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ABSTRACT 

BACKGROUND: National- or regional-scale prediction models that estimate individual-level air 

pollution concentrations commonly include hundreds of geographic variables. However, these 

many variables may not be necessary and parsimonious approach including small number of 

variables may achieve sufficient prediction ability. This parsimonious approach can also be 

applied to most criteria pollutants. This approach will be powerful when generating publicly 

available datasets of model predictions that support research in environmental health and other 

fields.  

OBJECTIVES: We aim to (1) build annual-average integrated empirical geographic (IEG) 

regression models for the contiguous U.S. for six criteria pollutants, for all years with regulatory 

monitoring data during 1979 – 2015; (2) explore the impact of model parsimony on model 

performance by comparing the model performance depending on the numbers or variables 

offered into a model; and (3) provide publicly available model predictions. 

METHODS: We compute annual-average concentrations from regulatory monitoring data for 

PM10, PM2.5, NO2, SO2, CO, and ozone at all monitoring sites for 1979-2015. We also compute 

~900 geographic characteristics at each location including measures of traffic, land use, and 

satellite-based estimates of air pollution and landcover. We then develop IEG models, employing 

universal kriging and summary factors estimated by partial least squares (PLS) of independent 

variables. For all pollutants and years, we compare three approaches for choosing variables to 

include in the model: (1) no variables (kriging only), (2) a limited number of variables chosen by 

forward selection, and (3) all variables. We evaluate model performance using 10-fold cross-

validation (CV) using conventional randomly-selected and spatially-clustered test data.  

RESULTS: Models using 3 to 30 variables generally have the best performance across all 
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pollutants and years (median R2 conventional [clustered] CV: 0.66 [0.47]) compared to models 

with no (0.37 [0]) or all variables (0.64 [0.27]). Using the best models mostly including 3-30 

variables, we predicted annual-average concentrations of six criteria pollutants for all Census 

Blocks in the contiguous U.S. 

DISCUSSION: Our findings suggest that national prediction models can be built on only a small 

number (30 or fewer) of important variables and provide robust concentration estimates. Model 

estimates are freely available online. 

 

Keywords: Air pollution, Cohort, Exposure Assessment, Geographic Covariates, Population 

Exposure  
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INTRODUCTION 

 Regulatory monitors and project-based monitoring campaigns typically provide air 

pollution measurements that are limited in space and time. Air pollution prediction approaches 

are a cost-effective approach to estimate fine-scale exposures to air pollution. Recent population-

level studies of air pollution have relied on empirical models to estimate long-term 

concentrations of outdoor air pollution based largely on observation-driven geostatistical 

approaches (Eeftens et al. 2012; Keller et al. 2015; Kim et al. 2017) or hybrid approaches that 

incorporate satellite-based observations of air quality and theory-based mechanistic models with 

geostatistical approaches (Ma et al. 2014; van Donkelaar et al. 2016). These model predictions 

are used to assess population-level characteristics of air pollution, such as health effects (Beleen 

et al. 2015; Kaufman et al. 2016), the burden of disease (Fann et al. 2017; Xie et al. 2016), and 

exposure disparities (Clark et al. 2017; Hajat et al. 2016). 

Empirical models for air pollution are generally developed using a large suite of input 

data often including hundreds of geographic covariates (e.g., traffic, population, land use) with 

the goal of predicting concentrations at locations lacking monitoring data (Hoek et al. 2008). 

More recently, studies have included regional estimates of air pollution from mechanistic models 

(Lindstrom et al. 2015) and satellite-based air pollution measurements such as tropospheric 

nitrogen dioxide (NO2) column abundance and Aerosol Optical Depth (AOD) (Chu et al. 2016; 

Hoek 2017). These regional air pollution estimates are particularly useful for national- or global-

scale prediction where air pollution measurements are sparse over large areas (Bechle et al. 2015; 

Di et al. 2016; Larkin et al. 2017; Novotny et al. 2011; van Donkelaar et al. 2015; Young et al. 

2016).). To incorporate and prioritize information from the many hundreds of predictor variables, 

studies typically employ regression-based statistical techniques such as variable selection, 
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shrinkage, and dimensional-reduction (Eeftens et al 2012; Mercer et al. 2011; Sampson et al. 

2013) or other artificial intelligence approaches (Beckerman et al. 2013; Di et al. 2016)  

Computational demands of building, testing, and applying models that include hundreds 

of variables are large, especially for national-scale models. Yet, there is little guidance in the 

literature regarding the added benefit of using many variables versus more parsimonious models. 

Furthermore, although some national-scale models exist for some years and pollutants for PM2.5, 

PM10, NO2, or ozone (Sampson et al. 2013; Young et al. 2017), empirical models do not currently 

exist for most criteria pollutants in a unified framework across all years with regulatory 

monitoring data in the U.S. This article aims to address both of those gaps. Specifically, we 

develop, test, and compare full versus parsimonious national models for annual average 

concentrations of six criteria pollutants and for all years with available monitoring data during 

1979 – 2015. We test the hypothesis that model performance is better with more variables than 

with a smaller number of intentionally selected variables. Then, we select the best performing 

models to generate concentration estimates for all residential Census Block centroids in the 

contiguous U.S. for all modeling years with the goal of making our model predictions available 

freely online. We refer our model to “Integrated Empirical Geographic” (IEG) regression models 

to indicate key characteristics of the model: many “integrated” input datasets from land use, 

satellite-derived measures, and emission estimates; “empirical” modeling approach to 

characterize data-driven relationships rather than based on theory of physics and chemistry; and, 

“geographic” features in data and modeling technique.  

METHODS 

Regulatory Monitoring Data for Criteria Pollutants 

 We downloaded daily or hourly measurements of six criteria pollutants including PM10, 
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PM2.5, NO2, SO2, CO, and O3 at all Air Quality System (AQS) monitoring sites for all available 

years from 1979 through 2015 via the U.S. Environmental Protection Agency (EPA) AQS data 

repository (Figure S1). NO2, SO2, and O3 are available for the entire period (1979–2015); CO, 

PM10, and PM2.5 are available starting in 1990, 1988, and 1999, respectively. For PM10 and PM2.5, 

we use data from the Federal Reference Method (FRM) and Integrated Monitoring of Protected 

Visual Environments (IMProVE) networks.  

We compute annual averages for all pollutants (except ozone) at sites that meet our 

inclusion criteria, as follows. We compute 24-hour averages for monitors with 18 or more valid 

hourly measurements in that day, and then compute annual averages at sites with a minimum 

number of operating days (244 days for daily/hourly measurements, 61 days for 1-in-3 day 

measurements, and 41 days for 1-in-6 day measurements) during a year and no more than 45 

consecutive days without a measurement. For ozone, we use the daily maximum of the 8-hour 

moving average for days with 18 or more operating hours during the day and compute an ozone 

season average from May through September. All IEG regression modeling is done after 

applying square root transformation to all pollutant concentrations to meet normality assumption. 

Geographic Variables 

 We consider >900 geographic variables, as independent variables for our IEG models, in 

eight categories: traffic, population, land-use, elevation, vegetation, industrial emissions, and 

satellite air pollution estimates (Table S1). To reflect changes of land use characteristics over 

time, we obtained the two types of land use variables from ground-based datasets generated in 

1970s and 1980s, and satellite and aerial imagery in 2006. The variables are computed as 

summaries within buffer areas between 50 meter and 15 kilometers (0.05, 0.1, 0.15, 0.3, 0.4, 0.5, 

0.75, 1, 1.5, 3, 5, 10, and 15 km) depending on the variable and/or as distance to the closest 
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feature. We exclude variables with little spatial variability (e.g., same values at the 10th and 90th 

percentiles) or few unique values, reducing the number of variables to an average of ~350 for a 

given pollutant and year. 

 Traffic variables are distance to the nearest road and sum of road lengths within eleven 

circular buffers (0.05, 0.1, 0.15, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 3, and 5 km) based on TeleAtlas data 

(http://www.teleatlas.com/OurProducts/MapData/Dynamap/index.htm). Population variables are 

the number of people in twenty circular buffers (0.5, 0.75, 1, 1.5, 3, 5, 10, and 15 km), based on 

year-2000 U.S. Census population (http://arcdata.esri.com/data/tiger2000/tiger_download.cfm). 

Land use variables in 1970s and 1980s are percent of areas for various land use characteristics 

such as residential, industrial, commercial, and agriculture land use identified by the U.S. 

Geological Survey (http://water.usgs.gov/GIS/dsdl/ds240/index.html) in circular buffer areas. 

Land cover variables based on satellite imagery in 2006 are percent of areas for land use 

characteristics such as developed high and low density obtained from the Multi-Resolution Land 

Cover Characteristics (MRLC) Consortium (http://www.mrlc.gov/index.php) in circular buffer 

areas. Elevation is the absolute elevation measurement at a given location and relative elevation 

compared to elevation in a circular buffer areas, calculated from national elevation dataset 

(http://nationalmap.gov/elevation.html). Vegetation variables are normalized difference 

vegetation index computed from satellite imagery (http://glcf.umd.edu/data/ndvi/) in circular 

buffer areas. Emission variables are the total amount emission estimates in circular buffer areas 

based on national emission inventory data (http://www.epa.gov/ttn/chief/net/2002inventory.html).   

We obtain and compute annual satellite-based estimates of air pollution concentrations 

for PM2.5, NO2, SO2, CO, and formaldehyde (HCHO) (Table S2); details on the specific steps are 

in the Supplemental Materials. The net result is satellite-derived annual, ground-level estimates 
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for PM2.5 (1998-2014; 0.1° × 0.1° grid) (van Donkelaar et al., 2016), NO2 (2005-2015; 0.1° × 

0.1° grid ); SO2 (2005-2016; 0.25° × 0.25° grid ); and CO (2001-2016; 0.25° × 0.25° grid ), and 

a multiyear average for ground-level concentrations for HCHO (2005-2016; 0.25° × 0.25° grid ).   

Modeling Approach 

Our approach builds on a universal kriging framework, described elsewhere (e.g., 

Bergen et al. 2012; Sampson et al. 2013; Young et al. 2016; Young et al. 2016), that partitions 

annual average concentrations into two components (Banjinee et al. 2004): variance and mean. 

The variance component is modeled using three parameters: range (the distance at which spatial 

correlation exists), partial sill (spatial variability), and nugget (non-spatial variability). The mean 

component includes two or three dimension-reduced summary predictors estimated using partial 

least squares (PLS) from the covariates offered. The mean component is equivalent to the linear 

regression model often referred to as LUR with PLS data-reduction.  

To investigate the role of model parsimony, we purposefully select via forward selection 

a specific number of variables to offer the PLS; we investigate how model performance varies 

depending on the number of variables offered. The number of variables offered ranges from zero 

(i.e., no variables – a kriging only approach) to the full covariate database, with several 

intermediate values (e.g., 5-variable models, 20-variable models). For example, the 20-variable 

model would involve forward selection to select the best 20 variables, followed by PLS data-

reduction to identify two or three PLS components comprised of those 20 variables, and 

regression modeling based on those two or three PLS components.  

We hypothesize that adding more variables would improve the model and the 

performance diminishes as more variables are added. In that case, there may be a “point of 

diminishing returns”: a number of variables for which adding more variables yields little 
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additional benefit.  

Model Evaluation 

 We evaluate models using two types of 10-fold cross-validation (CV): conventional and 

spatially clustered (Young et al. 2016). For conventional CV, we randomly divide all monitoring 

sites into 10 groups. Then, we select one group as the hold-out sites, develop models using the 

remaining data, and predict air pollution concentrations at hold-out sites. This process is repeated 

separately for each of the 10 groups to create a pseudo-independent test data set. Spatially 

clustered CV is similar except that the 10 groups are spatial clusters identified using k-means 

clustering (Figure S2) (Young et al. 2016). Conventional CV reflects model performance at a 

random location, whereas clustered CV reflects model performance far from a monitor. For 

dense monitor networks, such as PM2.5 in the U.S., conventional CV may be more representative 

of model performance where most people live. 

CV statistics include root-mean-square error (RMSE) and MSE-based R-squared (R2). 

The MSE-based R2 is calculated as 1 minus the ratio of MSE to data variance, whereas a 

conventional R2 is calculated as the squared correlation coefficient. Conventional R2 assesses 

agreement between predictions and observations about the regression line; MSE-based R2 

instead assesses agreement about the 1:1 line (Keller et al. 2015; Kim et al. 2016). To allow for 

comparison across different pollutants, we also compute standardized RMSE (i.e., RMSE 

divided by the mean concentration across all sites). For each pollutant and year, the “best” and 

“worst” models are identified based on R2 and standardized RMSE from both conventional and 

clustered CV.  

Sensitivity Analyses 

 To investigate the contribution of each category of variables (see above and Table S1), 

https://biostats.bepress.com/uwbiostat/paper425



11 

 

we develop models that separately exclude each category of variables and compare the model 

performance between the models.  

In addition, we conduct the following three sensitivity analyses to examine the impact of 

our methodological choices on model performance. To shed light on whether our results of best 

and worst models are sensitive to a type of CV approach, we compute CV statistics in one CV 

using the best models chosen by the other CV. That is, conventional CV is recomputed for the 

best models chosen by clustered CV, whereas clustered CV is recomputed for the best models 

chosen by conventional CV. To assess the impact of forward selection during model-building, we 

replace forward selection with random selection and compare the model performance of the 

same numbers of variables selected at random to that of our original forward selection. To test 

our model evaluation focusing on estimation of regression and covariance parameters in 

universal kriging, we expand our CV to include forward selection and estimation of PLS 

predictors as well as parameter estimation as a more conservative evaluation. We apply these 

three sensitivity analyses to limited examples: two pollutants for NO2 and PM2.5 and one year in 

2000. 

Lastly, we test the robustness of ozone models to other ozone averaging approaches: 

annual and summer season (May-September) summaries of ozone using 24-hour means, 8-hour 

means, and 1-hour maximum.  

Prediction 

Using the best models for each pollutant and year, we predict annual average 

concentrations for the ~7 million residential Census Block centroids in the contiguous U.S. with 

nonzero population. Then, we compute population-weighted averages at various geographic 

scales (Census Block Groups, Census Tracts, Counties, States, and contiguous U.S.) based on 
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2010 Census boundaries. 

RESULTS 

Summary of Monitoring Data 

 Means and standard deviations of annual average concentrations at AQS monitoring 

sites decrease over time for all pollutants (Table 1, Figure S3). During 1980 to 2010, average 

concentrations decrease almost 6-fold for SO2 (from 12.7 to 2.2 ppb) but only 14% for ozone 

(from 52.0 to 45.8 ppb). For ozone, the 10th percentile concentration decrease less than 2% over 

30 years (from e7.8 to 37.2 ppb). From 2000 to 2010, reductions for PM2.5 and PM10 are 39% 

and 28%, respectively.  

IEG Model Performance by Number of Variables 

Different from our hypothesis, adding more variables did not consistently improve 

model performance, especially for clustered CV (Figure S4). For all pollutants and for both CV 

approaches, models using 3-30 variables generally show higher R2 and lower standardized 

RMSE than models using no or all variables (Table 2 and Figure 1).  

The no-variable (i.e., kriging-only) models were generally the lowest-performing (Figure 

S5). Selecting best-performing models generally was consistent among metrics (MSE-R2, 

standardized RMSE), and model performance of the best model is typically robust to selection 

using clustered versus conventional CV (Figure S6).  

IEG Model Performance by CV 

CV results consistently indicate better model performance using conventional CV than 

using clustered CV (Table 2, Figure 1), indicating poor performance when there are no monitors 

in the vicinity. Considering all pollutants and years, median R2 and standardized RMSE, based 

on conventional CV, for the best models are 0.66 (interquartile range [IQR]: 0.57–0.83) and 0.23 
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(0.13–0.31), respectively. Analogous values for clustered CV are median R2 of 0.47 (0.31–0.65) 

and standardized RMSE of 0.27 (0.19–0.38). Median (IQR) R2 and standardized RMSE for the 

worst models are 0.57 (0.44–0.67) and 0.32 (0.18–0.39) for conventional CV, and 0 (0–0.01) and 

0.47 (0.31–0.62) for clustered CV.  

IEG Model Performance by Pollutant 

Parsimonious models for PM2.5 and NO2 show generally good performance using 

conventional CV: median R2 (standardized RMSE) of the best models are 0.86 (0.13) for PM2.5 

and 0.87 (0.21) for NO2 (Table 2, Figure 1). Analogous results using clustered CV are 0.65 (0.20) 

for PM2.5, 0.80 (0.24) for NO2. For NO2, differences in model performance between “best” and 

“no variable” models are larger for clustered CV than for conventional CV (median R2 for the 

best/no-variable model: 0.87/0.61 (conventional CV) versus 0.80/0.00 (clustered CV)). That 

finding indicates the substantial benefit of having variables in the model when there are no 

monitors nearby and indicates that the kriging-only NO2 model offers nearly zero information far 

from monitors. In contrast, for SO2, ozone, and PM10, differences between “best” and “no 

variable” models were modest for conventional CV (median R2 for best/no-variable models: 

0.59/0.57 [SO2], 0.75/0.72 [ozone], 0.59/0.49 [PM10]). Analogous differences were larger for 

clustered CV (0.27/0.00 [SO2], 0.47/0.35 [ozone], 0.32/0.00 [PM10]). Overall, for both CV 

approaches, NO2 and PM2.5 yield better models than other pollutants (Figure 2). CO shows 

moderate model performance regardless of the number of variables (median R2 for best models: 

0.47 [conventional CV] and 0.44 [clustered CV]). Over time, model performance tended to 

improve for ozone and PM10, decline for SO2 and CO, and remain relatively unchanged for PM2.5 

and NO2. 

Selected Variables 
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Investigation of covariates by category chosen via forward selection (Figure 3) reveals 

that satellite air pollution estimates are almost always selected in the top 5 variables across all 

pollutants and years; urban or rural land use is consistently selected in the top 10 variables. 

Impervious surface and traffic are often selected for NO2, whereas emissions and/or elevation are 

common for SO2 and ozone, respectively. Models with the top 30 variables include almost all 

categories except population and emissions, depending on the year and pollutant. 

Sensitivity Analyses  

In our sensitivity analysis of re-computing CV statistics based on conventional or 

clustered CV for the best and worst models based on the other CV approach, the selection of best 

models reduced numbers of variables and worst models mostly without any variables were 

consistent.  

The three sensitivity analyses conducted on NO2 and PM2.5 for 2000 indicate the 

following. First, model performance is highly degraded when satellite variables are not included 

(Figure S7), especially for clustered CV. The inclusion of land use variables becomes important 

as models include larger numbers of variables. Second, when variable selection is random rather 

than via forward selection, model performance is noticeably reduced (Figure S8). However, even 

with random selection of variables, the improvement in performance for models with all 

variables relative to models with ~30 variables is small when using conventional CV. Thus, we 

find that even using a subset of randomly selected variables can yield models that are 

comparable to the “all variable” models. Third, when we shift the CV procedure to make it 

broader to include the entire model-building endeavor rather than only variable selection and 

universal kriging, results generally show consistent patterns as with the core results, for clustered 

CV (Figure S9). With conventional CV, shifting the CV procedure reduced the difference in 
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model performance between parsimonious models and “all variables” models.  

Sensitivity analyses involving alternative metrics of ozone concentration revealed that 

our original approach using 8-hour moving averages of the summer season shows the best 

performance (Table S3). 

Model application 

Predicted annual-average concentrations throughout the U.S. (Figures 4 and S10), 

generated using “best” models, reflect the decreasing concentrations. The extent of temporal 

change and the spatial patterns vary by pollutant. Population-weighted averages of annual 

average concentrations at Census Block centroids show similar means and narrow variability 

compared to those at monitoring sites (Table 3). Predicted concentrations for all Block Groups, 

Tracts, Counties, and States in the contiguous U.S. are publicly and freely available online at 

URL-to-be-added-upon-acceptance. 

DISCUSSION 

 We built and tested IEG models for six pollutants for all years with national monitoring 

data during 1979 – 2015 in the contiguous U.S.; results for “best-performing” models are 

publicly available online. We explore systematically the role of parsimony: how model 

performance changes when models are built using more or fewer variables.  

A common assumption would be that parsimonious models will under-perform relative 

to “all variable” models: a more-variable model is always better. Thus, we hypothesized that 

adding more variables would always improve model-performance, though potentially with 

diminishing returns at some point. Results here indicate that our hypothesis was not hold. Our 

findings indicate that parsimonious models outperform or perform as well as “all variable” 

models. We find good model performance using a relatively small numbers of variables (between 
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3 and 30 variables); satellite-derived estimates of air pollution and of land cover were common 

variables in the IEG models generated here. 

An important motivator for this research question is the considerable effort and 

computational intensity of tabulating hundreds of geographic variables; that effort and 

computational intensity is a barrier to widespread development and usage of national IEG 

models. This limitation impacts the feasibility of subsequent analyses in epidemiology, exposure 

assessment, environmental justice, and other fields. As the spatial domain for air pollution 

exposure models and health analyses is expanded to national or global scales (Bechle et al. 2015; 

Di et al. 2016; Larkin et al. 2017; Novotny et al. 2011; van Donkelaar et al. 2015; Young et al. 

2016), data and processing requirements will grow as additional input data are needed to 

improve prediction ability. Our approach reveals which predictive variables are most important 

for generating parsimonious models that outperform all-variable models; as future studies 

investigate similar questions, the results could help guide future IEG modeling.  

 Model performance varied by pollutant, with better performance for PM2.5, NO2, and 

ozone than for CO, SO2, and PM10. All models benefited from introducing at least a small 

number of geographic covariates. Model performance is similar for kriging-only as for IEG “best 

models” in the following cases: using conventional CV, for SO2 and to some extent for ozone; 

using clustered CV, for none of the pollutants (though among pollutants the “best” IEG / kriging-

only gap is smallest for ozone). In general, kriging-only models deliver much of the total value 

of the IEG model with conventional CV but deliver zero or near-zero value with clustered CV.  

Differences in model performance may reflect differences in chemistry and physics of 

the pollutant, spatial patterns of emissions, quality of input data, correlation with land uses, 

availability of relevant satellite data, a design of monitoring network (number of monitors and 
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their placement). For example, the gap between kriging-only and “best” IEG is larger for NO2 

than for PM2.5, reflecting the time scale for formation of secondary PM2.5; spatial patterns are 

more homogeneous for PM2.5 than for NO2; and, number of monitors is ~3× larger for PM2.5 than 

NO2. The extant monitoring network is designed for regulatory purposes: mainly, to test for 

compliance with National Ambient Air Quality Standards (NAAQS). As the use of IEG models 

grows, EPA or others could consider utility to IEG models (e.g., monitoring in locations with a 

variety of land uses) as an additional goal.  

 The slightly worse performance of the models using all variables as compared to models 

using some variables was not anticipated. This performance could potentially be explained by the 

fact that we treated the selected variables as fixed and did not include the selection process in our 

model evaluation methodology, however, this finding held when we included forward selection 

and estimation of PLS predictors in our evaluation in addition to estimation of regression and 

covariance parameters. Similar model performance between the models using limited and full 

sets of covariates in conventional CV may represent possible over estimation of prediction ability 

in our original evaluation approach. However, consistently better performance with reduced 

numbers of variables, shown in clustered CV, indicates good prediction ability of a parsimonious 

approach in areas without monitors. This finding also highlights the importance of clustered CV 

when evaluating observation-driven models. In addition, the degraded model performance with 

the same numbers of randomly-selected variables supports our conclusion that a small subset of 

important variables can be sufficiently predictive for annual average air pollution concentrations 

compared to the full set of variables.  

 Our results highlight the importance of satellite data for IEG (Hoek 2017); satellite data 

are selected as one or more of the top five variables consistently across all pollutants and years. 
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The most commonly selected satellite estimates were satellite PM2.5 for PM2.5 models and 

HCHO for ozone models. Considering IEG model performance when a category of variables is 

excluded, the performance decline is greater excluding satellite data than excluding other data, 

especially with clustered CV. 

 A common concern for IEG models such as those generated here is that the range of 

values for independent variables might differ at monitoring locations relative to prediction 

locations where people live (Szpiro et al 2011; Szpiro and Paciorek 2013). Monitors may be 

located in areas where few people live and may not be able to represent people’s exposures. If 

that were the case, then for locations where values for the independent variables are outside the 

range of values at monitoring stations, one could censor those values or offer a data-quality flag. 

However, when we compared the distribution of geographic variables between monitoring sites 

and Census Block centroids, for 95% and 98% of ~900 variables, the standard deviation for 

monitoring sites are smaller than 2.5 and 5 times standard deviation for Census Block centroids. 

This finding suggests that the range of values at Block centroids are similar to the range across 

monitoring sites, suggesting reasonably good spatial alignment between monitoring and 

prediction locations in our work. Because our models use estimated PLS predictors instead of 

direct measures of variables, extreme values of a few variables are less likely to impact model 

predictions (Kim et al. 2016). 

 Our study has several limitations to motivate future research. We consider only spatial 

aspects of IEG models and use many temporally-fixed geographic variables (exceptions include 

satellite-derived estimates of air pollution concentrations, and land use variables are for the 

1970s and 2006). Future work could build national, publicly available models with finer 

temporal resolution than here (i.e., better than annual-averages) and could test model parsimony 
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with respect to temporal models or spatiotemporal models. Future studies could add variables 

that represent geographic characteristics changing over time. Future studies could investigate 

parsimony for IEG models using other modeling approaches, such as neural network or random 

forest. Satellite air pollution estimates employed here for NO2, SO2, and HCHO are tropospheric 

column abundance, rather than ground-level estimates. Previous studies have shown that IEG 

models improvements from satellite-derived estimates of air pollution are similarly for column-

total as for ground-level estimates (cite); future work could test that finding for SO2 and HCHO. 

The present research employed emission estimates, which are an input into chemical transport 

models (CTMs), and prior research has included CTM as an input to IEG model-building. Future 

research could test the role of model parsimony in IEGs that incorporate CTM output. Future 

research on IEG models could potentially include national datasets on traffic volumes, vehicle 

fleet composition, Google point-of-interest data, urban form from Landsat imagery, and recently-

launch satellites. We hypothesize that such datasets would improve IEG model performance, 

though recognizing that because the IEG models already have many inputs (including satellite-

based estimates of air pollution concentrations), new datasets may or may not improve model 

performance appreciable.  

 In summary, this study provides important findings on cost-effective approaches for 

national-scale air pollution prediction. Results indicate that national IEG model performance can 

be similar or better if built on only a small number of purposely-selected covariates from 

hundreds, relative to models build using all of those variables. Our model predictions for the 

contiguous US are freely available online, at URL-to-be-added-upon-acceptance.  
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TABLES 

 

Table 1. Summary statistics of annual average concentrations for six criteria air pollutants across 

regulatory monitoring sites in the contiguous U.S. for 1980, 1990, 2000, and 2010 

Pollutant Year N Percentile Mean SD 

    10 25 50 75 90     
NO2 1980  8.4 16.9 24.8 34.4 49.8 26.5 15.2 
(ppb) 1990  6.0 11.4 17.8 24.9 31.8 18.9 10.5 

 2000  5.4 9.7 15.5 20.3 26.2 15.6 8.2 

 2010  2.8 5.2 9.1 13.1 17.3 9.6 5.6 
SO2 1980  3.3 6.5 10.5 15.6 23.9 12.7 10.4 

(ppb) 1990  1.6 3.6 7.1 9.7 13.5 7.3 4.8 

 2000  1.4 2.4 4.2 6.2 9.0 4.7 2.9 
  2010  1.0 1.1 1.6 2.8 4.2 2.2 1.6 

Ozone 1980  37.8 45.8 52.0 59.4 66.2 52.0 11.3 
(ppb) 1990  39.3 44.9 49.3 54.1 59.4 49.3 7.8 

 2000  39.6 44.7 50.1 54.8 58.4 49.4 7.4 

 2010  37.2 41.6 46.6 51.0 53.7 45.8 6.8 
CO 1990  0.48 0.66 0.95 1.26 1.67 1.02 0.48 

(ppm) 2000  0.33 0.41 0.54 0.76 0.99 0.62 0.28 
  2010  0.29 0.31 0.33 0.38 0.46 0.35 0.10 

PM10 1990  18.6 23.1 27.6 33.6 39.6 29.0 10.0 
(µg/m3) 2000  12.9 18.1 22.7 27.2 35.3 23.8 10.3 

 2010  8.8 13.6 18.0 22.4 27.9 18.6 8.3 
PM2.5 2000  6.8 10.1 12.8 15.5 17.1 12.5 4.1 

(µg/m3) 2010  4.4 7.2 9.5 11.3 12.5 9.0 3.0 
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Table 2. Cross-validation (CV) statisticsa for the IEG regression models developed here, by pollutant, year, and level of model 

parsimony (zero variables / between 3 and 30 variables / all variables)  

    Conventional CV Clustered CV 

  Standardized RMSE* R2 Standardized RMSE* R2 

 0 3-30 All 0 3-30 All 0 3-30 All 0 3-30 All 
Pollutant 

 Year                         

NO2 2000 0.33 0.19 0.20 0.61 0.87 0.85 0.60 0.23 0.29 0.00 0.82 0.70 
(ppb) 2010 0.39 0.23 0.25 0.56 0.84 0.81 0.64 0.33 0.33 0.00 0.68 0.68 
SO2 2000 0.39 0.38 0.39 0.60 0.63 0.61 0.62 0.47 0.51 0.00 0.44 0.32 

 (ppb) 2010 0.64 0.63 0.65 0.29 0.31 0.28 0.79 0.65 0.72 0.00 0.26 0.10 
O3 2000 0.07 0.07 0.07 0.76 0.78 0.78 0.11 0.10 0.11 0.45 0.55 0.51 

(ppb) 2010 0.06 0.06 0.06 0.81 0.82 0.81 0.11 0.10 0.11 0.44 0.51 0.44 
CO 2000 0.37 0.32 0.34 0.33 0.50 0.43 0.47 0.35 0.43 0.00 0.42 0.12 

 (ppm) 2010 0.25 0.23 0.25 0.17 0.28 0.20 0.28 0.24 0.28 0.00 0.23 0.00 
PM10 2000 0.31 0.27 0.28 0.50 0.60 0.59 0.45 0.37 0.39 0.00 0.27 0.20 

(μg/m3) 2010 0.34 0.29 0.30 0.41 0.57 0.56 0.47 0.37 0.39 0.00 0.33 0.26 
PM25 2000 0.16 0.12 0.13 0.77 0.86 0.85 0.30 0.21 0.22 0.15 0.59 0.53 

(μg/m3)  2010 0.17 0.13 0.13 0.73 0.85 0.84 0.31 0.19 0.20 0.14 0.70 0.64 
a Standardized RMSE is the root mean square error (RMSE) divided by average concentration. Values are shown for three levels of 
model parsimony: for models with zero variables (i.e., kriging only), denoted with “0”; the median among all “parsimonious” 
models, i.e., those developed with between 3 and 30 variables, denoted “3-30”; and for full models with all variables, denoted “all”. 
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Table 3. Summary statistics of population-weighted annual average concentrations for the contiguous US, by pollutant and decadal 

year, based on Census Block centroids, using “best” IEG model predictions 

Pollutant Year N Percentile Mean SD 
     10 25 50 75 90     

NO2 1980  7.4 12.1 19.9 27.9 36.8 21.3 11.7 
(ppb) 1990  6.1 8.4 12.9 19.0 26.9 15.2 9.2 

 2000  5.6 7.8 11.8 16.7 23.2 13.3 7.5 

 2010  3.3 4.7 7.2 10.8 15.8 8.5 5.1 
SO2 1980  3.4 5.8 8.9 12.5 16.6 9.6 5.3 

(ppb) 1990  2.0 3.0 4.6 7.0 9.2 5.3 3.0 

 2000  1.8 2.2 3.1 4.4 6.1 3.6 1.8 
  2010  0.9 1.2 1.5 2.0 2.5 1.6 0.7 

Ozone 1980  39.0 45.4 51.3 57.3 63.6 51.1 9.6 
(ppb) 1990  39.6 44.8 48.6 52.4 56.8 48.5 6.5 

 2000  40.2 43.9 49.0 53.6 57.1 48.5 6.7 

 2010  37.7 43.1 46.6 49.6 52.2 45.6 6.0 
CO 1990  0.33 0.43 0.61 0.86 1.19 0.69 0.35 

(ppm) 2000  0.29 0.35 0.43 0.55 0.74 0.48 0.20 
  2010  0.23 0.28 0.31 0.35 0.39 0.31 0.07 

PM10 1990  19.8 22.7 25.9 30.2 36.8 27.5 7.9 
(μg/m3) 2000  15.7 18.8 22.0 25.4 30.8 22.9 6.8 

 2010  12.8 15.2 18.3 21.5 24.1 18.4 4.6 
PM2.5 2000  8.6 10.7 12.9 15.2 16.7 12.9 3.4 

(μg/m3) 2010  6.3 7.9 9.6 10.8 12.1 9.4 2.2 
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FIGURE CAPTIONS 

 

Figure 1. Standardized root mean square errors and R2s of the national prediction models 

including no, some, and all variables from conventional and clustered cross-validation for 1979-

2015 over the contiguous U.S. by six criteria air pollutants; best models determined by each of 

the two types of cross-validation as one of the some-variables models  

 

Figure 2. Scatter plots of standardized root mean square errors and R2s from the best national 

prediction models across six criteria air pollutants in 2000 over the contiguous U.S. by 

conventional and clustered cross-validation 

 

Figure 3. Categories of top 30, 10 and 5 geographic and satellite variables chosen by forward 

selection in the national prediction models of six criteria air pollutants for 1979-2015 over the 

contiguous U.S. 

 

Figure 4. Maps of Census Block Group population-weighted mean predicted annual average 

concentrations for PM2.5, NO2, and ozone from the best national prediction models mostly 

including 3-30 variables for 2000 and 2010 in the contiguous U.S. 
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Figure 1. Standardized root mean square errors (standardized RMSEs) and R2s of the national IEG models during 1979-2015 using 
conventional CV and clustered CV. Terminology here is the same as in Table 2.  
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Figure 2. Standardized RMSEs and R2s from “best” IEG models, for the contiguous US in 2000, for conventional and clustered CV, 
by pollutant.  
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Figure 3. Categories of variables chosen by forward selection for national IEG models, by year, pollutant, and number of variables 
in the model.  
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Figure 4. Population-weighted mean predicted annual-average concentrations, by pollutant and year, for Census Block Groups in 
the contiguous US, using the “best” IEG regression model developed here. 
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SUPPLEMENTAL MATERIAL 

 

Concentrations of criteria pollutants in the contiguous U.S., 1979 – 2015: Role of model 

parsimony in integrated empirical geographic regression 

 

Sun-Young Kim, Matthew Bechle, Steve Hankey, Lianne Sheppard, Adam A. Szpiro, Julian D. 

Marshall. 
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Data generation and processing for satellite air pollution estimates 

 

Briefly, five aerosol optical depth (AOD) satellite retrievals (from several instruments and 

retrieval algorithms) are combined with (1) satellite-based measurements of vertical aerosol 

profiles, (2) modeled AOD and ground-level PM2.5 from a global chemical transport model 

(GEOS-Chem), and (3) ground-based AOD measurements from the aerosol robotic network 

(AERONET) to estimate annual ground-level PM2.5 on a 0.1° grid (van Donkelaar et al., 2016). 

We also obtain daily L2 (i.e., processed data at native instrument resolution) surface-level CO 

multispectral (combined near infrared and thermal infrared) retrievals (v7) from the 

Measurements of Pollution in The Troposphere (MOPITT) sensor on the National Aeronautics 

and Space Administration (NASA)’s Terra satellite for years 2001-2016 (Deeter et al., 2017). For 

each year, daily surface-level CO measurements are screened for missing data and solar zenith 

angle (SZA) >80°, then oversampled onto a 0.25° × 0.25° grid. Oversampling is an averaging 

method for satellite data that takes advantage of overlapping pixels when temporally averaging 

measurements at native resolution; all pixels falling within a circular buffer centered on each grid 

cell are averaged to that grid cell. Tropospheric NO2, SO2, and HCHO are derived from daily 

measurements from the Ozone Monitoring Instrument (OMI) onboard the NASA Earth 

Observing System (EOS)-Aura satellite. We obtain daily L2 (native instrument resolution) 

tropospheric NO2 retrievals (DOMINOv2) for years 2005-2015 from the Tropospheric Emission 

Monitoring Internet Service (www.temis.nl) (Boersma et al., 2011), along with daily L2 

tropospheric HCHO for 2005-2016 and daily L3 (pre-gridded product) tropospheric SO2 

retrievals from NASA’s Goddard Earth Sciences Data and Information Services Center (GES-

DISC) for years 2005-2016 (Chance 2007; OMI Science Team 2012). In addition to annual 
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averages for tropospheric NO2 and SO2, we compute 3-year averages for NO2 and long-term 

average for HCHO. Daily L2 NO2 and HCHO data are screened for missing data, flags 

(including “row anomaly” flags: see http://projects.knmi.nl/omi/research/product/rowanomaly-

background.php), SZA > 60°, cloud fraction >40%, and surface albedo >30%. For each year and 

for 3-year averages, screened daily tropospheric NO2 are oversampled onto a 0.1° × 0.1° grid. 

HCHO is more difficult to detect from space, owing to a lower signal-to-noise ratio and spectral 

interference from other molecules in the same fitting window (De Smedt et al., 2008); we 

therefore oversample screened daily tropospheric HCHO for the entire 12 year period (2005-

2016) onto a 0.25° × 0.25° grid. Daily gridded 0.25° × 0.25° L3 SO2 data are screened for data 

flags (including “row anomaly”) and temporally averaged to annual averages. Using the gridded 

products described above, we assign to each target location annual or long-term averages of daily 

observations (Table S2). For the years before or after the satellite data are available, we use the 

average of the 3 closest years.  
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Table S1. List of geographical variables and satellite air pollution estimates 
Category Measure Variable descriptionb 
Traffic Distance to the nearest roada Any road, A1, intersection 

 
Sum within buffers of 0.05-15 km  A1, A2+A3, truck route, intersections 

Population Sum within buffers of 0.5-3 km  Population in block groups  
Land use 
(Urban) Percent within buffers of 0.05-15 km  Urban or Built-Up land 

  
  (residential, commercial, industrial, transportation, urban) 

  
Developed low, medium, and high density 

  
Developed open space 

Land use 
(Rural) Percent within buffers of 0.05-15 km  Agricultural land (cropland, groves, feeding) 

  
Rangeland (herbaceous, shrub) 

  
Forest land (deciduous, evergreen, mixed) 

  
Water (streams, lakes, reservoirs, bays) 

  
Wetland 

  
Barren land (beaches, dry salt flats, sand, mines, rock) 

  
Tundra 

  
Perennial snow or Ice 

Position Coordinates Longitude, latitude 
Source Distance to the nearest sourcea Coastline 

  
Commercial area 

  
Railroad 

  
Railyard 

  
Airport 

  
Major airport 

  
Large port 

Emissions  
Sum of site-specific facility emissions 
within buffers of 3-30 km  PM2.5  

  
PM10  

  
 

CO 

  
SO2 

  
NOX 

Vegetation Quantiles within buffers of 0.5-10 km Normalized Difference Vegetation Index (NDVI) 
Imperviousness Percent within buffers of 0.05-5 km Impervious surface value 

Elevation Elevation above sea levels Elevation value 

  
Counts of points above or below a 
threshold within buffers of 1-5 km   

Satellite  Estimates in a grid PM2.5  
estimate  NO2 

  CO 
  SO2 
  HCHO 

a. Distances calculated to spatial features are truncated at 25 km 
b. See the Multi-Ethnic Study of Atherosclerosis and Air pollution (MESA Air) Data 
Organization and Operating Procedures (DOOP) for data sources for these variables 
(https://www.uwchscc.org/MESAAP/Documents/MESAAirDOOP.pdf). 
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Table S2. Available years of satellite estimates for air pollution and metrics used for national 
prediction models 
Pollutant Year Metric 

  Years with data Years without data 
NO2 2005-2015 Annual average 3-year average for 2005-2007 before 2005 

  3-year average 3-year averages for 2005-2007 before 2006 
3-year average for 2013-2015 after 2014 

SO2 2005-2016 Annual average 3-year average for 2005-2007 before 2005 
CO 2001-2016 Annual average 3-year average for 2001-2003 before 2001 

HCHO 2005-2016 12-year average 12-year average for 2005-2016 for all years 
PM2.5 1998-2014 Annual average 3-year average for 1998-2000 before 1998 

3-year average for 2012-2014 after 2014 
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Table S3. Cross-validation (CV) statistics of ozone national prediction models including no some 
and all geographic variables and/or satellite estimates for four metrics by summer and all seasons 

           Conventional CV Clustered CV 
Season Metric N of sites Year N of variables Median 25% 75% Median 25% 75% 

All  24-hr mean 213-479 1979-1986 0 0.38  0.26  0.47  0.00  0.00  0.00  

   
1990-2015 3-30* 0.73  0.68  0.75  0.63  0.55  0.66  

    
All 0.64  0.59  0.67  0.40  0.25  0.50  

 
8-hr max     0 0.57  0.45  0.65  0.14  0.03  0.19  

    
3-30 0.70  0.64  0.74  0.46  0.32  0.54  

    
All 0.67  0.59  0.71  0.25  0.11  0.40  

 
8-hr mean     0 0.60  0.48  0.67  0.17  0.07  0.23  

    
3-30 0.71  0.66  0.77  0.50  0.36  0.57  

    
All 0.69  0.61  0.74  0.32  0.16  0.45  

 
1-hr max   1980-1986 0 0.57  0.44  0.63  0.18  0.06  0.29  

   
1990-2015 3-30 0.67  0.58  0.73  0.43  0.23  0.50  

    
All 0.63  0.52  0.69  0.18  0.00  0.35  

Summer 24-hr mean 232-916 1979-2015 0 0.50  0.46  0.57  0.08  0.00  0.14  
(May-
Sep) 

   
3-30 0.69  0.62  0.73  0.46  0.29  0.52  

 
      All 0.61  0.55  0.64  0.28  0.14  0.36  

 
8-hr max     0 0.72  0.65  0.77  0.34  0.17  0.46  

    
3-30 0.73  0.68  0.78  0.41  0.24  0.52  

    
All 0.73  0.65  0.78  0.36  0.16  0.47  

 
8-hr mean     0 0.72  0.65  0.78  0.32  0.16  0.47  

    
3-30 0.74  0.66  0.79  0.41  0.23  0.52  

 
      All 0.73  0.64  0.79  0.36  0.15  0.48  

 
1-hr max 

  
0 0.73  0.57  0.77  0.36  0.22  0.47  

    
3-30 0.74  0.59  0.78  0.39  0.27  0.54  

        All 0.74  0.58  0.78  0.32  0.18  0.48  
* Summaries of the highest R2s on each year 
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Figure S1. Numbers of regulatory monitoring sites that meet our site inclusion criteria for 
computing representative annual average concentrations of six criteria air pollutants for 1979-
2015 in the continental U.S. 
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Figure S2. Map of 10 spatial clusters of 345 NO2 regulatory monitoring sites in 2000 determined 
by k-means clustering 
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Figure S3. Quantile-based plots of annual average concentrations of six criteria air pollutants 
across all regulatory monitoring sites for 1979-2015 in the contiguous U.S. 
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Figure S4. The relationship between numbers of variables and cross-validation (CV) statistics 
from national prediction models of six criteria air pollutants in 2000 by conventional and 
clustered cross-validation (vertical lines for 10, 30, and 60) 
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Figure S5. Numbers of variables selected for the best and worst national prediction models with 
the highest and lowest cross-validated R2s, respectively (which was also the model with the 
lowest and highest standardized root mean square error), by pollutant and CV type (conventional 
CV, clustered CV). For ease of reading, figures include horizontal lines for y-axis values of 30, 
50, and 100. 
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Figure S6. Standardized root mean square errors and R2s of the national prediction models 
including no variables, some variables (i.e., between 3 and 30 variables), and all variables from 
conventional and clustered cross-validation, by year and pollutant, for the contiguous U.S. “Best” 
models determined by two types of cross-validation as one of the some-variables models. 
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Figure S7. The relationship between numbers of variables and cross-validation (CV) statistics 
from national prediction models of NO2 and PM2.5 in 2000 by exclusion of a different category 
of geographic variables and satellite air pollution estimates by conventional and clustered cross-
validation. For ease of reading, vertical lines are shown at x-axis values of 10, 30, and 60. 
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Figure S8. The relationship between numbers of randomly selected variables and cross-
validation (CV) statistics from national prediction models of NO2 and PM2.5 in 2000 by 
conventional and clustered cross-validation. For easy of viewing, vertical lines are shown at x-
axis values of 10, 30, and 60  
 

 

  

Hosted by The Berkeley Electronic Press



46 

 

Figure S9. The relationship between numbers of variables and cross-validation (CV) statistics 
including forward selection, estimation of PLS predictors, and parameter estimation in national 
prediction models of NO2 and PM2.5 in 2000 by conventional and clustered CV. Vertical lines 
shown for x-axis values of 10, 30, and 60. 
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Figure S10. Maps of predicted annual averages of PM10, CO, and SO2 from the best national 
prediction models mostly including 3-30 variables for 2000 and 2010 in the contiguous U.S. 
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