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Collaborative Targeted Maximum Likelihood
For Time To Event Data

Ori M. Stitelman and Mark J. van der Laan

Abstract

Current methods used to analyze time to event data either, rely on highly paramet-
ric assumptions which result in biased estimates of parameters which are purely
chosen out of convenience, or are highly unstable because they ignore the global
constraints of the true model. By using Targeted Maximum Likelihood Estima-
tion one may consistently estimate parameters which directly answer the statistical
question of interest. Targeted Maximum Likelihood Estimators are substitution
estimators, which rely on estimating the underlying distribution. However, unlike
other substitution estimators, the underlying distribution is estimated specifically
to reduce bias in the estimate of the parameter of interest. We will present here
an extension of Targeted Maximum Likelihood Estimation for observational time
to event data, the Collaborative Targeted Maximum Likelihood Estimator for the
treatment specific survival curve. Through the use of a simulation study we will
show that this method improves on commonly used methods in both robustness
and efficiency. In fact, we will show that in certain situations the C-TMLE pro-
duces estimates whose mean square error is lower than the semi-parametric effi-
ciency bound. Lastly, we will show that the bootstrap is able to produce valid 95
percent confidence intervals in sparse data situations, while influence curve based
inference breaks down.



1 Introduction

It is common to want to quantify in observational data the effect of a treatment or ex-
posure on the time it takes for an event to occur. In Moore and van der Laan 2009 they
introduce the targeted maximum likelihood estimator for estimating the treatment spe-
cific survival curve in randomized clinical trials [2]. The targeted maximum likelihood
estimator (TMLE) presented there improves upon common methods for analyzing time to
event data in robustness, efficiency, and interpretability of parameter estimates. However,
those methods may not be directly applied to observational data because it differs from
randomized clinical trials in that the exposure/treatment is not set externally.

A 2009 paper by van der Laan and Gruber introduces a new class of estimators, the col-
laboratively double robust targeted maximum likelihood estimators (C-TMLE)[8]. These
estimators are an extension of TMLE specific to the observational setting. The C-TMLE
methods presented there provide estimates which, in many instances, are more efficient
than standard TMLE and all other possible estimation techniques. In fact, the C-TMLE
may produce super efficient estimates, or estimates which are more efficient than the semi-
parametric efficiency bound. Furthermore, the C-TMLE methodology produces well be-
haved estimates in situations where the parameter of interest is borderline identifiable.
When exposure is not randomized there may be individuals with certain baseline charac-
teristics which never experience a particular level of exposure. In other words, a certain
set of baseline characteristics may be completely predictive of a particular treatment level.
This phenomenon is termed a violation in the experimental treatment assumption (ETA)
in Neugebauer and van der Laan 2005 [3]. Violations in ETA render the parameters of
interest as presented in Moore and van der Laan unidentifiable. However, many times in
finite samples certain parameters are weakly identifiable due to practical violations in the
ETA assumption. Practical violations occur when a certain set of baseline covariates are
almost completely predictive of a certain treatment within the sample. C-TMLE estima-
tors address this issue and are able to produce stable estimates of borderline identifiable
parameters. Thus, the C-TMLE methodology may be applied in the time to event setting
to gain efficiency as well as produce estimates for weakly identifiable parameters of interest.
van der Laan and Gruber present a general methodology for constructing C-TMLE esti-
mators as well as apply the method to several basic data structures. We will extend those
methods to time to event data and present a C-TMLE methodology for estimating the
treatment specific survival curve. A simulation study will also be presented that illustrates
the advantages of using C-TMLE versus other methods.

2 Estimating Parameters In Coarsened Data Structures

In this section we will briefly introduce the parameter estimation problem for a coarsened
data structure. Then different methods for estimating parameters within this data struc-
ture will be introduced along with their shortcomings. Finally, we will discuss the TMLE
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methodology in general, and illustrate how the properties of targeted maximum likelihood
estimates address the drawbacks seen in the other estimators.

Suppose one observes a censored data structure O = ®(C, X) of the full data X and
censoring variable C' which has a probability distribution Py. Let M be a semiparametric
model for the probability distribution Py. By assuming coarsening at random (CAR) the
density factors as dPy(O) = Qo(0)go(O|X), where Q) is the part of the density associated
with the full data, X, and gg is the conditional distribution of the observed data, O, given
the full data. g¢ includes both the censoring and treatment mechanism, which both act to
coarsen the full data. The factorization of the density implies that the model M may be
partitioned into a model @ for the full data distribution, @)y, and model G for the censoring
and treatment mechanism, gg. So the probability distribution, Py may be indexed in the
following way: P, q4,- One is typically interested in estimating a parameter, ¥(Fy), which
is a function of the true data generating distribution. More specifically, the parameter of
interest is U(Qo) which is a function of the true full data generating distribution absent
coarsening.

Many methods have been developed to estimate W(Qp). Traditional maximum like-
lihood estimation methods approach this problem by producing a substitution estimator
ﬁl(@), where maximum likelihood is used to estimate Q. Since the model M can be very
large, this would require sieve-based (data adaptive) maximum likelihood estimation (i.e.,
loss-based machine learning), involving fine-tuning of the amount of smoothing used.! If
U ((Qo) denotes a causal effect, this estimator is referred to as the G-computation estima-
tor (G-comp). Such methods typically produce overly biased estimates of the parameter
of interest since the estimate of )y is at best created with concern for the bias variance
trade off of the entire density rather than for the parameter of interest. However, the
G-comp estimator does respect the global constraints of the model by acknowledging that
the parameter of interest is is a function of Qg, ¥(Qo). Thus, the estimate, 1])900"‘7’, is a
substitution of a maximum likelihood estimator, Q in the model Q, into the parameter
mapping V(). In addition, by using state of the art loss (log-likelihood) based learning, it
provides low-variance estimators, inspired by the efficient parametric maximum likelihood
estimation.

An alternative method for estimating ¥(Qp) is the inverse probability of treatment
based approach (IPW). IPW estimators solve an estimating equation in order to yield
estimates, QJA)IP W of the parameter of interest. 1&1 PW are consistent estimates of W(Qo)
when one estimates the g part of the likelihood consistently. However, IPW estimates are
highly unstable for two reasons. First, IPW estimates do not solve the efficeint influence
curve estimating equation. Second, they do not respect the global restraints of a proper

LA detailed account of loss based learning and cross validation may be seen in van der Laan and Dudoit
2003 [6]. In addition, van der Laan, Keles and Dudoit focus specifically on likelihood-based cross-validation
and illustrate its asymptotic optimality in their 2004 article [7]. van der Laan, Polley, and Hubbard rely on
the results of the previous two papers in their 2007 article which presents the Super Learner methodology,
a data-adaptive learning technique which utilizes likelihood based cross-validation[9].
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model by being a substitution estimator. As a result IPW estimates are highly variable
and act erratically in finite samples.

Another method for estimating W(Qp) is augmented inverse probability weighted esti-
mators (AIPW). Robins and Rotntizky proposed this general estimating equation based
approach in 1992 which constructs estimators, zﬂAI PW " that solve the efficient influence
curve estimating equation [5]. The estimates produced by these methods are referred to
as double robust because they are consistent when either the @@ or the g part of the likeli-
hood are estimated consistently. Furthermore, they also improve on the standard inverse
probability weighted estimators in terms of efficiency since they solve the efficient influence
curve equation; thus, they are locally efficient. However, like the IPW estimators, the
ATPW estimators are not substitution estimators and may also be unstable. For a general
treatment of these methods see Robins and van der Laan 2003 [10].

van der Laan and Rubin in their 2006 paper introduce a new class of estimators, the
targeted maximum likelihood estimators (TMLE) [11]. The TMLE methodology developed
in that paper is a two stage process which results in a substitution estimator. In the first
stage an initial estimate, QO, of Qo is obtained, using loss-based learning. In the second
stage the first stage estimate is fluctuated to reduce bias in the estimate of the parameter of
interest. The bias is reduced by insuring that the efficient influence curve equation is solved
by the targeted maximum likelihood solution Q* This is achieved by finding the targeted
maximum likelihood estimate of (g, Q;, with a parametric fluctuation model whose score
at the initial estimator (i.e., at zero fluctuation) equals or includes the efficient influence
curve of the parameter of interest. This may be done by specifying a univariate regression
model for the outcome of interest on a covariate, h(@o, g), specifically chosen to yield the
appropriate score while using the initial estimator of QO as an offset. h(QO, g) is a function
of g and thus the second stage requires an estimate g of gg. The coefficient € in front
of the clever covariate, h(@o, g), is then estimated using standard parametric maximum
likelihood. This is known as the first targeted maximum likelihood step and yields Ql, the
first step targeted maximum likelihood estimate of (0y. The targeted maximum likelihood
step is then iterated using Q1 as the initial estimator of Qg and the estimate of gg remains
unchanged. This process is iterated until € converges to zero, resulting in the targeted
maximum likelihood estimate of @, or Q; \I/(Q;) is the targeted maximum likelihood
estimate of the parameter U(Qo). Note, that Q; is indexed by the treatment and censoring
mechanisms, g. This is because unlike the G-computation estimators above, the TMLE,
through h, makes use of the fact that the observed data is generated according to a censored
data structure as dictated by the efficient influence curve for ¥ (Qy).

Like the AIPW estimators the TMLE estimates are double robust and locally efficient;
however, the TMLE methedology improves on the AIPW approach that also solves the
efficient influence curve equation in four major ways:

1. The TMLE respects the global constraint of the model and the AIPW estimate does
not. Since the TMLE is a substitution estimator and maps the targeted maximum
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likelihood estimate P* of Py into the parameter mapping ¥(), it respects knowledge of
the model. By solving an estimating equation, AIPW estimators, in most instances,
do not acknowledge that one is estimating a parameter which is a function of the
underlying data generating distribution. One situation where this issue is glaringly
obvious is when ATPW estimators can return estimates which are out of the natural
bounds of the problem, as is the case when one is estimating a probability that must
fall between 0 and 1. However, the implications of respecting the knowledge of the
model are more subtle than just returning estimates which are out of the natural
bounds of the parameter and this advantage contributes to finite sample gains in
efficiency which will be displayed in the simulation results presented below, and are
particularly strong in the context of sparsity w.r.t. the target parameter (i.e., the
sample contains sparse information about the parameter of interest).

2. The log-likelihood of Q;, or targeted maximum likelihood, is a direct measure of
fit upon which to choose among different estimates of ¢ and ). Prior to TMLE,
estimators which relied on estimates of Q and g to identify Pgp, 4, distinguished
between different estimates based on how well they do for prediction by using a loss
function for the global density. Whereas, the TMLE methedology uses the targeted
maximum likelihood to choose among different estimates based on how they help in
estimating the parameter of interest, U(Qp). This advantage is particularly striking
in the typical context that there are excellent fits of gg itself, resulting in unstable
inverse of probability of censoring weights, that truly harm the bias reduction effort
for the target parameter of Qq.

3. The TMLE can produce estimates when the efficient influence curve may not be
written as an estimating function in terms of the parameter of interest, ). The AIPW
estimate requires that the efficient influence curve be represented as an estimating
function. The log-rank parameter, as presented in Moore and van der Laan 2009,
is an example of a parameter whose efficient influence curve may not be written as
an estimating function and thus can be estimated directly through TMLE but not
directly by AIPW estimators.

4. The TMLE does not have multiple solutions. Since AIPW estimates are solutions
to estimating equations they may have multiple solutions. The estimating equation
itself provides no criteria upon which to choose between the multiple solutions. TMLE
does not suffer from multiple solutions since it is a loss-based learning approach, e.g.,
maximizing the log-likelihood fit, involving second stage extra fitting along a target-
parameter specific parametric fluctuation model, which just happens to also solve the
efficient influence curve estimating equation in the probability distribution.

How these advantages, specifically the first two, actually effect the properties of the esti-
mates produced by the TMLE methedology will be explored in the following sections and
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be quantified in comparison to other methods through a simulation study presented in
sections 12 through 14.

3 Collaborative Targeted Maximum Likelihood Estimation
In General

In their original paper on C-TMLE van der Laan and Gruber introduce a new and stronger
type of double robustness entitled collaborative double robustness. The collaboratively
double robustness property of an (targeted ML) estimator Qg of Qg only requires that the
estimate of gg, g, account for variables that effect (Jg and were not fully accounted for in
the initial Q Thus the property does not require that either the estimates of @ or g are
consistent, but rather is concerned with reducing the distance between, Qg and @, and, g
and go, such that the resulting estimator of ¥(Qq) is unbiased. So if Q does a very good
job estimating g, very little adjustment is necessary through the estimate of g; on the
other hand, if Q is a poor estimate of )y, the estimate ¢ will have to do a better job of
estimating gog with respect to those variables that effect Q.

The C-TMLE methodology, introduced by van der Laan and Gruber, is an extension of
TMLE that takes advantage of the collaborative doubly robust property of those estimators
by constructing ¢ in collaboration with Q. C-TMLE uses the log-likelihood as a loss
function to choose from a sequence of K targeted maximum likelihood estimates, Qk*,
indexed by initial estimates of Qg and gg. In their paper, van der Laan and Gruber
provide a framework for generating C-TMLEs which we will briefly outline now:

1. Create Q, an initial estimator of Q.

2. Generate a sequence of estimates of go: §°, 4%, ..., 451, 6. Where §° is the least
data adaptive estimate and §¥ is the most data adaptive estimate of gq.

3. Generate the initial TMLE estimate, Q% indexed by @ and g°.

4. Generate a sequence of TMLE estimates: QO*, Ql* e QK_I*, QK* indexed by §*:
where each estimate has a larger log-likelihood than the last. This monotonicity is
insured by adding an additional clever covariate to estimate QF* each time the log-
likelihood does not increase within the same clever covariate just by virtue of the
more data adaptive estimate of g. Whenever a new clever covariate is added for Qk*,
Qk_l* is used as the initial estimate in the TMLE algorithm.

5. Finally, choose among the sequence of TMLE estimates using loss based cross-
validation with log-likelihood loss.

One adjustment to the above methodology, suggested by van der Laan and Gruber, is
to use a penalized loss function when parameters are borderline identifiable. This is a very
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important consideration in observational studies and the issue of choosing an appropriate
penalty is addressed in section 6.
The C-TMLE has two distinct advantages over the TMLE methodology:

1. C-TMLE may be used to produce stable estimates of borderline identifiable parame-
ters while TMLE (or any of the estimating equation methods discussed above) break-
down in these situations. The reason many parameters are not identifiable, or are
borderline identifiable, is due to violations in ETA, where a certain level of a co-
variate or group of covariates is completely predictive of treatment/exposure. In
these situations, where sparsity of the data is an issue, C-TMLE is able to weigh the
bias-variance trade off of adjusting for certain covariates in estimating these weakly
identifiable parameters. Thus, C-TMLE only adjusts for covariates in estimating
go when they are beneficial to the estimate of the parameter of interest and selects
against adjusting for covariates which are detrimental to the final estimate of ¥(Qy),
weighing both bias and variance. All other methods estimate gg using a loss function
for prediction, or a priori specifying a model, ignoring the effect adjusting for certain
covariates has on the final estimate of the parameter of interest.

2. C-TMLE estimates in many situations are more efficient in finite samples than TMLE
estimates. In fact, in some situations they are super-efficient and have a variance
smaller than the semi-parametric efficiency bound. This is also a consequence of the
collaborative double robustness of these estimates. In situations where the initial
estimate, Q is a very good estimate of Qg in the targeted sense little adjustment is
needed from the estimate of gg. The more one adjusts for g the larger the variability of
the final estimate of the parameter of interest and thus not adjusting much in g when
one doesn’t have to provides estimates with smaller variance. In some rare situations
C-TMLE estimates have also been shown to be asymptotically super efficient: for
example, if the initial estimator Q is a MLE for a correctly specified parametric
model.

The C-TMLE estimates exhibit all of the advantages of the TMLE estimates discussed
in the previous section as well as these two major advantages presented here. The advan-
tages of C-TMLE estimators are particularly useful in observational studies, where practical
violations in the ETA assumption are a concern; however, in studies where treatment is
randomized and one attempts to gain efficiency by estimating ¢ C-TMLE estimators are
also appropriate because they address the bias variance trade off of adjusting for particular
variables.? Thus, implementation of the C-TMLE methods even for randomized treat-
ments will help insure that one does not adjust in g for the covariates in a way that hinders
the estimate of the parameter of interest. In the following sections we will use a specific
coarsened data structure, time to event data, to exhibit the advantages of C-TMLE.

2For a general account of how estimating the nuisance parameter mechanism even when it is known
contributes to a gain in efficiency see van der Laan and Robins (2003), Section 2.3.7.
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4 Data Structure

Time to event analyses typically intend to assess the causal effect of a particular exposure,
A, on the time, T, it takes for an event to occur. However, many times subjects are lost
to follow up and as a result 7" is not observed for all individuals. Individuals for whom
the event is not observed are referred to as censored. This type of censoring is called right
censoring since chronological time is arbitrarily chosen to progress from left to right and
at some point in time, C', an individual is no longer observed; thus, all time points to the
right of C' are censored for that individual. Some baseline covariates, W, are also recorded
for each individual.

The observed data consists of n i.i.d copies of, O = (A, W, T, A). Where A, is a binary

variable, which quantifies the level of exposure/treatment a particular subject experiences,
W is a vector of baseline covariates, T is the last time point at which a subject is observed,
and A indicates whether the event occurred at T. So T = min(T,C) and A = I(T < C),
where C is the time at which a subject is censored. If the event is observed, A =1, and C
is set equal to co. Alternatively if the event is not observed, A = 0, and T is set equal to
oo. This formulation of the data structure is termed the short form of survival data and
includes a row in the data set for each subject observed. Table 1 presents as an example
four observations with selected baseline covariates from a sample HIV data set in their
short form.

Subject T A A Sex MSM Baseline CD4
1 6 1 1 1 1 439
2 5 0 1 1 0 71
3 5 0 O 1 0 118
4 3 1 1 0 0 106

Table 1: Example of sample HIV data in short form.

Alternatively, one may represent the same data in its long form. In this form the data
set includes a row for each observation for each time the subject is observed up until it
is either censored or experiences the event of interest. In order to represent the data in
its long form two additional random variables must be introduced Ni(t) and Na(t), where
the first is an indicator that the event happens at time t, and the second is an indicator
that a subject is censored at time t. Thus, subject 1 would have six rows in the data set
in its long form and Nj(t) will equal zero in every row except for the last row at t = 6
and Na(t) will equal zero in each row. Table 2 displays the same four observations from
Table 1 in their long form. The baseline values, A and W, are repeated at each time point
for each subject. Presenting the data in its long form allows for more flexibility and is
essential for representing a general time dependent process (e.g., when dealing with time
dependent covariates, variables whose value change over time, and/or counting processes
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that can jump more than once). In fact, it will be shown below that estimating TMLESs
involves construction of a time dependent covariate, since h(Q,g) is a function of ¢, A,
and W and can be written as h(t, A, W). So the data in its long form is n i.i.d. copies of

0= <A, W,Ny(t),Na(t) :t=1,... ,T) ~ po, where pg denotes the density of the observed

data, O.

Subject

=
-
S~—
Z
-~
N—

Sex MSM Baseline CD4

1

A
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1

R R W W W W WNDNNDNDN
W N H U WNRF O W RO O WN P o+
_— O O OO OO OO oo o, OOo0 0o oo
SO O OO OO OO oo oo
O o O R R KRR REFEPMFEFEFEFRFERPFRPRPRRPEPEFERFEFRFRERR,RR
[cNeNeNoNoNoleoNoeNoNoNoNole N ool i o

439
439
439
439
439
439

71

71

71

71

71
118
118
118
118
118
106
106
106

Table 2: Example of sample HIV data in long form.

5 Causal Assumptions and Factorization Of Observed Data

Likelihood

The data structure presented in the preceding section implies little about the causal struc-
ture of the underlying mechanisms which produce the observed data. The temporal struc-
ture which is implied by the fact that A and W are measured at baseline and then some
time in the future, T, an event occurs is clear from the observed data structure; however,
no assumptions have been made as to how A effects the outcome, T'. Does A directly effect
T? Does A effect W which then effects T?7 Does A effect T through W as well as directly?
Does A even cause W or does W cause A? In fact, there are countless numbers of ways
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which the observed random variables could have caused or been caused by each other. In
order to quantify, or even define, the causal effect of A on the outcome T causal assump-
tions are necessary. Causal graphs succinctly lay out the causal assumptions necessary to
define a causal effect as well as provide much of the information needed to determine if the
effect is estimable from the observed data. For a detailed account of causal graph theory
see Pearl 2008 [4]. One constructs a causal graph based on the cues provided from the
world in which the observed phenomenon are occurring, whether it be based on subject
knowledge or constraints imposed by how an experiment is designed.? Such issues are out
of the scope of this paper and we will just assume that the causal graph presented in Figure
1 depicts the data generating mechanisms for the observed data. Exogenous error nodes,
whose joint distribution is such that there are no unblocked backdoor paths from A and
the N1 (t) nodes to any of the Ny(t) nodes of the event process, are suppressed in the causal
graph, as is typically done in the literature. Thus, each node is defined in the causal graph
as a function of its ancestors and an exogenous error node which is not depicted in the
graph.

The causal graph depicted in Figure 1 presents a common structure for which one
may be interested in the causal effect of A on the time until an event occurs. This causal
structure corresponds with the causal structure examined in Moore and van der Laan 2009,
except for the fact that W now is a direct cause of A, indicated by an arrow from W to
A. This change is due to the fact that A is not externally set as in a randomly controlled
experiment, but rather, is free to be whatever it would be as naturally observed. Thus,
other variables, W, effect what level of A a subject experiences.

The causal graph allows one to make necessary assumptions typically stated to make
causal parameters estimable. The consistency assumption, and coarsening at random as-
sumption are made directly by the causal graph. The consistency assumption states that
the observed outcome is the counterfactual outcome under the intervention actually ob-
served. This assumption is a direct consequence of defining each node in the causal graph
as a function of its ancestors and exogenous error nodes, and defining the observed data
O as the observed nodes generated by the nonparametric structural equation model rep-
resented by the causal graph. The coarsening at random assumption (CAR) states that
the coarsening mechanism is only a function of the full data, the data in which you would
have seen all counterfactuals, through the observed data. For the treatment variable this
assumption is sometimes referred to as the randomization assumption or no unmeasured
confounders assumption. This is directly implied by the causal graph since the treatment
and censoring process variables only have arrows into them from their observed ancestors
and no other nodes. This may also be confirmed by applying the no unblocked backdoor
path criteria presented by Pearl [4].

3Pearl 2008 discusses algorithms which can search over observed data and provide a set of causal graphs
which are consistent with that data. This use of causal graph theory is not consistent with our goal. For
our purposes the causal graph is used to succinctly impose causal assumptions which we are able to make
based off of knowledge of the mechanisms at work.
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Figure 1: Causal graph depicting mechanisms which generate observed data.
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The causal graph presented in Figure 1 suggests the following orthogonal factorization
of the likelihood of the observed data:

Q1o 910 K Q20
L(O) = PW A|WH t) | Ni(t —1), No(t — 1), A, W) (1)

P(N: ()|N1()N(t_1)AW)

920

Thus, the likelihood factorizes as the general censored data structure presented in section 2
into a portion corresponding to the full data distribution, (), and a portion corresponding
to the censoring and treatment mechanism, gg. Qg is composed of the baseline covariate
distribtion, Q10(W) and Q2(t, A, W) = E(dN1(t) | N1(t—1) =0, Na(t—1) = 0, A, W), the
intensity of the event counting process given the treatment, A, and the baseline covariates,
W, conditioning on “no event yet”. gg is further factorized into the treatment mechanism,
g10(A, W), and censoring mechanism, goo(t, A, W) = E(dNa(t) | Ni(t) = 0,Na(t — 1) =
0, A, W), which is the intensity of the censoring process given treatment, A, and the baseline
covariates, W, conditioning on “no event yet”. Let’s also define Sy(ty | A,W) = Pr(T >
ty | A, W) which is the conditional survival of the event of interest corresponding to the
intensity of the event process, Q20 (t, A, W), under the coarsening at random assumption:

tk

So(t | A, W) =TT [1 = Qaolt, A4, W)]. (2)

t=1

Note that Q2(t, A, W) is the conditional hazard of T at ¢, given A, W, under CAR, which holds if
T and C are conditionally independent, given A, W (and was implied by our causal graph).

6 Parameter of Interest

Now that the likelihood of the data generating distribution has been introduced, parameters
of interest which are functions of the data generating distribution, ¥(pg), may be defined.
Defining the parameter of interest as a mapping from the data generating distribution
allows one to estimate exactly the feature of the data generating distribution that they are
interested in. The treatment specific survival curve at a particular time point, ¢, is a simple
example of this type of parameter, Pr(T, > t;). Where T, is the event time, T, one would
have observed had an individual been set to treatment level a. This type of intervention
in the real world may now be ”observed” in our model as an intervention on the causal
graph which sets an individual to level A = a. Since we are dealing with time to event
data it is also necessary to intervene on the censoring mechanism at each time by setting
the individual to uncensored, or N3 (t) = 0. These interventions on the nodes associated
with the g part of the likelihood in the causal graph allow one to assess the distribution of

11
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the outcome had individuals been set to particular levels of treatment/exposure which are
of interest in a world without censoring.

By intervening on the causal graph in Figure 1 by setting treatment A equal to the
desired treatment and setting Na(t) to no censoring one may ”observe” the event process
under the desired treatment and without censoring. This outcome under the proposed
intervention is known as the counterfactual outcome. Based on the causal assumptions
imposed by the causal graph we can now write the treatment specific survival probability
in terms of the data generating distribution, py:

\Ila(po)(tk) = PT’(Ta > tk) = Ew(So(tk ‘ A= a, W)) (3)

Parameters which combine W1 (pg)(tr) and Wo(po)(tx) allow one to quantify the effect of
a A on survival, T. Three examples of these types of parameters are the marginal additive
difference in the probability of survival, the relative risk of survival, and the log of the
marginal relative log hazard of survival:

Urp(po)(ty) = (po (tr) —

U rr(po)(tr)

Vi (po)(ty) = log (log(‘l’( 0)(tk))

Parameters which average these quantities over a set of time points may also be of interest.
For the simulation study presented below we will just focus on the treatment specific
survival curve at a particular time point.

7 Alternative Methods For Estimating The Treatment Spe-
cific Survival
In this section we will briefly introduce the G-comp, IPW, and AIPW estimators for the

treatment specific survival curve.* These three alternatives will then be compared to the
TMLE/C-TMLE estimates in the simulation study presented in Section 11.

4Tt is also common in analyses that intend to test weather or not a treatment or exposure, A, has
an effect on a particular time to event outcome, to a priori specify a parametric model of the hazard,
Q20(N1(t), A, W), and to test if the coefficient on A in the specified model is different from zero. For
continuous time a cox proportional hazard model is typically employed and for discrete time outcomes
a logistic failure time model is used. Such methods are not examined here because they rely on highly
parametric assumptions which typically result in biased estimates of parameters which are purely chosen
out of convenience.

12
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G-computation estimators are one class of estimators for estimating the mean counter-
factual outcome as expressed in the parameters proposed above. G-computation estimators
are substitution estimators and thus require an estimate of the data generating distribu-
tion. In particular, the estimators require an estimate of the marginal distribution of W,
Q10(W), and the conditional hazard, which is Q99 (t, A, W) under an assumption of coars-
ening at random. G-computation estimators of the parameter of interest, W, are consistent
when these distributions are estimated consistently. The marginal distribution of W is
estimated non-parametrically by the empirical distribution of the baseline covariates in the
sample. Super Learner, a data-adaptive machine learning algorithm which uses likelihood-
based cross validation to choose among a library of different learners is a good method for
estimating Q2 and subsequently obtaining S(¢, | A, W) [9]. The G-Computation estimate
of the treatment specific survival, ¥, (po)(tx), may be expressed as:

L 1 <X -
Dy = 3 S0 | A= 0, W), (7
=1
The TPW method for estimating the treatment specific survival curve only relies on
estimates of the g part of the likelihood. This estimator is an estimating equation based
estimator and takes the following form:

crpw _ L —~ I(T > t)I(C > t;)I[(A = a)
. n = g1 (a|W) TTiz; [1 — ool | A, W)]

The AIPW estimator is a double robust estimator which solves the efficient influence
curve based estimating equation. Thus, this estimator requires both estimates of the ) and
g factors of the likelihood. The efficient influence curve for the treatment specific survival
curve for this observed data structure is:

. (8)

Di(po) = > ha(t,A,W) [I(T —t,A=1)—I(T > 1t)Qu(t, A =a, W)] (9)

t<ty

+So(ts | A= 1, W) + Wa(po)(ts),
where

I(A=a) So(te | A, W)

ha(t,AﬂW) = _QIO(A —a ‘ W) Hf;l []_ —920(7: ‘ ,47 W)] SO(t ‘ AaW)

I(t < ty) (10)

Hubbard et al. develop the one-step AIPW estimator which solves the efficient influence
curve estimating equation in their 1999 paper [1]. The resulting AIPW estimate is:

SATPW %Zn: 3 halt, A,W) [J(T =t,A=1)—I(T > )Q:(N:(t) =1,A=q, W)] +5(t | A=1,W), (11)

i=1t<ty
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where ﬁa(t,A, W) is hq(t, A, W) with estimates g1, g2, and S are substituted for gio, g20
and Sg.

8 Targeted Maximum Likelihood Estimation Of Treatment
Specific Survival

Moore et al. (2009) introduced the TMLE estimate for the treatment specific survival curve,
for the data structure of interest here. The TMLE requires an initial fit p° of pg, consisting
of initial estimates Q1, Q9(t, A, W), §1(A, W), and go(t, A, W). The 0 on the top indicates
that it is the estimate prior to any iterations of the targeted maximum likelihood process.
Q1 is the empirical distribution of observed W and the other three estimates should be
obtained using data adaptive methods. By updating the initial estimate Qg(t,A,W) of
the conditional hazard of T', by adding the term eh on the logit-scale, such that the score
for the likelihood of O at € = 0 is equal to the efficient influence curve (equation 9), a
distribution targeted toward the parameter of interest may be constructed. In practice
this may be done by implementing a standard univariate logistic regression of the outcome
on h(t, A, W) using the initial estimate Qg(t, A, W) as an offset. The covariate h(t, A, W)
is presented in equation 10.

Since hq(t, A, W) is a function of Qao(t, A, W) it is necessary to iterate the updates
K times, updating Q’g(t,A, W) until € converges to zero. The resulting estimate after
convergence, (05, is the conditional hazard targeted toward estimating the parameter of
interest, which combined with the empirical distribution of W yields the portion of the
density of O needed for evaluation of the target parameter. Finally, the targeted maximum
likelihood estimate of W(p*)(tx) is the substitution estimator based on the targeted density

A,

p:

R 1 & -
o B = nzgsa(tk |1, W), (12)

We will now describe in detail the steps involved in creating the TMLE estimate for the
time to event data structure:

1. Set up the observed data in its long form as presented in Table 2.

2. Generate Qg, an estimate of the intensity process of the event of interest, QQo9. We
suggest using a data adaptive technique such as Super Learner for binary outcomes
to generate this estimate.

3. Estimate the treatment and censoring mechanisms, §; and g2, also using data adap-

tive methods. Estimation of the censoring mechanism will also require that the data
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be represented in its long form; however, the outcome will now be censoring and the
event of interest will act as the censoring event. Estimation of the treatment mech-
anism just requires that the data be set up the same way as for a standard logistic
regression. These estimates will not be updated in the targeting steps below.

. Evaluate h0(t, A, W), the time dependent covariate based on the initial estimates,
Q%, g1, and go, for each line in the data set according to equation 10 above. Table
3 illustrates what the data set should look like after including hQ(t, A, W) for the
four observations initially presented in Table 1. As an example, let’s consider the
values of hO(t, A, W) for the first six rows of Table 3 for estimating ¥y (po)(2), or the
probability of survival past time 2, setting individuals to treatment level 1. These
are the rows in the long form data set for subject 1. For the first row in the data set
hi(t=1,A=1W = (1,1,439)) will evaluate to:

B 1 SO A=1,W = (1,1,439)) (13)
Jro(A=1|W =(1,1,439)) SO(1 | A =1,W = (1, 1,439))’
and for the second row hi(t =2, A = 1,W = (1,1,439)) will evaluate to:
1
(14)

_gm(A =1|W=(1,1,439)) (1 —g(1 | A=1,W = (1,1,439)))’

and for all of the other rows h; (t, A, W) will evaluate to zero since I(t < t;) will
evaluate to zero for all time points past t;. Alternatively, had we been interested in
estimating Wo(po)(2) all of the rows for subject 1 would have had ho(t, A, W) equal
to zero since I(A = a) would evaluate to zero.

. Construct the first update Q% of Qg This is done by by specifying the following
fluctuation of )Y according to a parametric logistic regression model:

logit | Q3()(N1 (1), A, W)| = logit [QB(N1(1), A, W)| + eh(t, A W), (15)
apd obtaining € using standard parametric maximum likelihood estimation. Q% =
Q3(#) is the first step targeted maximum likelihood estimate of Qap.

. Steps four and five are now iterated using the new estimate of Qo9 obtained in step
5 as the initial estimate until € converges to zero. In each progression the k-th step
targeted maximum likelihood estimate is produced Qé“ Here, and in the discussions
below we will occasionally express Qg_l(é) as Qg, suppressing the € for convenience
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despite the fact that all targeting steps are constructed based on estimating an ad-
ditional fluctuation parameter. Once € is less than some pre-specified value ¢ (e.g.,
.001), the iterations are discontinued and the resulting estimator is Q;, the targeted
maximum likelihood estimate of Q9

7. Finally, construct \II(QE) by applying the parameter mapping W, resulting in the
targeted maximum likelihood estimate of U(Qp) .

Note, that had the data been generated according to the same causal graph as presented
in Figure 1 but a different parameter was of interest, the exact same steps would be used to
construct the TMLE estimate but with a different h(t, A, W) specific to that parameter’s
efficient influence curve.

Subject ¢t Ni(t) Na(t) A Sex MSM Baseline CD4 ha(t, A, W)
1 1 0 0o 1 1 1 439 ht=1,A=1W = (1,1,439))
1 2 0 0 1 1 1 439 h(t=1,A=1W = (1,1,439))
1 30 0o 1 1 1 439 ht=1,A=1W = (1,1,439))
1 40 0 1 1 1 439 hit=1,A=1W = (1,1,439))
1 5 0 0 1 1 1 439 h(t=1,A=1W = (1,1,439))
1 6 1 0o 1 1 1 439 hit=1,A=1,W = (1,1,439))
2 1 0 0o 1 1 0 71 h(t_1A_1W (1,0,71))
2 2 0 0 1 1 0 71 h(t=2,A=1W = (1,0,71))
2 30 0o 1 1 0 71 h(t=3A=1W = (1,0,71))
2 4 0 0 1 1 0 71 h(t=4,A=1,W = (1,0,71))
2 5 0 11 1 0 71 h(t=5A=1W = (1,0,71))
3 1 0 0o 0 1 0 118 hit=1,A=0,W = (1,0,118))
3 2 0 0 0 1 0 118 hit=2,A=0W = (1,0,118))
3 30 0o 0 1 0 118 h(t=3,A=0W = (1,0,118))
3 4 0 0 0 1 0 118 hit=4,A=0W = (1,0,118))
3 5 0 1 0 1 0 118 h(t=5A=0W = (1,0,118))
4 1 0 0 1 0 0 106 hit=1,A=1,W = (0,0,106))
4 2 0 0 1 0 0 106 h(t=2,A=1W = (0,0,106))
4 31 0 1 0 0 106 hit=3,A=1W = (0,0,106))

Table 3: Example of HIV analysis data of Section 12 in long form with additional clever
covariate h(t, A, W).
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9 Inference For Targeted Maximum Likelihood Estimation
Of Treatment Specific Survival

In this section we will address the construction of confidence intervals for TMLEs. The
targeted maximum likelihood estimator, Q*, and corresponding estimate of go, § = (g1, §2)
solves the efficient influence curve/score equation:

O—ZD* *,9)(0), (16)

where, D*(Qo, g0) = D*(Qo, 90, ¥(Qo)) is the efficient influence curve presented above in
Equation 9. One can also state that ¥(Q*) solves the estimating equation in )g:

O—ZD (Q%,4, ¥(Q))(00), (17)

defined by this efficient influence curve equation. Under regularity conditions, it can be
shown that W(Q*) is asymptotically linear with an influence curve D*(Q, go, 10) + D; for
the case that Q* possibly converges to a mis-specified ), and § converges to the true
go (van der Laan and Robins (2003), Section 2.3.7). In van der Laan, Gruber (2009)
this asymptotic linearity result is generalized to hold for targeted MLE when Q converges
to a possibly misspecified @, and § converges to a true conditional censoring/treatment
mechanism go(Q) that conditions on all covariates the residual bias Q — Qo still depends on.
The latter type of consistency of (Q*, g) we will refer to as the collaborative consistency of
(Q*, g) for 1g. If Q@ = Qo, the contribution D; equals zero. In addition, if Q* converges to
a misspecified @, then in most situations the collaborative estimator will converge to the
true go conditioning on all variables )y depends on, in which case it has been proven in
Section 2.3.7 (van der Laan, Robins, 2003) that D*(@Q, go,10) + D1 has smaller variance
than the variance of D*(Q, go, 1o).

Based on these results, when an estimate ‘II(Q*) solves the efficient influence curve
equation, relying on the collaborative robustness of efficient influence curve and collabora-
tive consistency of (Q*, g) for 1, inference may be based on the empirical variance of the
efficient influence curve D* itself at the limit of Q*, g. Thus, the asymptotic variance of
n/2(4pF — U,) may be estimated by:

ZD” *,9)(0). (18)

Now 95 percent confidence intervals for the treatment specific survival curve at a particular
time point may be constructed under the normal distributuion in the following way:

17

Hosted by The Berkeley Electronic Press



A* g
U £ 1.96\/5. (19)
Alternatively, bootstrap 95 percent confidence intervals may be constructed. It will be
shown in the simulation results below that, in certain situations, the bootstrap confidence
intervals produce better coverage in finite samples.

The d-method may be used to obtain estimates of the influence curves of the parameters
of interests expressed in Equations 4 through 6, as well as other parameters of interest which
are a function of the treatment specific survival probabilities. The estimated influence
curves for these parameters are:

Drp(07)(tk) = D1(p")(t) — Do(p™)(tr), (20)
* N _ 1 * ([ Ak 1 * ([ ~k

Dhn(0) ) = =75 DI ) + s DR 1) (21)
* Ak _ 1 ® ([ A~k 1 * ([ Ak

Dru (™)) = —ﬁ(tk)logm)Dl(p )(tk) + —ﬁs(tk)log(%)l?o(p )(te). (22)

Confidence intervals may now be constructed for these parameters at a particular time
point using the above estimates of the efficient influence curve. Furthermore, the estimated
influence curve for estimates which are means of these parameters may be constructed by
taking means of the estimated efficient influence curves (Equations 20 - 22) over the desired
time points.

10 Collaborative Targeted Maximum Likelihood Estimation
Of Treatment Specific Survival

Extending the TMLE estimate to a C-TMLE estimate requires generating a sequence of
estimates of gy and corresponding sequence of TMLE estimates and then choosing from
that sequence of TMLE estimates the one which has the minimum cross-validated risk.
Thus, in order to implement the C-TMLE one must choose both a method for sequencing
the estimates of gy and an appropriate loss function. In this section we will propose a
way to sequence the estimates of gy as well as choose a loss function for the time to event
setting.

Since the missingness mechanism, gg, factorizes into both a treatment mechanism, gi¢
and censoring mechanism, g9y, the sequence of estimates of gy must be a sequence of
estimates of both the treatment and censoring mechanism. Thus, we propose a sequence of
estimates where each step in the sequence either the censoring or treatment mechanism is
more non-parametric than it was in the previous step. Since a priori dimension reductions
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of the covariate profiles can be employed, using main term regressions for these estimates
is reasonable and lends itself nicely to defining a sequence of estimates of gq.

Suppose one observes A, and K baseline covariates Wy ... Wg and L is the last time
point observed for any subject. First an initial estimate of Q99 is constructed using a data
adaptive method for the binary hazard regression such as Super Learner. This estimate is
Qg and is fit on all the data and held fixed. Next, define a sequence of J moves My ... M},
where J = 2% K + 1. Each M; includes two estimates: a main term logistic regression
estimate of g19 and a main term logistic regression estimate of gog. My is composed of an
estimate for g9 using the logistic intercept model and for gog using a logistic regression
non-parametrically fitting time:

Mo = 91My = lOgit [P(A = 1|W177WK)] = 60
9ga2My = logit [P(NQ(t) = ]_|A, Wl,.. .,WK)] = qp +041[(t — 2)_{_7 ) -,—|-OZLI(75 — L)

The next step in the sequence, M;, consists of gips, and gapr,, which are constructed by
adding a main term to either gias, or gaar,. So the set of possible g1, is constructed by
adding a main term from the set {Wi,..., Wk} to gia, and the set of possible gaps, are
constructed by adding a main term from the set {4, Wi,..., Wk} to ganr,- The TMLE
is evaluated at each possible M7 and the main term that maximizes the increase in the
penalized log-likelihood is the next move in the sequence. The estimate for which a main
term is not added remains the same as in the previous step in the sequence. The variable
which is added is then removed from the possible set of moves in the next step for that
particular estimate. This process is continued until none of the possible steps increase
the penalized log-likelihood. At that point an additional clever covariate ho is constructed,
which is guaranteed to increase the penalized log-likelihood, and the TMLE estimate based
off of M, where j is the last completed step in the sequence, becomes the new initial Qg for
the TMLE algorithm. M; is now chosen based on adding a main term to M; as before.
This process is continued until all 2x K 41 possible moves are completed adding new clever
covariates and creating a new initial estimate of Q29 when necessary. The number of moves
completed indexes the sequence of candidate estimators of gg and this number of moves
should be chosen with V-fold cross-validation.

An extension of the above sequencing procedure which uses data adaptive methods to
estimate gg is also possible. One may incorporate more data adaptive techniques by al-
lowing the main terms to be super learning fits of both the treatment and censoring mech-
anisms based on an increasing set of explanatory variables. Furthermore, the suggested
sequencing algorithm presented here is one of many possible ways which the increasingly
non-parametric estimates of gy may be constructed; in practice, alternative sequencing
methods may be implemented.

In van der Laan and Gruber’s initial paper on C-TMLE they discuss the importance of
choosing a penalty to robustify the estimation procedure when the efficient influence curve
blows up to infinity for certain models of gy. The penalty term should make the criterion
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more targeted toward the parameter of interest while preserving the log-likelihood as the
dominant term in situations where identifiability is not in jeopardy, as it is when there is no
practical ETA violation. Thus, the penalty term should be asymptotically negligible but of
importance in a sparse data setting. For this reason we initially chose to use the variance
of the efficient influence curve as our penalty. The variance of the efficient influence curve
is asymptotically negligible relative to the log-likelihood and in situations where there is
an ETA violation, as in the case where §; or Hﬁ;l [1— go(i | A,W)] are very close to zero
for a given subject, it will severely penalize the log-likelihood. However, the problem with
this penalty for estimating the treatment specific survival curve is that it does not result
in severe enough of a penalty in regions of W where a is not observed in the data. For
example, if the curve is estimated when A=1, many times one does not observe A =1 in
regions of W where it is unlikely to occur so the variance of the influence curve does not
blow up as desired. For this reason we use an alternative version of the variance of the
influence curve which first conditions on A and then averages over all levels of W observed
in the data set:

Ly ! S| AW) 1y a1 - 23
02 A= a W T B a4 S awy =AY )

where

A= Qa(Ni(t) =1,A=a,W). (24)

The above penalty becomes large when the probability A = a is small even for values of
W for which A = a is not observed in the data. Thus, this penalty is sensitive to lack of
identifiability, including theoretical non-identifiability.

Now that a sequence of models of gy and a penalized loss function have been defined,
the C-TMLE algorithm may be implemented. Here is a summary of the steps involved:

1. Generate Qg, an estimate of Qo9 using a data adaptive technique such as Super
Learner for binary outcomes.

2. Use cross-validation with the log-likelihood loss function penalized by equation 23 to
choose the number of moves using the sequencing algorithm presented above.

3. Implement the sequencing algorithm on the full data set for the chosen number of
moves.

4. The resulting Q§ from the TMLE indexed by the chosen number of moves is the
C-TMLE estimate of of the hazard.

5. Construct the substitution estimator W(Q%) which is the C-TMLE estimate of the
parameter of interest.
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Several variations on the above proposed sequencing algorithm and penalized likelihood
were also explored to see if they would produce more robust estimates. The variations
included:

1. Trimming - The observations which led to identifiability problems were removed from
fitting g. This was done in order to get estimates which were not as influenced by
outlying values in W that were highly predictive of treatment/censoring.

2. Truncation - The observations which led to identifiability problems were set to a
minimum probability. All subjects who had a treatment mechanism which predicted
treatment less than X percent of the time, where X is a low probability were set to
X percent. X could be say 5 or 10 percent.

3. Using Binary Covariates - Transforming the continuous variables to binary variables
which are indicators of the quantiles of the original variable. Therefore, if one chose
to do quartiles three indicator variables would be created for the top three quartiles
which would take a 1 or a zero depending on what quartile an individual was in.
When all three variables are zero the individual would be in the lowest quartile. This
allows the C-TMLE algorithm to only adjust for the regions which do not cause
ETA violations as opposed to the entire variable. Thus, the larger the number of
binary variables constructed from an initial covariate, the more flexibility the C-
TMLE algorithm has. However, too many binary variables for a single continuous
covariate may contribute to loss of signal and a large increase in the computation
time of the algorithm.

4. Using Mean Square Error instead of log-likelihood as a loss function.

Using binary covariates had the largest positive effect on producing robust estimates and
trimming and truncation had little effect on the results in the simulations presented below.
After many simulations it was revealed that the log-likelihood does a much better job of
distinguishing between models than the mean square error loss function, at least for the
time to event outcomes analyzed here. Furthermore, a dimension reduction step in between
the initial fit of (99 and the sequencing step improved computation time tremendously.
This was done by removing all variables from the sequencing step that fell below a certain
cutoff in terms of association with the outcome of interest after accounting for the initial fit.
Univariate regression was performed with the initial estimate as an offset and all variables
which fell below a 10 percent false discovery rate (FDR) adjusted p-value were no longer
considered in the sequencing step. All C-TMLE estimates presented in the remainder of
this paper include the dimension reduction step and use binary covariates for the secondary
sequencing step.
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11 Inference For Collaborative Targeted Maximum Likeli-
hood Estimation Of Treatment Specific Survival

We refer to section 9. It is shown in van der Laan and Gruber 2010 that Collaborative
Targeted Maximum Likelihood estimators and corresponding estimates § solve the efficient
influence curve equation. Thus, confidence intervals may be constructed for C-TMLE the
same way they are constructed for TMLE in section 9.

12 Simulation Study

In the following sections we present the results of a simulation study which illustrates the
advantages of the C-TMLE compared to alternative methods. The simulation consists of
data sets generated under three scenarios: no ETA violation, medium ETA violation, and
high ETA violation. Within each scenario estimates are presented for each of the methods
using the true model for Q, as if it was known a priori, and a purposely mis-specified
model for Q. The methods are then evaluated based on how they performed in terms of
bias, variance, and their ability to perform inference.

The simulated data were generated in the following way for each subject in the data
set:

1. The baseline covariates W = {W1, W2, W3, W4, W5} were generated from a multi-
variate normal with mean = 0, variance = 1, and covariance = .2. If any W were
greater than 2 or less than -2 they were set to 2 or -2, respectively, to ensure that
the treatment and censoring mechanisms were appropriately bounded.

2. The treatment A was generated as a binomial in the following way:
P(A=1|W) = logit ' (44 .4 x W1+ .4 x W2 —.5 x W3+ log(ETA OR) x W4)

where the ETA OR is the ETA odds ratio and W4 is the baseline covariate responsible
for violations in the ETA assumption in the simulated data sets. ETA OR equals 1
for the scenario under no ETA violation, 10 for medium ETA violation, and 15 for
the high ETA violation scenario.

3. The event process was generated using the following hazard at each point in time, t:

P(Ny(t) = 1|A, W) = logit (.25 — 6 x W1 — .6 x W2 — .6 x W3 —1x A)

4. Similarly, the censoring process was generated using the following hazard at each
point in time, t:

P(No(t) = 1|A, W) =logit (=3 — 1 x W1 —.1xW2—.1xW3—.1xA)
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Under each level of ETA violation 500 data sets of 500 observations were generated accord-
ing to the above process. Once the data sets were generated each of the following methods
were used to estimate the parameter of interest, which is the treatment specific survival
curve for A = 1 at time 2:

1. IPW estimate, @{P W (2). Where g; and go were estimated based off of the known
model.

A~

2. G-comp estimate, ] “""P(2).

3. ATPW estimate, 1[1{” PW(2). Where g; and g» were estimated based off of the known
model.

4. TMLE estimate, 1$1TM LE(2). Where g; and gy were estimated based off of the known
model.

5. ATPW w/o ETA Variable estimate. Where ¢g; and g2 were estimated based off of
the known model. However, W4, the variable responsible for violations in the ETA
assumption, was not adjusted for in estimating the treatment mechanism, g.

6. TMLE w/o ETA Variable estimate. Where g; and go were estimated based off of
the known model. However, W4, the variable responsible for violations in the ETA
assumption, was not adjusted for in estimating the treatment mechanism, g;.

7. C-TMLE estimate, 1[110_TMLE(2), using the method described in the section 10 with
dimension reduction, a loss function penalized by the integrated version of the vari-
ance of the influence curve, and binary baseline covariates, W, split at the 33rd and
66th precentile.

Each of the above methods were implemented twice for each data set; once using the known
model for ) and once using a purposely mis-specified model for () which only included A
and W5 as main terms in the logistic hazard regression to obtain Q. Note, that W5 is
just a noise variable and does not play a role in the outcome process, censoring process,
or treatment mechanism. Estimates 5 and 6 listed above are not estimates one could
implement based on a real data set but were evaluated to compare the C-TMLE algorithm
to methods which a priori knew and removed a variable which is causing identifiability
problems. Furthermore, all of the estimation methods except for C-TMLE were given the
true model for g, an advantage they would not have when analyzing real data. In a real
data analysis model selection which uses a loss function for prediction of the treatment and
censoring mechanism would be implemented.

Up until now, the simulation study has been concerned with a variable that causes
violations in ETA and is not a cause of the outcome of interest. However, many times the
problem variable may be a confounder, and thus has a causal effect on both the treatment,
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A, and the outcome of interest. In order to evaluate the methods in such a scenario,
we reran the high ETA violation scenario with a minor change. The treatment A was
generated as a binomial in the following way:

P(A=1|W) = logit 1 (.4 4 log(15) x W1+ .4 x W2 — .5 x W3)

Therefore, instead of varying the odds ratio for W4 we set the odds ratio for W1, one of
the variables that effects the hazard of the event of interest, to 15.

In the following two sections we will present the results of the simulation study. In
Section 13 we will compare the methods in terms of bias and mean square error and in
Section 14 in terms of inference.

13 Simulation Study Results: Estimates

Tables 4 through 6 display the simulation results for the scenarios where the variable
causing identifiability concerns is not a confounder. The true value of the parameter being
estimated is .462. It can be seen in Table 4 that all of the methods produce unbiased
estimates of the parameter of interest when the initial model for Q is specified correctly.
However, when the initial model for @ is mis-specified, the G-comp estimate is biased. The
IPW estimate is the same for the mis-specified and correctly specified Q since this estimate
does not depend on an estimate of Q.

No ETA Medium ETA High ETA
Method Known Q Bad Q Known Q Bad Q Known Q Bad Q
TMLE 0.460 0.460 0.463 0.460 0.465 0.458
G-comp 0.461 0.473 0.461 0.499 0.461 0.501
IPW 0.460 0.460 0.461 0.461 0.460 0.460
ATPW 0.460 0.460 0.463 0.464 0.464 0.466

ATPW w/o ETA variable 0.460 0.460 0.460 0.455 0.460 0.455
TMLE w/o ETA variable 0.460 0.460 0.460 0.455 0.460 0.455
C-TMLE 0.460 0.463 0.460 0.460 0.461 0.463

Table 4: Simulation Results: Mean Of 500 Estimates (True Value Of Parameter Is .462).
Variable Causing Violation In ETA Is Not A Confounder.

The fact that all of the methods produce unbiased estimates of the parameter of interest,
even in the moderate sample sizes examined here, suggests that bias should not be the
standard by which these methods are judged. Assessing the methods in terms of mean
square error (MSE) begins to distinguish the methods from one another. Table 5 presents
the root mean square error, relative efficiency (on the variance scale), and the efficiency
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bound for each scenario. Again, in the no ETA scenario MSE does not distinguish the
methods from one another as they all have essentially the same MSE. However, as the
ETA becomes larger some of the methods begin to showcase their advantages while others
lose all stability. The following observations may be made based off of Table 5:

No ETA Medium ETA High ETA

Method Known Q Bad Q Known Q Bad Q Known Q Bad Q
Efficiency Bound 0.028 0.046 0.060
Root Mean Square Error
TMLE 0.029 0.029 0.051 0.056 0.062 0.065
G-comp 0.027 0.030 0.028 0.047 0.028 0.049
IPW 0.029 0.029 0.071 0.071 0.106 0.106
ATPW 0.029 0.029 0.054 0.061 0.070 0.081
ATPW w/o ETA variable 0.029 0.029 0.030 0.031 0.029 0.031
TMLE w/o ETA variable 0.029 0.029 0.030 0.031 0.029 0.030
C-TMLE 0.028 0.031 0.029 0.037 0.029 0.040
Relative Efficiency
TMLE 1.0 1.1 1.2 1.5 1.0 1.2
G-comp 0.9 1.1 0.4 1.0 0.2 0.7
IPW 1.0 1.0 2.4 2.4 3.1 3.1
AIPW 1.0 1.1 14 1.8 1.3 1.8
AIPW w/o ETA variable 1.0 1.1 0.4 0.5 0.2 0.3
TMLE w/o ETA variable 1.0 1.1 0.4 0.4 0.2 0.3
C-TMLE 1.0 1.2 0.4 0.7 0.2 0.4

Table 5: Simulation Results: Root Mean Square Error And Relative Efficiency. Variable
Causing Violation In ETA Is Not A Confounder.

1. The IPW estimate is highly unstable with increasing ETA. In fact, the C-TMLE is
six times more efficient when @ is estimated well and almost 3.5 times more efficient
when () is mis-specified in the medium ETA scenario. For the High ETA case, the
C-TMLE is 15.5 times more efficient for a well estimated @ and eight times more
efficient when () is mis-specified.

2. The AIPW estimates also begin to lose stability with increasing ETA but not as
much as the IPW estimates. The C-TMLE is 3.5 more times efficient than the AIPW
estimate for a correctly specified Q and 2.6 times more efficient for a mis-specified @)
in the medium ETA scenario. For the high ETA scenario, the C-TMLE is 6.5 and
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No ETA Medium ETA High ETA
Method Known Q Bad Q Known Q Bad Q Known Q Bad Q
Mean Number of Moves 0.1 134 0.1 10.5 0.1 10.1

Percent of Time C-TMLE Algorithm Chose:

Zero Moves 0.98 0.00 0.98 0.06 0.99 0.08
W1 0.00 0.99 0.00 0.93 0.00 0.89
W2 0.00 0.99 0.00 0.91 0.00 0.89
W3 0.00 0.99 0.00 0.81 0.00 0.81
W4 (ETA Variable) 0.01 0.84 0.00 0.47 0.00 0.41
W5 0.01 0.00 0.01 0.00 0.01 0.00

Table 6: Simulation Results: Characteristics Of C-TMLE Algorithm. Variable Causing
Violation In ETA Is Not A Confounder.

4.5 times more efficient for the respective ways of estimating Q.

3. The TMLE estimate, regardless of ETA, scenario tends to have a MSE which ap-
proaches the efficiency bound unlike the IPW or AIPW estimates.

4. The C-TMLE estimate is super efficient and even as the ETA violation increases,
the MSE of this estimate remains close to the level it was under no ETA violation.
This is true wether @ is fit well or mis-specified. The MSE is lower when @ is
specified correctly; however, it still out-performs any of the other estimates in terms
of efficiency when @) is mis-specified.

Figure 2 presents two scatter plots comparing the AIPW estimates to TMLE and C-
TMLE estimates in the high ETA scenario with a mis-specified Q. This is the scenario
for which all estimates have the greatest difficulty in producing quality estimates (i.e. the
scenario with the highest mean square error for all methods). The horizontal and vertical
solid lines are the true value of the parameter being estimated, or 46.2 percent. Thus,
points that are closer to the vertical black line than the horizontal black line are simulated
data sets where TMLE or C-TMLE produced estimates closer to the truth than AIPW,
and vice versa. These plots graphically depict the large difference in mean square error
between, AIPW and TMLE, and, AIPW and C-TMLE, as seen in the last column of Table
5. In fact, the AIPW estimates range from 17.5 to 103 percent, the TMLE estimates range
from 30.3 to 63.8 percent, and the C-TMLE estimates range from 35.6 to 59.2 percent.
Thus, it becomes immediately clear that the AIPW does not respect the global restraints
of the model by producing an estimate which is not a probability (One of the estimates
is greater than 100 percent). In addition, the AIPW estimate is an empirical mean of an
unbounded function of the data (Equation 11) and thus when the estimates of gy are close
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to zero the contribution from one observation may be too large or even infinite. Whereas,
the TMLE and C-TMLE estimates are empirical means of probabilities (Equation 12). By
virtue of being substitution estimators each observations contribution is bounded and may
be no larger than 1. The advantage of being substitution estimator is directly observed in
the simulation results by the smaller mean squared error for TMLE than AIPW.

Table 6 presents some characteristics of the C-TMLE algorithm including how many,
and which moves were chosen under each scenario. When @ is specified well the C-TMLE
algorithm makes very few moves and, in almost all cases, it makes zero moves leaving the
intercept models for g. However, when @ is mis-specified the C-TMLE algorithm chooses
more moves and attempts to adjust in g for the variables that were not adjusted for in the
initial estimate of ). Also, the algorithm resists choosing the region of the variable which
causes the ETA violations illustrated by the fact that W4 is selected less and less as ETA
increases.

Tables 7-9 display the results of the high ETA scenario, where W1, a confounder, is the
variable causing identifiability problems. The “No ETA” columns are the same as before.
Table 7 displays the mean estimates for this scenario. As before when (@ is specified well, all
of the estimates are unbiased. However, when @ is mis-specified while the TMLE, IPW,
and AIPW remain unbiased, the G-comp estimate is highly biased and the C-TMLE is
slightly biased. The bias in the C-TMLE is due to the fact that it is not fully adjusting
for W1 when regions of that variable contribute to non-identifiability of the parameter of
interest. This bias is compensated for by the fact that the C-TMLE does as well as any of
the other methods in terms of mean square error. Furthermore, the AIPW estimate does
twice as bad as the C-TMLE in terms of mean square error as seen in Table 8. Though
the IPW estimate is behaving reasonably in terms of bias and MSE in this simulation, its
potential to provide highly unstable estimates was displayed above.

No ETA High ETA
Method Known Q Bad Q Known Q Bad Q
TMLE 0.460 0.460 0.468 0.459
G-comp 0.461 0.473 0.462 0.552
IPW 0.460 0.460 0.461 0.461
ATPW 0.460 0.460 0.462 0.466

ATIPW w/o ETA variable 0.460 0.460 0.462 0.533
TMLE w/o ETA variable 0.460 0.460 0.462 0.533
C-TMLE 0.460 0.463 0.462 0.482

Table 7: Simulation Results: Mean Of 500 Estimates (True Value Of Parameter Is .462).
Variable Causing Violation In ETA Is A Confounder.
Table 9 shows the characteristics of the C-TMLE algorithm. Again, when @ is specified
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No ETA High ETA
Method Known Q@ Bad Q Known Q Bad Q
Efficiency Bound 0.028 0.054

Root Mean Square Error

TMLE 0.029 0.029 0.053 0.050
G-comp 0.027 0.030 0.029 0.094
IPW 0.029 0.029 0.058 0.058
ATPW 0.029 0.029 0.052 0.077
AIPW w/o ETA variable 0.029 0.029 0.032 0.076
TMLE w/o ETA variable 0.029 0.029 0.031 0.076
C-TMLE 0.028 0.031 0.031 0.055

Relative Efficiency

TMLE 1.0 1.1 1.0 0.9
G-comp 0.9 1.1 0.3 3.0
IPW 1.0 1.0 1.2 1.2
ATPW 1.0 1.1 0.9 2.0
AIPW w/o ETA variable 1.0 1.1 0.3 2.0
TMLE w/o ETA variable 1.0 1.1 0.3 2.0
C-TMLE 1.0 1.2 0.3 1.1

Table 8: Simulation Results: Mean Squared Error. Variable Causing Violation In ETA Is
A Confounder.

correctly very few moves are made and when it is mis-specified the algorithm adjusts by
choosing a fuller model for g. As expected, that the C-TMLE algorithm is having a harder
time choosing what variables to adjust for now that the ETA variable is a confounder.
This can be seen by the fact that the algorithm continues to adjust for W1 more often
then it did for W4 in table 6. The algorithm uses the penalized loss function to weigh
whether it is better to adjust for a variable which is associated with the outcome or remove
it since it causes identifiability problems. In this case, the algorithm has chosen to adjust
for at least some region of the variable a large percentage of the time. Had the algorithm
decided to remove the variable completely from the adjustments, the estimates would be
even more biased, and the MSE would be very large like the values seen for the TMLE w/o
ETA variable estimate. This difference in MSE illustrates the value of generating binary
variables and then running the C-TMLE algorithm on those as opposed to on the entire
variable.
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No ETA High ETA
Method Known Q Bad Q Known Q Bad Q
Mean Number of Moves 0.103 13.389 0.134 8.448

Percent of Time C-TMLE Algorithm Chose:

Zero Moves 0.98 0.00 0.97 0.12
W1 0.00 0.99 0.00 0.88
W2 0.00 0.99 0.00 0.80
W3 0.00 0.99 0.00 0.59
W4 0.01 0.84 0.01 0.48
W5 0.01 0.00 0.02 0.00

Table 9: Simulation Results: Characteristics of C-TMLE Algorithm

14 Simulation Study Results: Inference. Variable Causing
Violation In ETA Is A Confounder.

We will now examine how the different estimators compare in producing valid 95 percent
confidence intervals. Table 10 presents the percent of time the 95 percent influence curve
based confidence intervals includes the true value, for the scenario where the ETA variable
is not a confounder. Ideally, a well behaved method would produce confidence intervals
that include the truth 95 percent of the time. Keep in mind that each scenario was only
simulated 500 times so some variation from 95 percent is not unexpected. The confidence
intervals for the G-comp method are not reported since there is no theory that suggests
an appropriate way to construct such intervals. The AIPW is the only method which
retains true 95 percent confidence intervals over all scenarios (Excluding the methods which
don’t adjust for the ETA variable since they are not feasible in a real data setting). The
influence curve based confidence intervals of the TMLE begin to deteriorate with increasing
ETA. The C-TMLE coverage probability also decreases with increasing ETA but not as
quickly as for the TMLE. Table 11 shows the 95 percent coverage probabilities for the
scenario that the ETA variable is a confounder. Again, the TMLE and C-TMLE coverage
probabilities are less than 95 percent. Thus, we can conclude from Tables 10 and 11 that the
theoretically valid asymptotic, influence curve based, confidence intervals are not producing
proper coverage in the finite samples when identifiability is an issue. Furthermore, as the
parameter becomes more non-identifiable the coverage probabilities further deteriorate.
Tables 10 and 11 also present the mean width of the influence curve based confidence
intervals for each estimator. These tables show that while the ATPW’s confidence intervals
have proper coverage the width of these intervals are larger than the intervals of both the
TMLE and C-TMLE estimation methods. In fact, the average AIPW interval width for the
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“high ETA” scenario with mis-specified initial Q is almost twice as large as the C-TMLE
interval width in Table 10. In the scenario where the ETA variable is a confounder, under
“high ETA” and mis-specified Q, the AIPW intervals are on average 67 percent larger than
the C-TMLE intervals.

The scatter plots in Figures 2 through 4 are intended to compare the performance
of influence curve based confidence intervals between AIPW and TMLE or C-TMLE. All
three Figures are for the high ETA scenario with a mis-specified @, the scenario which had
the lowest coverage probabilities for TMLE. Figure 2 presents a scatterplot of the AIPW
estimates versus TMLE and C-TMLE and was initially discussed in the previous section.

We will now reexamine these plots considering their implications on inference. The
plots distinguish four different situations with regard to the confidence intervals. A blue
circle indicates that for a particular data set the influence curve based confidence intervals
include the truth for both the AIPW estimate and the TMLE/C-TMLE estimate. The
TMLE/C-TMLE confidence bars could be thought of as going from left to right and the
confidence bars for the AIPW would go up and down. Thus a blue circle would indicate
that the confidence interval for the AIPW estimate would extend up and down beyond the
horizontal line (indicating the true value on the AIPW axis) and the confidence interval for
the TMLE/C-TMLE would extend left to right beyond the vertical solid line (indicating
the true value on the TMLE/C-TMLE axis). Similarly, a green triangle would have a
confidence interval that includes the horizontal line (The AIPW interval includes the truth)
but the confidence interval would not include the vertical solid line (The TMLE or C-TMLE
interval does not include the truth). The red plus indicates that the TMLE/C-TMLE
interval includes the truth and the AIPW does not and the light blue x indicates that
neither estimates confidence interval includes the truth.

The first major conclusion to draw from these plots is that even though the AIPW in-
tervals include the truth the correct percentage of the time in many cases the intervals are
extremely large rendering these estimates useless. This is illustrated by the fact that there
are AIPW estimates whose intervals include the truth (blue circles and green triangles) far
from the horizontal line. Second, the data sets for which AIPW estimates have large inter-
vals are not the ones for which the TMLE/C-TMLE are having difficulty with inference.
In fact, the TMLE/C-TMLE influence curve based confidence intervals include the truth
for almost all data sets where the AIPW estimate is below .35 or above .60. The TMLE/C-
TMLE intervals which do not include the truth appear to just barely not include the truth
as is illustrated by the fact that the green triangles and blue circles have a fairly well de-
fined border on the x-axis. This suggests that a small adjustment to the TMLE/C-TMLE
influence curve based confidence intervals would cause the TMLE/C-TMLE intervals to
include the truth.

The scatter plots in Figure 3 depict the standard error for each of the 500 simulated data
sets for both the AIPW estimates and TMLE estimates. Again different points are used to
indicate which of the confidence intervals include the truth. The only difference between the
top and bottom scatter plot is the range of the axis; thus, the bottom scatterplot focuses on
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the standard errors in a range where the confidence intervals are more useful. For standard
errors larger than .15, the 95 percent confidence interval is approximately .6 in length,
bordering on too large to be useful when estimating a probability which ranges between
0 and 1. Figure 4 shows these same plots for the AIPW and C-TMLE estimates. The
top plot in Figure 3 shows that the AIPW confidence intervals tend to be larger than the
TMLE confidence intervals in the region of standard errors which produce useful confidence
intervals; however, in the region where the confidence intervals are not useful, the reverse is
true. The average length of the AIPW confidence interval is .255 compared to .237 for the
TMLE and .132 for the C-TMLE. Even though the AIPW estimates produce confidence
intervals with proper coverage; they are larger than the TMLE intervals and almost twice
as large as the C-TMLE intervals which have only slightly less coverage. It is also seen
in Figure 4 that the standard errors are almost alway larger for the AIPW method than
C-TMLE for this simulation. In fact, none of the standard errors for C-TMLE exceed .1
while 5.4 percent of the AIPW standard errors exceed .15. Thus, the difference in coverage
probabilities (.94 vs. .89) is compensated for by the large percent of confidence intervals
which, though they contain the truth, are too large to be practically useful.

As in Figure 2, Figures 3 and 4 show that data sets where the TMLE and C-TMLE
intervals do not cover the true values and the AIPW intervals do correspond with data
sets which are not outliers in terms of the estimates and standard errors produced by using
ATPW methods (These correspond with green triangles in the plot). Thus, the TMLE and
C-TMLE confidence intervals would include the truth if the intervals were slightly shifted
to the left or the right. We hypothesize that this departure from normality is the result
of a distribution of estimates which is slightly skewed in finite samples. This suggests that
bootstrap methods, which use the .025 and .975 bootstrap quantiles to construct confi-
dence intervals, would produce valid 95 percent confidence intervals. In order to test this
hypothesis 500 additional data sets were generated according to the original simulation’s
High ETA scenario and bootstrap confidence intervals, both based on quantiles and esti-
mated standard error, as well as influence curve based confidence intervals were compared
for the TMLE. Note, this was not done for C-TMLE because of the prohibitive amount of
time it would take to do for 500 data sets; however, for one data set it is a feasible method
for inference and the bootstrap results for the TMLE intervals should hold for C-TMLE.
These results are presented in Table 12. For the 500 newly simulated data sets the resulting
coverage probability was 94 percent using quantile based bootstrap intervals, compared to
88 percent for bootstrap intervals based on the estimated standard error, and 87 percent
using influence curve based confidence intervals. Furthermore, the average length of the
bootstrap confidence intervals was .21, .22 and .26 respectively. This suggests that the
quantile based bootstrap, which naturally accounts for the skewness in finite samples, is
able to produce valid 95 percent confidence intervals. The lack of coverage of the standard
error based bootstrap confidence intervals confirms that the skewness of the distribution of
the estimates in finite samples is contributing to the poor influence curve based confidence
intervals. This is because both of these methods depend on using the standard normal
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quantiles to generate confidence intervals. Not only do the quantile based bootstrap confi-
dence intervals produce the proper coverage, but they also are 20 percent smaller than the
influence curve based intervals. Thus, the quantile based bootstrap intervals should be the
preferred method for constructing TMLE and C-TMLE confidence intervals.

No ETA Medium ETA High ETA
Method Known Q@ Bad Q Known Q Bad Q Known Q Bad Q

Coverage Probabilities

TMLE 0.94 0.96 0.86 0.85 0.80 0.83
IPW 0.98 0.98 0.92 0.92 0.88 0.88
ATPW 0.94 0.95 0.95 0.95 0.94 0.94
ATIPW w/o ETA variable 0.94 0.95 0.95 0.96 0.95 0.96
TMLE w/o ETA variable 0.94 0.96 0.96 0.95 0.95 0.96
C-TMLE 0.94 0.94 0.95 0.92 0.94 0.89

Mean Width of Confidence Intervals

TMLE 0.11 0.12 0.19 0.21 0.21 0.24
IPCW/IPTW 0.14 0.14 0.24 0.24 0.27 0.27
ATPW 0.11 0.12 0.18 0.22 0.20 0.25
ATPW w/o ETA variable 0.11 0.12 0.11 0.12 0.11 0.12
TMLE w/o ETA variable 0.11 0.12 0.11 0.12 0.11 0.12
C-TMLE 0.11 0.12 0.11 0.13 0.11 0.13

Table 10: Simulation Results: 95 Percent Wald-Type Confidence Interval Coverage Prob-
abilities And Mean Width Of Confidence Intervals. Variable Causing Violation In ETA Is
Not A Confounder.

15 Discussion

Ultimately, a choice must be made to implement an estimation method which behaves
the best across the largest number of possible scenarios. The simulations presented here
illustrate the advantages of the C-TMLE methodology for estimating causal parameters
when analyzing time to event outcomes. The results show that the C-TMLE method does
at least as well as the best estimate under every scenario and, in many of the more realistic
scenarios, behaves much better than the next best estimate in terms of both bias and
variance. Unlike other estimators which rely on external estimates of nuisance parameters,
the C-TMLE algorithm estimates these parameters with consideration for the parameter
of interest. The C-TMLE is an entirely a priori specified method which accounts for the
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No ETA High ETA
Method Known Q@ Bad Q Known Q Bad Q

Coverage Probabilities

TMLE 0.94 0.96 0.87 0.93
IPW 0.98 0.98 0.94 0.94
ATPW 0.94 0.95 0.94 0.92
ATPW w/o ETA variable 0.94 0.95 0.94 0.38
TMLE w/o ETA variable 0.94 0.96 0.94 0.38
C-TMLE 0.94 0.94 0.94 0.82

Mean Width of Confidence Intervals

TMLE 0.11 0.12 0.18 0.20
IPW 0.14 0.14 0.21 0.21
AIPW 0.11 0.12 0.17 0.25
AIPW w/o ETA variable 0.11 0.12 0.12 0.12
TMLE w/o ETA variable 0.11 0.12 0.12 0.12
C-TMLE 0.11 0.12 0.11 0.15

Table 11: Simulation Results: 95 Percent Wald-Type Confidence Interval Coverage Prob-
abilities And Mean Width Of Confidence Intervals. Variable Causing Violation In ETA Is
A Confounder.

fact that there are identifiability concerns in observational data and addresses these issues
uniformly, rather than handling them on a case by case basis, or ignoring them completely.
The C-TMLE algorithm accomplishes this by using a targeted penalized loss function to
make smart choices in determining what variables to adjust for in the estimate of g and
only adjusts for variables which have not been fully adjusted for in the initial estimate of
(). This allows the C-TMLE estimates to exhibit superefficiency and behave almost as well
as the G-comp estimates when the model for @) is specified correctly. In addition, when @
is not specified correctly, the C-TMLE algorithm adjusts in the secondary step only for the
variables which improve the estimate of the parameter of interest by considering the bias
variance tradeoff for each adjustment. These decisions are always made with respect to
how they effect the estimate of the parameter of interest and are not dependent on a loss
function designed for the prediction of the treatment/censoring mechanism itself, as it is
in the other methods presented. By ignoring the effect of each adjustment on the estimate
of the parameter of interest, the other methods have been shown to be highly unstable in
finite samples. Furthermore, the C-TMLE is a substitution estimator and obeys the proper
bounds of the true model contributing to its overall stability. Lastly, by acknowledging that
C-TMLE is a substitution estimator, the bootstrap provides a method to construct valid 95
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Coverage Probabilities Mean C.I. Widths

Quantile Bootstrap 0.94 0.21
Wald Bootstrap 0.88 0.22
Wald Influence Curve 0.87 0.26

Table 12: Simulation Results: Comparison Of Bootstrap And Influence Curve Based Con-
fidence Intervals.

percent confidence intervals that are tighter than the intervals produced by other methods.
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