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Abstract
Biomarkers abound in many areas of clinical research, and often investigators are interested in combi-

ning them for diagnosis, prognosis and screening. In many applications, the true positive rate for a bio-
marker combination at a prespecified, clinically acceptable false positive rate is the most relevant measure
of predictive capacity. We propose a distribution-free method for constructing biomarker combinations by
maximizing the true positive rate while constraining the false positive rate. Theoretical results demonstrate
good operating characteristics for the resulting combination. In simulations, the biomarker combination
provided by our method demonstrated improved operating characteristics in a variety of scenarios when
compared with more traditional methods for constructing combinations.
Keywords: Biomarker; Combination; Sensitivity; True positive rate.

1 Introduction
As the number of available biomarkers has grown, so has the interest in combining them for the purposes
of diagnosis, prognosis, and screening. In the past decade, much work has been done to construct biomar-
ker combinations by targeting measures of performance, including those related to the receiver operating
characteristic, or ROC, curve. This is in contrast to more traditional methods that construct biomarker com-
binations by optimizing global fit criteria, such as the maximum likelihood approach. While methods to
construct both linear and nonlinear combinations have been proposed, linear biomarker combinations are
more commonly used than nonlinear combinations, primarily due to their greater interpretability and ease of
construction (Wang & Chang, 2011; Hsu & Hsueh, 2013).

Although the area under the ROC curve, the AUC, is arguably the most popular way to summarize the
ROC curve, there is often interest in identifying biomarker combinations with maximum true positive rate,
the proportion of correctly classified diseased individuals, while setting the false positive rate, the proportion
of incorrectly classified nondiseased individuals, at some clinically acceptable level. It is common practice
among applied researchers to construct linear biomarker combinations using logistic regression, and then
calculate the true positive rate for the prespecified false positive rate, e.g., Moore et al. (2008). While much
work has been done to construct biomarker combinations by maximizing the AUC or the partial AUC, none of
these methods directly target the true positive rate for a specified false positive rate.

We propose a distribution-free method for constructing linear biomarker combinations by maximizing the
true positive rate while constraining the false positive rate. We demonstrate desirable theoretical properties
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†mcarone@uw.edu
‡mspepe@uw.edu
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of the resulting combination, and provide empirical evidence of good small-sample performance through
simulations. To illustrate the use of our method, we consider data from a prospective study of diabetes
mellitus in 532 adult women with Pima Indian heritage (Smith et al., 1988). Several variables were measured
for each participant, and criteria from the World Health Organization were used to identify women with
diabetes. A primary goal of the study was to predict the onset of diabetes within five years.

2 Background

2.1 ROC curve and related measures
The ROC curve provides a means to evaluate the ability of a biomarker or, equivalently, a biomarker com-
bination Z to identify individuals who have or will experience a binary outcome D. For example, in the
diagnostic setting, D may denote the presence or absence of disease and Z may be used to identify indi-
viduals with the disease. The ROC curve provides information about how well the biomarker discriminates
between individuals who have or will experience the outcome, that is, the cases, and individuals who do not
have or will not experience the outcome, that is, the controls (Pepe, 2003). Mathematically, if larger values
of Z are more indicative of having or experiencing the outcome, for each threshold δ we can define the true
positive rate as pr(Z > δ | D = 1) and the false positive rate as pr(Z > δ | D = 0) (Pepe, 2003). For a
given δ, the true positive rate is also referred to as the sensitivity, and one minus the specificity equals the
false positive rate (Pepe, 2003). The ROC curve is a plot of the true positive rate versus the false positive rate
as δ ranges over all possible values; as such, it is non-decreasing and takes values in the unit square (Pepe,
2003). A perfect biomarker has an ROC curve that reaches the upper left corner of the unit square, and a
useless biomarker has an ROC curve on the 45-degree line (Pepe, 2003).

The most common summary of the ROC curve is the AUC, the area under the ROC curve. The AUC
ranges between 0.5 for a useless biomarker and 1 for a perfect biomarker (Pepe, 2003). The AUC has a
probabilistic interpretation: it is the probability that the biomarker value for a randomly chosen case is larger
than that for a randomly chosen control, assuming that higher biomarker values are more indicative of having
or experiencing the outcome (Pepe, 2003). Both the ROC curve and the AUC are invariant to monotone
increasing transformations of the biomarker Z (Pepe, 2003).

The AUC summarizes the entire ROC curve, but in many situations, it may be more appropriate to only
consider certain false positive rate values. For example, screening tests require a very low false positive rate,
while diagnostic tests for fatal diseases may allow for a slightly higher false positive rate if the corresponding
true positive rate is very high (Hsu & Hsueh, 2013). This consideration led to the development of the partial
AUC, the area under the ROC curve over some range (t0, t1) of false positive rate values (Pepe, 2003). Rather
than considering a range of false positive rate values, there may be interest in fixing the false positive rate
at a single value, determining the corresponding threshold δ, and evaluating the true positive rate for that
threshold. As opposed to the AUC and the partial AUC, this method returns a single classifier, or decision rule,
which may be appealing to researchers seeking a tool for clinical decision-making.

2.2 Biomarker combinations
Many methods to combine biomarkers have been proposed, and they can generally be divided into two ca-
tegories. The first includes indirect methods that seek to optimize a measure other than the performance
measure of interest, while the second category includes direct methods that optimize the target performance
measure. We focus on the latter.

Targeting the entire ROC curve, that is, constructing a combination that produces an ROC curve that domi-
nates the ROC curve for all other linear combinations at all points, is very challenging and can generally only
be done under special circumstances. Su & Liu (1993) demonstrated that, when the vector X of biomarkers
has a multivariate normal distribution conditional on D with proportional covariance matrices, it is possible
to identify the linear combination that maximizes the true positive rate uniformly over the entire range of false
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positive rates (Su & Liu, 1993). If the D-specific covariance matrices are equal, this optimal linear combi-
nation dominates not just every other linear combination, but also every nonlinear combination. This follows
from the fact that in this case, the linear logistic model stipulating that logit{pr(D = 1|X = x)} = θ>x
holds for some p-dimensional θ, where p is the dimension of X (McIntosh & Pepe, 2002). If the covariance
matrices are proportional but not equal, the likelihood ratio is a nonlinear function of the biomarkers, as
shown in the Supplementary Material for p = 2, and the optimal biomarker combination with respect to the
ROC curve is nonlinear (McIntosh & Pepe, 2002).

In general, there is no linear combination that dominates all others in terms of the true positive rate
over the entire range of false positive rates (Su & Liu, 1993; Anderson & Bahadur, 1962). Thus, methods
to optimize the AUC have been proposed. When the biomarkers are conditionally multivariate normal with
nonproportional covariance matrices, Su & Liu (1993) gave an explicit form for the best linear combination
with respect to the AUC. Others have targeted the AUC without any assumption on the distribution of the
biomarkers; many of these methods rely on smooth approximations to the empirical AUC, which involves
indicator functions (Ma & Huang, 2007; Fong et al., 2016; Lin et al., 2011).

Acknowledging that often only a range of false positive rate values is of interest clinically, methods have
been proposed to target the partial AUC for some false positive rate range (t0, t1). Some methods make
parametric assumptions about the joint distribution of the biomarkers (Yu & Park, 2015; Hsu & Hsueh, 2013)
while others do not (Wang & Chang, 2011; Komori & Eguchi, 2010). The latter group of methods generally
use a smooth approximation to the partial AUC, similar to some of the methods that aim to maximize the
AUC (Wang & Chang, 2011; Komori & Eguchi, 2010). One challenge faced in partial AUC maximization is
that for narrow intervals, that is, when t0 is close to t1, the partial AUC is often very close to 0, which can
make optimization difficult (Hsu & Hsueh, 2013).

In recent years, the AUC has been heavily criticized because it does not directly measure the clinical im-
pact of using the biomarker or biomarker combination: while the AUC can be interpreted probabilistically in
terms of case-control pairs, patients do not present to clinicians in randomly selected case-control pairs (Pepe
& Janes, 2013). Moreover, the AUC includes, and may in fact be dominated by, regions of the ROC curve that
are not clinically relevant (Pepe & Janes, 2013). Measures such as the partial AUC were proposed to address
this shortcoming, but the partial AUC does not directly correspond to a decision rule, making clinical imple-
mentation challenging. Thus, there is growing interest in evaluating biomarkers and biomarker combinations
by considering the true positive rate at a fixed, clinically acceptable false positive rate.

Some work in constructing biomarker combinations by maximizing the true positive rate has been done
for conditionally multivariate normal biomarkers. In this setting, procedures for constructing a linear com-
bination that maximizes the true positive rate for a fixed false positive rate have been considered (Anderson
& Bahadur, 1962; Gao et al., 2008). Methods have also been proposed to construct linear combinations by
maximizing the true positive rate for a range of false positive rate values (Liu et al., 2005). The major dis-
advantage of this approach is that the range of false positive rate values over which the fitted combination is
optimal may depend on the combination itself; that is, the range of false positive rate values may be deter-
mined by the combination and so may not be fixed in advance (Liu et al., 2005). Baker (2000) proposed a
flexible nonparametric method for combining biomarkers by optimizing the ROC curve over a narrow target
region of false positive rate values, but this method is not well-suited to situations in which more than a few
biomarkers are to be combined.

An important benefit of constructing linear biomarker combinations by targeting the performance mea-
sure of interest is that the performance of the combination will be at least as good as the performance of the
individual biomarkers (Pepe et al., 2006). Indeed, several authors have recommended matching the objective
function to the performance measure by constructing biomarker combinations by optimizing the relevant
measure of performance (Hwang et al., 2013; Liu et al., 2005; Wang & Chang, 2011; Ricamato & Torto-
rella, 2011). To that end, we propose a distribution-free method to construct biomarker combinations by
maximizing the true positive rate for a given false positive rate.
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3 Methodology

3.1 Description
We will assume a non-trivial disease prevalence throughout, pr(D = 1) ∈ (0, 1). Cases will be denoted by
the subscript 1, and controls will be denoted by the subscript 0. Let X1i denote the vector of biomarkers for
the ith case, and let X0j denote the vector of biomarkers for the jth control.

We propose constructing a linear biomarker combination of the form θ>X for a p-dimensional X by
maximizing the true positive rate when the false positive rate is below some prespecified, clinically acceptable
value t. We define the true and false positive rates for a given X as a function of θ and δ:

TPR(θ, δ) = pr(θ>X > δ|D = 1), FPR(θ, δ) = pr(θ>X > δ|D = 0).

Since the true and false positive rates for a given combination θ and threshold δ are invariant to scaling of the
parameters (θ, δ), we must restrict (θ, δ) to ensure identifiability. Specifically, we constrain ||θ|| = 1 as in
Fong et al. (2016). For any fixed t ∈ (0, 1), we can consider

(θt, δt) ∈ arg max
(θ,δ)∈Ωt

TPR(θ, δ),

where Ωt = {θ ∈ Rp, δ ∈ R : ||θ|| = 1, FPR(θ, δ) ≤ t}. This provides the optimal combination θt and thres-
hold δt. We define (θt, δt) to be an element of arg max(θ,δ)∈Ωt

TPR(θ, δ), where arg max(θ,δ)∈Ωt
TPR(θ, δ)

may be a set.
Of course, in practice, the true and false positive rates are unknown, so θt and δt cannot be computed. We

can replace these unknowns by their empirical estimates,

ˆTPRn1
(θ, δ) =

1

n1

n1∑
i=1

1(θ>X1i > δ), ˆFPRn0
(θ, δ) =

1

n0

n0∑
j=1

1(θ>X0j > δ),

where n1 is the number of cases and n0 is the number of controls, giving the total sample size n = n1 + n0.
We can then define

(θ̂t, δ̂t) ∈ arg max
(θ,δ)∈Ω̂t,n0

ˆTPRn1(θ, δ)

where Ω̂t,n0 = {θ ∈ Rp, δ ∈ R : ||θ|| = 1, ˆFPRn0(θ, δ) ≤ t}. It is possible to conduct a grid search
over (θ, δ) to perform this constrained optimization, though this becomes computationally demanding when
combining more than two biomarkers.

Furthermore, since the objective function involves indicator functions, it is not a smooth function of the
parameters (θ, δ). Derivative-based methods therefore cannot be readily used. However, smooth approxi-
mations to indicator functions exist and have been used for AUC maximization (Ma & Huang, 2007; Fong
et al., 2016; Lin et al., 2011). One such smooth approximation is 1(w > 0) ≈ Φ(w/h), where Φ is the
standard normal distribution function, and h is a tuning parameter representing the trade-off between approx-
imation accuracy and estimation feasibility such that h tends to zero as the sample size grows (Lin et al.,
2011). We can use this smooth approximation to implement the method described above, writing the smooth
approximations to the empirical true and false positive rates as

˜TPRn1
(θ, δ) =

1

n1

n1∑
i=1

Φ

(
θ>X1i − δ

h

)
, ˜FPRn0

(θ, δ) =
1

n0

n0∑
j=1

Φ

(
θ>X0j − δ

h

)
.

Thus, we propose to compute

(θ̃t, δ̃t) ∈ arg max
(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ), (1)
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where Ω̃t,n0 = {θ ∈ Rp, δ ∈ R : ||θ|| = 1, ˜FPRn0(θ, δ) ≤ t}. We can obtain (θ̃t, δ̃t) by using gradient-
based methods that incorporate the constraints imposed by Ω̃t,n0

, such as Lagrange multipliers, for example.
Estimation can be accomplished with existing software, such as the Rsolnp package in R. Details related to
implementation, including the choice of tuning parameter h, are discussed below.

3.2 Asymptotic properties
We present a theorem establishing that, under certain conditions, the combination obtained by optimizing
the smooth approximation to the empirical true positive rate while constraining the smooth approximation to
the empirical false positive rate has desirable operating characteristics. In particular, its false positive rate is
bounded almost surely by the acceptable level t in large samples. In addition, its true positive rate converges
almost surely to the supremum of the true positive rate over the set where the false positive rate is constrained.

Rather than enforcing (θ̃t, δ̃t) to be a strict maximizer, in the theoretical study below, we allow it to be a
near-maximizer of ˜TPRn1(θ, δ) within Ω̃t,n0 in the sense that

˜TPRn1(θ̃t, δ̃t) ≥ sup
(θ,δ)∈Ω̃t,n0

˜TPRn1(θ, δ)− an ,

where an is a decreasing sequence of positive real numbers tending to zero. This provides some flexibility to
accommodate situations in which a strict maximizer either does not exist or is numerically difficult to identify.
In practice, an would be chosen to be as small as pragmatically feasible.

Before stating our key theorem, we give the following conditions.

Condition 1: Observations are randomly sampled conditional on disease status D, and the group sizes tend
to infinity proportionally, in the sense that n = n1 + n0 →∞ and n1/n0 → ρ ∈ (0, 1).

Condition 2: For each d ∈ {0, 1}, observations Xdi, i = 1, 2, . . . , nd, are independent and identically distri-
buted p-dimensional random vectors with distribution function Fd.

Condition 3: For each d ∈ {0, 1}, no proper linear subspace S ⊂ Rp is such that pr(X ∈ S | D = d) = 1.

Condition 4: For each d ∈ {0, 1}, the distribution and quantile functions of θ>X given D = d are globally
Lipschitz continuous uniformly over θ ∈ Rp such that ‖θ‖ = 1.

Condition 5: The map (θ, δ) 7→ TPR(θ, δ) is globally Lipschitz continuous over Ω = {θ ∈ Rp, δ ∈ R :
||θ|| = 1}.

Theorem 1. Under conditions (1)–(5), for every fixed t ∈ (0, 1), we have that (a) lim supn FPR(θ̃t, δ̃t) ≤ t
almost surely; and (b) |TPR(θ̃t, δ̃t)− sup(θ,δ)∈Ωt

TPR(θ, δ)| tends to zero almost surely.

The proof of Theorem 1 is given in the Appendix. The proof relies on two lemmas, which are given
in the Appendix. Lemma A1 demonstrates almost sure convergence to zero of the difference between the
supremum of a function over a fixed set and the supremum of the function over a stochastic set that converges
to the fixed set in an appropriate sense. Lemma A2 establishes the almost sure uniform convergence to zero
of the difference between the false positive rate and the smooth approximation to the empirical false positive
rate and the difference between the true positive rate and the smooth approximation to the empirical true
positive rate. The proof of Theorem 1 then demonstrates that Lemma A1 holds for the relevant function and
sets, relying in part on the conclusions of Lemma A2. The conclusions of Lemmas A1 and A2 are then used
to demonstrate the claims of Theorem 1.
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3.3 Implementation details
In order to implement these methods, certain considerations must first be addressed, including the choice
of tuning parameter h and starting values (θ̃, δ̃) for the optimization routine. In using similar methods to
maximize the AUC, Lin et al. (2011) proposed using h = σ̃n−1/3, where σ̃ is the sample standard error of
θ̃>X . In simulations, we considered both h = σ̃n−1/3 and h = σ̃n−1/2 and found that using the latter
had little impact on the convergence of the optimization routine. Thus, we use h = σ̃n−1/2. We must also
identify initial values (θ̃, δ̃) for our procedure. As done in Fong et al. (2016), we use normalized estimates
from robust logistic regression, which is described in greater detail below. Based on this initial value θ̃, we
choose δ̃ such that ˜FPRn0(θ̃, δ̃) = t.

Finally, we have also found that when ˜FPRn0
is bounded by t, the performance of the optimization routine

can be poor. Thus, we introduce another tuning parameter, α, which allows for a small amount of relax-
ation in the constraint on the smooth approximation to the empirical false positive rate, imposing instead
˜FPRn0(θ, δ) ≤ t + α. Since the effective sample size for the smooth approximation to the empirical false

positive rate is n0, we chose to scale α with n0, and have found α = 1/(2n0) to work well in simulations.
Other values of α may give combinations with better performance and could be considered.

Our method does not require limiting the number of biomarkers considered, although the risk of over-
fitting is expected to grow as the number of biomarkers increases relative to the sample size. In addition,
our method does not impose constraints on the distribution of the biomarkers that can be included, except
for weak conditions that allow us to establish its large-sample properties. An R package including code to
implement our method, maxTPR, will be publicly available.

4 Simulations
Fong et al. (2016) suggest that the presence of outliers may lead to diminished performance of likelihood-
based methods, while AUC-based methods may be less affected since the AUC is a rank-based measure. This
feature would be expected to extend to the true and false positive rates, which are also rank-based measures.
We consider simulations with and without outliers in the data-generating distribution, and simulate data under
a model similar to that used by Fong et al. (2016). We consider two biomarkers X1 and X2 constructed as(

X1

X2

)
= (1−∆)× Z0 + ∆× Z1

andD is then simulated as a Bernoulli random variable with success probability f
{
β0 + 4X1 − 3X2 − 0.8(X1 −X2)3

}
,

where ∆ is a Bernoulli random variable with success probability π = 0.05 when outliers are simulated and
π = 0 otherwise, Z0 andZ1 are independent bivariate normal random variables with mean zero and respective
covariance matrices

0.2×
(

1 0.9
0.9 1

)
, 2×

(
1 0
0 1

)
.

We consider two f functions: f1(v) = expit(v) = ev/(1 + ev) and a piecewise logistic function,

f2(v) = 1(v < 0)× 1

1 + e−v/3
+ 1(v ≥ 0)× 1

1 + e−3v
.

We vary β0 to reflect varying prevalences, with a prevalence of approximately 50–60% for β0 = 0, 16–18%
for β0 < 0, and 77–82% for β0 > 0. We considered t = 0.05, 0.1, and 0.2. A plot illustrating the data-
generating distribution with f = f1 and β0 = 0, with and without outliers, is given in the Supplementary
Material.

The proposed method was used to estimate the combination and threshold using training data with 200,
400, or 800 observations. We evaluated the fitted combination in a large test set with 106 observations from
the same population giving rise to the training data. We compared the fitted combination from the proposed
method to those based on robust logistic regression and standard logistic regression. The robust logistic
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regression method used here is that of Bianco & Yohai (1996), an estimation method that is designed to
have some robustness against so-called anomalous data, including, for example, the normal mixture model
defined above. In short, each of the three methods is used to fit a linear combination of the biomarkers. Both
standard and robust logistic regression use the logit link to model the data, while the proposed method does
not depend on the specification of a link function. Standard and robust logistic regression differ in how they
fit the logistic model; in particular, standard logistic regression maximizes a likelihood, while robust logistic
regression minimizes a loss function designed to limit the influence of individual observations.

We evaluated the true positive rate in the test data for a false positive rate of t in the test data. In other
words, for each combination, the threshold used to calculate the true positive rate in the test data was chosen
such that the false positive rate in the test data was equal to t. We evaluated the false positive rate in the
test data using the thresholds estimated in the training data. For standard and robust logistic regression, this
threshold is the (1 − t)th quantile of the fitted biomarker combination among controls in the training data.
For the proposed method, two thresholds are considered: the threshold estimated directly by the proposed
method, as defined in Equation (1), and the (1 − t)th quantile of the fitted biomarker combination among
controls in the training data. While the true and false positive rates in the test data are empirical estimates,
the test set is so large that the estimates will be very close to the true and false positive rates. The simulations
were repeated 1000 times.

Table 1 summarizes the results for the logit link, f1, with moderate prevalence. The performance of the
proposed method is generally similar to robust logistic regression and is similar to or better than standard
logistic regression in terms of the true positive rate, though the false positive rate for the proposed method
tends to be slightly higher than t when both t and the training dataset are small. There are some benefits
in terms of the precision of the true positive rate for standard logistic regression and, when outliers are not
present, robust logistic regression, relative to the proposed method. Improvements are generally seen for the
proposed method when the threshold δ is reestimated in the training data based on the fitted combination, as
opposed to estimated directly.

Table 2 presents the results for the piecewise logistic function, f2, with moderate prevalence. When
there are no outliers, the performance of the proposed method in terms of the true positive rate is generally
comparable to standard and robust logistic regression, though there tends to be less variability in performance
for standard and robust logistic regression. When there are outliers, the proposed method tends to perform
better than both standard and robust logistic regression in terms of the true positive rate. Whether or not there
are outliers, the false positive rate for the proposed method tends to be slightly higher than t when both t
and the training dataset are small. In most cases, improvements are seen for the proposed method when the
threshold δ is reestimated.

The results for low and high prevalence are presented in the Supplementary Material. The results are
generally similar to those presented in Tables 1 and 2, though there are some differences. When the prevalence
is low and outliers are present, the differences between the methods are smaller than in Tables 1 and 2. When
the prevalence is low and there are no outliers, the differences in terms of the false positive rate are smaller
than in Tables 1 and 2. When the prevalence is high, the differences in terms of the false positive rate are
slightly larger than in Tables 1 and 2. Furthermore, when t is small, the prevalence is high, and the sample
size is small, all of the methods have difficulty maintaining the acceptable false positive rate, as might be
expected. For f1, when the prevalence is high, the differences in the true positive rate are smaller than was
seen in Table 1 when outliers are present and are slightly larger when outliers are not present.

For some data-generating distributions, the gains offered by the proposed method over robust logistic
regression are quite substantial. For example, we considered a scenario with f = f2, true combination
β0 + 4X1 − 3X2 − 0.6(X1 − X2)3, a training set size of 800, t = 0.2, outliers in the data-generating
distribution, and β0 = 1.5, giving a prevalence of approximately 93%. The fitted combinations were evaluated
as described above. Across 1000 simulations, the mean (standard deviation) true positive rate, as a percentage,
was 55.3 (8.4) for standard logistic regression, 61.9 (14.2) for robust logistic regression, and 70.1 (15.4) for
the proposed method. Likewise, the mean (standard deviation) false positive rate, as a percentage, was 21.3
(5.1) for standard logistic regression, 21.4 (5.1) for robust logistic regression, 23.0 (5.9) for the proposed
method with the threshold estimated directly, and 22.5 (5.3) for the proposed method with the threshold
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Table 1: Mean true and false positive rates and standard deviation (in parentheses) for f(v) = f1(v) ≡
expit(v) = ev/(1 + ev) and β0 = 0 across 1000 simulations. n is the size of the training dataset, t is
the acceptable false positive rate, GLM denotes standard logistic regression, rGLM denotes robust logistic
regression, sTPR denotes the proposed method with the threshold estimated directly, and sTPR(re) denotes
the proposed method with the threshold reestimated based on quantiles of the fitted combination. All numbers
are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 12.2 (2.1) 13.6 (2.6) 13.4 (2.7) 5.7 (2.2) 5.9 (2.3) 6.8 (2.5) 6.4 (2.4)

400 12.1 (1.7) 14.1 (2.3) 13.9 (2.4) 5.4 (1.6) 5.4 (1.6) 6.0 (1.7) 5.9 (1.7)
800 11.8 (1.2) 14.4 (2.2) 14.4 (2.3) 5.1 (1.1) 5.2 (1.1) 5.5 (1.2) 5.5 (1.2)

No 200 18.3 (0.6) 18.3 (0.6) 17.8 (1.8) 5.5 (2.2) 5.5 (2.2) 6.8 (2.5) 6.2 (2.4)
400 18.5 (0.3) 18.5 (0.3) 18.1 (1.6) 5.3 (1.5) 5.3 (1.5) 5.9 (1.7) 5.7 (1.6)
800 18.6 (0.2) 18.6 (0.2) 18.4 (1.2) 5.2 (1.1) 5.2 (1.1) 5.6 (1.2) 5.5 (1.2)

t = 0.10
Yes 200 22.5 (3.8) 24.6 (4.3) 24.6 (4.2) 10.9 (3.1) 11.1 (3.0) 12.0 (3.2) 11.7 (3.2)

400 21.8 (2.8) 25.1 (4.0) 25.2 (4.0) 10.4 (2.0) 10.5 (2.1) 11.1 (2.1) 11.0 (2.1)
800 21.4 (2.0) 25.7 (3.6) 25.8 (3.6) 10.1 (1.5) 10.1 (1.5) 10.5 (1.5) 10.5 (1.5)

No 200 29.4 (0.8) 29.5 (0.8) 28.9 (2.2) 10.5 (3.1) 10.5 (3.1) 11.8 (3.3) 11.4 (3.2)
400 29.8 (0.4) 29.8 (0.4) 29.5 (1.3) 10.4 (2.1) 10.4 (2.1) 11.1 (2.3) 10.9 (2.2)
800 29.9 (0.2) 29.9 (0.2) 29.7 (1.5) 10.2 (1.5) 10.2 (1.5) 10.6 (1.7) 10.6 (1.5)

t = 0.20
Yes 200 38.0 (5.1) 40.8 (5.8) 41.0 (5.7) 20.9 (4.0) 21.1 (4.0) 22.0 (4.0) 21.8 (4.0)

400 37.4 (3.9) 41.7 (5.3) 41.9 (5.2) 20.5 (2.8) 20.6 (2.9) 21.2 (2.9) 21.1 (2.9)
800 36.9 (2.9) 42.4 (4.6) 43.0 (4.4) 20.2 (2.0) 20.4 (2.0) 20.7 (1.9) 20.7 (2.0)

No 200 46.1 (0.9) 46.1 (0.9) 45.7 (1.5) 20.7 (4.1) 20.8 (4.1) 22.1 (4.2) 21.7 (4.2)
400 46.4 (0.5) 46.4 (0.5) 46.2 (0.8) 20.3 (2.8) 20.3 (2.8) 21.1 (2.8) 21.0 (2.8)
800 46.5 (0.2) 46.5 (0.3) 46.4 (0.6) 20.1 (2.0) 20.1 (2.0) 20.6 (2.0) 20.5 (2.0)
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Table 2: Mean true and false positive rates and standard deviation (in parentheses) for f(v) = f2(v) ≡
1(v < 0)× (1 + e−v/3)−1 + 1(v ≥ 0)× (1 + e−3v)−1 and β0 = 0 across 1000 simulations. n is the size of
the training dataset, t is the acceptable false positive rate, GLM denotes standard logistic regression, rGLM
denotes robust logistic regression, sTPR denotes the proposed method with the threshold estimated directly,
and sTPR(re) denotes the proposed method with the threshold reestimated based on quantiles of the fitted
combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 20.2 (7.3) 26.4 (9.1) 27.7 (9.2) 5.9 (2.6) 6.0 (2.6) 6.9 (2.8) 6.5 (2.8)

400 19.0 (5.9) 27.6 (8.5) 29.3 (8.2) 5.5 (1.8) 5.5 (1.7) 6.0 (1.8) 5.8 (1.8)
800 17.9 (4.1) 29.4 (7.5) 30.8 (7.3) 5.3 (1.3) 5.3 (1.2) 5.6 (1.3) 5.5 (1.3)

No 200 37.9 (1.7) 37.8 (1.9) 37.5 (3.1) 5.8 (2.7) 5.7 (2.7) 7.3 (2.9) 6.5 (2.9)
400 38.6 (0.9) 38.5 (1.0) 38.3 (2.1) 5.3 (1.8) 5.3 (1.8) 6.1 (1.8) 5.8 (1.8)
800 38.9 (0.4) 38.9 (0.5) 38.6 (2.2) 5.2 (1.3) 5.2 (1.3) 5.6 (1.3) 5.5 (1.3)

t = 0.10
Yes 200 31.1 (8.9) 37.4 (10.8) 39.3 (11.0) 11.0 (3.5) 11.3 (3.6) 12.0 (3.7) 12.0 (3.6)

400 30.3 (7.1) 39.9 (9.8) 41.5 (9.6) 10.5 (2.5) 10.7 (2.4) 11.0 (2.5) 11.0 (2.5)
800 28.9 (5.0) 41.1 (8.9) 43.1 (8.6) 10.1 (1.7) 10.3 (1.7) 10.5 (1.8) 10.6 (1.8)

No 200 48.2 (1.8) 48.0 (1.9) 48.2 (2.0) 10.9 (3.5) 10.9 (3.5) 12.3 (3.5) 11.7 (3.6)
400 48.8 (0.9) 48.7 (1.0) 48.7 (1.1) 10.4 (2.4) 10.4 (2.4) 11.2 (2.4) 10.9 (2.5)
800 49.2 (0.4) 49.1 (0.5) 49.0 (0.6) 10.2 (1.7) 10.2 (1.7) 10.7 (1.7) 10.7 (1.8)

t = 0.20
Yes 200 45.0 (8.1) 50.4 (9.8) 51.9 (9.7) 21.2 (4.6) 21.5 (4.7) 22.1 (4.8) 22.0 (4.8)

400 44.4 (6.3) 52.8 (8.6) 54.0 (8.5) 20.4 (3.2) 20.8 (3.3) 21.2 (3.3) 21.2 (3.4)
800 44.1 (4.8) 54.8 (7.3) 56.5 (6.6) 20.2 (2.3) 20.3 (2.3) 20.6 (2.2) 20.7 (2.3)

No 200 59.5 (1.3) 59.4 (1.4) 59.3 (1.8) 21.1 (4.6) 21.1 (4.6) 22.6 (4.6) 22.1 (4.7)
400 60.0 (0.6) 59.9 (0.7) 59.8 (0.9) 20.5 (3.4) 20.6 (3.4) 21.3 (3.3) 21.2 (3.4)
800 60.2 (0.4) 60.1 (0.4) 60.1 (0.5) 20.3 (2.2) 20.3 (2.2) 20.7 (2.3) 20.7 (2.3)
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reestimated based on quantiles of the fitted combination.
In addition to the data-generating distribution described above, we considered conditionally bivariate

normal biomarkers with non-proportional covariance matrices. We simulated D ∼ Bernoulli(0.7) and(
X1

X2

∣∣∣∣D = 1

)
∼ N

{(
µ1

µ2

)
, 0.25×

(
1 0.9

0.9 1

)}
,(

X1

X2

∣∣∣∣D = 0

)
∼ N

{(
0
0

)
,

(
1.25 0

0 1.25

)}
,

with µ1 = 21/2Φ−1(AUCX1
) and µ2 = 21/2Φ−1(AUCX2

), where AUCX1
= 0.6 is the marginal AUC for

X1 and AUCX2 = 0.8 is the marginal AUC for X2. This data-generating distribution corresponds to a si-
tuation in which the biomarkers are highly correlated in cases, but essentially constitute noise in controls.
Under this data-generating distribution, the optimal combination in terms of the ROC curve is of the form
β0 + β1X1 + β2X2 + β3X1X2 + β4X

2
1 + β5X

2
2 . We considered a maximum acceptable false positive rate,

t, of 0.10 and a training set size of 800. The fitted combinations were evaluated as described above. Across
1000 simulations, the mean (standard deviation) true positive rate, as a percentage, was 32.1 (3.6) for standard
logistic regression, 24.6 (6.6) for robust logistic regression, and 32.0 (8.4) for the proposed method. Like-
wise, the mean (standard deviation) false positive rate, as a percentage, was 10.4 (2.0) for standard logistic
regression, 10.4 (2.0) for robust logistic regression, 10.8 (2.9) for the proposed method with the threshold
estimated directly, and 11.0 (2.0) for the proposed method with the threshold reestimated based on quantiles
of the fitted combination. Thus, in this scenario, the proposed method was comparable to standard logistic re-
gression in terms of the true positive rate but offered substantial improvements over robust logistic regression
while maintaining control of the false positive rate near t.

In most simulation settings, convergence of the proposed method was achieved in more than 96% of
simulations. For f1 with β0 = 1.75, convergence failed in up to 7.3% of simulations. Thus, caution may
be warranted in more extreme scenarios, such as when the prevalence is very high, particularly if the sample
size and/or t are small. In addition, when simulating with outliers, the true biomarker combination was
occasionally so large that it returned a non-value for the outcomeD; for example, with f1(v) = expit(v), this
occurs in R when v > 800. These observations had to be removed from the simulated dataset, though this
affected an extremely small fraction of observations.

5 Application to diabetes data
We apply the method we have developed to the study of diabetes in women with Pima Indian heritage. We
consider seven predictors measured in this study: number of pregnancies, plasma glucose concentration,
diastolic blood pressure, triceps skin fold thickness, body mass index, diabetes pedigree function, and age.
The diabetes pedigree function is a measure of family history of diabetes (Smith et al., 1988). We used 332
observations as training data and reserved the remaining 200 observations for testing. The training and test
datasets had 109 and 68 diabetes cases, respectively. We scaled the variables to have equal variance. The
distribution of predictors is depicted in the Supplementary Material.

The combinations were fitted using the training data and evaluated using the test data. We fixed the accep-
table false positive rate at t = 0.10. We used standard logistic regression, robust logistic regression, and the
proposed method to construct the combinations, giving the results in Table 3, where the fitted combinations
from standard and robust logistic regression have been normalized to aid in comparison.

Using thresholds based on FPR = 0.10 in the test data, the estimated true positive rate in the test data
was 0.544 for both standard and robust logistic regression, and 0.559 for the proposed method. When the
thresholds estimated in the training data were used, the estimated false positive rate in the test data was 0.182
for both standard and robust logistic regression, 0.258 for the proposed method using the threshold estimated
directly, and 0.265 for the proposed method using the threshold reestimated in the training data based on
the fitted combination. The estimated false positive rate in the test data exceeded the target value for all the
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Table 3: Fitted combinations of the scaled predictors in the diabetes study. GLM denotes standard logistic
regression, rGLM denotes robust logistic regression, and sTPR denotes the proposed method with t = 0.10.

Predictor GLM rGLM sTPR
Number of pregnancies 0.321 0.320 0.403
Plasma glucose 0.793 0.792 0.627
Blood pressure −0.077 −0.073 −0.026
Skin fold thickness 0.089 0.090 −0.146
Body mass index 0.399 0.400 0.609
Diabetes pedigree 0.280 0.281 0.191
Age 0.133 0.134 0.123

methods considered, indicating potentially important differences in the controls between the training and test
data.

6 Discussion
The proposed method could be adapted to minimize the false positive rate while controlling the true positive
rate to be above some acceptable level. Since the true positive rate and false positive rate are invariant to
disease prevalence, the proposed method can be used with case-control data. In the presence of matching,
however, it becomes necessary to consider the covariate-adjusted ROC curve and corresponding covariate-
adjusted summaries, and thus the methods presented here are not immediately applicable (Janes & Pepe,
2008).

As our smooth approximation function is non-convex, the choice of starting values should be considered
further. Extensions of convex methods, such as the ramp function method proposed by Fong et al. (2016) for
the AUC, could also be considered. Further research into methods for evaluating the true and false positive
rates of biomarker combinations after estimation, for example, sample-splitting, bootstrapping, or k-fold
cross-validation, is needed.
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Supplementary material
Supplementary material available includes the proof of the optimal combination of conditional multivariate
normal biomarkers with proportional covariance matrices, an illustration of the data-generating distribution
used to simulate data with and without outliers in Section 4, additional simulation results, the densities of the
predictors in the diabetes study, and proofs of the lemmas used in the proof of Theorem 1.

Appendix
The proof of Theorem 1 relies on Lemmas A1 and A2, which are stated below and proved in the Supplemen-
tary Material.
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Lemma A1. Say that a bounded function f : Rd → R and possibly random sets Ω0,Ω1,Ω2, . . . ⊆ Rd are
given, and let {an}n≥1 be a decreasing sequence of positive real numbers tending to zero. For each n ≥ 1,
suppose that ω0,n ∈ Ω0 and ωn ∈ Ωn are near-maximizers of f over Ω0 and Ωn, respectively, in the sense
that f(ω0,n) ≥ supω∈Ω0

f(ω)− an and f(ωn) ≥ supω∈Ωn
f(ω)− an. Further, define

dn = sup
ω∈Ωn

inf
ω̃∈Ω0

d(ω, ω̃), en = sup
ω∈Ω0

inf
ω̃∈Ωn

d(ω, ω̃),

where d is the Euclidean distance in Rd. If dn and en tend to zero almost surely, and f is globally Lipschitz
continuous, then |f(ω0,n)− f(ωn)| tends to zero almost surely. In particular, this implies that∣∣∣∣ sup

ω∈Ω0

f(ω)− sup
ω∈Ωn

f(ω)

∣∣∣∣ −→ 0

almost surely.

Lemma A2. Under conditions (1)–(5), we have that

sup
(θ,δ)∈Ω

| ˜FPRn0
(θ, δ)− FPR(θ, δ)| −→ 0, sup

(θ,δ)∈Ω

| ˜TPRn1
(θ, δ)− TPR(θ, δ)| −→ 0

almost surely as n tends to +∞, where Ω = {(θ, δ) ∈ Rp × R : ||θ|| = 1}.

Proof of Theorem 1. First, we show that lim supn FPR(θ̃t, δ̃t) ≤ t almost surely. We can write

FPR(θ̃t, δ̃t) = ˜FPRn0(θ̃t, δ̃t) + {FPR(θ̃t, δ̃t)− ˜FPRn0(θ̃t, δ̃t)}
≤ ˜FPRn0

(θ̃t, δ̃t) + |FPR(θ̃t, δ̃t)− ˜FPRn0
(θ̃t, δ̃t)|

≤ ˜FPRn0
(θ̃t, δ̃t) + sup

(θ,δ)∈Ω

|FPR(θ, δ)− ˜FPRn0
(θ, δ)| ≤ t+ sup

(θ,δ)∈Ω

|FPR(θ, δ)− ˜FPRn0
(θ, δ)| .

As such, it follows that

pr{lim sup
n

FPR(θ̃t, δ̃t) ≤ t} ≥ pr{lim sup
n

sup
(θ,δ)∈Ω

|FPR(θ, δ)− ˜FPRn0
(θ, δ)| = 0} = 1

in view of Lemma A2, thereby establishing the first part of the theorem.
Let t ∈ (0, 1) be fixed. We now establish that∣∣∣∣TPR(θ̃t, δ̃t)− sup

(θ,δ)∈Ωt

TPR(θ, δ)

∣∣∣∣ −→ 0

almost surely. For convenience, denote (θ, δ) by ω. Consider the function f defined pointwise as f(ω) =
TPR(θ, δ), and set Ω0 = Ωt and Ωn = Ω̃t,n0

for each n ≥ 1. We verify that the conditions of Lemma A1
hold for these particular choices. We have that f(ω) = TPR(θ, δ) is a bounded function. We must show dn0

and en0 tend to zero almost surely, where

dn0 = sup
ω∈Ω̃t,n0

inf
ω̃∈Ωt

d(ω, ω̃), en0 = sup
ω∈Ωt

inf
ω̃∈Ω̃t,n0

d(ω, ω̃),

and d is the Euclidean distance in Rp+1. We consider dn0
first. Denote by Gθ the conditional distribution

function of θ>X given D = 0. By assumption, the corresponding conditional quantile function, denoted by
G−1
θ , is uniformly Lipschitz continuous over {θ ∈ Rp : ‖θ‖ = 1}, say with constant C > 0 independent of

θ. Suppose that, for some κ > 0, supω∈Ω̃t,n0
| ˜FPRn0(ω)− FPR(ω)| ≤ κ. Because it is true that

κ ≥ sup
ω∈Ω̃t,n0

| ˜FPRn0
(ω)− FPR(ω)| ≥

∣∣∣∣ sup
ω∈Ω̃t,n0

˜FPRn0
(ω)− sup

ω∈Ω̃t,n0

FPR(ω)

∣∣∣∣ ,
12
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then supω∈Ω̃t,n0
FPR(ω) ≤ κ+ t, giving ˜FPRn0(ω) ≤ t and FPR(ω) ≤ κ+ t for each ω ∈ Ω̃t,n0 .

For any given ω = (θ, δ) ∈ Ω̃t,n0 , write t∗(ω) = Gθ(δ), giving t∗(ω) = FPR(ω) ≤ κ + t. If t∗(ω) ≤ t,
note also that ω ∈ Ωt and set ω∗ = ω. Otherwise, find δ∗ such that 1 − Gθ(δ∗) = t, namely by taking
δ∗ = G−1

θ (1− t). Defining ω∗ = (θ, δ∗) ∈ Ωt, observe that

d(ω, ω∗) = |δ − δ∗| = |G−1
θ (1− t∗(ω))−G−1

θ (1− t)| ≤ C|t− t∗(ω)| ≤ Cκ .

Thus, for each ω ∈ Ω̃t,n0
, it is true that inf ω̃∈Ωt

d(ω, ω̃) ≤ Cκ and therefore dn0
≤ Cκ. As such, if dn0

> ε
for some ε > 0, then supω∈Ω̃t,n0

| ˜FPRn0
(ω)− FPR(ω)| > κε for κε = ε/C. This implies that

pr
(

sup
m≥n0

dm > ε

)
≤ pr

(
sup
m≥n0

sup
ω∈Ω̃t,m

| ˜FPRm(ω)− FPR(ω)| > κε

)
−→ 0

by Lemma A2. Thus, dn tends to zero almost surely since, for each ε > 0,

pr
(

lim sup
m
{dm ≥ ε}

)
≤ pr

(
lim sup

m
dm ≥ ε

)
= 0 .

Using similar arguments, we may show that en also tends to zero almost surely.
The fact that dn and en tend to zero almost surely implies, in view of Lemma A1, that we have that

| sup(θ,δ)∈Ωt
TPR(θ, δ) − sup(θ,δ)∈Ω̃t,n0

TPR(θ, δ)| tends to zero almost surely. Combining this with an ap-
plication of Lemma A2, we have that∣∣∣∣ sup

(θ,δ)∈Ωt

TPR(θ, δ) − sup
(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ)

∣∣∣∣
≤
∣∣∣∣ sup

(θ,δ)∈Ωt

TPR(θ, δ)− sup
(θ,δ)∈Ω̃t,n0

TPR(θ, δ)

∣∣∣∣+

∣∣∣∣ sup
(θ,δ)∈Ω̃t,n0

TPR(θ, δ)− sup
(θ,δ)∈Ω̃t,n0

˜TPRn1(θ, δ)

∣∣∣∣
≤
∣∣∣∣ sup

(θ,δ)∈Ωt

TPR(θ, δ)− sup
(θ,δ)∈Ω̃t,n0

TPR(θ, δ)

∣∣∣∣+ sup
(θ,δ)∈Ω̃t,n0

|TPR(θ, δ)− ˜TPRn1(θ, δ)| −→ 0

almost surely. Since |TPR(θ̃t, δ̃t) − ˜TPRn1(θ̃t, δ̃t)| ≤ sup(θ,δ)∈Ω |TPR(θ, δ) − ˜TPRn1(θ, δ)| and, by Lemma
A2, sup(θ,δ)∈Ω |TPR(θ, δ) − ˜TPRn1

(θ, δ)| tends to zero almost surely, |TPR(θ̃t, δ̃t) − ˜TPRn1
(θ̃t, δ̃t)| tends to

zero almost surely. In addition, since (θ̃t, δ̃t) is a near-maximizer of ˜TPRn1
, sup(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ) ≤

˜TPRn1(θ̃t, δ̃t) + an, giving∣∣∣∣ sup
(θ,δ)∈Ωt

TPR(θ, δ)− TPR(θ̃t, δ̃t)

∣∣∣∣
≤
∣∣∣∣ sup

(θ,δ)∈Ωt

TPR(θ, δ)− sup
(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ)

∣∣∣∣+

∣∣∣∣ sup
(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ)− TPR(θ̃t, δ̃t)

∣∣∣∣
≤
∣∣∣∣ sup

(θ,δ)∈Ωt

TPR(θ, δ)− sup
(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ)

∣∣∣∣+

∣∣∣∣ sup
(θ,δ)∈Ω̃t,n0

˜TPRn1
(θ, δ)− ˜TPRn1

(θ̃t, δ̃t)

∣∣∣∣
+

∣∣∣∣ ˜TPRn1
(θ̃t, δ̃t)− TPR(θ̃t, δ̃t)

∣∣∣∣
≤
∣∣∣∣ sup

(θ,δ)∈Ωt

TPR(θ, δ)− sup
(θ,δ)∈Ω̃t,n0

˜TPRn1(θ, δ)

∣∣∣∣+ an +

∣∣∣∣ ˜TPRn1(θ̃t, δ̃t)− TPR(θ̃t, δ̃t)

∣∣∣∣ −→ 0

almost surely, completing the proof.
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S1 Optimal combination under proportional covariance matrices
Proposition 1. If the biomarkers (X1, X2) are conditionally multivariate normal with proportional covari-
ance matrices given D, that is,

(X1, X2 | D = 0) ∼ N(µ0,Σ), (X1, X2 | D = 1) ∼ N(µ1, σ
2Σ),

then the optimal biomarker combination in the sense of the ROC curve is of the form

β0 + β1X1 + β2X2 + β3X1X2 + β4X
2
1 + β5X

2
2

for some vector (β0, β1, β2, β3, β4, β5) ∈ R5.

Proof of Proposition 1. It is known that the optimal combination of (X1, X2) in terms of the ROC curve
is the likelihood ratio, f(X1, X2 | D = 1)/f(X1, X2 | D = 0), or any monotone increasing function
thereof (McIntosh & Pepe, 2002). Let M = (X1, X2). Without loss of generality, let µ0 = 0 and µ1 = µ =
(µX1

, µX2
). Then

f(M | D = 1)

f(M | D = 0)
=
|σ2Σ|−1/2exp

{
− 1

2 (M − µ)>(σ2Σ)−1(M − µ)
}

|Σ|−1/2exp
{
− 1

2M
>Σ−1M

}
=

exp
{
− 1

2 (M − µ)>(σ2Σ)−1(M − µ)
}

σ2exp
{
− 1

2M
>Σ−1M

}
=

1

σ2
exp

{
− (M − µ)>Σ−1(M − µ)

2σ2
+
M>Σ−1M

2

}
.

Denote the entries of Σ−1 by

Σ−1 =

(
S11 S12

S21 S22

)
.

∗meisnera@uw.edu
†mcarone@uw.edu
‡mspepe@uw.edu
§katiek@uw.edu

1

http://biostats.bepress.com/uwbiostat/paper420



Then, we can write that

− 1

2σ2
(M − µ)>Σ−1(M − µ) +

1

2
M>Σ−1M

=
1

2

[
1

σ2

{
−S11(X2

1 − 2X1µX1
+ µ2

X1
)− S21(X1X2 −X2µX1

−X1µX2
+ µX1

µX2
)

−S12(X1X2 −X1µX2 −X2µX1 + µX1µX2)− S22(X2
2 − 2X2µX2 + µ2

X2
)
}

+ S11X
2
1 + S21X1X2 + S12X1X2 + S22X

2
2

]
=

1

2

{(
S11 −

S11

σ2

)
X2

1 +

(
S22 −

S22

σ2

)
X2

2 +

(
S12 + S21 −

S12

σ2
− S21

σ2

)
X1X2

+

(
2S11µX1 + S21µX2 + S12µX2

σ2

)
X1 +

(
S21µX1 + S12µX1 + 2S22µX2

σ2

)
X2

+
−S11µ

2
X1
− S21µX1µX2 − S12µX1µX2 − S22µ

2
X2

σ2

}
= β0 + β1X1 + β2X2 + β3X1X2 + β4X

2
1 + β5X

2
2

as claimed, where

β0 =
−S11µ

2
X1
− S21µX1

µX2
− S12µX1

µX2
− S22µ

2
X2

σ2

β1 =

(
2S11µX1 + S21µX2 + S12µX2

σ2

)
β2 =

(
S21µX1

+ S12µX1
+ 2S22µX2

σ2

)
β3 =

(
S12 + S21 −

S12

σ2
− S21

σ2

)
β4 =

(
S11 −

S11

σ2

)
β5 =

(
S22 −

S22

σ2

)
.
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S2 Illustration of data-generating distribution
This plot illustrates the data-generating distribution used to simulate data with and without outliers in Section
4. Specifically, we have that (

X1

X2

)
= (1−∆)× Z0 + ∆× Z1

andD is then simulated as a Bernoulli random variable with success probability f
{
β0 + 4X1 − 3X2 − 0.8(X1 −X2)3

}
,

where ∆ is a Bernoulli random variable with success probability π = 0.05 when outliers are simulated and
π = 0 otherwise, Z0 andZ1 are independent bivariate normal random variables with mean zero and respective
covariance matrices

0.2×
(

1 0.9
0.9 1

)
, 2×

(
1 0
0 1

)
.

Figure S1: Datasets with f(v) = f1(v) ≡ expit(v), β0 = 0, without (left plot) and with outliers (right plot).
Cases are represented by red circles, and controls are represented by blue triangles. The plot with outliers also
includes an ellipse (dashed black line) indicating the 99% confidence region for the distribution of (X1, X2)
without outliers.
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S3 Additional simulation results
The tables below present additional results related to the simulations described in §4; that is, data with and
without outliers in the setting of high and low disease prevalences. In each table, we report (i) the mean
and standard deviation of the true positive rate in the test data using the threshold corresponding to a false
positive rate of t in the test data and (ii) the mean and standard deviation of the false positive rate in the test
data corresponding to the thresholds estimated in the training data.

Table S1: Mean true positive rate and false positive rate and corresponding standard deviation (in parentheses)
for f(v) = f1(v) ≡ expit(v) = ev/(1 + ev) and β0 = −1.75 across 1000 simulations. n is the size of the
training dataset, t is the acceptable false positive rate, GLM denotes standard logistic regression, rGLM
denotes robust logistic regression, sTPR denotes the proposed method with the threshold estimated directly,
and sTPR(re) denotes the proposed method with the threshold reestimated based on quantiles of the fitted
combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 13.0 (2.8) 13.4 (3.4) 13.5 (3.4) 5.3 (1.7) 5.4 (1.7) 5.8 (1.9) 5.7 (1.8)

400 12.7 (1.9) 13.4 (2.7) 13.6 (2.9) 5.2 (1.2) 5.2 (1.2) 5.4 (1.3) 5.4 (1.2)
800 12.5 (1.3) 13.2 (2.1) 13.6 (2.5) 5.1 (0.8) 5.2 (0.8) 5.3 (0.9) 5.2 (0.9)

No 200 18.1 (1.0) 18.1 (1.1) 17.5 (2.2) 5.5 (1.8) 5.5 (1.8) 6.1 (1.9) 5.9 (1.8)
400 18.5 (0.6) 18.5 (0.6) 18.2 (1.6) 5.1 (1.2) 5.2 (1.2) 5.5 (1.3) 5.4 (1.3)
800 18.7 (0.3) 18.7 (0.3) 18.5 (1.1) 5.1 (0.9) 5.1 (0.9) 5.3 (0.9) 5.3 (0.9)

t = 0.10
Yes 200 22.1 (4.5) 22.7 (5.3) 23.1 (5.3) 10.4 (2.4) 10.5 (2.4) 10.8 (2.5) 10.8 (2.4)

400 21.9 (3.6) 22.8 (4.7) 23.4 (4.8) 10.1 (1.7) 10.2 (1.7) 10.4 (1.8) 10.4 (1.8)
800 21.4 (2.3) 22.3 (3.4) 23.3 (4.3) 10.1 (1.2) 10.1 (1.2) 10.2 (1.4) 10.3 (1.2)

No 200 29.5 (1.3) 29.4 (1.3) 28.8 (2.5) 10.3 (2.3) 10.4 (2.3) 11.1 (2.3) 10.9 (2.3)
400 29.8 (0.7) 29.8 (0.7) 29.5 (1.5) 10.2 (1.7) 10.2 (1.7) 10.7 (1.7) 10.6 (1.7)
800 30.1 (0.4) 30.1 (0.4) 29.8 (1.1) 10.1 (1.1) 10.1 (1.1) 10.4 (1.1) 10.3 (1.1)

t = 0.20
Yes 200 36.4 (6.6) 37.2 (7.8) 38.1 (7.4) 20.5 (3.2) 20.6 (3.1) 20.9 (3.5) 21.0 (3.2)

400 36.2 (4.7) 37.3 (6.2) 38.5 (6.4) 20.1 (2.2) 20.2 (2.3) 20.4 (2.2) 20.4 (2.2)
800 35.7 (3.0) 37.0 (4.6) 38.8 (5.7) 20.2 (1.5) 20.2 (1.5) 20.3 (1.7) 20.4 (1.5)

No 200 46.1 (1.7) 46.1 (1.7) 45.5 (2.6) 20.4 (3.1) 20.5 (3.2) 21.1 (3.1) 21.0 (3.2)
400 46.7 (0.8) 46.7 (0.8) 46.4 (1.3) 20.1 (2.1) 20.2 (2.1) 20.5 (2.1) 20.5 (2.1)
800 47.0 (0.4) 47.0 (0.4) 46.8 (0.7) 20.0 (1.6) 20.0 (1.6) 20.3 (1.5) 20.2 (1.6)
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Table S2: Mean true positive rate and false positive rate and corresponding standard deviation (in parentheses)
for f(v) = f1(v) ≡ expit(v) = ev/(1 + ev) and β0 = 1.75 across 1000 simulations. n is the size of the
training dataset, t is the acceptable false positive rate, GLM denotes standard logistic regression, rGLM
denotes robust logistic regression, sTPR denotes the proposed method with the threshold estimated directly,
and sTPR(re) denotes the proposed method with the threshold reestimated based on quantiles of the fitted
combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 8.4 (1.2) 8.4 (1.4) 8.2 (1.8) 7.3 (4.0) 6.9 (3.9) 9.2 (5.6) 7.7 (4.6)

400 8.6 (0.9) 8.5 (1.1) 8.3 (1.6) 6.3 (2.7) 6.3 (2.7) 7.2 (3.6) 6.7 (2.9)
800 8.7 (0.6) 8.6 (0.7) 8.5 (1.5) 5.8 (1.8) 5.8 (1.8) 6.2 (2.5) 6.1 (2.0)

No 200 18.7 (1.0) 18.7 (1.0) 17.2 (3.5) 6.3 (4.1) 6.1 (4.0) 9.3 (5.9) 7.4 (4.5)
400 19.0 (0.5) 19.0 (0.6) 17.9 (2.9) 5.7 (2.7) 5.6 (2.7) 7.1 (3.7) 6.4 (3.0)
800 19.2 (0.3) 19.2 (0.3) 18.3 (2.9) 5.3 (1.9) 5.3 (1.9) 6.1 (2.5) 5.9 (2.0)

t = 0.10
Yes 200 18.6 (3.9) 19.1 (4.7) 19.4 (4.8) 12.4 (5.1) 12.4 (5.0) 15.0 (6.2) 13.5 (5.4)

400 18.6 (2.5) 19.2 (3.5) 19.8 (3.8) 11.1 (3.4) 11.1 (3.5) 12.6 (4.2) 12.0 (3.7)
800 18.4 (1.4) 19.2 (2.6) 19.8 (3.4) 10.8 (2.6) 10.8 (2.6) 11.4 (3.1) 11.3 (2.7)

No 200 29.9 (1.3) 29.9 (1.3) 28.7 (3.6) 11.7 (5.2) 11.5 (5.2) 14.7 (6.7) 13.1 (5.6)
400 30.4 (0.6) 30.3 (0.7) 29.4 (3.4) 10.7 (3.6) 10.6 (3.6) 12.4 (4.5) 11.7 (3.8)
800 30.6 (0.3) 30.6 (0.3) 30.2 (2.0) 10.4 (2.5) 10.4 (2.5) 11.4 (2.8) 11.1 (2.5)

t = 0.20
Yes 200 34.2 (6.4) 34.9 (7.7) 35.9 (7.1) 22.5 (6.5) 22.7 (6.3) 25.0 (7.4) 24.0 (6.7)

400 34.2 (4.3) 35.0 (5.6) 36.3 (5.9) 21.4 (4.7) 21.5 (4.7) 22.9 (5.2) 22.4 (4.8)
800 33.9 (2.8) 35.0 (4.4) 36.2 (5.0) 20.6 (3.3) 20.7 (3.3) 21.5 (3.5) 21.3 (3.4)

No 200 46.4 (1.6) 46.4 (1.6) 45.6 (3.3) 22.2 (7.0) 22.0 (7.0) 25.6 (7.8) 23.9 (7.1)
400 47.0 (0.8) 47.0 (0.8) 46.5 (2.2) 20.8 (5.0) 20.7 (4.9) 22.8 (5.1) 22.0 (5.0)
800 47.2 (0.4) 47.2 (0.4) 46.9 (1.9) 20.6 (3.4) 20.6 (3.4) 21.6 (3.8) 21.4 (3.5)
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Table S3: Mean true positive rate and false positive rate and corresponding standard deviation (in parentheses)
for f(v) = f2(v) ≡ 1(v < 0)× (1/(1 + e−v/3)) + 1(v ≥ 0)× (1/(1 + e−3v)) and β0 = −5.25 across 1000
simulations. n is the size of the training dataset, t is the acceptable false positive rate, GLM denotes standard
logistic regression, rGLM denotes robust logistic regression, sTPR denotes the proposed method with the
threshold estimated directly, and sTPR(re) denotes the proposed method with the threshold reestimated based
on quantiles of the fitted combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 7.1 (1.1) 7.1 (1.1) 7.1 (1.1) 5.7 (1.8) 5.7 (1.8) 6.0 (2.0) 5.9 (1.9)

400 7.4 (1.0) 7.3 (0.9) 7.3 (1.0) 5.3 (1.2) 5.4 (1.2) 5.5 (1.3) 5.5 (1.2)
800 7.6 (0.8) 7.5 (0.8) 7.5 (0.9) 5.1 (0.8) 5.2 (0.8) 5.2 (1.0) 5.2 (0.9)

No 200 7.3 (1.4) 7.3 (1.4) 7.2 (1.4) 5.5 (1.7) 5.6 (1.7) 6.0 (1.9) 5.9 (1.8)
400 7.8 (0.9) 7.8 (1.0) 7.7 (1.1) 5.2 (1.2) 5.2 (1.1) 5.5 (1.4) 5.4 (1.2)
800 8.1 (0.4) 8.1 (0.4) 8.0 (0.7) 5.1 (0.9) 5.1 (0.9) 5.2 (1.1) 5.2 (0.9)

t = 0.10
Yes 200 12.4 (2.0) 12.3 (2.0) 12.4 (2.0) 10.6 (2.3) 10.6 (2.3) 10.7 (2.9) 10.9 (2.4)

400 12.6 (1.7) 12.4 (1.7) 12.6 (1.8) 10.4 (1.7) 10.4 (1.7) 10.5 (2.1) 10.6 (1.7)
800 12.8 (1.5) 12.5 (1.5) 12.7 (1.6) 10.2 (1.2) 10.2 (1.1) 10.3 (1.5) 10.3 (1.2)

No 200 13.9 (2.2) 13.9 (2.2) 13.6 (2.3) 10.7 (2.3) 10.8 (2.3) 11.2 (2.7) 11.2 (2.4)
400 14.5 (1.5) 14.5 (1.5) 14.4 (1.6) 10.2 (1.6) 10.2 (1.6) 10.5 (1.9) 10.5 (1.6)
800 15.0 (0.8) 15.0 (0.8) 14.9 (1.0) 10.2 (1.2) 10.2 (1.2) 10.4 (1.3) 10.4 (1.2)

t = 0.20
Yes 200 22.4 (3.6) 22.2 (3.7) 22.5 (3.7) 20.9 (3.1) 20.9 (3.2) 21.1 (4.0) 21.3 (3.2)

400 22.6 (3.3) 22.3 (3.3) 22.7 (3.3) 20.6 (2.2) 20.6 (2.2) 20.7 (2.8) 20.9 (2.2)
800 22.8 (2.7) 22.3 (2.8) 22.8 (2.8) 20.2 (1.5) 20.2 (1.6) 20.2 (2.1) 20.4 (1.6)

No 200 25.8 (3.5) 25.7 (3.5) 25.5 (3.6) 20.9 (3.1) 20.9 (3.1) 21.4 (3.7) 21.4 (3.1)
400 26.9 (2.3) 26.9 (2.3) 26.8 (2.3) 20.5 (2.1) 20.5 (2.1) 20.8 (2.3) 20.8 (2.1)
800 27.7 (1.1) 27.7 (1.1) 27.5 (1.3) 20.3 (1.6) 20.3 (1.6) 20.5 (1.7) 20.5 (1.6)
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Table S4: Mean true positive rate and false positive rate and corresponding standard deviation (in parentheses)
for f(v) = f2(v) ≡ 1(v < 0) × (1/(1 + e−v/3)) + 1(v ≥ 0) × (1/(1 + e−3v)) and β0 = 0.6 across 1000
simulations. n is the size of the training dataset, t is the acceptable false positive rate, GLM denotes standard
logistic regression, rGLM denotes robust logistic regression, sTPR denotes the proposed method with the
threshold estimated directly, and sTPR(re) denotes the proposed method with the threshold reestimated based
on quantiles of the fitted combination. All numbers are percentages.

Outliers n True positive rate False positive rate
GLM rGLM sTPR GLM rGLM sTPR sTPR(re)

t = 0.05
Yes 200 23.0 (8.6) 30.5 (10.9) 31.9 (10.8) 6.4 (3.3) 6.3 (3.4) 8.2 (3.8) 6.8 (3.7)
Yes 400 21.5 (6.9) 31.8 (10.5) 33.5 (10.1) 5.8 (2.3) 5.8 (2.4) 6.7 (2.7) 6.2 (2.6)
Yes 800 20.0 (4.4) 34.6 (9.2) 35.8 (8.5) 5.4 (1.6) 5.3 (1.6) 5.9 (1.8) 5.7 (1.7)
No 200 49.7 (1.5) 49.5 (1.7) 48.6 (4.4) 6.0 (3.5) 5.9 (3.5) 8.6 (4.1) 6.8 (3.7)
No 400 50.3 (0.7) 50.1 (0.8) 49.7 (2.3) 5.5 (2.5) 5.4 (2.5) 6.8 (2.6) 6.1 (2.6)
No 800 50.5 (0.4) 50.5 (0.5) 50.1 (2.0) 5.2 (1.6) 5.2 (1.6) 6.0 (1.7) 5.6 (1.7)

t = 0.10
Yes 200 37.3 (11.0) 45.7 (13.7) 48.4 (13.2) 11.5 (4.5) 11.6 (4.5) 13.2 (4.6) 12.4 (4.6)
Yes 400 35.2 (8.5) 47.5 (12.9) 50.6 (12.1) 10.8 (3.1) 10.9 (3.2) 11.7 (3.3) 11.4 (3.3)
Yes 800 34.5 (6.6) 51.3 (10.7) 53.6 (10.2) 10.4 (2.2) 10.4 (2.2) 10.8 (2.4) 10.8 (2.3)
No 200 61.3 (1.4) 61.1 (1.6) 60.7 (3.2) 10.9 (4.5) 10.9 (4.5) 13.4 (4.7) 12.1 (4.7)
No 400 61.8 (0.7) 61.6 (0.8) 61.4 (1.2) 10.6 (3.2) 10.6 (3.2) 12.0 (3.3) 11.4 (3.3)
No 800 62.0 (0.4) 62.0 (0.4) 61.8 (0.8) 10.3 (2.3) 10.3 (2.3) 11.1 (2.3) 10.9 (2.4)

t = 0.20
Yes 200 53.2 (10.6) 60.9 (13.0) 64.2 (12.3) 21.2 (5.9) 21.8 (6.0) 23.1 (6.1) 22.8 (6.0)
Yes 400 52.0 (8.5) 63.5 (11.8) 65.4 (11.3) 20.7 (4.1) 21.1 (4.2) 21.9 (3.9) 21.7 (4.1)
Yes 800 51.1 (6.0) 66.3 (9.7) 68.6 (8.2) 20.4 (3.0) 20.6 (3.0) 21.1 (2.8) 21.1 (3.0)
No 200 73.3 (1.1) 73.1 (1.3) 73.0 (1.5) 21.4 (6.4) 21.4 (6.4) 23.5 (6.1) 22.5 (6.3)
No 400 73.6 (0.6) 73.5 (0.7) 73.5 (0.8) 20.7 (4.4) 20.7 (4.4) 22.0 (4.3) 21.6 (4.4)
No 800 73.8 (0.3) 73.8 (0.4) 73.8 (0.4) 20.4 (3.0) 20.4 (3.0) 21.2 (3.0) 21.0 (3.0)
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S4 Densities of predictors in diabetes data
The distributions of the predictors measured in the diabetes study analyzed in Section 5 are depicted in
Figure S2.

Figure S2: Stratified distributions of the scaled predictors measured in the diabetes study for the observations
in the training data. The predictors are number of pregnancies, plasma glucose concentration, diastolic blood
pressure, triceps skin fold thickness, body mass index, diabetes pedigree function, and age. The predictor
values are shown on the x-axis of each plot. The red solid line represents the distribution among diabetes
cases and the blue dotted line represents the distribution among controls.
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S5 Proof of Lemma A1
Proof of Lemma A1. Say that both dn and en tend to zero almost surely, and denote by K > 0 the Lipschitz
constant of f . Suppose that for some ε > 0 we have that

pr
{

lim sup
n
|f(ωn)− f(ω0,n)| > ε

}
> 0 .

We will show that this leads to a contradiction, and thus that it must be true that pr{lim supn |f(ωn) −
f(ω0,n)| > ε} = 0 for each ε > 0, thus establishing the desired result.

On a set of probability one, there exists an nε ≥ 1 such that, for each n ≥ nε, there exists ω∗n ∈ Ω0 and
ω∗0,n ∈ Ωn satisfying d(ω∗n, ωn) < ε/(2K) and d(ω∗0,n, ω0,n) < ε/(2K). Then, on this same set, for n ≥ nε,
|f(ω∗n) − f(ωn)| ≤ ε/2 and |f(ω∗0,n) − f(ω0,n)| ≤ ε/2, so that f(ω0,n) ≤ f(ω∗0,n) + ε/2 and f(ωn) ≤
f(ω∗n) + ε/2 in particular. Since ω∗0,n ∈ Ωn and ω∗n ∈ Ω0, it must also be true that f(ω∗0,n) ≤ f(ωn) + an
and f(ω∗n) ≤ f(ω0,n) + an. This then implies that |f(ω0,n)− f(ωn)| ≤ ε/2 + an for all n ≥ nε on a set of
probability one. Since an tends to zero deterministically, this yields the sought contradiction.

To establish the last portion of the Lemma, we simply use the first part along with the fact that∣∣∣∣ sup
ω∈Ωn

f(ω)− sup
ω∈Ω0

f(ω)

∣∣∣∣ ≤ |f(ω0,n)− f(ωn)|+ 2an .

S6 Proof of Lemma A2
Proof of Lemma A2. We prove the claim for the false positive rate; the proof for the true positive rate is
analogous. We can write

sup
(θ,δ)∈Ω

| ˜FPRn0(θ, δ)− FPR(θ, δ)| ≤ sup
(θ,δ)∈Ω

| ˜FPRn0(θ, δ)− E{ ˜FPRn0(θ, δ)}|

+ sup
(θ,δ)∈Ω

|E{ ˜FPRn0
(θ, δ)} − FPR(θ, δ)| .

First, we consider ˜FPRn0(θ, δ)− E{ ˜FPRn0(θ, δ)}. We can write this as

˜FPRn0
(θ, δ)− E{ ˜FPRn0

(θ, δ)} =
1

n0

n0∑
j=1

Φ

(
θ>X0j − δ

h

)
−
∫

Φ

(
θ>x− δ

h

)
dF0(x) .

The class of functions G1 = {(θ, δ) 7→ θ>x − δ : θ ∈ Rp, δ ∈ R, x ∈ Rp} is a Vapnik–Chervonenkis
(VC) class. Since u 7→ Φ(u/h) is monotone for each h > 0, the class of functions G2 = {(θ, δ) 7→
Φ{(θ>x − δ)/h} : θ ∈ Rp, δ ∈ R, x ∈ Rp, h > 0} is also VC (Kosorok, 2008; van der Vaart, 1998; van
der Vaart & Wellner, 2000). Since the constant 1 is an applicable envelope function for this class, G2 is
F0–Glivenko-Cantelli, giving that (Kosorok, 2008; van der Vaart & Wellner, 2000)

sup
(θ,δ)∈Ω

| ˜FPRn0(θ, δ)− E{ ˜FPRn0(θ, δ)}| −→ 0

almost surely.
Next, we consider E{ ˜FPRn0

(θ, δ)} − FPR(θ, δ). We can write this as

E{ ˜FPRn0(θ, δ)} − FPR(θ, δ) =

∫
Φ

(
θ>x− δ

h

)
dF0(x)− pr(θ>X > δ | D = 0).
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For a general random variable V with distribution function F that is Lipschitz continuous, say with constant
M > 0, we can write

E

{
Φ

(
s− V
h

)}
=

∫
Φ

(
s− v
h

)
dF (v) = h

∫
Φ(u)f(s− hu)du

with u = (s− v)/h. Using integration by parts and Lemma 2.1 from Winter (1979), this becomes

h

∫
Φ(u)f(s− hu)du =

∫
φ(u)F (s− hu)du ,

and so, we find that∣∣∣∣E{Φ

(
s− V
h

)}
− F (s)

∣∣∣∣ =

∣∣∣∣∫ φ(u)F (s− hu)du− F (s)

∣∣∣∣
≤
∫
|F (s− hu)− F (s)|φ(u)du

≤ M

∫
|hu|φ(u)du = Mh

(
2

π

)1/2

.

Since h tends to zero as n tends to infinity, this implies that

sup
s

∣∣∣∣E{Φ

(
s− V
h

)}
− F (s)

∣∣∣∣ = o(1) .

We now return to θ>X and consider the case p = 2, so that θ>X = θ1X1+θ2X2. Let Y1 = θ1X1+θ2X2

and Y2 = θ2X2. Then, we have that fY1,Y2
(y1, y2) = fX1,X2

(x1, x2)|θ1θ2|−1, where x1 = x1(y1, y2) =
(y1 − y2)/θ1 and x2 = x2(y1, y2) = y2/θ2. We find that∫

Φ

(
s− θ>x

h

)
dFX(x) =

∫
Φ

(
s− y1

h

)
dFY (y) =

∫
Φ

(
s− y1

h

)
dFY1(y1)

for any s ∈ R. Since pr(θ>X ≤ δ | D = 0) = pr(Y1 ≤ δ | D = 0), we can write

sup
(θ,δ)∈Ω

∣∣∣∣∫ Φ

(
θ>x− δ

h

)
dF0(x)− pr(θ>X > δ | D = 0)

∣∣∣∣
= sup

δ∈R

∣∣∣∣∫ Φ

(
y1 − δ
h

)
dFY1|D=0(y1)− pr(Y1 > δ | D = 0)

∣∣∣∣
= sup

δ∈R

∣∣∣∣∫ Φ

(
δ − y1

h

)
dFY1|D=0(y1)− pr(Y1 ≤ δ | D = 0)

∣∣∣∣ ,
implying, in view of condition (4) and the results above, that

sup
(θ,δ)∈Ω

∣∣∣∣∫ Φ

(
θ>x− δ

h

)
dF0(x)− pr(θ>X > δ | D = 0)

∣∣∣∣ = o(1) .

The result for p > 2 can be proved analogously.
Combining these results, we conclude that sup(θ,δ)∈Ω | ˜FPRn0

(θ, δ) − FPR(θ, δ)| tends to zero almost
surely, as claimed.
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