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Simple, Efficient Estimators of Treatment
Effects in Randomized Trials Using

Generalized Linear Models to Leverage
Baseline Variables

Michael Rosenblum and Mark J. van der Laan

Abstract

Models, such as logistic regression and Poisson regression models, are often used
to estimate treatment effects in randomized trials. These models leverage informa-
tion in variables collected before randomization, in order to obtain more precise
estimates of treatment effects. However, there is the danger that model misspec-
ification will lead to bias. We show that certain easy to compute, model-based
estimators are asymptotically unbiased even when the working model used is ar-
bitrarily misspecified. Furthermore, these estimators are locally efficient. As a
special case of our main result, we consider a simple Poisson working model con-
taining only main terms; in this case, we prove the maximum likelihood estimate
of the coefficient corresponding to the treatment variable is an asymptotically un-
biased estimator of the marginal log rate ratio, even when the working model
is arbitrarily misspecified. This is the log-linear analog of ANCOVA for linear
models. Our results demonstrate one application of targeted maximum likelihood
estimation.



1 Introduction

The appropriate use of models in analyzing the results of randomized trials
has been the focus of many recent papers (e.g. Yang and Tsiatis (2001);
Pocock et al. (2002); Rosenbaum (2002); Leon et al. (2003); Tsiatis et al.
(2008); Moore and van der Laan (2007); Freedman (2008a,b,c); Zhang et al.
(2008); Rosenblum and van der Laan (2009)). We focus on estimating marginal
treatment effects, such as the risk difference, risk ratio, and log odds ratio. The
model-based estimators we present are asymptotically unbiased, and leverage
baseline variables to try to get more precision than estimators that ignore
baseline variables. All of our results hold even when the models used are
arbitrarily misspecified, that is, when the models used do not contain the true
data generating distribution. This is an important property since in practice,
models will often be misspecified. Our results demonstrate an application of
targeted maximum likelihood estimation, a general estimation method with
broad applicability to randomized trials and observational studies described
in (van der Laan and Rubin, 2006; Moore and van der Laan, 2007; Polley and
van der Laan, 2009; van der Laan et al., 2009).

In the next section, we describe the estimation problem being consid-
ered and present related work. Our class of estimators and our main result
are presented in Section 3. We note that our estimators coincide with cer-
tain g-computation estimators (Robins, 1986, 1987), doubly-robust estimators
(Robins, 2000; Robins and Rotnitzky, 2001; Neugebauer and van der Laan.,
2002; van der Laan and Robins, 2002), and estimators in (Tsiatis, 2006; Zhang
et al., 2008). In the special case of estimating the risk difference, our class
of estimators is contained in the class of estimators in Section 3.2.3 of the
Comments to the Rejoinder to (Scharfstein et al., 1999) (page 1141), for the
situation of randomized trials.

The contributions in this paper are (1) to show the implementation of
targeted maximum likelihood estimation applied to randomized trial data and
(2) to highlight a useful class of easy to compute estimators that leverage
baseline variables yet are guaranteed to be consistent estimators of marginal
mean effects. We show how to construct confidence intervals and compute
p-values in Section 4. We present a simulation study comparing the power of
our estimators to the unadjusted estimator in Section 5. In Section 6 we give
a brief overview of targeted maximum likelihood methodology, of which our
estimators are one application. Proofs of our results are given in the Appendix.
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2 Description of Estimation Problem, Assump-

tions, and Related Work

We consider a randomized trial with n subjects. The data collected on each
subject include baseline variables (measured before randomization), the ran-
dom treatment assignment, and the outcome. We assume subjects are random-
ized with probability 1/2 to either the treatment or control arm, independent
of the baseline variables. We let A denote the treatment assignment, with
A = 1 corresponding to the treatment arm and A = 0 corresponding to the
control arm. We denote the outcome variable by Y , which may be continuous
or discrete valued. We let V denote a subset of the baseline variables (which
must be chosen before the trial starts). For each subject i, we denote their
data by the vector (Vi, Ai, Yi), representing baseline measurements, treatment
assignment, and outcome, respectively. In general, we recommend that base-
line variables that are highly predictive of the outcome should be included in
the vector V .

2.1 Parameter We Will Estimate

We consider estimation and inference for parameters that are smooth functions
r of the mean effects of being assigned to the two study arms: E(Y |A = 0)
and E(Y |A = 1). This class of parameters includes the difference in means
E(Y |A = 1) − E(Y |A = 0) (corresponding to r(x, y) = y − x), the ra-
tio of means (or rate ratio) E(Y |A = 1)/E(Y |A = 0) (corresponding to

r(x, y) = y/x), and the log odds ratio log P (Y=1|A=1)/(1−P (Y=1|A=1))
P (Y=1|A=0)/(1−P (Y=1|A=0))

(corre-

sponding to r(x, y) = log y(1 − x)/(x(1 − y))), for example. (Throughout
the paper “log” refers to the natural logarithm.) The “unadjusted estimator”
estimates these parameters by substituting the sample means in the control
arm and treatment arm, respectively, for E(Y |A = 0) and E(Y |A = 1). We
will denote E(Y |A = 0) and E(Y |A = 1) by E0 and E1, respectively. We are
estimating marginal effects of treatment, that is, the overall average effect on
a population, comparing two treatments. Such comparisons play a role, for ex-
ample, when the U.S. Food and Drug Administration (FDA) makes decisions
whether to approve new drugs. However, we note that in some problems, for
example in some cases when considering repeated measurements (Lindsey and
Lambert, 1998), it may be of more interest to estimate conditional effects.
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2.2 Assumptions on the Data Generating Distribution

We assume that each vector of observations (Vi, Ai, Yi) is an independent,
identically distributed draw from an unknown data generating distribution
p∗(V,A, Y ).1 We also assume the values of all variables are bounded. We
assume that A and V are independent, which is ensured by randomization.
These are the only assumptions we make about the data generating distribu-
tion (except for the assumptions (i) and (ii) given in Section 2.3 below, both
of which can be verified from the data, with probability tending to 1 as sample
size goes to infinity). The estimators we give below can be extended to the
case where treatment assignment A depends on V , as we discuss briefly in
Section 7.

2.3 Requirements on the Form of the Working Model

We will use the machinery of maximum likelihood estimation for generalized
linear models, but will not assume the models used are in any way correctly
specified. The generalized linear model family (e.g. Binomial, Normal, Pois-
son), the link function, and the terms in the linear part of the model can all
be incorrect. We furthermore allow that the true data generating distribu-
tion may not be contained in any generalized linear model at all. The only
assumptions we make on the data generating distribution are those listed in
Section 2.2 above; we will show in Theorem 1 in Section 3 that regardless of
the type of misspecification, our estimators are consistent (i.e. asymptotically
unbiased) and asymptotically normal (so asymptotically correct confidence in-
tervals can be obtained). We consider the generalized linear models merely
as working models, that is, formulas that are input along with data into an
algorithm (such as the targeted maximum likelihood algorithm). When the
working models are correctly specified, we will obtain estimators that are op-
timal in terms of asymptotic mean squared error2. When the working models
are misspecified, we are still guaranteed that our estimators are consistent (i.e.
converge to the true value of the parameter) and asymptotically normal.

Before listing the requirements that our working models must satisfy, we
give some examples of generalized linear models that meet these requirements.
We note that there is much flexibility in choosing which terms to use in the

1This assumption is not guaranteed by randomization. For discussion of this issue, see
(Rosenbaum, 2002; Freedman, 2008c; Rosenblum and van der Laan, 2009).

2More precisely, when the working models used are correctly specified, our estimators
will achieve the semiparametric efficiency bound, and so have minimal asymptotic variance
among all regular, asymptotically linear estimators.
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linear part of the model; for example, one can include multiple baseline vari-
ables, any set of interactions, and any functions of baseline variables and the
treatment, as long as the restrictions given below are adhered to. We give just
a few, simple possibilities below.

Examples of Working Models Satisfying Requirements Above:

• Least Squares Regression: For Y continuous, the Normal model where
E(Y |A, V ) is modeled by:

µ1(A, V |β) = β0 + β1A+ β2V + β3AV,

• Logistic Regression: For Y binary and logit(x) = log(x/(1 − x)), the
following model for P (Y = 1|A, V ):

µ2(A, V |β) = logit−1 (β0 + β1A+ β2V ) ,

• Poisson Regression: For Y a “count” (that is, Y a nonnegative integer),
the Poisson (log-linear) model with mean of Y given A, V of the form:

µ3(A, V |β) = exp (β0 + β1A+ β2V ) .

• Gamma Regression: For Y positive, real valued, the Gamma model with
mean of Y given A, V modeled by:

µ4(A, V |β) = 1/ (β0 + β1A+ β2 exp(V ) + β3 exp(AV )),

where each coefficient βi is restricted to be nonnegative and β0 is re-
stricted to be bounded away from 0 by some δ > 0.

• Inverse Normal Regression: For Y positive, real valued, the Inverse Nor-
mal model with mean of Y given A, V modeled by:

µ5(A, V |β) = 1/
√
β0 + β1A+ β2 exp(V ),

where each coefficient βi is restricted to be nonnegative and β0 is re-
stricted to be bounded away from 0 by some δ > 0.

In the above Gamma regression model and Inverse Normal regression model,
we chose parameterizations that ensure the mean will be bounded. This is
guaranteed by restricting all components βi to be nonnegative, by restricting
β0 to be greater than some positive constant, and by making sure each term
in the linear part is a nonnegative function of A, V .

We require that the generalized linear models used as working models have
canonical link functions, and are from the commonly used families: Normal,
Binomial, Poisson, Gamma, or Inverse Normal (see McCullagh and Nelder
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(1998) for definitions of these exponential families). As described in (McCul-
lagh and Nelder, 1998), the density of the outcome Y , conditional on A, V ,
under such a generalized linear model can be represented, for suitable choices
of functions b, c as

exp(Y η − b(η) + c(Y, φ)), (1)

where η =
∑

j βjfj(A, V ) is the linear part of the model, with terms fj(A, V )

and coefficients βj, and φ is a dispersion parameter.3 We require that the first
two terms in the linear part consist of an intercept and the treatment variable
A. We require the functions fj be chosen to be bounded on compact subsets
of {0, 1} × Rd, where V is a d-dimensional vector of baseline variables. The
canonical link function g is defined as ḃ−1, the inverse of the derivative of the
function b. We let µ(A, V ) denote the mean of Y given A, V according to the
density (1), where the dependence of µ(A, V ) on β is implicit. We note that
µ(A, V ) = ḃ(η(A, V )), which is proved in (Bickel and Doksum, 2001).

We make two further assumptions, given below, that involve both the data
generating distribution and the form of the working model. These are standard
regularity conditions required to guarantee convergence of parameter estimates
of (possibly misspecified) generalized linear models to some limit value, as
sample size goes to infinity.

(i) We assume the terms fj(A, V ) are linearly independent. This means
that if for a set of constants cj we have

∑
j cjfj(A, V ) = 0 a.s., then

cj = 0 for all j.

(ii) We assume that there exists a maximizer β∗ of the expected log-likelihood

Ep∗ [Y η − b(η) + c(Y, φ)] =

Ep∗

[
Y
∑
j

βjfj(A, V )− b

(∑
j

βjfj(A, V )

)
+ c(Y, φ)

]
, (2)

where the expectation is with respect to the true (but unknown) data
generating distribution p∗(V,A, Y ). We also assume each component of
β∗ has absolute value smaller than some pre-specified bound M .

One can detect whether (i) or (ii) are violated, based on the data, with
probability tending to 1 as sample size tends to infinity. This follows for (i)

3For binary outcomes, the function b(η) = log(1 + eη) and c(Y, φ) = 0. For Poisson
regression, in which the outcome is a nonnegative integer, b(η) = eη and c(Y, φ) = − log Y !.

Note that in both cases, b̈(η) := d2b
dη2 > 0 for all η.
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because linear dependencies in the terms in the model will be detected by
standard statistical software for sample size larger than the number of terms.
Violation of assumption (ii) can be detected, for large enough sample size n
(with probability converging to 1), as described in the Appendix.4

For the Gamma and Inverse Normal families, where the outcome variable
is assumed to take values in (0,∞), we additionally require that fj take non-
negative values; also for these two families we restrict βj to take nonnegative
values and that the intercept β0 be bounded away from 0 by some δ > 0. These
requirements are needed due to the form of the canonical link functions for
the Gamma and Inverse Normal families (1/µ and 1/µ2, respectively), which
may be unbounded unless restrictions are imposed on the linear part of the
model. Furthermore, for these families, we assume that there exists a max-
imizer β∗ of the expected log-likelihood for which all components of β∗ are
nonnegative and for which β∗0 is strictly greater than δ; just as for (i) and (ii)
above, one can detect whether this assumption is violated, based on the data,
with probability tending to 1 as sample size tends to infinity.

A key to our results is that in a randomized trial (that is, where by design
the treatment A is independent of the baseline variables V ), we can write

E(Y |A = 0) = EV [E(Y |A = 0, V )],

E(Y |A = 1) = EV [E(Y |A = 1, V )].

Our strategy is to use a generalized linear model as a working model to estimate
E(Y |A, V ); in particular, we’ll use generalized linear models with canonical
link functions and that include an intercept term and a treatment term A.
After fitting these models, we evaluate the right hand side of the previous
display using the model fit in place of E(Y |A = 0, V ), E(Y |A = 1, V ) and
replacing the expectation EV by expectation with respect to the empirical
distribution of V . This allows us to leverage baseline variables and potentially
improve the power of our estimators compared to unadjusted estimators. We
show in Section 3 and the Appendix that this estimation strategy is an example
of a targeted maximum likelihood estimator.

The results we prove in Section 3 are asymptotic in the sample size (that is,
we prove our estimators are consistent and have a normal distribution in the
limit as sample size tends to infinity.) We assume the working model is fixed,
that is, it does not change with sample size and is not data-dependent. This
can be assured, for example, if the working model is chosen prior to looking at

4The argument that one can detect whether (ii) is violated, for large sample size, relies
on the concavity of the expected log-likelihood in arbitrarily misspecified generalized linear
models with canonical link; this is described in the Appendix.
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the data. However, we discuss in Section 8 how one can generalize our main
result to incorporate certain data-adaptive model selection procedures.

2.4 Related Work

Moore and van der Laan (2007) applied targeted maximum likelihood method-
ology to prove that for randomized trials, certain easy to compute estimators
based on a logistic regression working model are asymptotically unbiased (and
locally efficient) even when the working model is misspecified. Our results
generalize this important result to a larger class of generalized linear models
that includes Normal (Gaussian) models, Poisson models with log link, and
models based on the Gamma distribution (with reciprocal link) and Inverse
Gaussian distribution (with link 1/µ2). We note that estimation of the risk
difference using a Normal working model with only main terms corresponds to
ANCOVA (analysis of covariance), which has been shown to be asymptotically
unbiased even when the model is misspecified (Yang and Tsiatis, 2001; Leon
et al., 2003); similar results have been shown for an estimator called ANCOVA
II (Yang and Tsiatis, 2001; Leon et al., 2003), which involves ordinary least
squares regression of the centered outcome on centered main terms and an
interaction term. We also note that in the special case of logistic regression,
Freedman (2008c) proved a related result under the framework of randomiza-
tion inference.

Our result for the special case of a Poisson model with only main terms
(see the Corollary in Section 3) is a generalization of a result of Gail (1986)
that required much stronger assumptions than used here.

Robinson and Jewell (1991) compare the precision of estimators of the
marginal effect and estimators of the conditional effect of a treatment, based
on linear and logistic regression models. In this paper we focus only on esti-
mating marginal effects, that is, comparisons of E(Y |A = 1) and E(Y |A = 0).
These are the same quantities estimated by the unadjusted estimator defined
above. Our estimators leverage baseline variables in order to try to get more
precise (i.e. smaller asymptotic variance) estimates than the unadjusted esti-
mator. We note that whether marginal effects or conditional effects are more
relevant will depend on the application at hand. Though the focus of this pa-
per is estimation and inference, certain results have been shown for hypothesis
testing, in which certain model-based tests have asymptotically correct Type I
error even when working models are arbitrarily misspecified (Rosenblum and
van der Laan, 2009).

The estimators we present in Section 3, which are examples of targeted
maximum likelihood estimators, also coincide with certain g-computation es-
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timators (Robins, 1986, 1987), doubly-robust estimators (Robins, 2000; Robins
and Rotnitzky, 2001; Neugebauer and van der Laan., 2002; van der Laan and
Robins, 2002), and estimators in (Tsiatis, 2006; Zhang et al., 2008). In the
special case of estimating the risk difference, our estimators are contained in
the class of estimators in Section 3.2.3 of the Comments to the Rejoinder to
(Scharfstein et al., 1999) (page 1141), for the situation of randomized trials.
Scharfstein et al. (1999) construct simple, regression-based estimators of the
risk difference that are doubly robust and locally efficient. Some of these es-
timators involve generalized linear models with canonical link functions, in
which certain simple functions of the inverse of the propensity score (such as
C1(A, V ) defined in our Section 7) are included as terms in the linear part of
the model. In the case of a randomized trial, including the additional terms
of Scharfstein et al. (1999) is equivalent to including a treatment variable and
an intercept. Their estimator is equal to ours in the special case of estimat-
ing the risk difference in a randomized trial. Furthermore, in the context of
a randomized trial, their arguments imply this estimator is consistent under
arbitrary model misspecification, and locally efficient.

We note that in general, targeted maximum likelihood estimators will differ
from from g-computation estimators, doubly-robust estimators, and estimators
in (Tsiatis, 2006; Zhang et al., 2008). In general, some advantages of targeted
maximum likelihood estimators include being substitution estimators (so that
global constraints, such as estimates being in the range [0, 1] when estimating
a probability, are satisfied), and not suffering from multiple solutions as some
estimating functions do. For a full list of such advantages, see (van der Laan,
2010).

3 Main Result

Below we present our class of simple estimators based on generalized linear
models that are asymptotically unbiased even when the working model used is
incorrectly specified. We then give the main result of the paper in Theorem 1.
We illustrate the theorem with two examples based on Poisson regression mod-
els.

The class of estimators is constructed as follows, for any fixed, generalized
linear model with canonical link function, and any continuously differentiable
function r:

1. Estimate the coefficients {βj} in the linear part of the generalized linear
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model using maximum likelihood estimation.5

2. Compute Ê0 := 1
n

∑n
i=1 µ̂(0, Vi), and Ê1 := 1

n

∑n
i=1 µ̂(1, Vi), where µ̂(a, v)

is the estimated mean of Y given A = a, V = v, based on the fit of
the generalized linear model, for treatment assignment a and baseline
variables v. µ̂ is formally defined in the Appendix, where we also give R
code for computing Ê0 and Ê1.

3. Compute r(Ê0, Ê1); this is our estimator of the parameter
r(E(Y |A = 0), E(Y |A = 1)).

4. Confidence intervals can be obtained based on estimates of the efficient
influence function (as described in Section 4) or based on the nonpara-
metric bootstrap.

We have the following theorem stating that the above estimator is asymp-
totically unbiased and locally efficient.

Theorem 1: Consider any generalized linear model from the Normal, Bi-
nomial, Poisson, Gamma, or Inverse Gaussian family, with canonical link
function, in which the linear part contains the treatment variable as a main
term and also contains an intercept. Let r be any continuously differentiable
function. Under the assumptions in Section 2, the above procedure gives an
asymptotically unbiased estimator for the parameter r(E(Y |A = 0), E(Y |A =
1)), even when the generalized linear model is misspecified. The confidence
intervals constructed in Section 4 have asymptotically correct coverage, even
when the model is misspecified. Furthermore, this estimator is locally efficient
in that when the generalized linear model is correctly specified this estimator
attains the efficiency bound for the model that only assumes treatment assign-
ment A is independent of baseline variables V .

The class of estimators in Theorem 1 is derived from targeted maximum
likelihood methodology (van der Laan and Rubin, 2006), as described in the
Appendix. We point out that in this special case of a randomized trial (the
case considered throughout this paper), the particular version of the tar-
geted maximum likelihood estimator given in the Appendix coincides with
certain g-computation estimators (Robins, 1986, 1987), doubly-robust esti-
mators (Robins, 2000; Robins and Rotnitzky, 2001; Neugebauer and van der
Laan., 2002; van der Laan and Robins, 2002), and estimators in (Tsiatis, 2006;
Zhang et al., 2008). In addition, the estimator given in Theorem 1 solves the

5If the terms in the linear part are linearly dependent, or if the maximum likelihood
algorithm fails to converge to a finite value, we consider the estimator to be undefined.

Hosted by The Berkeley Electronic Press



doubly robust estimating equation, and thereby the theory of statistical in-
ference developed in (van der Laan and Robins, 2002) applies. In general,
targeted maximum likelihood estimators will differ from from g-computation
estimators, doubly-robust estimators, and estimators in (Tsiatis, 2006; Zhang
et al., 2008).

3.1 Application of Main Result in Several Examples

To illustrate the above theorem, consider a Poisson working model with log link
function, and linear part η = β0+β1A+β2V . We will estimate the marginal log
rate ratio of the treatment compared to the control: log(E(Y |A = 1)/E(Y |A =
0)), using this Poisson model as working model (but not assuming it is correctly
specified). This corresponds to choosing the function r in the theorem to be
r(x, y) = log(y/x). We follow the steps given above the theorem to compute
an estimate of the marginal log rate ratio. First, we use maximum likelihood
estimation to produce estimates β̂0, β̂1, β̂2 for the coefficients β0, β1, β2. Next,
we compute

Ê0 :=
1

n

n∑
i=1

µ̂(0, Vi) =
1

n

n∑
i=1

exp(β̂0 + β̂2Vi)

and

Ê1 :=
1

n

n∑
i=1

µ̂(1, Vi) =
1

n

n∑
i=1

exp(β̂0 + β̂1 + β̂2Vi).

Lastly, we compute

r(Ê0, Ê1) = log(Ê1/Ê0) = log[
n∑
i=1

exp(β̂0 + β̂1 + β̂2Vi)/
n∑
i=1

exp(β̂0 + β̂2Vi)].

In this special case, we see that the above estimator can be simplified,
leaving as final estimate β̂1, the coefficient of the treatment term. Thus, the
above theorem implies the following corollary (which is the log-linear analog
of ANCOVA for linear models):

Corollary: Consider a Poisson working model with only main terms
A and V (where V is a vector of pre-randomization variables). Under the
assumptions in Section 2, we have β̂1, the estimate of the coefficient corre-
sponding to the treatment term A, is an asymptotically unbiased estimate of
the marginal log rate ratio, even when the model is misspecified. Also, the con-
fidence intervals constructed in Section 4 have asymptotically correct coverage.
Furthermore, this estimator is locally efficient in that when the Poisson model
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is correctly specified this estimator attains the efficiency bound for the model
that only assumes treatment assignment A is independent of baseline variables
V .

As another example, consider the problem of estimating the marginal log
rate ratio using a Poisson working model with log link function, but this time
with the linear part containing an interaction term: η = β0+β1A+β2V +β3AV .
Such a working model might be used when it is suspected that there is effect
modification by the baseline variable V ; in this case, it still may be of interest to
estimate the marginal log rate ratio for the total population, recognizing that
the parameters E0, E1 each represent aggregated mean outcomes over the total
population, for the control and treatment interventions, respectively. Again,
we use maximum likelihood estimation to get estimates for the coefficients
β0, β1, β2, β3; as above, we use as estimator r(Ê0, Ê1), which equals

log(Ê1/Ê0) = log

[
n∑
i=1

exp(β̂0 + β̂1 + β̂2Vi + β̂3Vi)/
n∑
i=1

exp(β̂0 + β̂2Vi)

]

= β̂1 + log

[
n∑
i=1

exp((β̂2 + β̂3)Vi)/
n∑
i=1

exp(β̂2Vi)

]
. (3)

The proof of Theorem 1, given in the Appendix, applies the targeted maxi-
mum likelihood algorithm to the application in this paper, namely, estimating
a function r of the conditional means given assignment to the control arm
and the treatment arm, respectively. It turns out in this case, that when the
initial density p0 is chosen based on the maximum likelihood estimate using a
generalized linear model for Y given A, V , and a canonical link is used, then
the targeted maximum likelihood algorithm converges in a single iteration (as
defined in Section 6 below) and produces the estimator r(Ê0, Ê1) given in steps
1-4 just before Theorem 1. The reason is that the score of a generalized linear
model with canonical link function has a simple form that is closely related
to the efficient influence function of the conditional means E(Y |A = 0) and
E(Y |A = 1) in the model that is nonparametric except for assuming A is
randomized (that is, independent of baseline variables V ).

4 Computing Confidence Intervals and p-values

We show how to compute confidence intervals and p-values for the estima-
tor given just before Theorem 1. We use the method from Section 4 of
(Moore and van der Laan, 2007), based on estimates of the efficient influence
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function of our parameter in the nonparametric model. This involves first
computing an estimate σ̂2 for the asymptotic variance of

√
n(ψ̂ − ψ), where

ψ̂ = r(Ê0, Ê1) is our estimator and ψ is the true (but unknown) value for
the parameter r(E0, E1) that we are estimating; we describe how to compute
σ̂2 below. Having computed σ̂2, we next compute a 95% confidence interval
(ψ̂ − 1.96σ̂/

√
n, ψ̂ + 1.96σ̂/

√
n). Also, we can test the null hypothesis ψ = ψ0

using the test statistic T =
√
n(ψ̂ − ψ0)/σ̂, which is asymptotically normally

distributed with mean 0 and variance 1 under this null hypothesis and un-
der the regularity conditions given in Section 2. The confidence interval and
p-value computed by this method are asymptotically correct, even when the
generalized linear model used is incorrectly specified. We note that an alter-
native method to what we present in this section is to use the nonparametric
bootstrap.

The above procedures rely on an estimate of the asymptotic variance of√
n(ψ̂−ψ), which we denote by σ̂2, and define now. It can be computed based

on the partial derivatives of the function r used in defining our parameter and
on estimates of the efficient influence function of (E0, E1) in the nonparametric
model. Let r′1, r

′
2 denote the partial derivatives of the function r with respect

to the first component and second component, respectively. For example,
when our parameter is the marginal log rate ratio, then r(x, y) = log y/x,
and so r′1(E0, E1) = −1/E0, r

′
2(E0, E1) = 1/E1. Define the vector with two

components D(p)(V,A, Y ) := (D1(p)(V,A, Y ), D2(p)(V,A, Y )), where:

D1(p)(V,A, Y ) := (1−A)(Y−Ep(Y |A=0,V ))

p(A=0)
+ Ep(Y |A = 0, V )− Ep(Y |A = 0),(4)

D2(p)(V,A, Y ) := A(Y−Ep(Y |A=1,V ))

p(A=1)
+ Ep(Y |A = 1, V )− Ep(Y |A = 1), (5)

where Ep is the expectation with respect to the density p. D(p) is the efficient
influence function for (E0, E1) at p in the nonparametric model. (See van der
Laan and Robins (2002) for the derivation of this efficient influence function.)

As in Theorem 1, assume there exists a maximizer β∗ of the expected
log-likelihood of the generalized linear model, where the expectation is with
respect to the true (but unknown) data generating distribution. Under this
assumption, we show in the Appendix that such a maximizer is unique, and
that the maximum likelihood estimator β̂ converges to β∗. Let p1(β

∗) be
the density of Y given A, V corresponding to the parameter β = β∗ in the
generalized linear model. Let p2 be the known density of A given V , and let
p3 denote the (unknown) marginal density of V . Let density p∗ be that of the
true (but unknown) data generating distribution. In terms of D and r′1, r

′
2,

http://biostats.bepress.com/ucbbiostat/paper256



the asymptotic variance of
√
n(ψ̂ − ψ) is

σ2 = Ep∗ [r′1(E0, E1)D1(p1(β
∗)p2p3)(V,A, Y )

+r′2(E0, E1)D2(p1(β
∗)p2p3)(V,A, Y )]

2
. (6)

We estimate this by

σ̂2 =
1

n

n∑
i=1

(
r′1(Ê0, Ê1)D1(p̂)(Vi, Ai, Yi) + r′2(Ê0, Ê1)D2(p̂)(Vi, Ai, Yi)

)2
, (7)

where p̂ is the density estimated by targeted maximum likelihood given in the
Appendix. Since as shown in the Appendix, Ep̂(Y |A = 0, V ) = µ̂(0, V ) and
Ep̂(Y |A = 1, V ) = µ̂(1, V ), where µ̂(a, v) is the predicted mean of Y given
A = a, V = v based on the maximum likelihood estimate for the generalized
linear model, we have

σ̂2 =
1

n

n∑
i=1

(
r′1(Ê0, Ê1)[(1− Ai)(Yi − µ̂(0, Vi))/(1/2) + µ̂(0, Vi)− Ê0]

+ r′2(Ê0, Ê1)[Ai(Yi − µ̂(1, Vi))/(1/2) + µ̂(1, Vi)− Ê1]
)2
.

For example, when our parameter is the marginal log rate ratio, so that as
argued above r′1(E0, E1) = −1/E0, r

′
2(E0, E1) = 1/E1, we have

σ̂2 =
1

n

n∑
i=1

(
− 1

Ê0

[
(1− Ai)(Yi − µ̂(0, Vi))/(1/2) + µ̂(0, Vi)− Ê0

]
+

1

Ê1

[
Ai(Yi − µ̂(1, Vi))/(1/2) + µ̂(1, Vi)− Ê1

])2

. (8)

Having now computed σ̂2, one can use this in the formulas given in the first
paragraph of this section to compute confidence intervals and p-values.

We note that the above procedure for constructing confidence intervals
is invariant to affine transformations of the parameter r(E0, E1), but is not
invariant to more general monotone transformations of r(E0, E1). For a given,
strictly monotone function h, one can apply the method of this section to the
function h ◦ r, to obtain a confidence interval for the parameter h(r(E0, E1)).
An alternative method for constructing a confidence interval for h(r(E0, E1))
is to first compute a confidence interval [l, u] for r(E0, E1) as above, and then
let [h(l), h(u)] be one’s confidence interval for h(r(E0, E1)). Though these two
methods yield confidence intervals that are asymptotically equivalent, they
may have different performance for finite samples.
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5 Simulation Study

We show the finite sample performance of our proposed estimators for several
simulated data generating distributions. We focus on nonnegative integer-
valued outcome variables Y . Our parameter in all the simulations is the
marginal log rate ratio. We will compare the targeted maximum likelihood
estimator to the unadjusted estimator in terms of mean squared error, relative
efficiency, and coverage probability of the associated 95% confidence intervals.

5.1 Estimators

The targeted maximum likelihood estimator will use the log-linear working
model with main terms and an interaction term, as in the last example given
in Section 3. That is, the working model for Y given A, V is Poisson with
linear part containing the terms 1, A, V,AV , and using canonical link (the log
link). The resulting estimator is that given by (3).

The unadjusted estimator is the log of the ratio of the sample means µ̂1, µ̂0

in the treatment and control groups, respectively.
Both methods compute confidence intervals using the delta method, as in

Section 4. That is, for the unadjusted estimator ψ̂unadj, we get an estimate

for the asymptotic variance of
√
n(ψ̂unadj − ψ) using the formula

σ̂2

unadj :=
1

n

n∑
i=1

(
− 2

µ̂0

[(1− Ai)(Yi − µ̂0)] +
2

µ̂1

[Ai(Yi − µ̂1)]

)2

. (9)

We use the formula (8) to obtain the analogous asymptotic variance corre-
sponding to the targeted maximum likelihood estimator. Given estimator
ψ̂ and estimated asymptotic variance σ̂2, we form 95% confidence intervals:
(ψ̂ − 1.96σ̂/

√
n, ψ̂ + 1.96σ̂/

√
n).

5.2 Data Generating Distributions

We consider three data generating distributions. In all of them, the baseline
variable V is a standard normal, and A is binary, independent of V , and takes
values 0 and 1 each with probability 1/2.

Under the first data generating distribution (to be defined next), the work-
ing model will be correctly specified; under the latter data generating distri-
butions, the working model will be misspecified.

In data generating distribution 1, we set Y to have a Poisson distribution,
with E(Y |A, V ) := exp(A + AV ). In data generating distribution 2, we set
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Y to have a Poisson distribution, with E(Y |A, V ) := exp(A + |V |). For data
generating distribution 3, we take a distribution that is not in any generalized
linear model family. More precisely, in data generating distribution 3, we set
Y to be the sum of two independent random variables; the first has a Poisson
distribution, with conditional mean given A, V set to exp(A + AV ), and the
second has two point masses with equal probabilities at 0 and 4 respectively.
(We assume these two independent random variables are not observed, but
that their sum, Y , is observed.) The log rate ratios are 1.5, 1, and ≈0.77 for
data generating distributions 1, 2, and 3, respectively.

Table 1 below gives the mean squared error, relative efficiency, and coverage
probabilities for our estimators, for each data generating distribution, and for
sample sizes n ∈ {100, 500, 1000}. The mean squared error, observed relative
efficiency, and coverage probabilities are calculated based on 10000 data sets
generated according to each data generating distribution and sample size.

For all data generating distributions and all sample sizes considered, the
targeted maximum likelihood estimator has smaller mean squared error than
the unadjusted estimator. The relative efficiency in all cases is greater than
1, indicating greater precision for the targeted maximum likelihood estimator.
The coverage probabilities are all close to the nominal 95%, being off by at
most 3%. We note that for data generating distribution 1, if the working
model is changed to include only main terms (and so becomes misspecified),
the relative efficiencies decrease to approximately 1.25, 1.28, and 1.27,6 for
sample sizes n = 100, 500, and 1000, respectively; this is to be expected, since
in general misspecification will lead to lower precision (but will still lead to
consistent, asymptotically normal estimators).

We also ran a set of simulations using modifications of the data generating
distributions 1, 2, and 3, where we decreased the magnitude of the parameter
of interest (the log rate ratio). More precisely, we changed data generating
distribution 1 to set Y to have a Poisson distribution, with E(Y |A, V ) :=
exp(k(A+AV )), for each of k ∈ {0.2, 0.4, 0.6, 0.8}. We changed data generat-
ing distribution 2 to set Y to have a Poisson distribution, with E(Y |A, V ) :=
exp(kA+|V |), k ∈ {0.2, 0.4, 0.6, 0.8}. We changed data generating distribution
3 in an analogous way, setting Y to be the sum of two independent random
variables; the first has a Poisson distribution, with conditional mean given
A, V set to exp(k(A+AV )), and the second has two point masses with equal
probabilities at 0 and 4 respectively. Larger k correspond to larger values of

6These values are not shown in Table 1, since all values in Table 1 are generated based
on the targeted maximum likelihood estimator using the working model with main terms
and an interaction term, as described earlier in this section.
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Table 1: The Mean Squared Error (MSE), Relative Efficiency, and Coverage
Probability of Nominal 95% Confidence Intervals (CI’s) for the Targeted Max-
imum Likelihood Estimator (TMLE) vs. Unadjusted Estimator (UNADJ), at
Sample Sizes n=100, 500, and 1000.

Data Generating Distribution 1
MSE Relative Efficiency CI Coverage

For n=100:
UNADJ 0.057

1.35
0.93

TMLE 0.042 0.94

For n=500:
UNADJ 0.012

1.41
0.94

TMLE 0.008 0.94

For n=1000:
UNADJ 0.006

1.42
0.94

TMLE 0.004 0.94

Data Generating Distribution 2
MSE Relative Efficiency CI Coverage

For n=100:
UNADJ 0.045

1.10
0.93

TMLE 0.041 0.92

For n=500:
UNADJ 0.009

1.02
0.95

TMLE 0.009 0.95

For n=1000:
UNADJ 0.004

1.02
0.95

TMLE 0.004 0.95

Data Generating Distribution 3
MSE Relative Efficiency CI Coverage

For n=100:
UNADJ 0.031

1.29
0.94

TMLE 0.024 0.94

For n=500:
UNADJ 0.006

1.31
0.94

TMLE 0.005 0.95

For n=1000:
UNADJ 0.003

1.31
0.95

TMLE 0.002 0.95
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the true log rate ratio. k = 1 would correspond to the original data generating
distributions.

The results for these modified versions of data generating distributions 1, 2,
and 3 are given in Table 2, where we focus on the relative efficiency, for clarity.
For the modified version of data generating distributions 1 and 3, for all three
sample sizes considered (n=100, 500, 1000), the relative efficiency grew as k
got larger. For the modified version of data generating distribution 2, for each
of the three sample sizes considered (n=100, 500, 1000), the relative efficiency
remained roughly constant as k got larger (but differed by sample size); in this
case, the asymptotic relative efficiency is 1, and so for larger sample sizes, the
relative efficiency converges to 1.

6 Brief Description of Targeted Maximum Like-

lihood Estimation

In the Appendix, we prove Theorem 1 using targeted maximum likelihood
methodology. We give a brief overview here; a full description is given in
(van der Laan and Rubin, 2006; van der Laan et al., 2009). Targeted maximum
likelihood is a general methodology for estimation and inference. It can be
used to estimate finite-dimensional, pathwise differentiable parameters, which
include, for example, the following: marginal treatment effects (which are the
parameters considered in this paper), the parameter of a marginal structural
model, the parameter of a structural nested model, the parameter of a propor-
tional hazards model, and the effect of static or dynamic treatments. Targeted
maximum likelihood can also be used to estimate more general parameters in-
cluding infinite-dimensional, non-pathwise differentiable parameters.

Targeted maximum likelihood estimation has several important advantages
over standard maximum likelihood estimation and estimating function-based
methodologies. When estimating parameters in the nonparametric model7,
maximum likelihood estimation based on assuming a parametric model (or
based on selecting a parametric model using a sieve) may suffer severe bias due
to model misspecification. A major improvement, especially in problems with
high-dimensional confounding variables, is estimating function based method-
ology (Robins, 1986, 1987; van der Laan and Robins, 2002). However, these

7By nonparametric model, we generally mean the model consisting of all continuous den-
sities with respect to a given dominating measure. In this paper, we also use “nonparametric
model” to describe the model that makes no assumptions on the density of the data gen-
erating distribution except that treatment A is randomized, so is independent of baseline
variables V .
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Table 2: The Relative Efficiency for the Targeted Maximum Likelihood
Estimator (TMLE) vs. Unadjusted Estimator (UNADJ), at Sample Sizes
n=100, 500, and 1000.

Data Generating Distribution 1
k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1

For n=100: 1.00 1.04 1.11 1.23 1.35

For n=500: 1.01 1.04 1.12 1.26 1.41

For n=1000: 1.01 1.05 1.12 1.24 1.42

Data Generating Distribution 2
k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1

For n=100: 1.09 1.09 1.09 1.10 1.10

For n=500: 1.03 1.02 1.02 1.03 1.02

For n=1000: 1.01 1.02 1.01 1.01 1.02

Data Generating Distribution 3
k = 0.2 k = 0.4 k = 0.6 k = 0.8 k = 1

For n=100: 1.00 1.01 1.05 1.14 1.29

For n=500: 1.00 1.02 1.06 1.15 1.31

For n=1000: 1.00 1.02 1.06 1.17 1.31
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methods still have limitations. These include (1) in general not having a sat-
isfactory way to deal with multiple solutions to an estimating equation, (2)
only applying to problems that can be expressed in terms of a parameter of
interest and a variation independent nuisance parameter, and (3) not being
invariant to monotone transformations of the parameter of interest. Targeted
maximum likelihood does not have any of these limitations. In addition, in
many situations, targeted maximum likelihood can be simply implemented
using standard statistical software.

6.1 Targeted Maximum Likelihood Algorithm

We now give a brief overview of the general algorithm for constructing the
targeted maximum likelihood estimator. We follow this with several examples.
The general idea in the algorithm is to start with an initial estimator for the
density of the data generating distribution, and then make a series of updates
that focus on improved estimation of the parameter of interest.8 Heuristically,
each update involves choosing a direction (score) for which the parameter of
interest is most sensitive; the current estimate of the overall density is then
pushed in this direction to the extent that the likelihood increases maximally.
The final estimator for the parameter of interest is the plug-in (substitution)
estimator of the density resulting from the last update. We give the basic
skeleton of the targeted maximum likelihood algorithm. Improvements and
extensions, such as collaborative targeted maximum likelihood (van der Laan
and Gruber, 2009) and targeted loss-based learning (van der Laan and Rubin,
2006), build on this basic skeleton.

The targeted maximum likelihood algorithm takes as input the data, the
assumed model M, and the parameter ψ to be estimated (which formally is
a function mapping densities in the model M to e.g. real-valued scalars or
vectors). In the case considered in this paper, the observed data on a single
subject consists of the vector (Y,A, V ). The parameter of interest ψ is a
smooth function, which we denote by r, of the mean outcomes given each of
the two possible treatments: E(Y |A = 0), E(Y |A = 1). As discussed above,

8The motivation for the update step of the targeted maximum likelihood algorithm is re-
lated to the heuristic idea used in the one-step estimator for updating a given

√
n-consistent

estimator in the direction of the efficient influence function (Bickel et al., 1993). However,
a major difference is that in targeted maximum likelihood, the whole density is updated
rather than just the parameter estimate, and the overall likelihood of the density estimate is
increased at each iteration. While the one-step estimator may result in parameter estimates
that do not correspond to any density in one’s model, this will not happen for targeted
maximum likelihood estimation.

Hosted by The Berkeley Electronic Press



different choices of the function r correspond to the parameter ψ being the
risk difference, risk ratio, or log odds ratio, for example. The model M is
nonparametric (making no assumptions), except for the assumption, ensured
by randomization, that treatment assignment A and baseline variables V are
independent.

For a given parameter of interest ψ, and modelM, the targeted maximum
likelihood estimator is constructed in the following six steps:

1. An initial estimate p0 of the density of the data generating distribution is
constructed, by any method. For example, standard maximum likelihood
estimation using a parametric working model (which we do not assume
to be correctly specified) could be used to generate p0. In the general
targeted maximum likelihood algorithm, it is not necessary to estimate
the full density, only the part on which the parameter ψ depends; for
simplicity, here we consider the case in which we estimate the full density.
We use the term “density” below in the general sense9, representing
a continuous density for continuous data or a frequency function for
discrete data; thus, the algorithm can be applied to situations involving
both continuous variables and discrete variables.

2. The efficient influence function (also called the efficient influence curve)
for the parameter ψ in the model M is computed, at p0. Methods for
finding the efficient influence function for a wide variety of parameters
can be found in (van der Laan and Robins, 2002). The informal reasoning
for focusing on the efficient influence function is that it gives the direction
(score) for which the parameter is most sensitive to small fluctuations,
to first order.

3. A parametric model with parameter vector ε and corresponding densities
{p(ε)} is constructed that (i) equals the initial density p0 at ε = 0 and
(ii) has score at ε = 0 whose linear span contains the efficient influence
function at p0 (which was computed in step 2). The motivation is that
we would like to construct a “least-favorable” model for our parameter,
that is, a model that allows improvement in the direction in which the
parameter we are estimating is most sensitive. Here ε is in general a
real-valued vector, and we write ε = 0 to mean that each component of
this vector equals 0.

4. The parameter ε of the parametric model from the previous step is esti-
mated using maximum likelihood estimation; call the resulting maximum

9The density can be with respect to any given measure (including counting measure).
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likelihood estimator ε̂. This estimation step can be done, in many cases,
by fitting a regression using standard software. We let p1 denote the
density p(ε̂). The density p1 will have at least as large a likelihood as
p0, since by condition (i) of the previous step, p0 is in this paramet-
ric model. An informal reason for desiring property (ii) in the previous
step is that “optimal” estimators10 solve an estimating equation involv-
ing the efficient influence function (Bickel et al., 1993; van der Vaart,
1998); iteration of steps 2-4 of this algorithm will lead to a final density
approximately solving this estimating equation.

5. We then replace the initial density estimate p0 by our new density p1,
and repeat steps 2-4 until the algorithm converges to a final density p
(that is, until ||ε̂|| is sufficiently small). In many cases, the algorithm
will have converged (that is, ε̂ = 0) after just a single iteration of steps
2-4.

6. Once the algorithm converges to a final density p, the targeted maximum
likelihood estimator for the parameter ψ is the plug-in estimator of ψ at
p. That is, we evaluate the parameter ψ at the final density p.

It is often useful to decompose the density for the observed data into com-
ponents. For example, we can write the initial density p0(Y,A, V ) as the
product of p01(Y |A, V ), p02(A|V ), and p03(V ). One choice of initial estimator
for the density of Y given A, V is the fit of a generalized linear model for Y
given A, V . We give an example below.

6.2 Application of Targeted Maximum Likelihood Al-
gorithm to Estimating Marginal Means in Random-
ized Trials

We now apply the above algorithm to a special case of our main result, in which
Y is binary and a logistic regression working model is used. This example
was given by Moore and van der Laan (2007), but we show it again here for
completeness; in this paper we generalize some of the results in (Moore and
van der Laan, 2007) to a variety of commonly used families of generalized
linear models with canonical links. Also, for simplicity in this example, we
let our parameter of interest be E(Y |A = 1), which is the population mean
were everyone assigned treatment A = 1. This corresponds to setting the
function r(x, y) in the definition of the parameter of interest to be r(x, y) := y.

10By “optimal” we mean semiparametric efficient estimators.

Hosted by The Berkeley Electronic Press



We will follow steps 1-5 of the targeted maximum likelihood algorithm to
estimate the density p(Y,A, V ) and then, as in step 6, compute the plug-
in estimator of our parameter ψ := E(Y |A = 1). Though we use a binary
outcome and a logistic regression working model here, the same steps lead to
consistent, asymptotically normal, locally efficient estimators when using any
of the generalized linear models with canonical links described in Section 2.3
as working models (e.g. Poisson regression with log link).

For step 1 of the algorithm, we separately specify initial estimators for the
components of the density of (V,A, Y ), denoted by p01(Y |A, V ), p02(A|V ), and
p03(V ). We let our estimator p01(Y |A, V ) be the maximum likelihood fit of the
following logistic regression working model:

P (Y = 1|A, V ) := logit−1(β0 + β1A+ β2V + β3AV ). (10)

This is just one possible choice of terms for the model–any set of terms can be
included, as long as an intercept and a main term for the treatment variable A
are included, as we discuss below. We fit the model with maximum likelihood
estimation to produce β̂, and set p01(Y |A, V ) to be the density corresponding
to the fit model:

p01(Y = 1|A, V ) := logit−1(β̂0 + β̂1A+ β̂2V + β̂3AV ). (11)

We have that p02(A|V ) is known, and equals 1/2, by randomization. Lastly,
our estimator for p03(V ) is the empirical distribution of V . Our overall initial
density estimate is then the product p01(Y |A, V )p02(A|V )p03(V ), which we
denote by p0.

Step 2 involves computing the efficient influence function for the parameter
ψ. The efficient influence function for P (Y = 1|A = 1), at a given density p,
in our model only assuming independence of A, V is:

A(Y − p(Y = 1|A = 1, V ))

p(A = 1)
+ p(Y = 1|A = 1, V )− p(Y = 1|A = 1) (12)

This efficient influence function is derived, for example, in (van der Laan and
Robins, 2002). Note that by design we have P (A = 1) = 1/2. Let ψ̂0 :=
1
n

∑n
i=1 p01(Y = 1|A = 1, Vi), which is the plug-in estimate at the initial density

p0; this will be used in step 3.
Step 3 involves choosing a parametric model {p(ε)} satisfying the condi-

tions (i) and (ii) given in step 3 above. That is, we want to construct a model
{p(ε)} that equals the initial density p0 at ε = 0, and (ii) has score at ε = 0
whose linear span contains the efficient influence function (12) at p0. We now
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give the general idea for how to build such a parametric model by adding
a “clever covariate” (defined below) to the regression model (11). We will
leverage a useful property of generalized linear models with canonical links.

Consider a generalized linear model for Y given A, V with canonical link g,
as defined in (1), and with linear part η consisting of a single term εC(A, V ).
The score (derivative of the log-likelihood) at ε = 0 is equal to
(Y − µ(A, V ))C(A, V ), where µ(A, V ) is the mean of Y given A, V , according
to the generalized linear model. Setting C(A, V ) = A, we have that the score
at ε = 0 is A(Y − µ(A, V )), which has the same form as the first part of the
efficient influence function (12). Thus, by setting our parametric model {p(ε)}
to be the generalized linear model with linear part η consisting of a single
term εC(A, V ), the score at ε = 0 will be the first part of the efficient influence
function (12) at p0. An extension of this procedure, described in detail below,
results in a model with score at ε = 0 equal to the entire efficient influence
function (12) at p0. Such a model satisfies condition (ii) given in step 3 above;
we can make it satisfy condition (i) by adding an offset term to the model
(described below).

We call a choice C(A, V ) of a term in a generalized linear model a “clever
covariate” if it results in a score that equals a part of the efficient influence
function for the given problem. Methods for obtaining clever covariates for a
variety of parameters and models are given in (van der Laan and Rubin, 2006;
Moore and van der Laan, 2007; Polley and van der Laan, 2009; van der Laan
et al., 2009). After a clever covariate for a given problem is derived, estimation
then involves simply refitting a regression including that covariate and with
the linear part of the initial regression as an offset, as we describe next.

We now build a parametric model {p(ε)} satisfying the conditions (i) and
(ii) given in step 3 above. Define “clever covariates” C1(A) := A, and C2(V ) :=
p01(Y = 1|A = 1, V ) − ψ̂0. For each ε = (ε1, ε2), define the density in the
parametric model p(ε)(Y,A, V ) := p1(ε)(Y |A, V )p2(ε)(A|V )p3(ε)(V ), where

p1(ε)(Y = 1|A, V ) := logit−1(β̂0 + β̂1A+ β̂2V + β̂3AV + ε1C1(A)),(13)

p2(ε)(A = 1|V ) := 1/2, (14)

p3(ε)(V ) := sε2 exp(ε2C2(V ))p03(V ), (15)

where the constant sε2 := 1/[ 1
n

∑n
i=1 exp(ε2C2(Vi))] is chosen so that p3(ε)(v)

integrates to 1. In this definition of the model {p(ε)}, we consider β̂ and ψ̂0

as fixed numbers (having been computed in step 1). It follows that conditions
(i) and (ii) hold for this model, since substituting 0 for each component of ε
results in the initial density p0, and the components of the score at ε = (0, 0)
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(which we sometimes write more concisely as ε = 0) are:

d

dε1
[log p(ε)(Y,A, V )]|ε=0 =

d

dε1
[log p1(ε)(Y |A, V )]|ε=0

= (Y − p01(Y = 1|A = 1, V ))C1(A), (16)

and
d

dε2
[log p(ε)(Y,A, V )]|ε=0 =

d

dε2
[log p3(ε)(V )]|ε=0 = C2(V ). (17)

Thus, substituting the definitions of C1(A) and C2(V ), we have that the linear
span of these components of the score at ε = 0 includes the efficient influence
function at p0 as given in (12).

Step 4 involves computing the maximum likelihood estimator (ε̂1, ε̂2) for the
parameter (ε1, ε2) of the model defined in (13), (14), (15). To get ε̂1, we fit the
logistic regression (13), where we enter the expression β̂0 + β̂1A+ β̂2V + β̂3AV
in (13) as an offset (since we consider β̂ to be fixed), so that only ε1 can be
varied. Since we already had the term A in the original logistic regression for
p01, and since C1(A) = A, we must have ε̂1 = 0. To get ε̂2, we first note that
since by our having chosen p03(V ) to be the empirical distribution of V and
by the definition of ψ̂0 from step 2, we have

n∑
i=1

d

dε2
[log p(ε)(Yi, Ai, Vi)]|ε=(0,0) =

n∑
i=1

C2(Vi)

=
n∑
i=1

[p01(Y = 1|A = 1, Vi)− ψ̂0]

= 0.

Also, for all v, p3(ε)(v) is a strictly concave function of ε2, which follows directly
from its definition. Thus, the maximizer of the log-likelihood occurs at ε̂2 = 0.
Putting this all together, we have (ε̂1, ε̂2) = (0, 0), and our updated density
p(ε̂) = p(0), which is precisely the initial density from step 1.

Step 5 involves iteration of the steps 2-4, until ε̂ is sufficiently small. Since
it’s already equal to (0, 0) after the first iteration, we need not do any more
iterations.

Lastly, for step 6, we compute the plug-in estimate of ψ, that is, ψ evaluated
at the final density p output from step 5. Thus, our estimate of ψ is

ψ̂ =
1

n

n∑
i=1

p01(Y = 1|A = 1, Vi)

=
1

n

n∑
i=1

logit−1(β̂0 + β̂1 + β̂2Vi + β̂3Vi). (18)
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We have shown that for the parameter, model, and observed data given
at the beginning of this section, the targeted maximum likelihood algorithm
reduces to fitting the logistic regression (11) and then computing the empirical
mean of the resulting fit, setting A = 1, as in (18). Certain targeted maximum
likelihood estimators, for many parameters and many models, can be shown
to converge in just one iteration, and will involve the use of clever covariates in
regression fits. This allows the construction of simple to compute estimators
that can be shown to have desirable properties (e.g. the double robustness
property described in (van der Laan and Robins, 2002)).

It will not always be the case, as above, that the clever covariate will
already have been included as a term in the regression; in this case, one simply
fits the regression with added term (which we called the “clever covariate”),
fixing the previously computed coefficients (by using an offset when fitting the
regression). We give an example of this situation next.

6.3 Example of Targeted Maximum Likelihood Conver-
gence Requiring More than One Iteration

In general, when using generalized linear working models with non-canonical
links in the targeted maximum likelihood algorithm, convergence will not occur
in a single iteration. For example, using a probit regression working model
(which uses the inverse normal cumulative distribution function as link) above
would require multiple iterations. This occurs because the “clever covariate”
added to the regression will depend on parts of the density estimate that
are updated at each iteration. This is in contrast to the case of generalized
linear models with canonical links (as above), where convergence occurs in a
single iteration of the targeted maximum likelihood algorithm. We give more
details of a targeted maximum likelihood estimator using probit regression in
Section 8.3 of the Appendix.

7 Discussion

We described a large class of easy to implement, model-based estimators that
leverage baseline variables to improve precision of estimates of marginal effects
in randomized trials. These estimators are guaranteed to be asymptotically
unbiased and asymptotically normal, even when the working models used are
arbitrarily misspecified. When the working model is correctly specified, the
estimators are efficient. Our results demonstrate one application of targeted
maximum likelihood methodology.
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Though the focus of this paper was on randomized trials, the targeted
maximum likelihood estimator can also be used to estimate treatment effects
in observational studies. For example, consider estimating the marginal mean
E(Y |A = 1) using a logistic regression working model, as in Section 6.2. There,
the “clever covariate” used was C1(A, V ) := A. In an observational study, we
would use as “clever covariate” C1(A, V ) := A/p̂(A|V ) where p̂(A|V ) is an
estimate of the probability of A given V . Note that this differs from standard
inverse probability weighting methods, which instead of incorporating weights
within terms in the regression model, weight the overall regression. For more
examples of targeted maximum likelihood estimators for a wide variety of
parameters and models, see e.g. (van der Laan and Rubin, 2006; Moore and
van der Laan, 2007; Polley and van der Laan, 2009; van der Laan et al., 2009).

8 Appendix

In this appendix, we first prove Theorem 1. We next give R code for the
estimator from Section 3. We give more details and R code for the example
of a targeted maximum likelihood estimator requiring more than one iteration
of the targeted maximum likelihood algorithm from Section 6.3. Lastly, in
Section 8.4, we briefly discuss incorporating model selection into the estimation
method we presented in this paper

8.1 Proof of Theorem 1

We prove Theorem 1. First, we show that the targeted maximum likelihood
estimator in our setting is of the simple form given in the beginning of Sec-
tion 3. Next, we verify that the regularity conditions given in Section 2 are
sufficient to prove all the claims in Theorem 1.

Consider the model used throughout this paper, where the data consist of
i.i.d. observations (Vi, Ai, Yi) and the randomized treatment Ai is assumed to
take values 0 and 1 with probability 1/2, independent of the baseline variables
Vi. The parameter being estimated is a smooth function r of the conditional
means E(Y |A = 0) and E(Y |A = 1). The efficient influence function for
this parameter in the nonparametric model is then a linear combination of
the efficient influence functions for the conditional means E(Y |A = 0) and
E(Y |A = 1). At any given density p, these efficient influence functions are
given by (4), (5) above.

We will use a generalized linear model with canonical link, as described in
Section 2. We use the notation from Section 2, and make all the assumptions
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from Section 2. We note that under the assumptions in Section 2 on our
families of generalized linear models with canonical links, we have b̈(η) :=
d2b
dη2

> 0 for all η.

We first extract some useful information from the fact that β̂ is the max-
imum likelihood estimator of the generalized linear model defined above. Let
p01(Y |A, V ) denote the the maximum likelihood estimate for the density of Y
given A, V , using the above generalized linear model. Under the regularity as-
sumptions made in Section 2, we have that the derivative of the log-likelihood
at β̂ must be 0. The derivative of the log of (1) is (∂η/∂β)(Y − ḃ(η)) =
(∂η/∂β)(Y − Ep01(Y |Ai, Vi))), based on the fact for generalized linear models
that µ(A, V ) = ḃ(η(A, V )). Since we assumed the linear part η of the gener-
alized linear model contains an intercept term and also contains A as a main
term, this implies

n∑
i=1

(Yi − Ep01(Y |Ai, Vi)) = 0, (19)

and
n∑
i=1

Ai(Yi − Ep01(Y |Ai, Vi)) = 0. (20)

The targeted maximum likelihood algorithm requires an initial density es-
timator p0 for the data generating distribution of (V,A, Y ). It will be based
on the maximum likelihood estimate β̂ from the generalized linear model and
the set of observed baseline variables {Vi}. We set

p0(V,A, Y ) = p01(Y |A, V )p02(A|V )p03(V ), (21)

where we have

• p01(Y |A, V ) is the maximum likelihood estimate for the density of Y
given A, V , using the pre-specified generalized linear model,

• p02(A|V ) = 1/2, to reflect the known randomization probabilities, and

• p03(V ) is the empirical distribution of V .

Since p03(V ) was chosen to be the empirical distribution of V , and by our
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choice of p02(A|V ) = 1/2, we have

n∑
i=1

(Ep0(Y |A = 1, Vi)− Ep0(Y |A = 1))

=
n∑
i=1

Ep01(Y |A = 1, Vi)−
n∑
i=1

[(1/n)
n∑
j=1

Ep01(Y |A = 1, Vj))]

= 0. (22)

Similarly, we have

n∑
i=1

(Ep0(Y |A = 0, Vi)− Ep0(Y |A = 0))

=
n∑
i=1

Ep01(Y |A = 0, Vi)−
n∑
i=1

[(1/n)
n∑
j=1

Ep01(Y |A = 0, Vj))]

= 0. (23)

We now define our parametric model {p(ε)} that satisfies conditions (i)
and (ii) of step 3 of the targeted maximum likelihood algorithm outlined
in Section 6. It will involve adding a term to the linear part of the gen-
eralized linear model and also modifying p03(V ). We let p(ε) be defined as
p01,ε(Y |A, V )p02(A|V )p03,ε(V ), where ε = (ε1, ε2, ε3, ε4), for densities p01,ε(Y |A, V )
and p03,ε(V ) defined next. First, p01,ε(Y |A, V ) is defined in terms of the gener-
alized linear model as exp(Y η′− b(η′) + c(Y, φ)), where η′ = η̂+ ε1 + ε2A, and
η̂ =

∑
j β̂jfj(A, V ). We note that ḃ(η̂(A, V )) = Ep01(Y |A, V ), which follows

from the fact that for any generalized linear model, ḃ(η(A, V )) is the mean
of Y given A, V according to the model at β, which is proved in (Bickel and
Doksum, 2001).

Next, we define

p03,ε(V ) = Cε exp(ε3(Ep0(Y |A = 0, V )− Ep0(Y |A = 0))

+ε4(Ep0(Y |A = 1, V )− Ep0(Y |A = 1)))p03(V ), (24)

where Cε is chosen so that p03,ε(v) integrates to 1.
Then p(ε) at ε = 0 equals the initial density estimator p0, and the compo-

nents of the score of p(ε) at ε = 0 equal

d

dε1
[log p(ε)]|ε=0 =

d

dε1
[log p01,ε(Y |A, V )]|ε=0 = (Y−ḃ(η̂)) = (Y−Ep01(Y |A, V )),

(25)
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d

dε2
[log p(ε)]|ε=0 =

d

dε2
[log p01,ε(Y |A, V )]|ε=0 = A(Y − ḃ(η̂))

= A(Y − Ep01(Y |A, V )),(26)

d

dε3
[log p(ε)]|ε=0 =

d

dε3
[log p03,ε(V )]|ε=0 = Ep0(Y |A = 0, V )− Ep0(Y |A = 0),

(27)
d

dε4
[log p(ε)]|ε=0 =

d

dε4
[log p03,ε(V )]|ε=0 = Ep0(Y |A = 1, V )− Ep0(Y |A = 1).

(28)
Thus, the efficient influence functions for E(Y |A = 0) and for E(Y |A = 1), (4)
and (5) above, are in the linear span of the score of p(ε) at ε = 0; this satisfies
requirement (ii) in step 3 of the targeted maximum likelihood procedure given
in Section 6.

We now show that the maximum likelihood estimator of ε for the model
{p(ε)}, is 0, whenever the conditions of Theorem 1 hold. By our assumption
that the expected log-likelihood has a unique maximizer and the other as-
sumptions in Section 2, we have that for sufficiently large n, the log-likelihood∑n

i=1 log p(ε)(Vi, Ai, Yi) has a unique maximizer. By strict concavity of the
log-likelihood (as proved in (Rosenblum and van der Laan, 2009, Appendix D)
for our families of generalized linear models with canonical links), the maxi-
mum likelihood estimator ε̂ is the unique value of ε for which
d/dε[

∑n
i=1 log p(ε)(Vi, Ai, Yi)] = 0. Equations (19-23) and (25-28) imply

d/dε[
∑n

i=1 log p(ε)(Vi, Ai, Yi)] = 0 at ε = 0, and so ε̂ = 0 is the maximum
likelihood estimator for the model {p(ε)}. Therefore, the targeted maximum
likelihood procedure converges in zero steps. Furthermore, since the final den-
sity output by the targeted maximum likelihood algorithm is equal to the
initial density estimator p0, we have that the targeted maximum likelihood
estimator of the parameter (E(Y |A = 0), E(Y |A = 1)) is exactly as given in
Theorem 1.

Theorem 1 requires the existence of a maximizer β∗ of the expected log-
likelihood E(Y η − b(η) + c(Y, φ)), where the expectation is with respect to
the data generating distribution. Given the assumptions in Section 2, this is
sufficient to ensure that the the maximum likelihood estimator β̂n converges
to β∗ and that

√
n(β̂n − β∗) is asymptotically normal. This follows from the

strict concavity of the expected log-likelihood for generalized linear models
with canonical links, proved in (Rosenblum and van der Laan, 2009, Appendix
D).

So far we have shown that the targeted maximum likelihood estimator in
our setting is of the simple form given in Section 3. We now verify that the
regularity conditions given in Section 2 are sufficient to prove all the claims
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in Theorem 1. To this end, we apply Theorem 1 of van der Laan and Rubin
(2006), which under conditions that we verify below, gives that the estimator
r(Ê0, Ê1) is asymptotically unbiased with asymptotic variance as defined in
(6) in Section 4, and is locally efficient.

There are five conditions in Theorem 1 of van der Laan and Rubin (2006),
which we verify now. We note that we apply Theorem 1 of van der Laan
and Rubin (2006) to the parameter (E0, E1) and estimator (Ê0, Ê1). This
then implies the desired results for the parameter r(E0, E1) and estimator
r(Ê0, Ê1). Denote the density p0 defined above, at sample size n, by pn0 . To
apply Theorem 1 of van der Laan and Rubin (2006), we need to show:

i. The model is convex.

ii. The parameter (E0, E1) is linear.

iii. Our estimator (Ê0, Ê1) of (E0, E1) satisfies

(Ê0, Ê1)− (E0, E1) =
1

n

n∑
i=1

D(pn0 )(Vi, Ai, Yi)− Ep∗D(pn0 )(V,A, Y ),

where Ep∗ is the expectation over the variables V,A, Y with respect to
the data generating distribution, and where pn0 is considered fixed.

iv. D(pn0 ) is in a Donsker class with probability tending to 1.

v. Ep∗ (Di(p
n
0 )(V,A, Y )−Di(p(β

∗))(V,A, Y ))2 converges to 0 in probabil-
ity, for i ∈ {1, 2}, where D1, D2 are defined in (4) and (5).

Proof of conditions (i)-(v) above:
Condition (i) follows from our model being nonparametric except for as-

suming, due to randomization, that p(A|V ) = 1/2.
Condition (ii) follows since for p1, p2 two densities in our model, and defin-

ing p3 = λp1 + (1− λ)p2, for λ ∈ [0, 1], we have

p3(Y |A) = p3(Y,A)/p3(A)

=

∫
p3(v, A, Y )dv/(1/2)

= λ

∫
p1(v, A, Y )dv/(1/2) + (1− λ)

∫
p2(v, A, Y )dv/(1/2)

= λp1(Y |A) + (1− λ)p2(Y |A).
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Thus, the conditional mean of Y given A under p3 is the convex combination
of these conditional means under p1 and p2, which proves linearity of the
parameter (E0, E1) in our model.

Condition (iii) follows since 1
n

∑n
i=1D(pn0 )(Vi, Ai, Yi) = 0 using the defini-

tions (4), (5) and applying (19), (20), (22), and (23), and since

Ep∗D1(p
n
0 )(V,A, Y ) = Ep∗(1− A)(Y − Epn0 (Y |A = 0, V ))/pn0 (A = 0)

+Epn0 (Y |A = 0, V )− Epn0 (Y |A = 0)

= Ep∗(1− A)(Y )/(1/2)− Ep∗Epn0 (Y |A = 0, V )

+Ep∗Epn0 (Y |A = 0, V )− Ep∗Epn0 (Y |A = 0)

= Ep∗(1− A)(Y )/(1/2)− Ep∗Epn0 (Y |A = 0)

= Ep∗(Y |A = 0)− Ê0

= E0 − Ê0

where the second equality follows using the fact that A and V are independent
in all of our densities pn0 , and the second to last equality follows from Ep∗ being
with respect to V,A, Y and treating pn0 as fixed; a similar derivation shows the
analogous statement for Ep∗D2(p

n
0 )(V,A, Y ).

To show (iv), first let µβ(a, v) denote the mean of Y given A = a, V = v
according to the generalized linear model (1), which depends on β through
the linear part η =

∑
j βjfj(A, V ). We will show the class of functions

{D̄α1,α2,β(v, a, y)} is Donsker, where we define

D̄α1,α2,β(v, a, y) = ((1− a)(y − µβ(0, v))/(1/2) + µβ(0, v)− α1,

a(y − µβ(1, v))/(1/2) + µβ(1, v)− α2), (29)

and we require |α1| ≤ M, |α2| ≤ M,β ∈ B, for B the set of possible β, de-
fined in Section 2,11 which was selected to ensure our class is over a bounded
parameter set; additionally, our assumptions on boundedness of variables and
the functions fj in Section 2, combined with the functional forms of the gen-
eralized linear models we are considering, guarantee that the first and second
derivatives of D̄ with respect to v, a, y are uniformly bounded. We can then
apply the result from (van der Vaart, 1998, Example 19.9, page 272), which
implies this class of functions is a Donsker class. Since D(pn0 ) are all contained
in this class, condition (iv) above is satisfied. We note that Theorem 1 of

11In Section 2, we assumed all components of β must have absolute value at most M for
some constant M , and for the Gamma and Inverse Normal families, B is further restricted
to contain only β for which all components are positive and more than δ for some δ > 0.
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van der Laan and Rubin (2006) only requires conditions (i) to (iv) in order to
prove consistency of the estimator (Ê0, Ê1), which we’ll use below in proving
(v).

Lastly, we show (v) above holds. Let p(β∗) denote the density of Y given
A, V defined in (1) corresponding to β = β∗, for β∗ the maximizer of the
expected log-likelihood E(Y η − b(η) + c(Y, φ)), where the expectation is with
respect to the data generating distribution p∗. Note that whenever the model
(1) is misspecified, p∗ and p(β∗) will be different densities (where the former
is the true data generating distribution and the latter is the projection under
Kullback-Leibler divergence of the true data generating distribution on the
working model); our theorem still holds in this case. Below we let β̂n denote
the maximum likelihood estimator from the generalized linear model fit at
sample size n. We then have the following chain of inequalities, where we let
p02(A|V ) = 1/2 and p∗03(V ) be the true density of V :

Ep∗ (D1(p
n
0 )(V,A, Y )−D1(p(β

∗)p02p
∗
03)(V,A, Y ))2

=

∫
{(1− a)(y − µβ̂n(0, v))/(1/2) + µβ̂n(0, v)− Ê0

−[(1− a)(y − µβ∗(0, v))/(1/2) + µβ∗(0, v)− E0]}2p∗(v, a, y)dvdady

=

∫ (
(1− 2a)(µβ∗(0, v)− µβ̂n(0, v)) + E0 − Ê0

)2
p∗(v, a)dvda

≤ 2

∫ (
[µβ∗(0, v)− µβ̂n(0, v)]2 + [E0 − Ê0]

2
)
p∗(v, a)dvda (30)

= 2

∫ (
[µβ∗(0, v)− µβ̂n(0, v)]2 + [E0 − Ê0]

2
)
p∗(v)dv (31)

≤ C1||β∗ − β̂n||2 + 2[E0 − Ê0]
2. (32)

(33)

where the the first equality follows from definitions; the second equality follows
from canceling terms and noting that there is no longer any dependence on y;
the inequality (30) follows from the bound (x + y)2 ≤ 2(x2 + y2) and noting
that 1 − 2a is always either 1 or −1; the equality (31) follows from noting
that there is no longer dependence on a; and the last line follows from µβ(0, v)
having first derivative uniformly bounded by a constant. The last line of
the above display converges to 0 in probability since by our assumptions in
Section 2, β̂n converges to β∗ in probability and also the consistency of Ê0

follows from conditions (i)-(iv) above, as described in Theorem 1 of van der
Laan and Rubin (2006). An analogous bound as just derived proves that
Ep∗ (D2(p

n
0 ))(V,A, Y )−D2(p(β

∗))(V,A, Y ))2 converges to 0 in probability.
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This completes our verification of the conditions (i)-(v) above of Theorem 1
of van der Laan and Rubin (2006), which implies that the estimator (Ê0, Ê1)
converges to (E(Y |A = 0), E(Y |A = 1)), and that

√
n[(Ê0, Ê1) − (E(Y |A =

0), E(Y |A = 1))] is asymptotically normal with variance given by (6), and
is locally efficient in that if the generalized linear model is correctly specified,
then (6) achieves the efficiency bound for the nonparametric model. This com-
pletes the proof of Theorem 1.
2

Since the true data generating distribution is unknown, one a priori does
not know whether there exists a maximizer β∗ of the expected log-likelihood
E(Y η−b(η)+c(Y, φ)), where the expectation is taken with respect to the data
generating distribution. However, as proved in (Rosenblum and van der Laan,
2009, Appendix D), by strict concavity of the E(Y η−b(η)+c(Y, φ)), we always
have either (1) there is a unique maximizer of the expected log-likelihood or
(2) the Euclidean norm of the maximum likelihood estimator grows without
bound as sample size goes to infinity. Thus, as sample size n tends to infinity,
with probability tending to 1, one will detect case (2), based on whether β̂n
exceeds the pre-specified threshold M from Section 2.

8.2 R Code to Compute Estimator from Section 3

We now give R code that computes the estimator given just before Theorem 1.
The code below corresponds to the specific example of a Poisson model with
log link and linear part β0 + β1A+ β2V + β3AV .

# Given vectors V, A, Y of length n containing baseline variables,

# treatment assignment and outcome, respectively,

# compute the estimated log rate ratio

modelfit <- glm(Y ~ 1 + A + V+ A*V,family=poisson)

E_0_hat <- mean(predict.glm(modelfit, type = "response",

newdata=data.frame(A=rep(0,n),V=V)))

E_1_hat <- mean(predict.glm(modelfit, type = "response",

newdata=data.frame(A=rep(1,n),V=V)))

log_rate_ratio_estimate <- log(E_1_hat/E_0_hat)
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8.3 Details for Example of Targeted Maximum Likeli-
hood Convergence Requiring More than One Iter-
ation

As noted in Section 6.3, in general, when using generalized linear models with
non-canonical links in the targeted maximum likelihood algorithm, conver-
gence will not occur in a single iteration. For example, if the parameter of
interest ψ = E(Y |A = 1) is the same as defined in Section 6.2, and a working
model based on probit regression is used instead of logistic regression, this
would require multiple iterations. This occurs because the “clever covariate”
added to the regression will depend on parts of the density estimate that are
updated at each iteration. We now give an example of a “clever covariate”
that satisfies conditions (i) and (ii) of step 3 of the targeted maximum likeli-
hood algorithm given in Section 6.1, for estimating the parameter defined in
Section 6.2, but using probit regression as the working model.

We follow steps 1 and 2 of the procedure given in Section 6.2, except
replacing the logistic regression working model by a probit regression working
model. For step 3, we will have to choose a different “clever covariate” than
C1(A) (but we still use clever covariate C2(V )). This is because the score at
ε = 0 as computed at (16), if we had used the probit instead of the logistic
link, would be the product

C1(A)(Y − p01(Y = 1|A = 1, V ))

×(1/p01(Y = 1|A = 1, V ) + 1/p01(Y = 0|A = 1, V ))

×φ(Φ−1(p01(Y = 1|A = 1, V ))).

where φ and Φ are the density and cumulative distribution function, respec-
tively, for the standard normal distribution. One option then, for a “clever
covariate” satisfying (i) and (ii) of step 3 of the algorithm from Section 6.1, is
the following: let

C ′1(A, V ) := A/ [(1/p01(Y = 1|A = 1, V ) + 1/p01(Y = 0|A = 1, V ))

φ(Φ−1(p01(Y = 1|A = 1, V )))
]
. (34)

Below is R code for the probit regression case, using the “clever covariate”
(34) just described:

# Given vectors V, A, Y of length n containing baseline variables,

# treatment assignment

# and outcome, respectively, compute the estimator

# just described for E(Y|A=1)
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# Define "clever covariate" C_1 as function of A and

# predicted probabilities of Y=1 given A=1, V for each subject

C_1_constructor <- function(A_values, Y_probs)

{return(ifelse((Y_probs==0 | Y_probs==1),0,A_values/

((1/Y_probs + 1/(1-Y_probs))*(dnorm(qnorm(Y_probs))))))}

# Step 1: Initial model fit

initial_modelfit <- glm(Y ~ 1 + A + V+ A*V,

family=binomial(link=probit))

# Initialize vector to store value of "Linear Part" of Model

# to be used as the offset for the model update

# (step 4 of the algorithm from Section 3)

# This is equivalent to eta(A,V) as defined in Section 2

linear_part <- predict.glm(initial_modelfit,

newdata=data.frame(A,V))

# Define analogous vector to store value of "Linear Part"

# Setting A=1. This is equivalent to eta(1,V)

linear_part_A_set_to_1 <- predict.glm(initial_modelfit,

newdata=data.frame(A=1,V=V))

# Next, iterate steps 2-4 of the targeted maximum likelihood

# algorithm from Section 3 until

# epsilon_hat is close to 0:

epsilon_hat <- 1

while(abs(epsilon_hat) > 0.0001)

{

# Construct "Clever Covariate" C_1

C_1 <- C_1_constructor(A,

pnorm(linear_part_A_set_to_1))

# Update model fit using "Clever Covariate" C_1

modelfit <- glm(Y ~ offset(linear_part) -1 +C_1,

family=binomial(probit))

epsilon_hat <<- modelfit$coefficients[1]

# Update vectors storing linear parts for each subject

linear_part <- linear_part + epsilon_hat*C_1

linear_part_A_set_to_1 <- linear_part_A_set_to_1 +

epsilon_hat*C_1_constructor(rep(1,length(A)),

pnorm(linear_part_A_set_to_1))

}

E_1_hat <- mean(pnorm(linear_part_A_set_to_1))
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8.4 Incorporating Model Selection

One of the assumptions in Theorem 1 (and listed in Section 2.3 of the paper)
is that the working model used is fixed; that is, the working model does not
change with sample size and is selected prior to looking at the data. In practice
this is a restrictive assumption, and we briefly describe how this assumption
can be relaxed to allow some forms of model selection.

Consider a list of K working models, each satisfying the conditions of
Theorem 1. Here, we restrict attention to the case where this list of working
models is pre-specified (before looking at the data), and does not change with
sample size n. As an example of such a list of working models, one could pre-
specify three log-linear working models: the first with only the intercept and
treatment variable as terms, the second having these and the baseline variable
V as main terms, and the third having these terms and all interaction terms.
We refer to these below as working models 1, 2, and 3, respectively. We require
that an algorithm for selecting among the list of K working models be pre-
specified (though the algorithm may take the data as input). The estimator
for the parameter r(E(Y |A = 0), E(Y |A = 1)) is now computed in two steps:
first, we use a model selection algorithm to choose a working model; second, we
use this working model in the construction given before Theorem 1 to compute
our estimate of r(E(Y |A = 0), E(Y |A = 1)).

We now give an example of an algorithm for selecting among working mod-
els 1, 2, and 3 that results in consistent, asymptotically normal estimators for
the parameter r(E(Y |A = 0), E(Y |A = 1)). The algorithm is based on the
idea of empirical efficiency maximization (Rubin and van der Laan, 2008); this
involves computing, for each working model in the list, the corresponding esti-
mated asymptotic variance of r(Ê0, Ê1), as given in (7) below. We then select
the working model for which this estimated asymptotic variance is smallest.
Here, we assume that there is a unique model in the list of K working models
having the smallest corresponding asymptotic variance.12 We show in the Ap-
pendix that for any working model satisfying the conditions of Theorem 1, the
estimated asymptotic variance (7) converges to the true asymptotic variance,
as sample size tends to infinity. It then follows that for large enough sam-
ple size, the working model with corresponding smallest asymptotic variance

12To deal with the possibility that the minimum asymptotic variance corresponding to
the list of working models is shared by more than one working model (that is, the possibility
of a “tie” for smallest asymptotic variance), we could also add a penalization term, to break
any such ties. For example, for each working model k in a list of nested working models,
we could add a penalty of qk(log n)/

√
n to the corresponding estimated asymptotic variance

(7), where qk is the number of degrees of freedom in working model k, and select the working
model with smallest value of this penalized estimated asymptotic variance.
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will be selected, with probability tending to 1. In addition to this algorithm
leading to estimators that are consistent and asymptotically normal, they also
have the property that when any of the working models contains the true data
generating distribution, the resulting estimator attains the semiparametric ef-
ficiency bound. Since the estimator corresponding to working model 1 defined
in the previous paragraph is the unadjusted estimator, we have that the above
method produces an estimator with asymptotic variance as small as or smaller
than that of the unadjusted estimator.

A different approach than starting with a fixed list of K working mod-
els, is to allow model selection from a large space of possible initial density
estimators (not necessarily restricting to the class of generalized linear mod-
els), but then using a pre-specified generalized linear model to update this
initial density. That is, one could use a machine learning algorithm such as
likelihood-based cross-validation (van der Laan and Dudoit, 2004) to produce
an initial estimator p01(Y |A, V ) of the density of Y given treatment A and
baseline variables V (corresponding to step 1 of the targeted maximum likeli-
hood algorithm from Section 6.1). Then steps 2-5 of the targeted maximum
likelihood algorithm could be carried out by fitting a pre-specified generalized
linear model with canonical link function g, and using g(Ep01(Y |Ai, Vi)) as
an offset; we would require that an intercept and the treatment term A be
included as terms in the linear part of the generalized linear model. Prov-
ing consistency and asymptotic normality for such a procedure would require
verifying the empirical process conditions in Theorem 1 of van der Laan and
Rubin (2006), which we list in Appendix 8.1.

Both of the above model selection approaches require pre-specification of
the model selection algorithm. Without such pre-specification, there is a gen-
eral danger in data snooping, e.g. conducting multiple analyses and reporting
only the one with largest estimated effect, which can lead to bias and/or in-
flated p-values. Even when a model selection procedure is pre-specified, one
must still prove (as sketched in the previous two paragraphs) that the proce-
dure will lead to a consistent, asymptotically normal estimator.

References

Bickel, P. J. and K. A. Doksum (2001). Mathematical Statistics, Volume 1.
Upper Saddle River, New Jersey: Prentice Hall.

Bickel, P. J., C. A. Klaassen, Y. Ritov, and J. A. Wellner (1993). Efficient

Hosted by The Berkeley Electronic Press



and Adaptive Estimation for Semiparametric Models. New York: The Johns
Hopkins University Press. Springer-Verlag.

Freedman, D. A. (2008a). On regression adjustments to experimental data.
Advances in Applied Mathematics 40, 180–193.

Freedman, D. A. (2008b). On regression adjustments to experiments with
several treatments. Annals of Applied Statistics 2, 176–96.

Freedman, D. A. (2008c). Randomization does not justify logistic regression.
Statistical Science 23, 237–249.

Gail, M. H. (1986). Adjusting for covariates that have the same distribution in
exposed and unexposed cohorts. In Modern Statistical Methods in Chronic
Disease Epidemiology, Eds. S.H. Moolvankar and R. L. Prentice, New York,
Wiley., 3–18.

Leon, S., A. A. Tsiatis, and M. Davidian (2003). Semiparametric efficient
estimation of treatment effect in a pretest-posttest study. Biometrics 59,
1046–1055.

Lindsey, J. and P. Lambert (1998). On the appropriateness of marginal models
for repeated measurements in clinical trials. Statistics in Medicine 17, 447–
469.

McCullagh, P. and J. A. Nelder (1998). Generalized Linear Models (2nd ed.).
Boca Raton, Florida: Chapman and Hall/CRC, Monographs on Statistics
and Applied Probability 37.

Moore, K. L. and M. J. van der Laan (2007, April). Covariate adjustment
in randomized trials with binary outcomes: Targeted maximum likelihood
estimation. U.C. Berkeley Division of Biostatistics Working Paper Series.
Working Paper 215. http://www.bepress.com/ucbbiostat/paper215 .

Neugebauer, R. and M. J. van der Laan. (2002). Why prefer double robust
estimates? illustration with causal point treatment studies. working paper
115. http://www.bepress.com/ucbbiostat/paper115. U.C. Berkeley Division
of Biostatistics Working Paper Series .

Pocock, S. J., S. Assmann, L. Enos, and L. Kasten (2002). Subgroup analysis,
covariate adjustment, and baseline comparisons in clinical trial reporting:
current practice and problems. Statistics in Medicine 21 (19), 2917–2930.

http://biostats.bepress.com/ucbbiostat/paper256



Polley, E. and M. van der Laan (2009). “Selecting optimal treatments based
on predictive factors”. In K. E. Peace (Ed.), Design and Analysis of Clinical
Trials with Time-to-Event Endpoints, pp. 441–454. Boca Raton: Chapman
and Hall/CRC.

Robins, J. (1986). A new approach to causal inference in mortality studies with
sustained exposure periods - application to control of the healthy worker
survivor effect. (with errata). Mathematical Modelling 7, 1393–1512.

Robins, J. M. (1987). A graphical approach to the identication and estimation
of causal parameters in mortality studies with sustained exposure periods.
Journal of Chronic Disease. Supplement 2. 40, 139–161.

Robins, J. M. (2000). Robust estimation in sequentially ignorable missing
data and causal inference models. Proceedings of the American Statistical
Association Section on Bayesian Statistical Science 1999., 6–10.

Robins, J. M. and A. Rotnitzky (2001). Comment on the Bickel and Kwon arti-
cle, “Inference for semiparametric models: Some questions and an answer”.
Statistica Sinica 11 (4), 920–936.

Robinson, L. D. and N. Jewell (1991). Some surprising results about covariate
adjustment in logistic regression models. International Statistical Review 59,
227–240.

Rosenbaum, P. R. (2002). Covariance adjustment in randomized experiments
and observational studies. Statistical Science 17 (3), 286–327.

Rosenblum, M. and M. van der Laan (2009). Using regression to analyze ran-
domized trials: Valid hypothesis tests despite incorrectly specified models.
Biometrics 65 (3), 937–94.

Rubin, D. B. and M. J. van der Laan (2008). Empirical efficiency maximiza-
tion: Improved locally efficient covariate adjustment in randomized exper-
iments and survival analysis. The International Journal of Biostatistics.
Available at: http://www.bepress.com/ijb/vol4/iss1/5 4 (1).

Scharfstein, D. O., A. Rotnitzky, and J. M. Robins (1999). Adjusting for Non-
Ignorable Drop-out Using Semiparametric Nonresponse Models, (with Dis-
cussion and Rejoinder). Journal of the American Statistical Association 94,
1096–1120 (1121–1146).

Hosted by The Berkeley Electronic Press



Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. Springer
Science and Business Media, LLC.

Tsiatis, A. A., M. Davidian, M. Zhang, and X. Lu (2008). Covariate adjust-
ment for two-sample treatment comparisons in randomized clinical trials: A
principled yet flexible approach. Statistics in Medicine 27, 4658–4677.

van der Laan, M. J. (2010, February). Targeted maximum likelihood based
causal inference. U.C. Berkeley Division of Biostatistics Working Paper
Series. Working Paper 259. http://www.bepress.com/ucbbiostat/paper259 .

van der Laan, M. J. and S. Dudoit (2004). Asymptotic optimality of likelihood
based cross-validation. Statistical Applications in Genetics and Molecular
Biology 3 (1), 131–154.

van der Laan, M. J. and S. Gruber (2009, April). Collaborative double
robust targeted penalized maximum likelihood estimation. U.C. Berke-
ley Division of Biostatistics Working Paper Series. Working Paper 246.
http://www.bepress.com/ucbbiostat/paper246 .

van der Laan, M. J. and J. M. Robins (2002). Unified methods for censored
longitudinal data and causality. New York: Springer.

van der Laan, M. J., S. Rose, and S. Gruber (2009). Read-
ings in targeted maximum likelihood estimation. U.C. Berkeley Di-
vision of Biostatistics Working Paper Series. Working Paper 254.
http://www.bepress.com/ucbbiostat/paper254 .

van der Laan, M. J. and D. Rubin (2006, October). Targeted maximum like-
lihood learning. The International Journal of Biostatistics 2 (1).

van der Vaart, A. W. (1998). Asymptotic Statistics. New York: Cambridge
University Press.

Yang, L. and A. A. Tsiatis (2001, November). Efficiency study of estimators
for a treatment effect in a pretest-posttest trial. The American Statisti-
cian 55 (4).

Zhang, M., A. A. Tsiatis, and M. Davidian (2008). Improving efficiency of
inferences in randomized clinical trials using auxiliary covariates. Biomet-
rics 64 (3), 707–715.

http://biostats.bepress.com/ucbbiostat/paper256


	text.pdf.1281635895.titlepage.pdf.6KdiT
	tmp.1281635895.pdf.abhH6

