested case-control study designs. We also refer to van der
Laan and Robins (2003) which handles double robust estimation for missing
data structures.
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Beyond the types of parameters being estimated, the literature on the
analysis of nested case-control study designs could further be divided loosely
into three groups. One group analyzes the nested case-control sample as a
case-control sample, ignoring the first stage of sampling the cohort, for example
Barlow et al. (1999). The second group analyzes the nested case-control sample
as a missing data structure, such as Robins et al. (1994). The third group
straddles both of these groups, for example Breslow and Cain (1988). Our
methodology falls within this third group. We estimate our parameter with
information from only the case-control sample, but our inference respects the
missing data structure. Our variance estimates incorporate both the variability
due to sampling the cohort from the population of interest and the variability
arising from drawing the case-control sample from the cohort.

An additional division in the literature could be drawn based on methods
that rely on knowledge of the prevalence probability q0 ≡ P ∗0 (Y = 1). For
example, the methodology of Robins et al. (1994) requires only that q0 be small.
Our proposed methodology uses knowledge of q0, or a reasonable estimate of q0

approximated within the full cohort. The use of q0 to eliminate the bias of case-
control sampling designs has previously been discussed as update to a logistic
regression model with the intercept log q0/(1 − q0) (Anderson, 1972; Prentice
and Breslow, 1978; Greenland, 1981; Morise et al., 1996; Wacholder, 1996).
Adding the intercept log q0/(1− q0) yields the true logistic regression function
P ∗0 (Y = 1 | A,W ) (Anderson, 1972; Prentice and Pyke, 1979). A discussion
of this updated logistic regression and its sensitivity to model misspecification
can be found in Rose and van der Laan (2008). Similarly, there is a wealth of
literature which discusses estimation in nested case-control studies with known
sampling probabilities from the cohort, such as Borgan and Langholz (1993).

2.2 Case-Control Weighted TMLE

TMLE is a general methodology introduced in van der Laan and Rubin (2006).
It is an efficient and double robust procedure that can estimate a variety of
parameters of interest. We propose the use of Case-Control Weighted TMLE,
which is simply a TMLE procedure that relies on the prevalence probability for
case-control weights, in the case-control observations nested within a cohort.
We will view the nested case-control sample within the cohort as a biased
case-control sample in order to estimate our parameter of interest. Thus, here
we discuss the general methodology for Case-Control Weighted TMLE before
describing its application for use in nested case-control studies.

Case-Control Weighted TMLE, discussed in van der Laan (2008), maintains
the locally efficient double robustness properties of estimating function based
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methodology, and unifies maximum likelihood estimation (MLE) with estimat-
ing function methodology into a method improving on both. The case-control
weighting framework maps estimation methods designed for non-case-control
sampling into methods for case-control sampling. Case-control weighting al-
lows us to provide TMLE methodology, which targets the parameter of in-
terest, for biased case-control sampling in the form of Case-Control Weighted
TMLE. Our procedure is a general methodology for the estimation of a param-
eter of a probability distribution, such as marginal causal effects and variable
importance measures. The methodology relies on knowledge of the true preva-
lence probability P ∗0 (Y = 1) ≡ q0, or a reasonable approximation, to eliminate
the bias of the case-control sampling design.

Let us define O∗ ∼ P ∗0 as the experimental unit and corresponding distribu-
tion P ∗0 of interest. To generalize, our case-control weighting maps a function
of O∗ into a function of the case-control data structure O, while preserving
the expectation of the function. For example, the experimental unit of interest
may be defined as O∗ = (W,A, Y ) ∼ P ∗0 , which consists of baseline covariates
W , an exposure variable A, and a binary outcome Y . Then, in an independent
case-control study design sampling can be described as first sampling (W1, A1)
from the conditional distribution of (W,A), given Y = 1 for a case and then
sampling J controls (W j

0 , A
j
0) from (W,A), given Y = 0, j = 1, . . . , J . The

observed data structure O is then defined by:

O = ((W1, A1), (W j
0 , A

j
0 : j = 1, . . . , J)) ∼ P0, with

(W1, A1) ∼ (W,A | Y = 1)

(W j
0 , A

j
0) ∼ (W,A | Y = 0),

where the cluster containing one case and J controls is considered the ex-
perimental unit, and the marginal distribution of this cluster is specified by
P ∗0 . A case-control dataset of this design then consists of n i.i.d. observations
O1, . . . , On with sampling distribution P0 as described above. The modelM∗,
where q0 may or may not be known, implies models for the marginal distri-
bution of cases (W1, A1) and controls (W j

2 , A
j
2), j = 1, . . . , J . Of note, if the

independent case-control sampling design is conducted simply as sampling nC
cases from the conditional distribution of (W,A), given Y = 1, and sampling
nCo controls from (W,A), given Y = 0, the value of J used to weight each
control is then nCo/nC.

Let O∗ → D∗(O∗) represent an estimating function or loss function for O∗

that can be used to estimate the parameter of interest of P ∗0 based on an i.i.d.
sample of O∗. We are concerned with mapping this function D∗ into a function
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for this same parameter of interest, but now based on sampling O (a biased
sample for O∗). We define the case-control weighted version:

Dq0(O) ≡ q0D
∗(W1, A1, 1) +

1

J

J∑
j=1

(1− q0)D∗(W j
2 , A

j
2, 0),

which is now a function of the observed experimental unit O. Additionally, we
define the expectation operator P0,q0D

∗ = P0Dq0 , which takes the expectation
of the case-control weighted function Dq0(O) with respect to P0. Similarly, we
define the empirical expectation Pn,q0D

∗ = PnDq0 as the empirical mean of the
case-control weighted Dq0 , where Pn is the empirical distribution of O1, . . . , On.
Now, we can let D∗(O∗) be a function so that P ∗0D

∗ ≡ EP ∗
0
D∗(O∗) = 0. Then

P0Dq0 = 0, and

Dq0(O) ≡ q0D
∗(W1, A1, 1) + (1− q0)

1

J

J∑
j=1

D∗(W j
2 , A

j
2, 0).

In more generality, for any functionD∗ and corresponding case-control weighted
function Dq0 , we have

P0Dq0 = P ∗0D
∗.

Given a modelM∗ for p∗0, we can estimate P ∗0 with a case-control weighted
maximum likelihood estimator:

p∗n = arg max
p∗∈M∗

n∑
i=1

L(Oi, p
∗),

where L(Oi, p
∗) is the case-control weighted log likelihood loss function for the

density p∗0 of O∗ under sampling of O ∼ P0:

L(Oi, p
∗) = q0 log p∗(W1, A1, 1) + (1− q0)

1

J

J∑
j=1

log p∗(W j
2 , A

j
2, 0).

Now, let D∗(P ∗0 ) be the efficient influence curve of the parameter Ψ∗ :
M∗ → IRd. We consider an initial estimator P ∗0n of P ∗0 based on O1, . . . , On

such as a case-control weighted maximum likelihood estimator according to
a working model within M∗. Let {P ∗n(ε) : ε} be a submodel of M∗ with
parameter ε satisfying that the linear span of its score at ε = 0 includes
D∗(P ∗0n ). Then we let ε1n be the case-control weighted maximum likelihood
estimator of ε:

ε1n = arg maxPn,q0 log p∗0n (ε).
5
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From this we obtain an update P ∗1n = P ∗0n (ε1n) of the initial estimator P ∗0n . This
updating process is iterated until step k at which εkn ≈ 0. The final update is
denoted P ∗n . By the score condition, this final estimator solves the case-control
weighted efficient influence curve:

0 = Pn,q0D
∗(P ∗n) = PnDq0(P

∗
n)

up to numerical precision (van der Laan and Rubin, 2006). We refer to ψn =
Ψ∗(P ∗n) as the case-control weighted targeted maximum likelihood estimator
of ψ0.

The theoretical development of Case-Control Weighted TMLE can be found
in van der Laan (2008). In Rose and van der Laan (2008), we implemented
Case-Control Weighted TMLE and presented a comparison of the procedure
to an existing method for estimation of the causal parameters in case-control
studies, the approximately correct IPTW of Robins (1999). We demonstrated
that Case-Control Weighted TMLE outperforms the IPTW method for esti-
mation of the marginal causal odds ratio in many practical situations.

3 Methodology for Nested Designs

Our goal is to apply Case-Control Weighted TMLE methodology to nested
case-control designs. First, it is important to understand the statistical frame-
work for the design. Nested case-control study designs have a missing data
structure, as presented by Robins et al. (1994), and which we will discuss
here. We will use a reduced data structure to estimate the parameter of in-
terest with our proposed case-control weighted targeted maximum likelihood
estimator. This estimator solves the efficient influence curve equation for the
reduced data structure.

3.1 The Data Structure

Let O∗ be a full data structure of the experimental unit O∗ represents the
data that ideally would be observed in order to answer the research question
of interest. In most studies, however, one or more components of the full
data are subject to one or more types of missingness, and only O = Φ(O∗, δ)
can be observed, where Φ is a known many-to-one mapping and δ denotes
a missingness variable. Here, O∗ represents data from the full cohort data
and the missingness variable indicates membership in the nested case-control
sample.

6
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Suppose the full data structure is O∗ = (W,A, Y ) with Y being a binary
outcome of interest, A a binary exposure, and W a vector of covariates. Let
us also suppose that the observed data structure for the nested case-control
study is O = (δ, δO∗1, O

∗
2), where O∗ = (O∗1, O

∗
2). Particular examples are that

O∗1 = A and O∗2 = (W,Y ), or O∗1 = (A,W ), and O∗2 = Y . It is assumed that
O∗2 always includes Y . The observations with δ = 1 are the observations in the
nested case-control sample within the cohort and have additional variables O∗1
measured. If O∗2 = Y , the missing data structure essentially ignores the non-
case-control observations, except for the purpose of estimating q0 ≡ P ∗0 (Y =
1). Covariate and exposure information is not available or is not measured.
This case is particularly interesting since we can show that the case-control
weighted targeted maximum likelihood estimator using only the case-control
observations and the empirical estimate of q0 obtained from the full cohort
is a targeted maximum likelihood estimator for this particular missing data
structure (δ, δ(W,A), Y ). If covariate information is measured and available for
non-case-control subjects, this missing data structure ignores the information
and therefore our estimator is not fully efficient.

We assume the coarsening at random (CAR) assumption: Π(O∗) ≡ P ∗0 (δ =
1 | O∗) = P ∗0 (δ = 1 | O∗2), and a special case is that P ∗0 (δ = 1 | O∗2) = P ∗0 (δ =
1 | Y ) with P ∗0 (δ = 1 | Y = 1) = 1 and P ∗0 (δ = 1 | Y = 0) = p, where p is
estimated empirically from the data. In this case the selection for the case-
control sample is based upon the outcome Y . One might wish to choose p so
that a single case (Y = 1, δ = 1) corresponds with J-controls (Y = 0, δ = 1),
on average. If q0 = P ∗0 (Y = 1), then Jq0P

∗
0 (δ = 1 | Y = 1) = (1 − q0)P ∗0 (δ =

1 | Y = 0), which results in p = Jq0
1−q0 .

3.2 Parameter of Interest

The statistical problem is then to estimate the parameter ψ0 = Ψ∗(P ∗0 ) of the
population distribution P ∗0 ∈M∗ of (W,A, Y ), known to be an element of some
specified modelM∗, based on the nested case-control data setO1, . . . , On ∼ P0.
O∗ ∼ P ∗0 , the experimental unit of interest, is not the observed experimental
unit, due to the missing data structure. P ∗0 now represents the full data distri-
bution and P0 is the distribution of the missing data structure with observed
experimental unit O = (δ, δO∗1, O

∗
2) ∼ P0. We focus on the case O∗2 = Y , where

covariate information on non-case-control subjects is unavailable or ignored,
and view this missing data structure as a biased case-control sampling design
in order to estimate our parameter of interest. An example of a parameter of
interest is the marginal exposure effect on the additive scale, which can also

7
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be viewed as the causal risk difference:

ψ0,RD ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}
= E∗0(Y1)− E∗0(Y0) = P ∗0 (Y1 = 1)− P ∗0 (Y0 = 1).

This definition requires the specification of the counterfactual outcomes Y0 and
Y1 for binary A and (W,A, Y = YA) as a time-ordered missing data structure
on (W,Y0, Y1). For a causal interpretation, one must also make the random-
ization assumption: {A ⊥ Y0, Y1 | W}, meaning there are no unmeasured
confounders. This parameter can also be viewed as a W -adjusted variable
importance parameter, as previously mentioned, without the need to make
causal assumptions. See van der Laan (2006) for this framework. We make
use of the shorthand Q∗0 = P ∗0 (Y | A,W ) and g∗0 = P ∗0 (A | W ), the latter often
referred to as the “treatment mechanism” but as the “exposure mechanism”
in case-control studies.

3.3 The Estimator

TMLE is a general procedure for estimation, and can be used for any full data
model and parameter of interest. It is a two-step method where one first ob-
tains an estimate of the data-generating distribution and then in second stage
updates the initial fit in a bias-reduction step targeted towards the parameter
of interest, instead of the overall density. For case-control data we then simply
add case-control weighting, using the prevalence probability. Here we will use
Case-Control Weighted TMLE applied to nested case-control data using an
estimate of q0 from the full cohort. Again we focus on the case where O∗2 in
the experimental unit O = (δ, δO∗1, O

∗
2) ∼ P0 is equal to Y . We can show that

the case-control weighted targeted maximum likelihood estimator using only
the case-control observations and the empirical estimate of q0 obtained from
the full cohort is a targeted maximum likelihood estimator for this particular
missing data structure (δ, δ(W,A), Y ). In this special case, the D∗(Q, g,Π) we
solve is the efficient influence curve (see Section 3.4). In other cases, for ex-
ample when O∗2 = (W,Y ), we follow the same template for targeted maximum
likelihood, where the case-control weighted log-likelihood is the criterion for
fit.

Let us say we are still interested in the risk difference. We also let Q0
n

be an initial estimator of Q∗0 = P ∗0 (Y | A,W ), say the case-control weighted
maximum likelihood estimator, or equivalently, the inverse probability of cen-
soring weighted (IPCW) logistic regression estimator. In the IPCW esti-
mator, the weights are δ

Π
. Now, we construct the ε-extension logitQ0

n(ε) =
8
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logitQ0
n + εh(g)(A,W ), where h(g)(A,W ) ≡ A

g∗0(1|W )
− 1−A

g∗0(0|W )
, and we estimate

ε with IPCW MLE. Alternatively, one puts the inverse probability of censoring
weights in the ε-covariate: εh(g)(A,W ) δ

Π
. Let Qn = Q0

n(εn). We now solve
ψn,RD = Pn

δ
Π

(Q1n −Q0n), where Q1n = Qn(1,W ) and Q0n = Qn(0,W ). Note
that this corresponds with the case-control weighted empirical mean over W .
So this estimator ψn,RD corresponds exactly with the case-control weighted tar-
geted maximum likelihood estimator proposed in van der Laan (2008), Rose
and van der Laan (2008), and Rose and van der Laan (2009).

3.4 The Efficient Influence Curve

In order to estimate our parameter of interest, we view the missing data struc-
ture (δ, δ(W,A), Y ), where covariate information on subjects outside the nested
case-control sample is unavailable or discarded, as a case-control sample. How-
ever, inference for this parameter must respect the missing data structure in
order to account for the two sources of variability in the estimator. The first
source of variance arises due to drawing the cohort from the target population,
and the second source of variance arises from drawing the case-control sample
from the cohort. If our inference treated the sample simply as a case-control
sample, we would not be incorporating the additional variance arising from
sampling the cohort from the population. Thus, for inference, we use an ef-
ficient influence curve that respects the missing data structure to obtain an
estimate of the variance of our estimator. However, the efficient influence curve
can also be used to construct closed form locally efficient double robust estima-
tors by using it as an estimating function. The case-control weighted targeted
maximum likelihood estimator discussed in the previous section solves the ef-
ficient influence curve equation for the missing data structure (δ, δ(W,A), Y ).

Our methodology for independent case-control study designs relies on knowl-
edge of q0, or a reasonable approximation of q0, for appropriate statistical in-
ference. In nested case-control samples we can easily estimate q0 from the full
cohort data. Inference for nested case-control study designs also requires the
CAR assumption: Π(O∗) ≡ P ∗0 (δ = 1 | O∗) = P ∗0 (δ = 1 | O∗2). Let us say that
we are still interested in the risk difference, but note that the derivation of the
efficient influence curve and corresponding estimators generalizes to all other
parameters of the full data distribution.

The efficient influence curve in the nonparametric full data model for O∗ =
(W,A, Y ) is given by:

D(O∗) = h(g)(A,W )(Y −Q(A,W )) +Q(1,W )−Q(0,W )−Ψ(Q),

where h(g)(A,W ) ≡ A
g(1|W )

− (1−A)
g(0|W )

. We will represent D = D1 + D2, where
9
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D1 = h(g)(Y −Q). The efficient influence curve for the missing data model is
obtained through the following doubly robust IPCW mapping applied to the
full data efficient influence curve D (see van der Laan and Robins (2003)):

D∗ =
δ

Π
{D − E(D | δ = 1, O∗2)}+ E(D | δ = 1, O∗2).

This efficient influence curve can now be used to construct closed form lo-
cally efficient double robust estimators by using it as an estimating function.
One will also be able to construct corresponding targeted maximum likelihood
estimators. Here, we will focus on the O∗2 = Y -case. We have

D∗(Q, g,Π) =
δ

Π
{h(Y −Q) + (Q1 −Q0)}

− δ
Π
E(h(Y −Q) +Q1 −Q0 | δ = 1, Y )

+E(h(Y −Q) +Q1 −Q0 | δ = 1, Y )−Ψ(Q),

where we use the notation Q1(W ) = Q∗0(1,W ), Q0(W ) = Q∗0(0,W ), and
Q = Q∗0(A,W ). This efficient influence curve can be decomposed as the sum
of the following two components:

D∗1 =
δ

Π
(h(Y −Q)− E(h(Y −Q) | δ = 1, Y )) + E(h(Y −Q) | δ = 1, Y )

D∗2 =
δ

Π
(Q1 −Q0 − E(Q1 −Q0 | δ = 1, Y )) + E(Q1 −Q0 | δ = 1, Y )−Ψ(Q).

We claim that D∗1 is a score of dP (Y | A,W ) and D∗2 is a score of dP (W ) in
the observed likelihood factorization of (δ, δ(W,A), Y ), where the conditional
expectation contributions, given (δ = 1, Y ), are coming from the dP (Y )-factor.

Viewing D∗ = D∗(Q∗, g∗,Π, ψ) as an estimating function in ψ, setting
PnD

∗(Qn, gn,Π, ψn) = 0 for given estimators Qn, gn of Q0, g0, yields the solu-
tion for the risk difference:

ψn = Pn
δ

Π
{h(gn)(Y −Qn) + (Q1n −Q0n)}

−
(
δ

Π
− 1

)
{En(h(gn)(Y −Qn) +Q1n −Q0n | δ = 1, Y )} .

It is necessary for us to estimate the nuisance parameters:

En(h(Y −Qn) | δ = 1, Y = y) =

∑n
i=1 I(δi = 1, Yi = y)h(Ai,Wi)(y −Qn(Wi, Ai))∑n

i=1 I(δi = 1, Yi = y)

En(Q1n −Q0n | δ = 1, Y = y) =

∑n
i=1 I(δi = 1, Yi = y)(Q1n −Q0n)(Wi)∑n

i=1 I(δi = 1, Yi = y)
.

10
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Our case-control weighted targeted maximum likelihood estimator solves
the IPCW weighted efficient influence curve equation:

0 = Pn
δ

Π
{h(gn)(Y −Qn) + (Q1n −Q0n)−Ψ(Qn)} .

In our case-control study nested within the cohort sample, we estimate q0 with
q0n = 1

n

∑
i I(Yi = 1) and use the corresponding Πn. Suppose we estimate Π =

P (δ = 1 | Y = y) with the empirical proportion of δ among the observations
with Yi = y. Then:

0 = Pn

(
δ

Πn

− 1

)
{En(h(gn)(Y −Qn) +Q1n −Q0n − ψn | δ = 1, Y )} .

This follows by first conditioning on Y = y, and then noting that Pn(δ/Πn(y)−
1 | Y = y) = 0 for each y ∈ {0, 1}. By estimating Π with the empirical
distribution of δ, it follows that this targeted maximum likelihood estimator
ψn solves the efficient influence curve equation:

0 = PnD
∗(Qn, gn,Πn, ψn).

Thus, our case-control weighted targeted maximum likelihood estimator, us-
ing the empirical proportions from the total cohort sample for q0 and 1 − q0,
actually solves this efficient influence curve equation for the missing data struc-
ture (δ, δ(W,A), Y ). In particular, we can use D∗(Q∗, g∗,Π, ψ) as the influence
curve under the assumption that g∗0 is correctly estimated. This influence
curve can then be used calculate standard errors of the case-control weighted
targeted maximum likelihood estimator. An estimate of the asymptotic vari-
ance of

√
n(ψn,RD − ψ0) using the efficient influence curve D∗(Q∗, g∗,Π, ψ) is

given by σ̂2 = 1
n

∑n
i=1 D̂

∗2 . A 95% Wald-type confidence interval for a param-

eter estimate ψ̂ can be constructed as: ψ̂ ± z0.975
σ̂√
n

with a p-value calculated

as 2[1 − Φ(| ψ̂
σ̂/
√
n
|)]. Resampling based methods can also be implemented to

estimate the standard error of the estimated parameter of interest.
We conclude that our proposed case-control weighted targeted maximum

likelihood estimator with the empirical q0n is a targeted maximum likelihood
estimator for the missing data structure (δ, δ(W,A), Y ), and is thus a locally
efficient procedure for that data. If in truth, as may often be the case, the
non-case-control observations have covariate data, then one can use a more
efficient double robust estimator using the above efficient influence curve and
estimating the nuisance parameters.

11
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4 Right Censoring

Let us say that our full data structure (the cohort) is a censored data structure.
For example, O∗ might be defined as O∗ = (W,A, T̃ ,∆, Y ∗), where:

W are covariates,
A is an exposure of interest,

T̃ = min(T,C),
T is the time to the event Y ,
C denotes a censoring variable,

∆ = I(T̃ = T ), and
Y ∗ = (T̃ ≤ t,∆ = 1).

We can apply our case-control weights to any data structure, and there-
fore O∗ can be a censored data structure and we are still able to use our
methods. Thus, suppose our observed data for this full data O∗ is then
O = (δ, δ(W,A), T̃ ,∆, Y ∗). Again, δ = 1 denotes membership in the nested
case-control sample. A special feature of this right censored data structure is
that the true Y is not observed or a part of the full data. Instead, as noted, we
have Y ∗ = (T̃ ≤ t,∆ = 1). For example, this could represent observed death
by year 5, which would be denoted Y ∗ = (T̃ ≤ 5 years,∆ = 1). The observed
data structure for cases is then conditional on (Y ∗ = 1). It is important to
stress that the definition of a case (Y ∗ = 1) in a nested case-control study
within a right censored data structure is therefore very different than without
right censoring, and accounting for this difference is not trivial. This distinc-
tion, and right censoring in general, is often overlooked in nested case-control
study designs. The definition of q0 is now q0 = P ∗0 (T̃ ≤ t,∆ = 1). Thus, by
design we let P ∗0 (δ = 1 | Y ∗ = 1) = 1 and P ∗0 (δ = 1 | Y ∗ = 0) = p and assume
the CAR assumption Π(O∗) ≡ P ∗0 (δ = 1 | O∗) = P ∗0 (δ = 1 | O∗2).

Suppose we wish to compute a targeted maximum likelihood estimator for
O∗ of a parameter ψ0, for example ψ0 = P ∗0 (T1 ≤ 5 years)−P ∗0 (T0 ≤ 5 years),
where T1 = (T | A = 1,W ) and T0 = (T | A = 0,W ). Thus we note that
occurrence of disease conditioned upon in the case-control sampling does not
need to be an outcome of interest. Targeted maximum likelihood estimators
can handle both confounding as well as right censoring. To handle the right
censoring, one might make use of censoring weights ∆/Ḡ(·), where Ḡ(·) is
the censoring mechanism, which can be estimated efficiently with a Kaplan-
Meier curve (van der Laan and Rubin, 2007). Now suppose A is expensive
to measure and can only be collected in a subsample of O∗. A nested case-
control study might be performed. We can then implement a case-control

12
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weighted targeted maximum likelihood estimator, as discussed in Section 3.3,
with weights implied by q0 = P ∗0 (T̃ ≤ 5 years,∆ = 1) in addition to the
censoring weights. While simple to implement, this estimator is not a full
TMLE due to the ad hoc IPCW weighting. Thus the case-control weighted
IPCW TMLE is defined as the TMLE estimator for the full data structure
weighting each observation (Wi, Ai, T̃i,∆i, Y

∗
i ) with ∆iq0

Ḡ(T̃i|Ai,Wi)
if (Y ∗i = 1) and

each of J corresponding control observations receive weight
∆i(1−q0) 1

J

Ḡ(T̃i|Ai,Wi)
if(Y ∗i =

0).
An additional approach includes the use of the targeted maximum likeli-

hood estimator presented in Moore and van der Laan (2009). This estimator
involves first estimating a hazard of T given (A,W ), expressing this hazard
fit as a logistic regression or multiplicative intensity, and subsequently adding
a time dependent covariate h(t, A,W ) as an epsilon extension. The epsilon
coefficient in front of the clever covariate is fitted with standard logistic re-
gression or Cox proportional hazards software, treating the initial hazard as
an offset. This updating process of the conditional hazard is iterated until
convergence. Once this updated hazard fit is determined with this iterative
targeted maximum likelihood algorithm, one evaluates the conditional survival
functions ST |A=1,W (5 years) and ST |A=0,W (5 years) and averages over W with
respect to the empirical distribuiton of W . This is now the targeted maximum
likelihood estimator of ψ0, which needs to be case-control weighted by giving
each observation with (Y ∗ = 1) a weight q0 and each control observation with
(Y ∗ = 0) a weight (1 − q0) 1

J
. Note that this means each step in the above

described TMLE algorithm, including the initial hazard estimation, needs to
be case-control weighted.

5 Effect Modification

Nested case-control studies within clinical trials are becoming increasingly
popular when researchers are interested in effect modification (Rothman and
Greenland, 1998; Essebag et al., 2003, 2005; Polley and van der Laan, 2009).
This is of particular importance when the patient characteristic that may mod-
ify the treatment effect is difficult or expensive to measure (Vittinghoff and
Bauer, 2006). The Women’s Health Initiative is an example of a well known
study where the investigators’ effect modification research question led to a
nested case-control study design within a randomized controlled trial (Prentice
and Qi, 2006). Researchers were interested in studying SNPs associated with
coronary heart disease, stroke and breast cancer and hormone treatments in
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their placebo controlled combined hormone trial cohort of over 16,000 women.
Suppose that within a randomized controlled trial we are interested in

studying the effect modification of a particular patient characteristic, denoted
Wi. The randomized controlled trial was designed with two treatment arms,
A ∈ {0, 1}, where probability of assignment was π = 0.5. The disease outcome
was binary Y ∈ {0, 1} and the parameter:

ψ0 ≡ E∗0{E∗0(Y | A = 1,W )− E∗0(Y | A = 0,W )}

can be used to determine the average treatment effect. W indicates a multi-
dimensional covariate W = (Wi : i = 1, . . . ,m). However, our parameter of
interest was an effect modification parameter. It represents the effect modi-
fication between Wi ∼ Bernoulli(γ = 0.5) and the treatment on the disease,
while adjusting for the variables W(−i). This parameter of interest can be
expressed:

ψ̃0 ≡ E∗0{[E∗0(Y | A = 1, A∗ = 1,W(−i))− E∗0(Y | A = 0, A∗ = 1,W(−i))]

− [E∗0(Y | A = 1, A∗ = 0,W(−i))− E∗0(Y | A = 0, A∗ = 0,W(−i))]},

which can be written as:

ψ̃0 ≡ E∗0{E∗0(Z | A∗ = 1,W(−i))− E∗0(Z | A∗ = 0,W(−i))}

since π = 0.5, where Z = Y (A−(1−A)), A∗ = Wi, and W(−i) are the covariates
that do not include Wi (van der Laan, 2006; Polley and van der Laan, 2009).
The value of Z takes on three values, which follow a multinomial distribution:

Z =


+1 if Y = 1 and A = 1
0 if Y = 0
−1 if Y = 1 and A = 0.

The effect of A∗ on Z, adjusted for all other covariates W(−i), the parameter ψ̃0,
can be estimated with targeted maximum likelihood estimation. This effect
estimate can be considered a causal effect modifier, if one is willing to make the
assumptions discussed in Section 3.2. Now suppose A∗ can only be measured in
stored blood products that were collected at the beginning of the trial, and the
analysis of the stored blood products in the entire trial would be prohibitively
expensive. A nested case-control design would then be a natural design to
study the effect modification of A∗ on Z. Suppose the full data structure
was defined as O∗ = (W(−i), A

∗, A, Y ). Our observed missing data structure
of the nested case-control sample would then be O = (W(−i), δ, δA

∗, A, Y ).
An estimate of q0 would come from the full data, the complete randomized
controlled trial.
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6 Safety Analysis

Maintainers of large comprehensive databases that include adverse events, such
as the General Practice Research Database (GRPD) and The Health Improve-
ment Network (THIN), often require researchers to pay for access to the data.
Cost is based on a number of factors, but almost always increases as the num-
ber of subjects requested increases. Analysis of the entire cohort of data would
be cost prohibitive. Thus, nested case-control studies are also a natural design
for studies of safety with pharmaceutical drugs, and our case-control method-
ology has the potential to provide novel insight. Recent drug safety failures
(e.g., Baycol, Vioxx, Ortho Evra, and Rezulin) have led to serious side effects
and deaths in users. Additional post-market evaluation tools are necessary
for detecting true adverse effects among the large number of reports of side
effects and adverse outcomes stored in reporting databases, which are most
commonly analyzed with logistic regression, producing only conditional esti-
mates of the odds ratio (e.g., Yang et al. (2006)). In combination with the
appropriate handling of multiple testing issues, Case-Control Weighted TMLE
in nested case-control studies can play an important role in the detection of
true adverse events. We highlight that these are scenarios where we only have
data on the case-control observations. For example, if O∗ = (W,A, Y ), then
O = (δ, δ(W,A), Y ). Thus, our estimator is maximally efficient and very ap-
propriate for these types of study designs since no covariate information (e.g.
W ) on the non-case-control observations is discarded.

7 SPPARCS Data Analysis & Simulations

The National Institute of Aging funded Study of Physical Performance and
Age-Related Changes in Sonomans (SPPARCS) is a population-based, census-
sampled, study of the epidemiology of aging and health. Participants of this
longitudinal cohort were recruited if they were aged 54 years and over and were
residents of Sonoma, CA or surrounding areas. Study recruitment of 2092 per-
sons occurred between May 1993 and December 1994 and follow-up continued
for approximately 10 years. One area of particular research interest for this
data has been the effect of vigorous leisure-time physical activity (LTPA) on
mortality in the elderly, which has been studied in a previous collaboration
(Bembom and van der Laan, 2008) using marginal structural models. The
data structure O∗ = (W,A, Y ), where Y = I(T ≤ 5 years), T is time to
the event death, A is a binary categorization of LTPA, and W are potential
confounders. These variables are further defined in Table 1. Of note is the
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Table 1: SPPARCS Variables.
Variable Description
Y Death occurring within 5 years of baseline.
A LTPA score ≥ 22.5 METs at baseline.‡

HEALTH.EX Health self-rated as “excellent.”
HEALTH.FAIR Health self-rated as “fair.”
HEALTH.POOR Health self-rated as “poor.”
SMOKE.CURR Current smoker.
SMOKE.EX Former smoker.

W CARDIAC Cardiac event prior to baseline.
CHRONIC Chronic health condition at baseline.
AGE.1 x ≤ 60 years old.
AGE.2 60 < x ≤ 70 years old.
AGE.4 80 < x ≤ 90 years old.
AGE.5 x > 90 years old.
FEMALE Female.

‡
LTPA is calculated from answers to a detailed questionnaire where performed vigorous physical

activities are assigned standardized intensity values in metabolic equivalents (METs). The recommended

level of energy expenditure for the elderly is 22.5 METs.

lack of any right censoring in this longitudinal cohort. The outcome (death
within or at five years after baseline interview) and date of death was recorded
for each subject. This information was available from a variety of sources,
including death certificates. Our parameter of interest is the risk difference
ψ0 = E∗0(Y1)−E∗0(Y0), the average treatment effect of LTPA on mortality five
years after baseline interview.

The cohort was reduced to a size of n = 2066, as 26 subjects were missing
LTPA values and/or self-rated health score (1.2% missing data). The esti-
mated value for q0 from the cohort was q0n = 0.130, and the number of cases
in the cohort sample was nC = 269. The variables used in our analysis are
defined in Table 1. TMLE was performed on the full cohort sample, and the
results are displayed in Table 2. Within TMLE, the machine learning Dele-
tion/Substitution/Addition (DSA) algorithm was used to obtain estimates of
Q∗0(A,W ) and g∗0(A | W ) since the functional form of the data was unknown.
Our estimated parameter of interest is highly significant, and indicates that
physical activity at or above recommended levels decreases five-year mortality
risk in this population by 5.4%. See Table 2.
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7.1 SPPARCS Simulations

We used this longitudinal cohort study to simulate nested case-control study
designs where an estimate of the prevalence probability for the weights is
obtained from the full cohort. For example, let us say that our full data
structure O∗ = (W,A, Y ) and observed data O = (δ, δO∗1, O

∗
2), where O∗ =

(O∗1, O
∗
2), are defined by the variables in Table 1. Since this nested case-control

study is simulated inside a cohort with exposure and covariate information on
all controls, let us also say we set O∗1 = (A,W ), and O∗2 = Y . The SPPARCS
variables W , A, and Y continue to be defined by those described in Table 1.
Members of the case-control sample are denoted with δ = 1. The likelihood of
a single observation is then written as:

dP ∗0 (O) = {dP ∗0 (W )dP ∗0 (A | W )dP ∗0 (Y | A,W )}δdP ∗0 (Y )1−δ.

Since O∗2 = Y , the missing data structure ignores those individuals with δ = 0,
except for the purpose of estimating P ∗0 (Y = 1).

7.1.1 Nested Case-Control Simulations

In order to form a control sample from the SPPARCS cohort for the nested
case-control design, individuals were randomly sampled from among those still
alive five years from baseline interview, and assigned the value δ = 1. This
was a simplified approach compared to an incidence-density design where in-
dividuals are sampled from those still at risk of death at the time a case
becomes a case. Sampling was performed at various sample sizes relative
to the number of cases (2nC, 3nC, and 4nC). The empirical values for p
in Π(O∗) ≡ P ∗0 (δ = 1 | O∗) = P ∗0 (δ = 1 | O∗2) = P ∗0 (δ = 1 | Y ), with
P ∗0 (δ = 1 | Y = 1) = 1 and P ∗0 (δ = 1 | Y = 0) = p, were 0.299, 0.446,
and 0.608 for the three sample sizes. Non-cases that were not sampled were
assigned the value δ = 0. All cases were assigned δ = 1.

The cohort was then resampled 1000 times. In each of the 1000 cohort
resamples, one nested case-control study was extracted; those individuals with
(δ = 1), allowing for ties. A simulation design such as this was also used in
Bureau et al. (2008). The estimated values of q0 for use in the case-control
weights for the nested case-control samples were taken from their respective
cohort resample. Case-Control Weighted TMLE was performed on each of
the 1000 nested case-control samples and TMLE was performed on the cohort
samples. The DSA algorithm was used to obtain estimates of Q∗0(A,W ) and
g∗0(A | W ) since the functional form of the data was unknown. The relative
efficiency of the nested case-control parameters are compared to the cohort
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parameter in Table 3, as well as average values for the parameter of interest.
Relative efficiency of the nested case-control design improves as the number of
controls increases. With an average of 4 controls per case (approximately 1076
of the 1797 available non-case subjects), the relative efficiency of the nested
case-control design reached 78.9%.

7.1.2 Nested Case-Control Simulations with Right Censoring

For our simulations with right censored data, we generated an uninformative
uniform censoring variable C, which led to 30.8% censored data in the full
cohort data O∗ = (W,A, T̃ ,∆, Y ∗). The definitions for T̃ ,∆, and Y ∗ are as
described in Section 4, with W , A, and Y described in Table 1. The estimated
value for q0 from the cohort was q0n = 0.110, and the number of cases in the
cohort sample, defined by Y ∗ = (T̃ ≤ 5 years,∆ = 1) = 1, was nC = 229.
Controls were sampled from the cohort from among those subjects who had
Y ∗ = 0. The observed data for the nested case-control sample was defined
as: O = (δ, δ(W,A), T̃ ,∆, Y ∗). Sampling was performed at various sample
sizes relative to the number of cases as in the previous simulation, and the
cohort was then resampled 1000 times. In each of the 1000 cohort resamples,
one nested case-control study was extracted; those individuals with (δ = 1),
allowing for ties. Values for p were 0.249, 0.371, and 0.494 for the three sample
sizes. The cohort was analyzed with TMLE using IPCW weights defined as:
wIPCW = I(C>min(T,5))

Ḡ(min(T,5))
, where Ḡ(·) is the censoring mechanism. The censoring

mechanism can be estimated efficiently with a Kaplan-Meier curve (van der
Laan and Rubin, 2007). The nested case-control samples were analyzed in
a similar fashion, although we now also use IPCW weights and case-control
weights in Case-Control Weighted TMLE. The relative efficiency of the nested
case-control parameters are compared to the cohort in Table 4, as well as
average values for the parameter of interest. Relative efficiency of the nested
case-control design improves as the number of controls increases, although the
nested case-control design does not reach the same high level of efficiency with
4 controls per case as our previous simulation without right censoring.
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Table 2: SPPARCS Cohort Results. TMLE was performed on the SP-
PARCS cohort. Sample size was 2066, with 269 deaths five years from baseline
interview and 1797 non-deaths. RD is Risk Difference, SE is Standard Error,
and P is P-value.

Estimate SE P
RD -0.054 0.012 < 0.001

Table 3: SPPARCS Simulated Nested Case-Control Results. Case-
Control Weighted TMLE was performed on the nested case-control samples,
and TMLE was performed on the cohort samples. RD is Risk Difference, SE is
Standard Error, RE is Relative Efficiency Compared to Cohort RD, nC = 269
is number of cases, and nCo is number of controls.

Sample Size Estimate RE
Cohort RD 2,066 -0.055 1.000

nCo = 2nC -0.101 0.319
Case-Control RD nCo = 3nC -0.056 0.567

nCo = 4nC -0.051 0.789

Table 4: SPPARCS Simulated Nested Case-Control Results with
Right Censoring. Case-Control Weighted IPCW TMLE was performed on
the nested case-control samples, and IPCW TMLE was performed on the co-
hort samples. RD is Risk Difference, SE is Standard Error, RE is Relative
Efficiency Compared to Cohort RD, nC = 229 is number of cases, and nCo is
number of controls.

Sample Size Estimate RE
Cohort RD 2,066 -0.064 1.000

nCo = 2nC -0.040 0.270
Case-Control RD nCo = 3nC -0.040 0.310

nCo = 4nC -0.057 0.440
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8 Additional Simulation Studies

8.1 Simulated Cohort

In the SPPARCS data simulations, we did not know the true value of the
parameter of interest. It is therefore important to have a completely objective
way of defining the truth, and to then assess the performance of our estimator
with respect to the truth. Therefore, we repeat the exact same simulation
study, but now from a population we fully understand, as we know the value
of the true ψ. The cohort was sampled from the target population of 1,000,000
individuals. We simulated a 5-dimensional covariate W = (Wi : i = 1, . . . , 5),
a binary exposure A, and indicator Y , where 1 indicated disease (or in the
case of the SPPARCS data, death by 5 years from baseline interview). These
variables were generated according to the following rules:

Wi ∼ U(0, 1)

g∗0(A | W ) = 1
1+exp(−(W1+W2+W3+W4))

Q∗0(A,W ) = 1
1+exp(−(−A−4W1+AW1−1.5W2+sin(W5)))

.

The true value for the risk difference was RD = −0.061, and the true value
for q0 was q0 = 0.133. One cohort sample was taken with 2,066 individuals,
and the estimated value of q0 taken from the cohort was q0n = 0.143. The
number of cases in the cohort sample was nC = 296. Controls were randomly
sampled from among the non-cases in the original cohort at various sample
sizes relative to the number of cases (2nC, 3nC, and 4nC), and assigned the
value δ = 1. Non-cases that were not sampled were assigned the value δ = 0.
The values for p were 0.330, 0.506, and 0.674 for the three sample sizes. All
cases were assigned δ = 1.

The cohort was resampled 1000 times. In each of the 1000 cohort resamples,
one nested case-control study was extracted; those individuals with (δ = 1),
allowing for ties. Weights for the case-control samples were taken from their
respective cohort resample. Case-Control Weighted TMLE was performed on
each of the 1000 nested case-control samples and TMLE was performed on
the cohort samples. Logistic regression was used to estimate Q∗0(A,W ) and
g∗0(A | W ) since the functional form was known. The relative efficiency of the
nested case-control parameters are compared to the cohort in Table 5, as well
as average values for the parameter of interest. As before, relative efficiency
of the nested case-control design improves as the number of controls increases.
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With an average of 4 controls per case, the nested design reaches a relative
efficiency of 78.4%. Bias results can be seen in Figure 1.

8.2 Simulated Clinical Trial

As previously discussed, nested case-control studies within clinical trials are
becoming increasingly common when researchers are interested in effect mod-
ification. Thus, we provide an additional illustrative example of our meth-
ods for this research question. The simulated target population contained
1,000,000 individuals with covariates W . For the clinical trial, 10,000 were
sampled and assigned a treatment A. The outcome of disease was assigned
with Y = 1/(1 + exp(−(3A−4W1 +W3−12W4−2W5 + 2A sin(W3)))). Of the
10,000 subjects, 647 individuals developed disease (6.47%). The value of the
effect modification parameter of interest in the full trial was ψ̃0 = E∗0{E∗0(Z |
A∗ = 1,W(−i)) − E∗0(Z | A∗ = 0,W(−i))} = 0.016. The full data in the ran-
domized controlled trial cohort was analyzed with TMLE.

However, suppose that the effect modifier of interest, W3 ≡ A∗, could
only be measured in stored blood products, which is a very expensive process.
Therefore, we could not measure ψ̃0, as discussed in Section 5, in the entire
trial and chose a nested case-control design. In order to simulate a nested case-
control study within our simulated clinical trial data, controls were randomly
sampled from among the non-cases in the original cohort at various sample
sizes relative to the number of cases (2nC, 3nC, 4nC, and 5nC), and assigned
δ = 1. Non-cases that were not sampled were assigned δ = 0. The values for
p were 0.141, 0.210, 0.280, and 0.350 for the four sample sizes. All subjects
with Y = 1 were assigned δ = 1. The resampling procedure was the same
as our previous simulated designs. Case-Control Weighted TMLE was used
to analyze the nested case-control samples. Multinomial regression was used
with main terms to estimate Q∗0(A∗,W ), and this represents a misspecified
model. Due to the double robustness of the TMLE and Case-Control Weighted
TMLE procedures, the estimates of the parameter of interest are consistent
even when Q∗0(A∗,W ) or g∗0(A∗ | W ) is misspecified. The values for g∗0(A∗ | W )
were known since it was a randomized controlled trial. Results are displayed in
Table 6. The relative efficiency of the nested case-control design improves as
the number of controls increases, and with 38.8% of the total trial participants
we reach an efficiency of 86.4%.
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Figure 1: Simulation Data Nested Case-Control – Bias Results for
the Risk Difference.

Table 5: Simulation Data Nested Case-Control Results. Case-Control
Weighted TMLE was performed on the nested case-control samples and TMLE
was performed on the cohort samples. RD is Risk Difference, SE is Standard
Error, RE is Relative Efficiency Compared to Cohort RD, nC = 296 is number
of cases, and nCo is number of controls.

Sample Size Estimate RE
Cohort RD 2,066 -0.063 1.000

nCo = 2nC -0.045 0.411
Case-Control RD nCo = 3nC -0.068 0.725

nCo = 4nC -0.069 0.788
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Table 6: Randomized Controlled Trial Simulation Data Nested Case-
Control Results. Case-Control Weighted TMLE was performed on the
nested case-control samples and TMLE was performed on the full trial sam-
ples. SE is Standard Error, RE is Relative Efficiency Compared to Cohort
RD, nC = 647 is number of cases, and nCo is number of controls.

Sample Size Estimate RE

Full Trial ψ̃ 10,000 0.016 1.000

nCo = 2nC 0.024 0.142

Case-Control ψ̃ nCo = 3nC 0.022 0.253
nCo = 4nC 0.019 0.517
nCo = 5nC 0.016 0.864

9 Discussion

Nested designs have the potential to significantly reduce the costs associated
with collecting data on the full cohort with only minimal losses in efficiency
(Ernster, 1994; Rothman and Greenland, 1998; Hak et al., 2004; Vittinghoff
and Bauer, 2006). Our simulated nested case-control studies within the SP-
PARCS data demonstrated 78.9% efficiency with an average of 4 controls per
case. We had 78.4% efficiency in our simulated nested case-control studies
within a simulated cohort, again with an average of 4 controls per case. These
results coincided with the conclusions of Ury (1975), which noted that as
a general rule, 4 controls per case yields a relative efficiency of 80.0%. Our
nested case-control simulations with right censoring within the SPPARCS data
also demonstrated that methods for right censoring can be incorporated into
the Case-Control Weighted TMLE procedure. In general, our case-control
methodology can be used in conjunction with procedures that handle cen-
soring, missingness, measurement error, and other persistent issues found in
public health and medicine. We also demonstrated the use of Case-Control
Weighted TMLE for nested case-control study designs within randomized con-
trolled trials when interested in an effect modification research question. With
less than 40% of the trial subjects, we reached an efficiency of 86.4% compared
to the full trial.

The extension of our Case-Control Weighted TMLE methodology to nested
case-control study designs provides a double robust locally efficient estimation
procedure for marginal causal effects and variable importance measures in
nested designs. We showed that both the case-control weighted targeted max-
imum likelihood estimator and the IPCW estimator are targeted maximum
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likelihood estimators for the missing data structure (δ, δ(W,A), Y ), and are
thus locally efficient procedures for that data. For appropriate inference (e.g.
construction of standard errors), however, the IPCW efficient influence curve
must be implemented, or an appropriate resampling procedure such as boot-
strapping. With the increase in popularity of nested case-control study designs
in longitudinal cohorts and randomized controlled trials, the extension of our
Case-Control Weighted TMLE procedure provides an additional tool to yield
unique biological and public health discovery.
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