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The Impact Of Coarsening The Explanatory
Variable Of Interest In Making Causal

Inferences: Implicit Assumptions Behind
Dichotomizing Variables

Ori M. Stitelman, Alan E. Hubbard, and Nicholas P. Jewell

Abstract

It is common in analyses designed to estimate the causal effect of a continuous
exposure/treatment to dichotomize the variable of interest. By dichotomizing the
variable and assessing the causal effect of the newly fabricated variable practition-
ers are implicitly making assumptions. However, in most analyses these assump-
tions are ignored. In this article we formally address what assumptions are made
in dichotomizing variables to assess causal effects. We introduce two assump-
tions, either of which must be met, in order for the estimates of the causal effects
to be unbiased estimates of the parameters of interest. We title those assumptions
the Mechanism Equivalence and Effect Equivalence assumptions. Furthermore,
we quantify the bias induced when these assumptions are violated. Lastly, we
present an analysis of a Malaria study that exemplifies the danger of naively di-
chotomizing a continuous variable to assess a causal effect.



1 Introduction

A commonly used parameter of interest in observational studies designed
to examine the effect of exposure, a, on outcome of interest Y, is E [Ya|V ].
This is interpreted as the mean outcome, Y, when every subject is set to
a precise exposure, a, within a set level of observed baseline covariates, V.
Variants of this parameter of interest are also commonly used throughout
the causal inference literature. These parameters of interest are based on
the causal inference framework originally proposed by Rubin [7], and are
designed to evaluate the effect when the treatment, or exposure, is set to a
specific level, a. Here, we examine the implications of these parameter of
interest when the level of exposure, a, to which the subjects are set is really
a range of values. Thus, a really represents many sub-levels of exposure.
For example a binary indicator which describes smoking status classifies
individuals as either smokers or non-smokers; however, among the smokers
the amount which each individuals smoke varies and likewise among non-
smokers the amount of second hand smoke exposed to varies. Thus, if one
wanted to assess the causal effect of setting individuals to non-smoker the
level non-smoker really is composed of many sub-levels of exposure. Such a
hypothetical treatment is natural in a setting where one wants to evaluate
the effect of lowering an exposure below a certain cut-off, as in the case of
evaluating the effect of restricting air pollutants to a prespecified safe level.

The parameters of interest are functions of the observed distribution
of the sub-levels of exposure within the level of a. We will refer to the
distribution of the exposure as the treatment mechanism. It is important to
consider two particular treatment mechanisms here. The first is the intended
treatment mechanism, this mechanism is the distribution which sets the
exposure to the levels desired by the intervention. The second is the implied
treatment mechanism, this mechanism is the distribution of the exposure
in the counterfactual world implied by the method used to estimate the
parameter of interest. In the case of a true binary exposure there is only one
possible treatment mechanism, the distribution in which all values are set to
exposure level, a. However, in the case where one is interested in setting the
exposure to a pre-specified cutoff or below, as in the case of the pollutant
example above, there are an infinite number of possible distributions of the
exposure. Thus, any distribution of the exposure whose maximum value is
below the pre-specified cutoff is a possible treatment mechanism.

An example of a class of parameters of interest which incorporate E [Ya|V ]
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are proposed by Hubbard and van der Laan [4]. These parameters of in-
terest are designed to quantify the effect of a treatment, or a set level of
exposure, on a target population of interest. They are an extension of
commonly used causal inference techniques and quantify the effect of an
intended treatment on a population of interest. In addition to formulating
a general approach for estimating a treatment effect they focus on casting
these parameters as both a difference and ratio between the mean outcome
under intervention and the mean outcome under the natural distribution
of the treatment/exposure. These models are referred to as population in-
tervention models. Specifically, they propose the two following classes of
parameters for additive risk and relative risk:

ψ0,AR (a, V ) = E [Ya|V ]− E [Y |V ] = m (a, V |β0) (1)

ψ0,RR (a, V ) =
E [Ya|V ]
E [Y |V ]

= m (a, V |β0) (2)

for some Euclidean parameterization β → m (a, V |β).

In this paper we will use the population intervention model and its pa-
rameters of interest as an example as we explore the implications of di-
chotomizing the treatment variable as a way to estimate parameters which
incorporate E [Ya|V ]. In section 2 we will examine the effect of dichotomiz-
ing the treatment variable and the traditional assumptions used in the
causal inference framework. We will show that by dichotomizing the treat-
ment/exposure the treatment mechanism implied by the method is the treat-
ment mechanism observed in the data within level a. In section 3 two ad-
ditional assumptions will be presented, which if either are not violated, an
estimator for the parameter of interest will remain consistent under the
intended treatment mechanism. These assumptions are (1) Mechanism
Equivalence - the implied treatment mechanism is equal to the intended
treatment mechanism and (2) Effect Equivalence - The expected outcome
is the same across all sub levels of a. In section 4 the asymptotic bias which
results from violations in the assumptions of section 3 will be examined.
Finally, in section 5, an example is presented which examines the effect of
parasite density on the recurrence of malaria.
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2 Dichitomizing The Treatment Variable

One possible estimation approach is to dichotamize the exposure at the
specified level and then implement, designed for a binary exposure. Such
an approach is a common way of implementing methods designed for binary
exposures when dealing with exposures which are either categorical with
more than two possible values or continuous. Some examples of this in
the causal inference setting include Brotman et al. [1], Bryan et al. [2],
Joffe et al. [5], and Tager et al. [8]. We will now examine the implied
intervention mechanism when taking such an approach. More specifically,
we will examine what intervening by setting A = a, when A is artificially
dichotomized, suggests about the distribution of the sublevels of a after
intervened upon population.

For this paper we will assume that exposure is experienced at discrete
levels. For instace, let us examine what happens when exposure is initially
randomized to five levels; let A′ ∈ {1, 2, 3, 4, 5} be the observed level of ex-
posure for each subject and let Y ∆ (A′) be the potential outcomes at each
level of A′. Thus, the full data as defined in the counterfactual framework
is

{
Y ∆ (1) , Y ∆ (2) , Y ∆ (3) , Y ∆ (4) , Y ∆ (5) , A′

}
and the corresponding ob-

served data is
{
Y ∆ (A′) , A′

}
. Define A as the dichotomized random variable

which splits A′ in the following way:

A =

{
1 if A′ ∈ {1, 2}
0 if A′ ∈ {3, 4, 5}

}
(3)

Finally, let Y ∗ (A) be the potential outcomes at different levels of A. Thus,
by implementing methods using only the dichotomized variable and the
outcome it is as if we only observed {Y ∗ (A) , A} and considered the full
data {Y ∗ (0) , Y ∗ (1) , A} for each subject.

Two assumptions which are typically made in similar missing data prob-
lems will be useful here. The first is the consistency assumption:

Y = AY ∗ (1) + (1−A)Y ∗ (0) (4)

This assumption states that the observed outcome Y is equal to Y ∗ (1)
when treatment is set to A = 1 and to Y ∗ (0) when the treatment is set
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to A = 0. This assumption is commonly refered to as the Stable Unit
Treatment Value Assumption (SUTVA)[7]. The second assumption is the
randomization assumption:

A⊥{Y ∗ (1) , Y ∗ (0)} (5)

The randomization assumption states that the treatment level is set inde-
pendent of the potential outcomes of the subject under the different levels
of treatment.

We examine what happens to the mean outcome under the treatment,
E [Ya], when we intervene by setting each individual to the exposure level
A = 1 in the scenario when we implement a method on the data as if we
only observed the dichotomized variable A:

E [Ya] = E [Y |A = 1]
CA= E [AY ∗ (1) + (1−A)Y ∗ (0) |A = 1] (6)
= E [Y ∗ (1) |A = 1]
RA= E [Y ∗ (1)]

where the second equality is the result of the consistency assumption and
the last the result of the randomization assumption. Thus, the expected
value of the observed outcome when the treatment level A is one is equal to
the expected value of the potential outcomes for level A equal to 1.

By making two similar assumptions with regard to the treatment levels
A′ the E [Ya], the mean outcome when all subjects are set to level A = 1,
can be evaluated under the true full data, corresponding to the scenario
where A′ is observed. The additional assumptions are another consistency
assumption and randomization assumption for the exposure levels A′. The
consistency assumption is:

Y = I
(
A′ = 1

)
Y ∆ (1) + I

(
A′ = 2

)
Y ∆ (2) + . . .+ I

(
A′ = 5

)
Y ∆ (5) (7)

and randomization assumption:
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A′⊥
{
Y ∆ (1) , Y ∆ (2) , Y ∆ (3) , Y ∆ (4) , Y ∆ (5)

}
(8)

These assumptions are as plausable as the corresponding assumptions un-
der two treatment levels and may be stated in the same way as above but
for five treatment levels instead of two. Returning to E [Ya] under these
assumptions:

E [Ya] = E [Y |A = 1]
CA= E

[
I

(
A′ = 1

)
Y ∆ (1) + I

(
A′ = 2

)
Y ∆ (2)+

. . .+ I
(
A′ = 5

)
Y ∆ (5) |A = 1

]
= E

[
I

(
A′ = 1

)
Y ∆ (1) + I

(
A′ = 2

)
Y ∆ (2) |A = 1

]
(9)

RA= p
(
A′ = 1|A = 1

)
E

[
Y ∆ (1)

]
+ p

(
A′ = 2|A = 1

)
E

[
Y ∆ (2)

]
=

p (A′ = 1)
p (A = 1)

E
[
Y ∆ (1)

]
+
p (A′ = 2)
p (A = 1)

E
[
Y ∆ (2)

]

Finally, combining the results from using the assumptions with respect
to treatment levels A with the results for the assumptions with respect to
treatment levels A′:

E [Y ∗ (1)] = E [Y |A = 1] (10)

=
p (A′ = 1)
p (A = 1)

E
[
Y ∆ (1)

]
+
p (A′ = 2)
p (A = 1)

E
[
Y ∆ (2)

]

Thus, by dichotomizing the exposure variable one implicitly assumes that
the hypothetical intervention, setting individuals to A = 1, is achieved by
randomly assigning individuals to treatment A′ = 1 with probability p(A′ =
1)/p(A = 1) and to A′ = 2 with probability p(A′ = 2)/p(A = 1). Thus
the treatment mechanism employed assigns treatment to the population at
a rate defined by the conditional distribution of A′ given A.

Now let’s extend these results to a situation where individuals are not
randomly assigned treatment levels, as in the case of an observational study.
Again we will consider the case where individuals are observed at treatment

5
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levels A′ and all analysis is conducted using the dichotomized treatment
level A as done above. However, additional covariates, W, are also observed.
The randomization assumption is no longer valid because individuals are not
randomly assigned a level of treatment and thus there may be an association
between the potential outcomes and the level of exposure one experiences.
In such instances the assumption of no unmeasured confounders may be
plausable.

A⊥{Y ∗ (1) , Y ∗ (0)} |W (11)

In words this assumption means that treatment level is assigned independent
of the potential outcomes given the confounders, V . Using these assump-
tions, the following links the observed data using the exposure levels A to
the counterfactual outcomes under levels of A:

EW [E [Ya|W ]] = EW [E [Y |A = 1,W ]]
CA= EW [E [AY ∗ (1) + (1−A)Y ∗ (0) |A = 1,W ]]
= EW [E [Y ∗ (1) |A = 1,W ]] (12)
RA= EW [E [Y ∗ (1) |W ]]
= E [Y ∗ (1)]

One additional assumption is necessary for the above to be true because
it is important that we are not conditioning on an event that will occur with
probability zero. The necessary assumption is The Experimental Treatment
Assumption (ETA)[6]. ETA insures that every possible value of A has a pos-
itive probability of occuring regardless of the level of baseline covariates, W .
Equivalently, p(A = 1|W ) and p(A = 0|W ) are bounded away from zero
almost everywhere. Extending the no unmeasured confounders assumption
to the levels of A′ as follows,

A⊥
{
Y ∆ (1) , Y ∆ (2) , Y ∆ (3) , Y ∆ (4) , Y ∆ (5)

}
|W, (13)

similarly yields the following in terms of levels of the exposure A′

EW [E [Ya|W ]] = EW [E [Y |A = 1,W ]]
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= EW

[
E

[
I

(
A′ = 1

)
Y ∆ (1) + I

(
A′ = 2

)
Y ∆ (2) +

. . .+ I
(
A′ = 5

)
Y ∆ (5) |A = 1,W

]]
(14)

= EW

[
E

[
I

(
A′ = 1

)
Y ∆ (1) + I

(
A′ = 2

)
Y ∆ (2) |A = 1,W

]]
= EW

[
p

(
A′ = 1|A = 1,W

)
E

[
Y ∆ (1) |W

]
+ p

(
A′ = 2|A = 1,W

)
E

[
Y ∆ (2) |W

]]
Combining the two results:

E [Y ∗ (1)] = EW [E [Ya|W ]]

= EW

[
p

(
A′ = 1|A = 1,W

)
E

[
Y ∆ (1) |W

]
+ (15)

p
(
A′ = 2|A = 1,W

)
E

[
Y ∆ (2) |W

]]
Again, the treatment mechanism employed assigns treatment to the popula-
tion at a rate defined by the conditional distribution of A′ given A; however,
now it is within levels of W.

Typically, one is interested in dichotomizing a continuous random vari-
able, let us call this variable A′′. We will take a hueristic approach to address
this issue. In such a scenario mapping the continuous variable, A′′, into a
categorical variable, A′ with an arbitrary amount of levels may help in con-
sidering this set up. For fine enough cut points, the discrete conditional
distribution of A′|A,W is an approximation of A′′|A,W and in most situ-
ations, it is reasonable to assume that E [Y |A′′,W ] is equivalent across A′′

within each level of A′. Under these two conditions the the results for the
categorical mapping into a dichotomous variable above may be extended to
dichotomizing the continuous case.

3 Intended vs. Implied Treatment Mechanism

This section evaluates the difference between the treatment mechanism in-
duced by dichotomizing the exposure variable and a possible intended treat-
ment mechanism. In order to examine the difference of these treatment
mechanisms reconsider the five level treatment assignment of A′ in the pre-
vious section where one observes covariates, V, and individuals are not ran-
domly assigned to an exposure level. However, now instead of there being
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five levels of A′ let there be an arbitrary number of levels, k, of A′, where
the first j levels of A′ are mapped into the level A = 1. Let p∗ (A′|V ) equal
the intended probability of being assigned to level A′ given V under the
proposed intervention, and E [Ya∗ |V ] is the expected value of the outcome
given the intended treatment mechanism within strata, V. The values at
which p∗ (A′|V ) are set should be thought of as attainable probabilities of
exposure at each level given the intended course of intervention.

The population intervention model as presented by Hubbard and van
der Laan presents an estimator which is consistent for the parameters of
interest presented in equations 1 and 2. These parameters of interest include
E [Ya|V ] as a component. Furthermore, the estimators are consistent under
the implied treatment mechanism. As presented in the previous section,
the implied treatment mechanism, by dichotomizing the random variable, is
to assign treatment to the population at a rate defined by the conditional
distribution of A′ given A within strata of V. Thus, the estimators are a
consistent estimate of the following parameters under additive and relative
risk:

E [Ya|V ]− E [Y |V ] = p
(
A′ = 1|A = 1, V

)
E

[
Y ∆ (1) |V

]
+ . . . (16)

+p
(
A′ = k|A = 1, V

)
E

[
Y ∆ (k) |V

]
− E [Y |V ]

E [Ya|V ]
E [Y |V ]

=
p (A′ = 1|A = 1, V )E

[
Y ∆ (1) |V

]
E [Y |V ]

+ . . . (17)

+
p (A′ = k|A = 1, V )E

[
Y ∆ (2) |V

]
E [Y |V ]

These parameters of interest under the implied treatment mechanism coin-
cide with the parameter of interest where the intervention is the intended
treatment mechanism if either of the following two scenarios is true:

1. MECHANISM EQUIVALENCE: The intended mechanism after in-
tervention coincides with the observed mechanism which results by
setting A equal to 1. The conditional probability of A′ given A within
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strata of V is equivalent to the intended intervention probabilities,
p∗ (A′|V ), for all A′ mapped into the intervention level A.

p∗
(
A′|V

)
= p

(
A′|A = 1, V

)
∀A′ ∈ {1, . . . , j} (18)

2. EFFECT EQUIVALENCE: The effect of A is equivalent within strata
of V for the all levels of A′. The expected value of the potential
outcomes given V and A′ is equivalent for all A′ within a particular
strata, V.

E
[
Y ∆ (1) |V

]
= . . . = E

[
Y ∆ (j) |V

]
(19)

Thus, by dichotomizing the exposure variable and implementing the popu-
lation intervention model, assuming either that the intervention will set the
probability of exposure level to the conditional probabilities observed in the
data or the expected value of the outcome is the same across the different
levels within A for a given V, the estimator will be consistent for the param-
eter of interest under the intended treatment mechanism. If either of these
two assumptions are plausable, the population intervention model imple-
mented using a dichotomized treatment variable is a reasonable estimator
that will produce consistent estimates of well-defined parameter of interest.
In the following section, we will examine ways to implement the population
intervention model when either of these two assumptions are not reasonable.

4 When Assumptions Are Not Plausable

In this section we will explore what to do in two situations when there is
a possibility that the assumptions presented in the previous section do not
hold. The first situation is one in which the data is dichotomized because
the underlying variable A′ is not observed either at finer cut-offs or as a
continuous variable below a certain cut-off. The second situation is one in
which the data is observed at finer levels within both A = 0 and A = 1.

In some instances, as in the case of most variables which measure expo-
sure to pollutants, the level of exposure, A′, may only be determined above
a certain level. All other subjects are designated as having an exposure be-
low the detectable limit. A natural intervention in such cases is to examine
the counterfactual world where all individuals have their exposure reduced
to a level below the detectable level, corresponding to A = 1(below the

9
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detectable level) and A = 0 (above the detectable level). Thus, the theoret-
ically different levels of A′ which map into A = 1 are not observed. Short
of estimating the levels of A′ given the covariates, V, which is not a trivial
problem and most likely involves non-testable parametric assumptions since
one is estimating values outside their observed range, making one of the two
assumptions from the following section and implementing the population in-
tervention model on the dichotomized variable may be the most reasonable
course of action. However, it is important in those situations to be aware of
these assumptions and gauge their plausability on a case by case basis.

In other situations where either of the two assumptions of the previous
section are not plausable and A′ is observed at a finer level within A = 1,
extensions of the methods presented by Hubbard and van der Laan that do
not rely on a binary exposure variable are possible. We will now present a
method of using the population intervention model to estimate a parameter
of interest under the intended treatment mechanism when either of the two
necessary assumptions are not valid.

Let’s reconsider the scenario in section two where there are five observed
levels of A′, covariates V are observed, and exposure level is as it would be in
an observational study, i.e., not randomized. Additionaly, let p be a vector of
the probabilities that make up the intended mechanism, p1 and p2, which are
equal to p∗ (A′ = 1|A = 1, V ) and p∗ (A′ = 2|A = 1, V ), respectively. Given
that the parameter of interest is additive risk, one would be interested in a
consistent estimate of the following:

E [Ya∗ |V ]− E [Y |V ] = p1E
[
Y ∆ (1) |V

]
+ p2E

[
Y ∆ (2) |V

]
− E [Y |V ] (20)

Hubbard and van der Laan present consistent estimates , m(a, V |β̂) of
m(a, V |β) = E [Ya|V ]−E [Y |V ] for a given level of treatment, a. As a result,
the following is a consistent estimate of E [Ya∗ |V ]:

p1

{
E [Y |V ] +m

(
1, V |β̂

)}
+ p2

{
E [Y |V ] +m

(
2, V |β̂

)}
(21)

Where m
(
1, V |β̂

)
and m

(
2, V |β̂

)
are estimated as suggested in Hubbard

and van der Laan for treatment levels A′ = 1 and A′ = 2 respectively. The
estimate for E [Ya∗ |V ] can be rewritten in the following way:
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(p1 + p2) {E [Y |V ]}+ p1m (1, V |β) + p2m (2, V |β) (22)

Finally, the parameter of interest, E [Ya∗ |V ] − E [Y |V ], may be estimated
by the following consistent estimate, p1m

(
1, V |β̂

)
+ p2m

(
2, V |β̂

)
.

These results may be generalized in a similar way to the relative risk
parameter of interest and the general population intervention model param-
eter of interest presented by Hubbard and van der Laan. So by consistently
estimating m(A′ = 1, V |β) and m(A′ = 2, V |β) and combining those esti-
mates using p, consistent estimates of the parameter of interest under the
intended treatment mechanism may be achieved.

Additionally, the asymptotic bias of using the above estimates can be
expressed in the following way in terms of the potential outcomes at different
levels of A′, the intended treatment mechanism, p, and the conditional prob-
abilities of the A′|A, V , which make up the implied treatment mechanism
due to dichotomizing the exposure variable:

{
p1 − p

(
A′ = 1|A = 1, V

)}
E

[
Y ∆ (1) |V

]
+ . . . (23)

+
{
pk − p

(
A′ = k|A = 1, V

)}
E

[
Y ∆ (k) |V

]
Alternatively, the asymptotic bias can be written in terms of only the in-
tended treatment mechanism, p, the potential outcomes at levels of A′, and
the potential outcomes at levels of A:

p1

{
E

[
Y ∆ (1) |V

]
− E [Y ∗ (1) |V ]

}
+ . . .+pk

{
E

[
Y ∆ (k) |V

]
− E [Y ∗ (1) |V ]

}
(24)

The first formulation of the bias, equation 22, illustrates the effect of the
difference between the intended treatment mechanism and the hypothetical
treatment on the bias. Violations in the mechanism equivalence assumption
will result in larger values of bias since these violations will result in the
{pi − p (A′ = i|A = 1, V )} terms being further away from zero. Again, it is
clear that if the intended treatment mechanism equals the implied treat-
ment mechanism from dichotomizing the estimate is consistent. The second
formulation, equation 23, illustrates the effect of violations from the second
assumption, effect equivalence, on the bias. Thus, when there are large dif-
ferences in the expected potential outcomes at levels A′ and the expected
potential outcomes A there will be large bias.

11
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Figures 1 and 2 below illustrate the effects of violations of the proposed
assumptions on asymptotic bias. For the purpose of these figures let us as-
sume that the level of A equal to 1, to which all subjects would be set in the
hypothetical treatment, is truly divided into two distinct levels, A′ = 1 and
A′ = 2. Since there are only two levels of A′ the intended intervention prob-
abilities at each level of V are fully defined by one probability, p1. Thus, the
intended treatment mechanism involves setting within strata of V, A′ equal
to 1 with probability p1 and to A′ = 2 with probability 1−p1. For Figure 1,
E

[
Y ∆ (1) |V

]
= 2, and E

[
Y ∆ (2) |V

]
= 3, and the true conditional prob-

ability p (A′ = 1|A = 1, V ) = .45. Figure 1 shows that when the intended
intervention probabilities, p1, are equivalent to the true conditional probabil-
ities, p (A′ = k|A = 1, V ), the asymptotic bias is equal to zero. Furthermore,
as the intended intervention probabilities deviate from the true conditional
probabilities the asymptotic bias increases in magnitude in a linear fashion.
In fact, the slope of the line is equal to E

[
Y ∆ (1) |V

]
−E

[
Y ∆ (2) |V

]
, so for a

p1−p (A′ = k|A = 1, V ) deviation from the observed conditional probability
there will be a {p1 − p (A′ = k|A = 1, V )}

{
E

[
Y ∆ (1) |V

]
− E

[
Y ∆ (2) |V

]}
change in the asymptotic bias.

Figure 2 similarly illustrates the effect of violations in the Effect Equiv-
alence assumption on asymptotic bias. For this figure the values were
set to E

[
Y ∆ (1) |V

]
= 2, p1 = .2, and p (A′ = 1|A = 1, V ) = .8. When

E
[
Y ∆ (1) |V

]
is equal to E

[
Y ∆ (2) |V

]
the asymptotic bias is equal to zero.

Once again the asymptotic bias has a linear relationship with respect to
deviations from the proposed assumption. For a unit deviation from effect
equivalence there is a p1− p (A′ = k|A = 1, V ) deviation in asymptotic bias.

In both figures it is clear that the overall size of the asymptotic bias is
dependent on the extent to which both assumptions are violated. Recall
that the asymptotic bias is equal to zero if either the Effect Equivalence or
Mechanism Equivalence assumption is satisfied. The slope of Figure 1, which
depicts the effect of deviations in the treatment mechanism, is equal to the
deviation in the expected value of the outcome within levels of A′. Likewise,
the slope of Figure 2, which depicts the effect of deviations in the expected
value of the outcome, is equal to the deviation in the treatment mechanism.
Thus, the larger the difference between the intended treatment mechanism
and the true conditional probability the larger the effect of deviations in
expected outcome, and vice versa.
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5 Example: Effect Of Parasite Density On Malaria
Recurrence

We will now examine how dichotomizing the exposure effects estimates of
the population intervention model additive risk when measuring the effect
of baseline parasite density on the recurrence of Malaria.1 The following
analysis was motivated by data used in Greenhouse et al. 2006[3]. The ex-
posure, baseline parasite density, is measured on a continuous scale between
2,000 and 1,000,000 parasites/µL and the observed outcome Y is a binary
variable indicating whether or not an individual had a Malaria recurrence. A
hypothetical intervention which will reduce baseline parasite density below
39,000 will be examined.

The parameter of interest is the additive risk parameter, E [Ya]− E [Y ]
for a binary variable A equal to 1 when parasite density is less than 39,000
and 0 otherwise. As shown above this parameter implies a treatment mech-
anism which sets individuals to parasite density levels below 39,000 at a rate
equal to the conditional probability of the parasite density given that the
parasite density is below 39,000. However, the designer of the intervention
claims that it is able to reduce baseline viral load to less than 5,000 for 70
percent of patients and between 5,001 and 39,000 for the other 30 percent
independent of the patients other characteristics. Thus, the intended pa-
rameter of interest is E [Ya∗ ] − E [Y ], where a∗ is the intervention which
sets individuals to less than 5,000 UNITS 70 percent of the time and be-
tween 5,001 and 39,000 UNITS 30 percent of the time. Table 1 presents
the estimates of the parameter E [Ya] − E [Y ] for different levels of a using
G-computation.

It is clear from this table that the Effect Equivalence assumption is vi-
olated since the effect is not the same among the less than 5,000 group
and the 5,000 to 39,000 group. Also, about 15 percent of the individu-

1For this example G-computation methods will be used to estimate the parameter
of interest, in Hubbard and van der Laan double robust estimates of the parameters of
interest are also presented. In certain situations the double robust estimator exhibits nicer
properties, namely they are consistent if either the model of the outcome is consistent or
the model of the probability of the treatment given the covariates is consistent. However,
for the sake of this example the simplicity of the G-computation estimator allows us to
more clearly demonstrate our focus on the effects of dichotomizing the exposure/treatment
variable without getting into the details of double robust estimation. Furthermore, for
simplicity, we will examine the effect over the entire population and not for a specific
subpopulation, V.
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Table 1: Estimate of Additive Risk For Different Exposure Levels, a

Exposure, a E [Ya]− E [Y ]
< 5, 000 -.073
5, 000− 39, 000 -.032
< 39, 000 -.039

als with parasite density less than 39,000 have a parasite density less than
5,000 far less than the 70 percent of individuals which hypothetical treat-
ment intends to lower to less than 5,000 indicating that the Mechanism
equivalence assumption is also violated. The estimate of the parameter of
interest, E [Ya∗ ] − E [Y ], for the hypothetical intervention is -.061, or 56
percent larger than the estimate obtained from simply dichotomizing the
treatment variable at 39,000 and estimating the parameter. This example
nicely illustrates how different ones estimate of the parameter of interest
may be from what one intended to estimate if they naively dichotomize
the exposure/treatment variable without further exploration of the effect
within sub-levels of the intended treatment and without consideration for
the distribution of the exposure which may be achieved by the proposed
intervention.

6 Discussion

The above results illustrate that by estimating the parameters of the popula-
tion intervention model for the different levels of A′ within A = 1 separately
and then combining those estimates using the user-supplied intended treat-
ment mechanism, p, one can arrive at a consistent estimate of the parameter
of interest. Furthermore, this estimate will exhibit the same properties as the
estimates of Hubbard and van der Laan, 2008. Specifically, these estimates
will be remain unbiased when the nuisance parameters are misspecified and
efficient when they are specified correctly.

The assumptions which are necessary to have consistency in section two,
mechanism equivalence and the effect equivalence, are not specific to the
population intervention model. In fact, at least one of the two assumptions
is necessary in any method which provides consistent estimates of a param-
eter of interest which includes E [Ya|V ]. Assessing the plausability of one
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or both of these assumptions is a necessary consideration when deciding
to dichotomize an exposure variable and implement accepted methods for
a naturally binary exposure. Even in situations when the exposure vari-
able initially appears to be naturally binary, considering the plausability
of these assumptions may be reasonable. For example, when the exposure
A is defined as equal to one for smokers and equal to zero for nonsmokers
and one is interested in the counterfactual world where the entire popula-
tion is set to non-smoker, evaluating the plausability of these assumptions
is a reasonable course of action. Cigarette smoke exposure is trully a con-
tinuous random variable and the level of exposure is not equal among all
smokers, and likewise is not equal among all non-smokers; thus, by using
the dichotomous exposure variable, most likely the result of self report, one
must either assume that an intervention will set all subjects to the smoke
exposure levels in the nonsmoker group at a rate equal to the conditional
probability of being nonsmoker given true cigarette exposure and covariates,
V (Mechanism Equivalence) or that the effect at all cigarette smoke levels
within the nonsmoker group is the same (Effect Equivalence). Furthermore,
these assumptions are not specific to a binary random variable and should
be considered in all situations when another random variable is mapped into
a categorical variable or in which the data is collected at a coarser level than
the true exposure.
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