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Targeted Maximum Likelihood Method for
Repeated Measures Semiparametric

Regression: Discovery for Transcription
Factor Activity

Catherine Tuglus and Mark J. van der Laan

Abstract

In longitudinal and repeated measures data analysis, often the goal is to deter-
mine the effect of a treatment or aspect on a particular outcome (e.g. disease
progression). We consider semiparametric repeated measures regression model,
where the parametric component models effect of the variable of interest and any
modification by other covariates. The expectation of this parametric component
over the other covariates is a measure of variable importance. Here we present
a targeted maximum likelihood estimator of the finite dimensional regression pa-
rameter, which is easily estimated using standard software for generalized estimat-
ing equations. The targeted maximum likelihood method provides double robust
and locally efficient estimates of the variable importance parameters and inference
based on the influence curve. We demonstrate these properties through simulation
under correct and incorrect model specification, and apply our method in practice
to estimating the activity of transcription factor (TF) over cell cycle in yeast. We
specifically target the importance of SWI4, SWI6, MBP1, MCM1, ACE2, FKH2,
NDD1, and SWI5.

The semiparametric model allows us to determine the importance of a TF at spe-
cific time points by specifying time indicators as potential effect modifiers of the
TF. Our results are promising, showing significant importance trends during the
expected time periods. This methodology can also be used as a variable impor-
tance analysis tool to assess the effect of a large number of variables such as gene
expressions, or single nucleotide polymorphisms.



1 Introduction
Longitudinal data analysis, or more generally repeated measures analysis, has be-
come increasingly popular in epidemiological and medical studies. Often the main
goal of these studies is to determine the effect, or importance, of a particular vari-
able on the outcome over time, for instance the effect of a drug on disease prognosis
over the course of a clinical trial. In most cases the repeated measures are obser-
vations on subjects at multiple time points or under multiple conditions. Recently,
repeated measures analysis has been applied in computational biology, where the
experimental unit is now a gene or protein that is observed over time (Gao et al.,
2004; Wang et al., 2007), condition (Conlon et al., 2003; Gao et al., 2004), or even
species (Siewert and Kechris, 2009). Similarly, in these analyses the goal is to de-
termine the importance of biological features (i.e. variables) with respect to the
observed repeated measures outcome. Here, we present a new tool to estimate
variable importance for a repeated measures outcome based on targeted maximum
likelihood methodology (van der Laan and Rubin, October 2006).

In this paper, we propose a semiparametric repeated measures regression model
and develop the targeted maximum likelihood estimator for the effect parameters of
the semiparametric model using targeted maximum likelihood methodology as pre-
sented in van der Laan and Rubin (October 2006). We refer to as this method as
tVIM-RM. Targeted maximum likelihood estimation (tMLE) first constructs an ini-
tial estimator of the distribution of the data in the semiparametric repeated measures
regression model. It then subsequently uses the maximum likelihood estimation
(MLE) framework to reduce the bias for the targeted parameter by maximizing the
likelihood in a direction that corresponds to fitting the target parameter, in this case
a measure of variable importance for the repeated measures outcome, while treat-
ing the initial estimator as a fixed off-set. Prior applications of tMLE methods have
shown great promise and applicability in the epidemiological and medical fields, in
particular, for biomarker discovery (Tuglus and van der Laan, 2008). The tVIM-
RM method presented here builds upon previous variable importance methodology
(Robins et al., 1992; Robins and Rotnitzky, 2001; Yu and van der Laan, September
2003; van der Laan, 2005), adapting it for repeated measures data and incorporating
updates on the methodology to increase efficiency and computational speed.

As indicated above, in repeated measures experimental designs multiple ob-
servations are recorded for each subject over a set of conditions and/or time (e.g.
longitudinal). Though this experimental design is attractive in that it reduces the
variance among observations and can increase the power of the analysis, statistical
methods, such as regression, must account for the correlation among the observa-
tions on a single subject. Ignoring this dependence can lead to biased standard er-
ror estimates for regression parameters ( Wang (2003) among others). A commonly

1

Hosted by The Berkeley Electronic Press



used method to account for the correlation among the observations in parametric re-
gressions models is generalized estimating equations (GEE). GEE methods were in-
troduced in 1986 by Zeger and Liang (Liang and S.L., 1986) and are an extension of
generalized linear regression using a quasi-likelihood approach, which weights the
residuals according to the correlation structure of the observations on each subject.
Standard GEE regression parameter estimates remain consistent given an incorrect
correlation structure (Liang and S.L., 1986). However, the parametric model form is
limited. More flexible semiparametric extensions of the GEE method, such as gen-
eralized partially linear models (Zeger and Diggle, 1994; Severini and Staniswalis,
1994; Fan et al., 2007), model covariate effects non-parametrically, but require com-
plicated estimation methods to fit both the parametric and non-parameteric portions
of the model, which can produce inconsistent and/or inefficient estimates of the
model parameters (Lin and Carroll, 2001; Li et al., 2009).

The tVIM-RM semiparametric regression model is a more non-parametric
analogue of the standard GEE repeated measures regression model, and the tar-
geted maximum likelihood update is easily implemented using standard GEE soft-
ware. The tMLE method provides targeted estimation for the parameter of interest
and the resulting tVIM-RM estimates are locally efficient in the semiparametric re-
peated measures regression model: that is, the estimator of the effect of interest is
consistent and asymptotically linear if either the mean of the variable of interest
as a function of the confounders is correctly modeled (i.e. confounding/treatment
mechanism), or if the mean of the outcome as a function of the variables (includ-
ing variable of interest) is correctly modeled. The tMLE method integrates data-
adaptive prediction algorithms such as DSA (Sinisi and van der Laan, March 2004)
and Super Learner (van der Laan et al., July 2007) by using these methods to ob-
tain the initial estimator and the confounding or treatment mechanism used in the
targeted update. Details on the method are discussed further in section 2.3.

We present the method with respect to a repeated measures experiment taken
over times t = 1, . . . ,T , with observed data O = {W ∗,Y} ∼ P0, where P0 is the
true data generating distribution. Here, W ∗ is a vector of p variables, and Y is
the outcome vector of T repeated measures taken over time on a subject, where Yt
represents outcome Y at a specific time point t for a subject We define the semipara-
metric regression model for a particular variable A =W ∗j and time, t, controlling for
confounders W = W ∗− j such that

E[Yt |A = a,W ]−E[Yt |A = 0,W ] = mt(a,W |βt)

We refer to the model mt(A,W |βt) as a semiparametric regression model for
the effect of A on Yt . In reality, we think of mt(A,W |βt) as a working model. Given
estimates of an initial Qt(A,W ) = E[Yt |A,W ] respecting mt(0,W |βt) = 0, and “treat-

2

http://biostats.bepress.com/ucbbiostat/paper261



ment mechanism” G(W ) = E[A|W ], this effect is projected onto the specified work-
ing model mt(A,W |βt) and coefficients βt are estimated using tMLE. From tMLE
theory, it can be shown that this estimate is asymptotically consistent and linear
given that either Qt(A,W ) or G(W ) is correctly specified, making our estimate dou-
bly robust (van der Laan and Rubin, October 2006). The tVIM-RM estimate is
also efficient when both Qt(A,W ) and G(W ) are correctly specified (van der Laan
and Rubin, October 2006), while it can easily be super-efficient if Qt(A,W ) is cor-
rectly specified, and G(W ) is misspecified by not incorporating all W (Gruber and
van der Laan, 2010). The double robust nature of the tVIM-RM estimate makes
the methodology ideal for use in randomized trials when the treatment mechanism
(E[A|W ]) is known.

The tVIM-RM method is particularly suitable for variable importance analy-
sis. The semiparametric construction not only provides a flexible model, but nicely
handles the effect of continuous variables and also allows the incorporation of effect
modification of the variable of interest in a straight forward and interpretable man-
ner. This allows the estimation of not only the variable importance averaged over
time, but the importance at a particular time (e.g. effect modified by time). Also,
the estimation procedure under the semiparametric model does not require inverse
weighing by the probability of treatment (i.e. P(A = a|W )), which is required for
non-parametric tMLE based variable importance estimation and can be problematic
when the probability of treatment approaches one or zero (Bembom et al., 2009).

This paper is organized as follows. In section 2, we present the tVIM-RM
method in detail and outline the basic steps of tMLE based procedures. In section
3, we demonstrate the properties of the tVIM-RM estimator in simulation by com-
paring it to a standard GEE estimator. We show the tVIM-RM estimator is robust to
model mis-specification and provides accurate inference for the parameter of inter-
est. In both simulation and in application, tVIM-RM is implemented using standard
software for GEE provided by geepack R library (Yan et al., 2008).

In section 4 we present an application of tVIM to yeast cell cycle expression
data. In line with the original analysis done by Bussemaker et al. (2001) and sub-
sequent analysis by Gao et al. (2004), (Keles et al., 2002), and others (Liu et al.,
2006; Conlon et al., 2003; Siewert and Kechris, 2009) we apply tVIM-RM to mea-
sure the activity of transcription factors with respect to a gene expression profile.
In this application, the repeated measures outcome is a time series of yeast gene
expression over two cell cycles (Cho et al., 1998). Through this simple application,
we demostrate the utility of the tVIM-RM method for this type of analysis and dis-
cuss how it may be applied to more sophisticated studies. We end with an overall
discussion in section 5.
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2 Methods

2.1 Variable Importance
We present the following multivariate extension of the model-based semiparametric
variable importance methodology (van der Laan, 2005) for repeated measures data.
The variable importance of a specific A =W ∗j controlling for confounders W =W ∗− j
can be defined generally as follows for a particular time t.

µt(a) = EW [mt(a,W |βt)]

or this can be represented in vector form for all t

µ(a) = EW [m(a,W | β)]

for a user supplied model m, which models the effect

m(A = a,W |β) = EP[Y |A = a,W ]−EP[Y |A = 0,W ])

under the constraint m(A = 0,W |β) = 0 for all β and W . Analogous to the pre-
viously presented tVIM for univariate outcome (Tuglus and van der Laan, 2008),
the measure can be interpreted as a projection of the nonparametrically defined W -
adjusted effect of A on a working model, m(A,W |β), and as in tVIM variable A can
be binary or continuous (Tuglus and van der Laan, 2008).

We can also represent this measure in traditional semi-parametric model form

E[Y |A = a,W ] = m(A = a,W |β)+g(W )

such that m(A = 0,W |β) = 0 for all β and W , and g(W ) is unspecified.

2.2 Generalized Estimating Equations
One of the most common approaches for modeling repeated measures data is gen-
eralized estimating equation methodology. Introduced by Liang and Zeger in 1986
(Liang and S.L., 1986), generalized estimating equations uses a quasi-likelihood
approach, which weights the residuals in a generalized regression score function
according to a working correlation matrix. Specifically, GEE estimates of the pa-
rameter β for a Gaussian model are the solution to

n

∑
i=1

(D(i))T (V (i))−1(Y (i)−Q(W ∗(i)|β)) = 0
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where, for subject i in i = 1 . . .n, Y (i) is a vector of observations over time t =
1, . . . ,T , with T by T covariance matrix, V (i). Here Q(W ∗(i)|β) = E[Y (i)|W ∗(i)] =

βTW ∗(i) is the vector of fitted values for subject i, and D(i) =
[

dQ(W ∗(i)|β)
dβ

]
.

The parameter estimates are obtained using iteratively reweighted least squares
estimation. More robust estimates are obtained by iterating this with the re-estimation
of the covariance parameters in V (i) as a function of β. This robust method is ap-
plied in R library geepack (Yan et al., 2008).

The GEE approach does not require the specification of the joint distribution
of the observations over time for a given subject, only the marginal distribution
for each time point and a working correlation matrix. Assuming independence
among the subjects and a correctly specified model βTW , parameter estimates βn
are consistent and given true parameter β0,

n1/2(βn−β0)∼MV N(0,Σgee)

such that given U (i) = (D(i))T (V (i))−1D(i),

Σgee = lim
n→∞

1
n

n

∑
i=1

(
U (i)

)−1(
(D(i))T (V (i))−1(Y (i)−Q(W ∗(i)|β))(Y (i)−Q(W ∗(i)|β))T (V (i))−1D(i)

)−1(
(U (i)

)−1

This is referred to as the sandwich estimator (Hardin, 2003).
In this paper we use the R implementation of GEE in library geepack, function

geeglm() (Yan et al., 2008). In simulation we allow GEE to update the correlation
parameters. However for computation ease in our application in section 4, we pro-
vide a fixed correlation matrix estimate based on the residuals of an initial GEE
estimate under independent correlation structure (Hardin, 2003).

2.3 Targeted MLE
The tVIM-RM estimates of parameter vector β are obtained using tMLE methodol-
ogy (van der Laan and Rubin, October 2006). The tMLE method updates an initial
density estimate p0(Y |A,W ) in the direction which targets the parameter of interest
using standard MLE and a “clever covariate” defined such that the tMLE solves
the efficient score equation. In the case of repeated measures we define the initial
density as the normal density ( f N) such that

p0(Y |A,W ) = f N
Q0,Σ(Y |A,W )

where Y is an 1 by T vector and Q0(A,W ) = E[Y |A,W ]. Here Σ(A,W ) is defined as
a T by T covariance matrix corresponding to the covariance among the t = 1 . . .T
observations for a single subject.
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We can decompose Q0(A,W ) = m(A,W |β0)+Q0(A = 0,W ) where the model
m(A,W |β0) is defined given the constraint m(A = 0,W |β0) = 0 for all β0 and W .
We define the update to the initial density as its hardest submodel in terms of update
parameter vector ε as follows

p(ε)(Y |A,W ) = f N
Q(ε),Σ(Y |A,W )

where Q(ε)(A,W )= m(A,W |β(ε))+Q(ε)(0,W ) in which β(ε)= β0+ε, and Q(ε)(0,W )=
Q0(0,W )+ εr(W ).

We define r(W ) such that the score of p(ε)(Y |A,W ) at ε = 0 is equivalent to the
efficient score equation for the parameter β in, µ(a) = EW [m(a,W |β)]. The efficient
score equation is presented below.

Dhopt ,Q,G = hopt(A,W )(Y −m(A,W |β)−Q(0,W ))

with

hopt = Σ(A,W )−1
(

d
dβ

m(A,W |β)−E
[
Σ(A,W )−1|W

]−1 E
[

Σ(A,W )−1 d
dβ0

m(A,W |β)|W
])

This is the multivariate extension of the semiparametric tVIM efficient score
equation presented in van der Laan (2005) and Tuglus and van der Laan (2008).
Further details on the efficient score equation can be found in appendix A.

It follows that the correct form of r(W ) is

r(W ) = E
[

Σ(A,W )−1∣∣W]E[Σ(A,W )−1 d
dβ

m(A,W |β)
∣∣∣∣W]

The expectations can be approximated by discretizing A and calculating

E
[

Σ(A,W )−1∣∣W]= ∑
a∈A

Σ(a,W )−1 p(A = a|W )

and

E
[

Σ(A,W )−1 d
dβ

m(A,W |β)
∣∣∣∣W]= ∑

a∈A
Σ(a,W )−1 d

dβ
m(A = a,W |β)p(A = a|W )

Using standard MLE, we solve for ε, and calculate the updated regression esti-
mate Q1(A,W ) = m(A,W |β(ε))+Q0(0,W )+εr(W ). The procedure is iterated, and
at convergence (i.e. ε = 0), the final regression estimate is the solution to the robust
estimating equation corresponding to the efficient score equation for observed data
O = {O(i) : i = 1 . . .n}, for n subjects

1
n

n

∑
i=1

[Dhopt ,Qn,Gn(O
(i)|βn)] = 0
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such that Qn, Gn, and βn are the converged estimates of Q, G, and β for the observed
data. The tMLE solution therefore inherits the double robust properties of the solu-
tion to the efficient score equation and allows us to use the efficient score equation
to estimate the correct covariance and inference for our parameter of interest (see
section 2.3.1). The double robust property is such that given either a correctly spec-
ified form of Q(A,W ) = E[Y |A,W ] or G(W ) = E(A|W ), the converged estimate for
parameter vector, βn, remains consistent, solving the efficient score equation. Given
both are correct, the estimates are also efficient.

2.3.1 Linear Case

Given a linear model for m(A,W |β), the update can be written as Q1(A,W ) =
Q0(A,W )+ εr∗(A,W ) where

r∗(A,W )=
(

d
dβ

m(A,W |β)−E
[
Σ(A,W )−1|W

]−1 E
[

Σ(A,W )−1 d
dβ0

m(A,W |β)
∣∣∣∣W])

In the linear case, this update can be achieved using standard software by regress-
ing Y onto the covariate r∗(A,W ), setting Q0(A,W ) as an offset. The covariate,
r∗(A,W ) is sometimes referred to as the “clever covariate.”

If we define fN such that Σ(A,W ) = Σ(W ), we can simplify hopt to

h∗opt = Σ(W )−1
(

d
dβ

m(A,W |β)−E
[

d
dβ

m(A,W |β)
∣∣∣∣W])

and the “clever covariate” simplifies to

r∗(A,W ) =
(

d
dβ

m(A,W |β)−E
[

d
dβ

m(A,W |β)
∣∣∣∣W])

Note that if the true covariance is a function of A, estimation using the simpli-
fied covariate form will lose efficiency but will still remain double robust.

Given the simplified form of the “clever covariate” with linear model for m(A,W |β),
the tVIM-RM estimate is a closed form solution and can be calculated without iter-
ation.

The linear semiparametric form allows us to introduce time and/or any ad-
ditional covariate as effect modifiers of the importance of A in a straight forward
interpretable fashion. Consider the following possible model, where we allow effect
modification of time indicator variable t∗t = I{t∗ = t}.

m(A,W |β) = A(βT t∗1)+ . . .+A(βT t∗T )

7
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When m(.) becomes large it is beneficial to update the coefficient terms se-
quentially until convergence (i.e. targeting one at a time) instead of completing an
update of the full coefficient vector in one step. Updating the model sequentially in
this fashion has been shown to improve the overall stability of the updated estimates
(see appendix C for details).

2.3.2 Inference

Since the tMLE solution solves the double robust estimating function implied by
the efficient score equation (van der Laan and Rubin, October 2006), one can use
the influence curve corresponding with this double robust estimating function to
provide an estimate of the covariance for tMLE estimated βn. For this, we use a
scaled version of the efficient influence curve which we define for a single subject
as

IC(O) = c−1Dhopt ,Q,G(O|β0)

given scale factor

c =−E
[

d
dβ

D(O|β0,Q0)
]

where IC(O) is a T by p matrix for a parameter vector β of length p and β0 and Q0
are β and Q under the true data generating distribution.

Given correctly specified estimates for Q(A,W ) and G(W ), the covariance
for parameter vector estimate βn is asymptotically equivalent to the covariance of
IC(O) regardless of the form of Σ(A,W ). If Q(A,W ) is misspecified, but G(W ) is
correctly estimated, the above influence curve is known to be conservative (van der
Laan, 2005). The empirical estimate of the covariance of βn is

Σn =
1
n ∑

i
ÎC(O(i))ÎC(O(i))T

so that we can use the normal approximation
√

n(βn−β0)∼ N(0,Σn)

for the purpose of statistical inference. This is analogous to the robust sandwich
estimator of GEE.

The covariance can also be estimated by bootstrap estimates of β, but this
would require extra computational time and any sampling would need to respect the
repeated measures design. If E[A |W ∗] is estimated consistently, then the variance
estimates based on the influence curve are consistent or asymptotically conserva-
tive.
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Using the estimated p by p covariance matrix, Σn, we can test the hypothesis
for a single parameter βn( j), where j = 1, . . . , p, under the null hypothesis H0 :
βn( j) = 0 using a standard test statistic to obtain p-values, with estimated variance
Σn( j, j).

Tn( j) =
√

nβn( j)√
Σn( j, j)

∼
n→∞

Normal(0,1)

Likewise we can also test the hypothesis H0 : cT βn = 0 using a standard Wald
test, where the covariance of cT βn is cT Σnc. This allows us to obtain inference
for µ(a) directly, when m is linear. In practice the parameter of interest may be
redefined as the effect at a specific value of effect modifier W , or time t, instead of
the mean effect as implied by the definition in section 2.1.

2.3.3 tVIM-RM Implementation

Below we outline the basic procedure for implementing tVIM for repeated mea-
sures given a fixed correlation matrix and highlight recent improvements in the
implementation, which improve efficiency and computational speed of the semi-
parametric tVIM method presented previously (Tuglus and van der Laan, 2008).

There are three initial components necessary for applying targeted maximum
likelihood methodology to estimate tVIM for repeated measures.

1. Model m(A,W |β) satisfying m(A = 0,W |β) = 0 for any β and W

2. An estimate for G(W )= E[A|W ]: We recommend estimating this data-adaptively.

3. An initial estimate for Q(A,W ) = E[Y | A,W ], Q0
n(A,W ), containing valid

model m(A,W |β): This provides an initial estimate for the parameter β, β0
n,

and must be defined such that Y |A,W ∼ Normal(Q(A,W ),Σ(W )), with an
empirically estimated correlation.

The initial regression estimate of proper form may be obtained from semi-
parametric methods such as those of Zeger and Diggle (1994); Fan et al. (2007);
Wang et al. (2005) among others, or by using methods such as DSA (Sinisi and
van der Laan, March 2004) which allow the user to fix a portion of the model.
However, we adopt a more flexible approach which allows us to use a wider range
of data-adaptive software, providing that any internal cross-validation respects the
repeated measures nature of the data. We obtain an initial regression estimate with
proper semiparametric form by updating a data-adaptively estimate for Q(A,W )
of general model form using data-adaptive machine learning algorithms such as
SuperLearner (van der Laan et al., July 2007) or DSA (Sinisi and van der Laan,

9
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March 2004). Given the general model estimate, Q(A,W ), for any A, we solve for
Q(A = 0,W ). Then using standard GEE regression, solve for the initial estimate,
Q0(A,W ) = m(A,W |β0) + αQ(A = 0,W ) by specifying model m(.) and treating
Q(A = 0,W ) as a covariate, which provides us with initial estimates for parameter
β. This is an update from the original method outlined in Tuglus and van der Laan
(2008). This update improves computational efficiency by only requiring a single
data-adaptive estimate for Q(A,W ) of general model form for all A.

Using data-adaptive algorithms such as SuperLearner (van der Laan et al., July
2007) and DSA (Sinisi and van der Laan, March 2004) will provide a better estimate
for our initial Q(A,W ), which improves the performance of the tVIM-RM estimator.
We recognize that these methods do not account for the correlation among the re-
peated measures and only require that any cross-validation within the algorithm re-
spects the repeated measure structure of the data. The asymptotic covariance matrix
for the tVIM-RM estimate of β is based on the update of a GEE quasi-likelihood,
which allows for the specification of a more accurate covariance structure (i.e.,
Σ(A,W ) in the definition of the efficient score equation). In this manner the tar-
geted MLE can still fully utilize the covariance structure of the repeated measures
and potentially be asymptotically linear with efficient influence curve identified by
the true Σ(A,W ) without a risk of being inconsistent. The overall consistency of the
estimator relies on correct specification of either the estimate of G(W ) = E[A|W ] or
of E(Y | A,W ). This is addressed further in section 2.4.

Additional efficiency in our estimator can also be gained by weighting the
initial estimate for Q(A,W ) by

( d
dBm(A,W |β)−E

[ d
dBm(A,W |β)|W

])2
, which ef-

fectively reduces the variance of the influence curve (see appendix B). This is also
an update from the original method outlined in Tuglus and van der Laan (2008).

Given the three components, tMLE is applied using the following steps

1. Estimate the “clever covariate” which will allow us to update the initial re-
gression in a direction which targets the parameter of interest. For a linear
model the clever covariate is:

r∗(A,W ) =
d

dB
m(A,W |β)−E

[
d

dB
m(A,W |β)|W

]

2. Compute the fitted values for your initial estimate, Q0
n(A,W )

3. Project Y onto r∗(A,W ) with o f f set = Q0
n(A,W ), define the resulting coeffi-

cient as ε. This is done using generalized estimating equations with fixed cor-
relation (geeglm() in R (Yan et al., 2008)) by fitting the model Y ∼ r(A,W )+
o f f set. Note there is no intercept in your model, only the offset value.
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4. Update initial estimate βn = β0
n+ε and overall density Qn(A,W )= Q0

n(A,W )+
εr∗(A,W ). These are now your single-step targeted estimates. Since this is a
simple linear model, the single step solution is the final solution

5. Obtain standard error and inference for βn using the influence curve as out-
lined in section 2.3.1.

Sample Rcode for a simple example is provided in appendix D.
Given that the number of possible covariates for both Q0(A,W ) and G(W ) can

be quite large and include main effects, interactions among the covariate set W, and
interactions with time, we recommend reducing the set of possible covariates using
basic univariate linear regression. As in the previous implementation (Tuglus and
van der Laan, 2008; Bembom et al., 2009), we can also reduce the instability in our
estimate from ETA (Experimental Treatment Assumption) violations, by restricting
the covariate set using a δ cut-off based on some measure of dependence between
A and W . This removes variables in W which may be highly correlated with A
(Bembom et al., March 2008).

2.4 Repeated Measures Estimation of Initial Density Estimate
In the procedure outlined above, the initial density estimate for tVIM-RM is a GEE
model with covariate Q(0,W ), which is obtained from a data-adaptive fit of Q(A,W )
using a data-adaptive prediction algorithm such as DSA (Sinisi and van der Laan,
March 2004) or SuperLearner (van der Laan et al., July 2007). Both of these meth-
ods respect the repeated measures nature of the data by allowing the user to specify
a subject ID to use in sampling and cross-validation, but apply an independent cor-
relation structure for the sake of estimation. If the true correlation structure is not
independent, there might be a finite sample loss in efficiency by using this structure.
However, by using GEE model with a correlation matrix closer to the truth to carry
out the targeted MLE update, this loss is asymptotically negligible. Nevertheless,
we wish to propose an alternative initial estimate that potentially already takes into
account correlation structure between the repeated measures. Given an outcome of
repeated measures, one can transform the observations prior to implementing DSA
or Superlearner, and then transform back the predicted values using an estimate of
their covariance matrix. This is outlined here.

For a fixed working covariance matrix Σ(A,W ), the quasi-likelihood has the
equivalent loss function

L(O) = (Y −Q(A,W ))Σ(A,W )−1(Y −Q(A,W ))T

This can be rewritten as the euclidean norm

| | Σ(A,W )−
1
2 (Y −Q(A,W )) | |
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which can be restructured in the equivalent form

| | Σ(A,W )−
1
2Y −Σ(A,W )−

1
2 Q(A,W )) | |

Therefore if Y is transformed into Yr = Σ(A,W )−
1
2Y , then E[Yr | A,W ] = Qr(A,W )

and the non-transformed predicted values can be regained as follows

Q(A,W ) = Σ(A,W )
1
2 Qr(A,W )

This method can be applied to any machine learning algorithm as long as any sam-
pling or cross-validation respects the repeated measures structure.

3 Simulation Study
In simulation, we demonstrate the robust features of the tVIM-RM method under a
known data generating distribution with model mis-specification, confounding, and
varying levels of overall noise. We compare our results with those of standard GEE
applied using geeglm() R function from library geepack (Yan et al., 2008). The
geeglm() function is allowed to update the correlation structure which is simulated
and modeled correctly as AR(1). The variable of interest is univariate so sequential
updating is not used for the tVIM-RM estimate, but we do apply the pre-weighting
of the initial density estimate to improve overall efficiency (See appendix B)

3.1 Data
Simulated data is drawn for n=50 and n=100 subjects with 4 replicates (e.g. time
points) from a linear model Y ∼ 1− 2A + 3W + γ, where Y is a vector {Yt : t =
1, . . .4} and the error, γ, is normal with AR(1) covariance structure within replicates
for each subject given a true lag-1 correlation of 0.667 and standard deviation σY =
1,10. Variable A is simulated both independent of W, and as a function of W
(e.g. under confounding), where A∼ N(2,1) or A∼ N(W +2,1) respectively, with
W ∼ N(3,1).

For each case, the importance parameter for A is measured using both basic
GEE methods and tVIM-RM as described in section 2.3, under both correct and
incorrect model specification, Y ∼ A +W and Y ∼ A respectively. Note that in all
cases the treatment mechanism (E[A|W ]) is correctly modeled.
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3.2 Results

Table 1: Simulation results comparing GEE and tVIM-RM with n=50, 100 and
σy = 1,10: provided are the mean value (µβ) and standard error (β) for β estimates
over the 500 iterations, the mean standard error estimate (µSE) for the influence
curve based standard error estimate from 500 iterations, and the percent of time
the true β value is included in the 95% confidence interval (CI95%) based on the
standard error estimate over the 500 iterations.

n=50, σy = 1 tVIM-RM GEE
Q Confounding µβ SEβ µSE CI95% β µβ SEβ µSE CI95%

true N -2.006 0.183 0.187 0.944 -2.006 0.183 0.186 0.948
true Y -2.006 0.183 0.191 0.954 -2.006 0.183 0.186 0.948

wrong N -1.686 0.185 0.552 1.000 -1.686 0.185 0.552 1.000
wrong Y -2.005 0.179 0.180 0.938 0.747 0.045 0.061 0.000

n=50, σy = 10 tVIM-RM GEE
true N -2.058 1.833 1.873 0.944 -2.058 1.833 1.859 0.948
true Y -2.058 1.833 1.907 0.954 -2.058 1.833 1.859 0.948

wrong N -1.731 1.829 1.951 0.946 -1.731 1.829 1.933 0.948
wrong Y -2.057 1.832 1.904 0.954 0.763 0.465 0.469 0.000

n=100, σy = 1 tVIM-RM GEE
true N -2.005 0.135 0.139 0.966 -2.005 0.135 0.139 0.964
true Y -2.005 0.135 0.140 0.968 -2.005 0.135 0.139 0.964

wrong N -1.743 0.140 0.464 1.000 -1.743 0.140 0.466 1.000
wrong Y -2.005 0.131 0.143 0.976 0.747 0.039 0.048 0.000

n=100, σy = 10 tVIM-RM GEE
true N -2.050 1.346 1.394 0.966 -2.050 1.346 1.388 0.964
true Y -2.050 1.346 1.399 0.968 -2.050 1.346 1.388 0.964

wrong N -1.740 1.348 1.463 0.976 -1.740 1.348 1.456 0.976
wrong Y -2.050 1.344 1.399 0.968 0.720 0.393 0.385 0.000

We show that tVIM-RM estimator remains consistent and efficient under all condi-
tions, with simulations showing that in over 95% of the 500 iterations, tVIM-RM
finds that the true parameter value lies inside the 95% confidence interval calcu-
lated using the influence curve derived standard error. Simulation results show that
in this simple example, GEE estimates are also consistent and efficient, robust to
model miss-specification and confounding provided that both are not present at the
same time.
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4 Application
The biological pathways and mechanisms of an organism are regulated by a network
of transcription factors, which control a gene’s expression by binding to specific
regulatory motifs upstream of the gene’s coding sequence. Activity of a transcrip-
tion factor (TF) is reflected in the gene expression profile, and given a TF to gene
mapping, this information can be used to determine which transcription factors are
active under various stimuli or gene conditions.

The simple approach introduced by Bussemaker et al. (2001) sets the expres-
sion profile as an outcome and regresses it onto a set of covariates, representing
motif or TF to gene association measures. The association measures are gener-
ally determined from the presence of regulatory motifs upstream of the gene’s cod-
ing sequence. Often, the association measure is an affinity or matching score that
is determined experimentally and/or using algorithms to detect motifs and assign
probabilities to each gene-TF pairing (Gao et al., 2004; Wang et al., 2007; Conlon
et al., 2003). For this analysis we chose to use a simple binary TF-gene mapping
obtained from MacIsaac et al. (2006), which is based on a combination of experi-
mental ChIP-Chip data and algorithm findings. In our covariate matrix a value of
one indicates that the TF has been shown to regulate that particular gene accord-
ing to the strictest conservation and binding thresholds provided by MacIsaac et al.
(2006). In the original analysis Bussemaker et al. (2001), the association measure
is the number of known binding motif occurrences upstream of the gene. An al-
ternative analysis using similar regression methods focuses on the regulatory motif
importance, using the motif-gene mapping as a covariate set to score potential mo-
tifs and then relate them back to the transcription network (Keles et al., 2002, 2004;
Conlon et al., 2003; Liu et al., 2006).

Using this regression approach, tVIM-RM can be used to determine the impor-
tance of a specific transcription factor in relation to a set of gene expression profiles.
In this case, the repeated measures gene expression outcome is a time series of yeast
gene expression over two cell cycles (Cho et al., 1998). The model-based semipara-
metric nature of tVIM-RM allows us to determine the importance of a TF at specific
time points by specifying time indicators as potential effect modifiers of the TF. The
goal is to identify the active phases of a given transcription factor during the cell
cycle based on the estimated tVIM-RM importance values.

For simplicity in our application, we are using the binary TF-gene mapping
provided by MacIsaac et al. (2006) and use the simple linear model mt(A,W |βt) =
βtAt∗t for t = 0,10, . . . ,150,160, where t∗t = I{t∗t = t}. For this model, the param-
eter of interest reduces to µt = βt . Estimates for the initial Q(A,W ) and G(W ) are
obtained using DSA (Sinisi and van der Laan, March 2004).
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4.1 Data
In this analysis the outcome is the cell cycle gene expression profile for yeast from
Cho et al. (1998). It consists of 17 time points, which is approximately two cell cy-
cles. Data was obtained from the Yeast Cell Cycle Analysis Project website (SGD).
The cell cycle consists of four phases G1, S, G2, M. A brief description of each
phase along with its corresponding time points is presented in table 2.

Table 2: Description of stages of cell cycle. Note there are three major checkpoints
at which cell cycle may arrest (Cooper and Hausman, 2007)

Cell Cycle Phase Description
G1 Growth phase, decision to proceed through division

made, checkpoint: Enough nutrients present and cell
health

S DNA synthesis occurs
G2 Checkpoint: Cell is critical size and DNA synthesis

and repair are complete
M Mitosis occurs, checkpoint on chromosome align-

ment before cell division

Our covariate set consists of 117 binary transcription factor-gene mappings
provided by MacIsaac et al. 2006 (MacIsaac et al., 2006). Though the transcription
regulatory network for yeast is not completely known, it is widely accepted that
the cell cycle involves the following transcription factors: SWI4, SWI6, MBP1,
MCM1, ACE2, FKH2, NDD1, and SWI5 (Harbison et al., 2004). Therefore our
analysis will focus on these 8 transcription factors. Their known phase associations
and reported active time points in Cho et al. (1998) cell cycle data are shown in
table 3.

The tVIM-RM method is applied to the 8 TFs listed above, and importance
estimates are provided along with standard error derived from the influence curve.
It’s important to note that though the current covariate set is binary, this method can
also be applied to continuous variables and can be extended to using a score-based
mapping of binding motifs such as presented in Keles et al. (2002)

In order to improve computation speed, we have chosen to reduce the yeast
gene set by removing genes with variance across time less than 0.10. This reduces
the data set to 3135 genes for 17 time points. We also constrain the transcription
factor dataset to TFs with at least 10 related genes. TFs with less than 10 related
genes are problematic for cross-validation splits used in data-adaptive algorithms.
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Table 3: Association of transcription factor with cell cycle phase (Cho et al., 1998)

Transcription Factor Cell Cycle Phase Approx. Time Points
SWI4-SWI6, MBP1-SWI6 G1 phase, 0-30, 80-110

G1 to S phase transition
MCM1, (MCM1-ACE2) FKH2, NDD1 G2 phase, 40-70, 130-150

G2 to M phase transi-
tion

MCM1, SWI5, (SWI5-MCM1-FKH2-NDD1) ACE2 M phase, 70-90, 150-160,0
M to G1 phase transi-
tion

This reduces the number of potential TF confounders to 112. For this applica-
tion, the initial density estimates are not weighted as discussed in section 2.3.2 and
appendix B, however in practice it is possible to apply weighting to improve the
overall efficiency.

4.2 Prescreening
Confounders of variable of interest, A, must be significantly related to the out-
come, Y, therefore we screen our initial TF data matrix using simple regression
which should improve the performance of model selection methods (Bembom et al.,
March 2008). We consider all individual TF effects and all TF:time interactions
interactions using univariate regression, where interactions are treated as a single
main effect. Our standard cut-off is p-value of less than or equal to 0.05 based on
standard t-test. Prescreening in this fashion reduces the potential covariate set (W ∗)
to 92 TF main effects and 481 TF:time interactions.

For each TF, separate subsequent individual screening on the covariate set was
completed based on the correlation between the covariates and the TF of interest.
Any covariates with correlation greater than 0.5 were removed. Such a cut-off aims
to reduce bias in our final estimate by excluding variables highly correlated with
the variable of interest from the possible covariate set, avoiding ETA (experimental
treatment assumption) violations (Bembom et al., March 2008). This cut-off is user
supplied. Currently the appropriate cut-off is chosen a priori to the application of
tVIM, and in practice results are reported over a range of delta values allowing the
researcher to see the full compendium of results (Bembom et al., March 2008). In
previous studies it has been shown that tVIM methods remain stable up to correla-
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tions of 0.8 (Tuglus and van der Laan, 2008). Here we have chosen a delta of 0.5
based on knowledge from previous studies and computational constraints (Tuglus
and van der Laan, 2008; Bembom et al., March 2008).

4.3 Results and Discussion

●

●

●

●

● ●
●

● ●

●

● ●
●

●

●
● ●

0 50 100 150

−
0.

1
0.

2

MBP1

●
●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

0 50 100 150

−
0.

5
0.

5 SWI4

●

●

●

●
● ●

●
● ●

●
● ●

● ●
● ● ●

0 50 100 150

0.
0

0.
3

SWI6

● ● ● ● ● ● ● ●
●

● ●
●

● ●
●

● ●

0 50 100 150

0.
0

0.
4

SWI5

●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ●
●

0 50 100 150

−
0.

2
0.

2 FKH2

●
● ● ●

●
● ● ● ● ●

● ● ●
● ●

●
●

0 50 100 150−
0.

1
0.

3

NDD1

● ●
● ●

● ● ● ● ●

● ● ●
● ● ●

● ●

0 50 100 150

0.
0

0.
4 ACE2

●

● ●
●

●
●

●
● ● ●

●
● ● ● ●

●
●

0 50 100 150−
0.

2
0.

2

MCM1

M
ar

gi
na

l V
ar

ia
bl

e 
Im

po
rt

an
ce

Time (minutes)

Figure 1: The tVIM-RM importance measures over time with 95 % confidence intervals
for (top to bottom) SWI4, SWI6, MBP1, MCM1, ACE2, FKH2, NDD1, and SWI5

The resulting importance measures (µt) for the 8 transcription factors are presented
in figure 1 for each time point (0 min - 160 min) calculated according to the equation
in Section 2.1. Error bars are included, representing the 95% confidence interval for
each importance estimate using the standard error derived from the influence curve
as outlined in Section 2.2.1.
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Many of the trends in figure 1 coincide well with the expected temporal trends
outlined in table 4. MBP1 and SWI6 correspond especially well with a clear peri-
odic trend peaking at 20 and 100 minute within the two G1 phase periods. MCM1
peaks around 70 minutes, then decreases before increasing again around 150 min-
utes. This approximately corresponds to decreasing during G1 phase, which is the
only phase MCM1 is not active. FKH2 and NDD1 peak at 70 and 150 minutes,
which corresponds well to G2 phase and G2-M transition, their more active phases.

ACE2, SWI5, and SWI4 do not correspond as well with their expected behav-
ior. ACE2 and SWI5 have similar trends, which remain fairly constant during the
first cell cycle (0-80 minutes) and then increase around 90-100 minutes, at the G1 to
S transition of the second cycle. They then slightly decrease only to increase again
at 150 minutes before decreasing at the end of the cycle. SWI4 only shows a slight
periodic trend with no significant time points.

Inconsistencies in the behavior could be due to modeling the effects of the sin-
gle TF and not the full complex. To explore this briefly we estimate the importance
of the SWI4-SWI6 complex using tVIM-RM, allowing for effect modification by
time. Note that in this model we do not adjust for any transcription factor com-
plexes, only single TFs and TF:time interactions. Results are shown in Figure 2.
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Figure 2: The tVIM-RM importance measures over time with 95 % confidence intervals
for SWI4-SWI6 transcription factor composite

In Figure 2, the expected periodic trend is present, with peaks during G1
phases. We also observe that the confidence intervals are smaller than when we
measured the importance of SWI6 individually. Additional improvements may be
obtained by allowing TF complexes as covariates.

Inconsistencies in our findings may come from a number of sources including
the use and accuracy of the binary TF-gene mapping for our covariate set, incom-
plete knowledge of the yeast cell phases, as well as not providing model selection
for our working model, which includes all time interactions. The current applica-
tion is also fairly simplistic, and though it does show our method has promise for
these types of applications, a more extensive and comprehensive study, including a
thorough study of complexes, is necessary to obtain more conclusive findings.
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5 Discussion
The tVIM-RM method is a robust and targeted method for variable importance
in repeated measures analysis. This semiparametric method requires only model
specification for the parameter of interest, making fewer assumptions than a full
parametric model while avoiding the need for complicated algorithms to accurately
fit non-parametric components of the model. The linear working model form for
the parameter of interest is flexible and accommodates both binary and continuous
variables of interest while providing a straight-forward and interpretable way to
incorporate effect modification of the variable of interest.

The targeted maximum likelihood step in the tVIM-RM method is easily car-
ried out with standard GEE, which allows the user to implement it with standard
readily available software. The nature of the update provides a locally efficient and
double robust estimate, which remains consistent given that either the initial den-
sity estimate (E[Y |A,W ]), or treatment mechanism (E[A|W ]) is specified correctly.
We demonstrated this in simulation, showing the consistency and efficiency of the
tVIM-RM method under incorrect model specification and confounding. In general,
tVIM-RM performs as well or better than the standard GEE approach assuming a
parametric regression model.

The targeted nature of the method makes it ideal for biological studies where
the researcher is interested in determining the importance of each variable on a par-
ticular outcome. It provides a framework to determine the effect of each individual
variable while still adjusting for confounding. It is a especially useful tool in high-
dimensional datasets in that each individual variable can be targeted separately and
receives its own importance value with accurate inference.

In this paper, we apply tVIM-RM to yeast cell cycle data, measuring the im-
portance of 8 transcription factors with respect to gene expression outcome over
two cell cycles. Our results are promising, showing significant importance trends
during the appropriate time periods. We follow up the analysis by demonstrating
its applicability for TF complexes. Future work will focus on the development of
targeted model selection methods which will allow us to select among TF and time
effect modifiers for the TF of interest. The analysis is a simple case using a binary
TF-gene mapping. However the targeted method can easily be extended for more
sophisticated analyses such as binding motif discovery (Keles et al., 2004) and phy-
logenetic associations (Siewert and Kechris, 2009), where the TF-gene association
may be a continuous measures.

Our application involved purely observational data in which we rely on the ac-
curacy of the initial fit for E[Y |A,W ] or the fit of the treatment/confounding mecha-
nism, E[A|W ]. This double robust nature of the estimate makes tVIM-RM ideal for
application in randomized trials. For instance, a clinical trial for a new AIDS drug
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would be interested in the average effect of the drug on CD4 counts over time. In
other words, E[E[CD4|DrugA, time]−E[CD4|placebo, time]] = E[βDrugAConlon],
where β represents the effect of drug A over time. Given a randomized experimen-
tal design, the tVIM-RM method guarantees a consistent estimate of β.

Targeted Variable importance for repeated measures data provides a powerful
new tool for biological studies interested in understanding the driving force behind
a mechanism over time and/or experimental condition. This method has a wide
range of applicability and will be useful in computational biology as demostrated
here, as well as epidemiology and randomized clinical trails, where the tMLE based
methods have been shown to be especially powerful (Bembom et al., 2009; Tuglus
and van der Laan, 2008).
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A Efficient Influence Curve for semiparametric Re-
peated Measures Data

Given observed data for a single subject Oi ∼ (W ∗i ,Yi = {Yi,t : t = 1, . . . ,T}) ∼ P0,
where W ∗ = {W ∗i : i = 1, . . .nt} is the set of p covariates and Y = {Yi : i = 1, . . .nt}
is the set of repeated measures outcome taken over time, we define the tVIM for a
particular A = W ∗j and time, t, controlling for confounders W = W ∗− j as

Ψ(P) = E[Y (t)|A = a,W ]−E[Y (t)|A = 0,W ] = mt(A,W |βt)

with a total n observations, taken over times t = 1, . . . ,T , where nt represents
the number of observations at time t.
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We propose the following form for the efficient influence curve of the param-
eter of interest presented above.

Dhopt ,Q,G = hopt(A,W )Σ(A,W )−1(Y −m(A,W |β)−θ(W ))

with the optimal scaling factor

hopt =
(

d
dβ

m(A,W |β)− r(W )
)

where θ(W ) = Q(0,W ) and

r(W ) = E
[
Σ(A,W )−1|W

]−1
E
[

Σ(A,W )−1 d
dβ0

m(A,W |β)|W
]

We propose that the multivariate extension of the semiparametric tVIM influ-
ence curve (van der Laan, 2005; Tuglus and van der Laan, 2008). is indeed the
efficient influence curve for the semiparametric targeted variable importance for re-
peated measures. Given the following properties (i) it is a score (ii) it is orthogonal
to all nuisance scores

• Scores of the form s(W ) for tangent space of p(W ).

• Scores of the form s(A|W ) for tangent space of p(A|W )

• Scores of the form (Y −Q(A,W ))Σ(A,W )−1(Y −Q(A,W ))′ for tangent space
of Σ(A,W )

• Nuisance scores of the form r(W )Σ−1(Y −Q(A,W )) for tangent space of θ =
Q(0,W ) given fixed β

Given this, we conclude it is efficient influence curve.

1. It is straightforward to see that the influence curve above is indeed a score
in the multivariate normal model space (?), where the multivariate normal
model is defined here as

p(Y |A,W )∼ fN(Q(A,W ),Σ(A,W ))

where fN is the multivariate normal density with scores of the form

L(O) = hopt(A,W )Σ(A,W )−1(Y −Q(A,W ))
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2. It must be shown that the above form is orthogonal to the above nuisance
scores

• It can be shown that Dhopt ,Q,G is orthogonal to scores of the form s(W )
in that

E[Dhopt ,Q,Gs(W )] = E[E[Dhopt ,Q,Gs(W )]|A,W ]] = 0

• It can be shown that Dhopt ,Q,G is orthogonal to scores of the form s(A|W )
in that

E[Dhopt ,Q,Gs(A|W )] = E[E[Dhopt ,Q,Gs(A|W )]|W ]] = 0

• It can be shown that Dhopt ,Q,G is orthogonal to scores of the form s(Σ) =
(Y−Q(A,W ))Σ(A,W )−1(Y−Q(A,W ))′ under the assumption of a mul-
tivariate normal density model, in that we require E[(Y −Q(A,W ))3] =
0. Given this, it follows

E[Dhopt ,Q,Gs(Σ)] = E[E[Dhopt ,Q,Gs(Σ)|A,W ]] = 0

• It follows that Dhopt ,Q,G is orthogonal to scores of the form s(θ)= r(W )Σ−1(Y−
Q(A,W )) in that r(W ) is defined such that E[hopt(A,W )Σ(A,W )−1(Y −
Q(A,W ))r(W )Σ−1(Y −Q(A,W ))] = 0

B Reducing the variance of the influence curve through
weighting

In addition to the standard targeting of tVIM, steps can be taken to further increase
the efficiency of the estimate. We can weigh the initial fit for Q(A,W ) = E[Y |A,W ]
in such a way that reduces the variance of the influence curve. To determine the
correct weights we refer to the form of the variance of the influence curve shown
below for the linear model m(A,W |β) = Aβ.

Var ((A−E[A|W ])(Y −Q(A,W ))) = (A−E[A|W ])2Var ((Y −Q(A,W ))

Therefore by specifying the weights of (A−E[A|W ])2 for our initial fit of
Q(A,W ) we should be able to effectively increase the efficiency. We show this
in practice through a small simulation under increasing levels of ETA violation
comparing the efficiency of VIM estimates from the following estimation methods
for Q(A,W ).
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1. Weighted Q(A,W ) where weights=(A−E[A|W ])2

2. Unweighted Q(A,W )

3. Unadjusted (and unweighted) Q(A)

Percent of complete ETA violation (i.e. perfect prediction of A by W ) was
set at pw = {10,20,30,40,50,60,70,80,90}. For percent pw of the total number
of observations of A, A is perfectly predicted by W . For (1− pw) percent of the
observations A is not a function of W . Here we simulate A,W , and Y as continuous
variables. This was completed for 500 simulations with n=500 and 100 observations
using perfect confounding between A and W over a set fraction of the observations,
pw.

The data was simulated as follows:

W ∼ Normal(2,1)

A[W ≥ q1] = 2W

A[W < q1]∼ Norm(5,1)

where, q1 is the pth
w quantile of W . The true treatment mechanism model is

A ∼W + I(W < q1)− 1, and is fitted using standard lm() function in R. We add
an additional covariate W2 ∼ Norm(2A,1), which is correlated with A, creating an
incorrect model specification for Q(A,W ). The true Y is simulated as follows where
β1 = 4, β2 = 2, β3 = 2:

Y = β1A+β2W +β3W2 + ε

ε∼ Normal(0,1)

B.1 Results
The following tables compare the standard error averaged over the 500 simulations.
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Table 4: Average IC-based stan-
dard error, n=100

pw cor(A,W) with weights without weights percent decrease
.1 0.3042 0.3966 0.3967 0.0257
. 2 0.4736 0.2689 0.2730 1.5091
.3 0.4186 0.3075 0.3087 0.3851
.4 0.6005 0.2356 0.2398 1.7828
.5 0.5498 0.2721 0.2738 0.6346
.6 0.5548 0.3211 0.3324 3.3866
.7 0.5733 0.2196 0.2217 0.9594
.8 0.6686 0.1612 0.1634 1.2968
.9 0.8448 0.0534 0.0616 13.4010

Table 5: Average IC-based stan-
dard error, n=500

pw cor(A,W) with weights without weights percent decrease
.1 0.3310 0.1869 0.1872 0.1647
. 2 0.3941 0.1783 0.1812 1.5614
. 3 0.4593 0.1780 0.1796 0.8770
.4 0.5357 0.1527 0.1532 0.3380
.5 0.5546 0.1540 0.1551 0.6753
.6 0.5674 0.1259 0.1260 0.0878
.7 0.6381 0.1004 0.1007 0.3099
.8 0.6981 0.0776 0.0778 0.2872
.9 0.7886 0.0538 0.0551 2.1913

C Sequential targeted update
Targeted maximum likelihood methodology was initially developed around a low
dimensional update of an initial density estimate. For βn tVIM, which is model
based, the dimension of the update increases with the size of the model. This is
especially relevant for repeated measures tVIM which can easily have high dimen-
sional model for even a one dimensional A. In an effort to avoid any potential insta-
bility in the high dimensional update we propose using a sequential targeted update
which updates each component of ε sequentially iterating until convergence.

The results of a small simulation show that the sequential update is as good or
better than the standard targeted update.
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C.1 Simulation
A set of 20 possible covariates, W , is simulated from a multivariate normal with
random mean between 0 and 50, a constant variance ρ, and zero correlation. The
variable of interest, A, is also simulated from a normal distribution. Three different
simulation set ups are used.

1. Uncorrelated: Variables in W and variable of interest, A, are uncorrelated
(ρ = 0)

2. Correlated W : Variables in W are correlated with ρ = 0.8 and A is still inde-
pendent of all variables in W

3. A dependent on W : Variables in W are correlated with ρ = 0.8 and A is still a
linear function of two variables from W with mean zero variance 0.1 error

We model the outcome, Y , as a linear function of A : W interactions using 12
different variables from W with normal mean zero variance one error. All interac-
tion terms have coefficients equal to four. The average mean square error for the
three scenarios are compared based on 100 simulations and 500 observations.

Table 6: Comparing the average mean square error of scenarios: Uncorrelated, cor-
related, and A dependent on W using 100 simulations. Percent decrease accounted
to using the iterative update over the standard update is also reported.

Scenario Standard Update Iterative Update Percent Decrease
Uncorrelated 0.10766 0.10950 1.7 %
Correlated W 0.01001 0.00917 8.4 %

A dependent on W 0.20454 0.20052 2.0 %

D Simple R code example
Below is code for implementing tVIM-RM using a simple main effect working
model m(A,W |β) = Aβ.

D.1 Simple simulated Data
library(geepack) #loads package geepack
nobs<-40 #number of subjects
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nt<-4 #number of replicates/time points
visit <- rep(1:nt, nobs)
id <- gl(nobs, nt, nt*nobs)
W <- rnorm(nobs,3,1)
A <- runif(nobs, 0, 1)

#creating AR(1) structure
phi <- 1
rhomat <- 0.667 ˆ outer(1:nt, 1:nt, function(x, y) abs(x - y))
chol.u <- chol(rhomat)
noise <- as.vector(sapply(1:nobs, function(x) chol.u %*% rnorm(nt,0,1)))
e <- sqrt(phi) * noise

#True Model
y <- 1+3 * W - 2 * A + e
dat <- data.frame(y, id, visit, W, A)
A=dat[,5] #variable of interest

D.2 tVIM-RM method
D.2.1 Initialization

##Initial fit for Q(A,W) and G(W)
GW<-predict(lm(A˜W,data=dat),newdata=dat)
wts1<-(A-GW)ˆ2 #create weights
fW<-W #Though this can be Q*(0,W) from a data-adaptive fit
AW1<-matrix(A)
dat1 <- data.frame(y, id, visit, fW, AW1)
geeQf<-geeglm(y ˜ AW1+fW, id = id, weights=wts1,data = dat1,family=gaussian,corstr ="ar1")
# This can also include interactions A:W
covY<-cov((matrix(residuals(geeQf),ncol=nt))) #covariance matrix estimate
geeQ<-predict(geeQf,newdata=dat1)
bint<-coefficients(geeQf)[2] #initial parameter est.

D.2.2 tMLE update

##apply tMLE update
Scov<-(A-GW) #solve for simple clever covariate
geeUpQ<-geeglm(y˜Scov+offset(geeQ)-1,id = id, data = dat,family=gaussian,corstr ="ar1")#,zcor=zcor1)
bn<-bint+coefficients(geeUpQ) #updated tMLE estimate
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geeQn<-predict(geeUpQ)

D.2.3 Covariance Estimation

#Calculate standard error estimates and p-values using influence curve
Scov1<-array(Scov,dim=c(nt,nobs,1))
Vs<-solve(covY)
VScov1<-Scov1
for(vs in 1:nobs) VScov1[,vs,]<-Vs%*%Scov1[,vs,]
VScov11<-array(VScov1,dim=c(nt*nobs,dim(Scov)[2]))

dDh<-(1/(nt*nobs))*t(VScov11)%*%(AW1)
AY<-(matrix(y)-geeQn) #recently switched from t(bout)
Dh<-as.matrix(VScov11)*AY #apply((VAWmat1),2,function(x){x*AY})
IC<-apply(Dh,1,function(x){x%*%solve(dDh)})

spI<-split(1:(nt*nobs),1:(nt))
ICrep<-array(IC,dim=c(nt,(nobs),1))
for(ic in 1:nt) ICrep[ic,,]=IC[spI[[ic]]]

ICrep1<-apply(ICrep,c(2,3),mean)
SigmaAWn<-(1/nobs)*(1/nobs)*t(ICrep1)%*%(ICrep1)

D.2.4 Simple hypothesis Test

###Complete simple hypthesis test
SE<-sqrt(diag(CVest))
tests<-bn/sqrt(diag(CVest))
Pval<-2*(1-pnorm(abs(tests)))
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