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A Targeted Maximum Likelihood Estimator of
a Causal Effect on a Bounded Continuous

Outcome

Susan Gruber and Mark J. van der Laan

Abstract

Targeted maximum likelihood estimation of a parameter of a data generating
distribution, known to be an element of a semiparametric model, involves con-
structing a parametric model through an initial density estimator with parame-
ter epsilon representing an amount of fluctuation of the initial density estimator,
where the score of this fluctuation model at epsilon=0 equals the efficient influence
curve/canonical gradient. The latter constraint can be satisfied by many paramet-
ric fluctuation models, since it represents only a local constraint of its behavior
at zero fluctuation. However, it is very important that the fluctuations stay within
the semiparametric model for the observed data distribution, even if the parameter
can be defined on fluctuations that fall outside the assumed observed data model.
In particular, in the context of sparse data, a violation of this property can heavily
affect the performance of the estimator. We demonstrate this in the context of
estimation of a causal effect of a binary treatment on a continuous outcome that
is bounded. It results in a targeted maximum likelihood estimator that inherently
respects known bounds, and consequently is more robust in sparse data situations
than the targeted MLE using a naive fluctuation model.



1 Introduction.
Targeted maximum likelihood estimation (TMLE) yields semiparametric efficient

substitution estimators of parameters in semiparametric models (van der Laan and

Rubin, 2006). In particular, it can be applied to estimating the statistical counterpart

of a causal parameter. In this article a new targeted maximum likelihood estimator

for estimating a causal effect of a binary treatment on a continuous outcome is intro-

duced. This estimator is more robust than a previously presented TMLE procedure

when there is sparsity in the data that decreases the identifiability of the parameter

of interest.

Section 2 of the paper provides background on the application of TMLE method-

ology in the context of sparsity, and its power relative to other semiparametric ef-

ficient estimators by being a substitution estimator respecting global constraints of

the semiparametric model. Even though an estimator can be asymptotically effi-

cient without utilizing global constraints, the global constraints are instrumental in

the context of sparsity with respect to the target parameter, motivating the need for

semiparametric efficient substitution estimators, and for a careful choice of fluctua-

tion function for the targeted MLE step that fully respects these global constraints.

A rigorous demonstration of the proposed targeted MLE of the causal effect of a

binary treatment on a bounded continuous outcome follows, and it is contrasted

to a targeted MLE that makes use a fluctuation function that does not respect the

bounds.

Simulation studies described in Section 3 compare the new TMLE estimator of

the causal effect, which relies on a logistic fluctuation of an initial density estimate,

with the traditional TMLE estimator, with and without sparsity in the data. Re-

sults for other commonly applied estimators, the inverse-probability-of-treatment

weighted estimator (IPTW) (Hernan et al., 2000; Robins, 2000b), a double ro-

bust augmented IPTW estimator (aug-IPTW) (Robins and Rotnitzky, 2001; Robins

et al., 2000; Robins, 2000a) that is efficient but not a substitution estimator, and the

maximum likelihood substitution estimator according to a parametric model (MLE)

(Robins, 1986) are also presented.

2 TMLE for causal effect estimation on a continuous
outcome.

The targeted MLE is a semiparametric efficient substitution estimator of a target pa-

rameter Ψ(P0) of a true distribution P0 ∈M, based on sampling n i.i.d. O1, . . . , On

from P0. Here P0 is known to be an element of a semiparametric statistical model

M. We will start with providing a succinct summary of how it works. For more
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details we refer to our articles on this topic (van der Laan et al., 2009).

Firstly, one notes that Ψ(P0) = Ψ(Q0) only depends on P0 through a relevant

part Q0 = Q(P0) of P0. Secondly, one proposes a loss function L(Q)(O) so that

Q0 = arg minQ∈QE0L(Q)(O), where Q = {Q(P ) : P ∈ M}. Thirdly, one uses

minimum loss-based learning, such as super learning (van der Laan et al., 2007),

fully utilizing the power and optimality results for loss-based cross-validation to se-

lect among candidate estimators, to obtain an initial estimator Q0
n of Q0. Fourthly,

one proposes a parametric fluctuation Q0
ng(ε), possibly indexed by nuisance param-

eter g0 = g(P0), so that

d

dε
L(Q0

ng(ε))(O)

∣∣∣∣
ε=0

= D∗(Q0
n, g)(O), (1)

whereD∗(Q0, g0) is the canonical gradient/efficient influence curve of Ψ : M→ IR
at P0. Fifthly, one computes the amount of fluctuation

εn = arg min
ε

n∑

i=1

L(Q0
ngn

(ε))(Oi),

where gn is an estimator of the unknown nuisance parameter g0. This yields an

update Q1
n = Q0

ngn
(εn). This updating of an initial estimator Q0

n into a next Q1
n

is iterated till convergence resulting in a Q∗n. Since at the last step the amount of

fluctuation εn ≈= 0, this final Q∗n will solve the efficient influence curve estimating

equation

0 =
n∑

i=1

D∗(Q∗n, gn)(Oi),

representing a fundamental ingredient for establishing asymptotic efficiency of Ψ(Q∗n):
recall that an estimator is efficient if and only if it is asymptotically linear with in-

fluence curve equal to the efficient influence curve D∗(Q0, g0). Finally, the targeted

MLE of ψ0 is the substitution estimator Ψ(Q∗n).
Thus we see that the targeted MLE involves constructing a parametric model

Q0
n(ε) through the initial estimator Q0

n with parameter ε representing an amount

of fluctuation of the initial estimator, where the score of this fluctuation model at

ε = 0 equals the efficient influence curve. The latter constraint can be satisfied by

many parametric models, since it represents only a local constraint of its behavior

at zero fluctuation. However, it is very important that the fluctuations stay within

the model for the observed data distribution, even if the parameter can be defined

on fluctuations that fall outside the assumed observed data model. In particular,

in the context of sparse data, a violation of this property can heavily affect the

performance of the estimator.
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One important strength of the semiparametric efficient targeted MLE relative to

the alternative semiparametric efficient estimating equation methodology (van der

Laan and Robins, 2003) is that it does respect the global constraints of the observed

data model since it is a substitution estimator Ψ(Q∗n) with Q∗n an estimator of a

relevant part Q0 of the true distribution of the data in the observed data model.

The estimating equation methodology does not result in substitution estimators and

thereby often ignore important global constraints of the observed data model, which

comes at a price in the context of sparsity. Indeed, simulations have confirmed this

gain of targeted MLE relative to the efficient estimating equation method in the

context of sparsity (Stitelman and van der Laan, 2010), and it is again demonstrated

in this article. However, if the targeted MLE starts violating this principle of being

a substitution estimator by allowing Q∗n to fall outside the assumed observed data

model, this advantage is compromised. Therefore, it is crucial that a fluctuation

model is used that is guaranteed to stay within the wished observed data model.

To demonstrate this important consideration of selecting a valid fluctuation

model in the construction of targeted MLE, we consider the problem of estimat-

ing a causal effect of a binary treatment A on a continuous outcome Y , based

on observing n i.i.d. copies of O = (W,A, Y ) ∼ P0, where W is the set of

confounders. Under nonparametric structural equation model (NPSEM) W =
fW (UW ), A = fA(W,UA), Y = fY (W,A,UY ) with a structure on the exogenous

variables U = (UW , UA, UY ) satisfying the no unmeasured confounder assumption

(A ⊥ Y (a) | W for the counterfactuals Y (a) defined by this NPSEM), the additive

causal effect E(Y (1)− Y (0)) can be identified from the observed data distribution

through the following statistical parameter of P0:

Ψ(P0) = E0(E0(Y | A = 1,W )− E0(Y | A = 0,W )).

Suppose that it is known that Y ∈ [a, b] for some a < b. Alternatively, one might

have truncated the original data to fall in such an interval and focus on the causal

effect of treatment on this truncated outcome, motivated by the fact that estimating

conditional means of unbounded, or very heavy tailed, outcomes requires very large

data sets.

Let Y ∗ = (Y − a)/(b − a) be the linearly transformed outcome within [0, 1],
and define

Ψ∗(P0) = E0(E0(Y
∗ | A = 1,W )− E0(Y

∗ | A = 0,W )).

We note that

Ψ(P0) = (b− a)Ψ∗(P0).

An estimate, limit distribution, and confidence interval for Ψ∗(P0) is now immedi-

ately mapped into an estimate, limit distribution, and confidence interval for Ψ(P0),
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by simple multiplication by (b − a). As a consequence, without loss of generality,

we can assume a = 0 and b = 1 so that Y ∈ [0, 1].
The efficient influence curve of the statistical parameter Ψ : M → IR, defined

on a nonparametric statistical model M for P0, at the true distribution P0, is given

by

D∗(P0) =
2A− 1

g0(A | W )
(Y − Q̄0(W,A)) + Q̄0(1,W )− Q̄0(0,W )−Ψ(Q0),

where Q̄0(W,A) = E0(Y | W,A), and Q0 = (QW , Q̄0) denotes both this condi-

tional mean Q̄0 as well as the marginal distribution QW of W . Note that indeed

Ψ(P0) only depends on P0 through Q̄0 and the marginal distribution of W . We will

use the notation Ψ(P0) and Ψ(Q0) interchangeably.

We will now define a targeted MLE of Ψ(Q0) as follows. Let Q̄0
n be an initial

estimator of Q̄0(W,A) = E(Y | A,W ) with predicted values in (0, 1). In addition,

we estimate PW with the empirical distribution of W . Let Q0
n denote the resulting

initial estimator of Q0. The targeted MLE step will also require an estimator gn of

g0 = PA|W . Only the conditional mean Q̄0
n will be modified by the targeted MLE

procedure defined below: this makes sense since the empirical distribution of W
is already a nonparametric maximum likelihood estimator so that no bias gain with

respect to the target parameter will be obtained by modifying it.

We can represent the estimator Q̄0
n as Q̄0

n = 1
1+exp(−f0

n)
with f 0

n = log(Q̄0
n/(1−

Q̄0
n)). Consider now the fluctuation model

Q̄0
n(ε) =

1

1 + exp(−{f0
n + εh}) ,

with parameter ε, indexed by a function

h(gn)(W,A) =
2A− 1

gn(A | W )
.

Equivalently, we can write this as logitQ̄0
n(ε) = logitQ̄0

n + εh(gn).
Consider now the following loss function for Q̄0:

−L(Q̄)(O) = Y log Q̄(W,A) + (1− Y ) log(1− Q̄(W,A)).

Note that this is the log-likelihood of the conditional distribuiton of a binary out-

come Y , but now extended to continuous outcomes in [0, 1]. It is thus known that

this loss function is a valid loss function for the conditional distribution of a binary

Y , but we need that it is a valid loss function for a conditional mean of a continuous

Y ∈ [0, 1]. We have the following lemma establishing this result about this loss

function.
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Lemma 1 We have that
Q̄0 = argmin

Q̄

E0L(Q̄),

where the minimum is taken over all functions of (W,A) which map into (0, 1). In
addition, define the fluctuation function

logitQ̄(ε) = logitQ+ εh.

For any function h we have

d

dε
L(Q̄(ε))

∣∣∣∣
ε=0

= h(W,A)(Y − Q̄(W,A)).

Proof: Let Q1 be a local minimum and consider the fluctuation Q1(ε) defined

above. Then the derivative of E0L(Q1(ε)) at ε = 0 equals zero. However,

− d

dε
L(Q1(ε))

∣∣∣∣
ε=0

= h(W,A)(Y −Q1(W,A)).

Thus, it follows that

E0h(W,A)(Y −Q1(W,A)) = E0h(W,A)(Q0 −Q1)(W,A).

But this needs to hold for any function h(W,A), which proves that Q1 = Q0 a.e. �

This proves that L(Q̄) is a valid loss function for the conditional mean Q̄0.

Indeed, we can use L(Q̄) as loss function to construct an initial estimator of Q̄0,

and or use cross-validation to select among candidate targeted maximum likelihood

estimators, such as in the collaborative targeted MLE procedure. For the purpose of

construction of an initial estimator one could also use a minimum loss-based super

learner based on the squared error loss function L2(Q̄) = (Y −Q̄(W,A))2, possibly

with weights.

Given an initial estimator Q̄0
n, and our proposed fluctuation function Q̄0

n(ε), we

have
d

dε
L(Q̄0

n(ε))

∣∣∣∣
ε=0

= h(g)(W,A)(Y − Q̄0
n(W,A)),

giving us the wished first component D∗1 of the efficient influence curve D∗ =
D∗1 +D∗2.

Let’s use the log-likelihood loss function, −logQW , as loss function for the

marginal distribution of W , so that our combined loss function is given by L(Q) =
−logQW + L(Q̄). In addition, we use as fluctuation of the empirical distribution

QWn,QWn(ε1) = (1+ε1D
∗
2(Q))QWn, whereD∗2(Q) = Q̄(W, 1)−Q̄(W, 0)−Ψ(Q)
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is the remaining component of the efficient influence curve. With these choices we

indeed now have that
d

dε
L(Q(ε))

∣∣∣∣
ε=0

= D∗(Q, g).

This shows that we succeeded in defining a loss function for Q0 = (QW , Q̄0) and

fluctuation function so that the wished derivative (1) indeed yields the efficient in-

fluence curve.

The MLE of ε1 equals zero, so that the update of QWn equals QWn itself. The

empirical mean of the componentD∗2 = Q̄(W, 1)− Q̄(W, 0)−Ψ(Q) of the efficient

influence curve is always equal to zero, due to the fact that we estimate the marginal

distribution of W with the empirical distribution of W .

The amount of fluctuation of ε for fluctuating Q̄0
n is given by

ε0n = argmin
ε

PnL(Q̄0
n(ε)).

This “maximum likelihood” estimator of ε can be computed with generalized linear

regression using the binomial link, i.e. the logistic regression MLE procedure, sim-

ply ignoring that the outcome is not binary, which also corresponds with iterative

reweighted least squares estimation using weights 1/Q(1−Q).
This provides us with the targeted MLE update Q1

n = Q0
n(ε0n), where the em-

pirical distribution of W did not get updated, and Q̄0
n did get updated as Q̄0

n(ε0n).
Iterating this procedure now defines the targeted MLE Q∗n, but as in the binary out-

come case, we have that Q2
n = Q1

n(ε1n) = Q1
n since the next MLE ε1n = 0. Thus

convergence occurs in one step, so that Q∗n = Q1
n. The targeted MLE of ψ0 is thus

given by Ψ(Q∗n) = Ψ(Q1
n). As predicted, we have that the targeted MLE Q∗n solves

the efficient influence curve estimating equation PnD
∗(Q∗n, gn,Ψ(Q∗n)) = 0.

We note that, even if there is strong confounding causing some large values of

hg0
n
, the resulting targeted MLE Q̄∗n remains bounded in (0, 1), so that the targeted

MLE Ψ(Q∗n) fully respects the global constraints of the observed data model. On

the other hand, the augmented IPTW estimator obtained by solving PnD
∗(Q0

n, gn, ψ)
= 0 in ψ yields the estimator

ψn =
1

n

n∑

i=1

h0
gn

(Wi, Ai)(Yi − Q̄0
n(Wi, Ai)) + Q̄0

n(W, 1)− Q̄0
n(W, 0),

which can easily fall outside [0, 1] if for some observations Wi, gn(1 | Wi) is close

to 1 or 0. This represents the price of not being a substitution estimator.
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Contrasting with targeted MLE using linear fluctuation function. Alterna-

tively, we would employ the targeted MLE using the L2(Q̄) = (Y − Q̄(W,A))2

loss function, and fluctuation function Q̄0(ε) = Q̄0 + εh(g), so that (1) is still sat-

isfied. In this case, large values of h(g) will result in predicted values of Q̄0(εn)
that are out of the bounds [a, b]. Therefore, this version of targeted MLE is not re-

specting the global constraints of the model, i.e., the knowledge that Y ∈ [a, b]. A

comparison based on simulated data of the targeted MLE using the logistic fluctua-

tion function and the targeted MLE using this linear fluctuation function is provided

in the next section.

3 Simulation studies for the additive effect of a bi-
nary point treatment on a continuous outcome.

Two simulation studies illustrate the effects of employing a logistic vs. linear fluc-

tuation on TMLE estimator performance with and without sparsity in the data,

where a high degree of sparsity corresponds to a target parameter that is borderline-

identifiable. As above, the parameter of interest is defined as the marginal effect of

a binary point treatment on the outcome, ψ0 = EW [E[Y | A = 1,W ]−E[Y | A =
0,W ]].

The “traditional” targeted maximum likelihood approach to estimating an ad-

ditive treatment effect when the outcome is continuous is to fluctuate the initial

density estimate on a linear scale. Given Q̄0
n(A,W ), an initial estimate of the con-

ditional mean of Y given (A,W ), the fluctuation function is defined as Q̄0
n(ε) =

Q̄0
n + ε(hgn) and the loss function L(Q̄) is chosen to be the squared error loss

function, so that we still have the required constraint (1). The estimate εn can be

obtained by estimating ε with a linear regression of Y on hgn , using the initial fit,

Q̄0
n(A,W ), as offset.

A second TMLE estimate using the logistic fluctuation method described in

Section 2 is also obtained. Y is transformed into Y ∗ ∈ [0, 1] by shifting and scaling

the values. In the simulation setting, Y is not bounded, so that we do not have

an a priori a and b bound on Y . Instead of truncating Y and redefining the target

parameter as the causal effect on the truncated Y , we still aim to estimate the causal

effect on the original Y . Therefore, we set a = min(Y ), b = max(Y ), and

Y ∗ =
Y − a

b− a
.

An initial estimate, Q̄0,Y ∗
n (A,W ) = E(Y ∗|A,W ), is obtained, and then represented

as a logistic function of its logit-transformation. Note that logit(x) is not defined
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when x = 0 or 1. Therefore in practice Q̄0,Y ∗
n (A,W ) is bounded away from 0 and

1 by truncating it at (α, (1 − α)). We used α = 0.005 in these simulation studies,

which did not yield appreciably different results than setting α = 0.001 or α = 0.01.

The function Q̄0,Y ∗
n is fluctuated on the logit scale with logitQ̄0,Y ∗

n (ε) = logitQ̄0,Y ∗
n +

εh(gn), using the same clever covariate, hgn(A,W ), employed in the linear fluctua-

tion described above. Fitting ε is again carried out using standard software, but this

time using logistic regression of Y ∗ on hgn(A,W ) with offset logit(Q0,Y ∗
n (A,W )).

This results in the updated Q̄1,Y ∗
n . Fitted values for Q̄1,Y ∗

n (A,W ) are mapped back to

the original scale: Q̄1,Y
n = Q̄1,Y ∗

n (A,W )∗(b−a)+a. The marginal distribution is es-

timated with the empirical distribution of W , giving the Q∗n = Q1
n = (QW,n, Q̄

1,Y
n )

of (QW , Q̄0). The estimate

ψn = Ψ(Q∗n) =
1

n

n∑

i=1

Q̄1,Y
n )(1,Wi)− Q̄1,Y

n (0,Wi)

is the targeted MLE of the wished additive causal effect ψ0.

Parameter estimates were also obtained using the augmented inverse probability

of treatment weighed estimator (aug-IPTW)

ψaug−IPTW
n =

1

n

n∑

i=1

2A− 1

gn(Ai | Wi)
(Yi − Q̄0

n(Wi, Ai))

+
1

n

n∑

i=1

(Q̄0
n(1,Wi)− Q̄0

n(0,Wi)).

Both the targeted MLE and the augmented IPTW estimator are double robust so

that these estimators will be consistent for ψ0 if either gn or Q̄0
n is consistent for g0

and Q̄0, respectively. Both the targeted MLE and the augmented IPTW estimator

are asymptotically efficient if both gn and Q̄0
n are consistent.

In this simulation study we will use simple parametric MLE’s as initial esti-

mators Q̄0
n and gn, even though we recommend the utilization of super learning in

practice. The purpose of this simulation is to investigate the performance of the

updating step under misspecified and correctly specified Q̄0
n, and for that purpose

we can work with parametric MLE fits.

Results from two estimation methods that are not double robust and semipara-

metric efficient are included as well. The maximum likelihood estimator according

to a parametric model for Q̄0 (MLE), used as initial estimator in the targeted MLE

and augmented IPTW, is included for the sake of evaluating the bias reduction step

carried out by these two semiparametric efficient procedures. Inverse probability of

treatment weighted (IPTW) estimators are consistent when gn(A,W ) is a consistent
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estimator of the treatment mechanism g0(A,W ) = P (A = 1|W ), but are known to

be inefficient. These two estimators are defined as

ψMLE
n =

1

n

n∑

i−1

(Q̄0
n(1,Wi)− Q̄0

n(0,Wi),

ψIPTW
n =

1

n

n∑

i=1

(2A− 1)
Yi

gn(Ai,Wi)
.

3.1 Data generation
Covariates W1,W2,W3 were generated as independent binary random variables,

W1,W2,W3 ∼ Bernoulli(0.5).

Two treatment mechanisms were defined that differ only in the values of the coeffi-

cients for each covariate:

g0(1 | W ) = P (A = 1 | W ) = logit−1(aW1 + bW2 + cW3).

We consider two settings:

a1 = 0.5, b1 = 1.5, c1 = −1 and a2 = 1.5, b2 = 4.5, c2 = −3.

We refer to these two treatment mechanisms as g0,1 and g0,2, respectively. The

observed outcome Y was generated as

Y = Q̄0(A,W ) + e, e ∼ N(0, 1),

Q̄0(A,W ) = Aj + 2W1 + 3W2 − 4W3.

For both simulations the true additive causal effect equals one: ψ0 = 1. Treat-

ment assignment probabilities based on mechanism g0,1 range from 0.269 to 0.881,

indicating no sparsity in the data for simulation 1. In contrast, treatment assignment

probabilities based on mechanism g0,2 range from (0.047 to 0.998). Simulation 2

poses a more challenging estimation problem in the context of sparse data. In both

simulations predicted values for gn(A | W ) are bounded away from 0 and 1 by

truncating at (p, (1− p)), with p = 0.01.

Estimates were obtained for 1000 samples of size n = 1000 from each data

generating distribution. Treatment assignment probabilities, g0(A | W ), were es-

timated using a correctly specified logistic regression model. A correctly specified

main terms regression model was used to obtain Q̄0
cor(A,W ). In addition, a mis-

specified initial estimate, Q̄0
mis(A,W ), was obtained by regressing Y on A.
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We expect MLE estimates based on Q̄0
cor to be unbiased and efficient, while

those based on Q̄0
mis will be biased. IPTW estimates only depend on consistent

estimation of g0, thus are identical regardless of how Q̄0 is estimated. For both sim-

ulations gn is a consistent estimator, thus it is reasonable to expect unbiased IPTW

estimates, with more variation in simulation 2 estimates. The targeted MLE and the

augmented IPTW are known to be unbiased if gn is consistent, and asymptotically

efficient when both Q̄0 and g0 are consistently estimated. Though correctly estimat-

ing g0 will asymptotically correct for any bias due to mis-specification of Q̄0
n, this

is not guaranteed in finite samples, especially when there is sparsity. For simulation

2 we expect TMLElog, using the logistic fluctuation, to outperform TMLElin, using

the linear fluctuation.

3.2 Results
Table 1 reports the average estimate, bias, empirical variance, and mean squared

error (MSE) for each estimator, under different specifications of the initial estimator

Q̄0
n. In all cases gn is consistent, and bounded at (0.01, 0.99).

Table 1: Estimator performance for simulations 1 and 2 when the initial estimator of

Q̄0 is correct and misspecified. Results are based on 1000 samples of size n = 1000,

gn(A,W ) bounded at (.01,.99) for all estimators.

Q̄0 correctly estimated Q̄0 incorrectly estimated
ave bias var MSE ave bias var MSE

Simulation 1
MLE 1.003 0.003 0.005 0.005 3.075 2.075 0.030 4.336
IPTW 1.006 0.006 0.009 0.009 1.006 0.006 0.009 0.009
aug-IPTW 1.003 0.003 0.005 0.005 1.005 0.005 0.010 0.010
TMLElog 0.993 −0.007 0.005 0.005 0.993 −0.007 0.006 0.006
TMLElin 0.993 −0.007 0.005 0.005 0.993 −0.007 0.006 0.006

Simulation 2
MLE 1.001 0.001 0.009 0.009 4.653 3.653 0.025 13.370
IPTW 1.554 0.554 0.179 0.485 1.554 0.554 0.179 0.485
aug-IPTW 0.999 −0.001 0.023 0.023 1.708 0.708 0.298 0.798
TMLElog 0.989 −0.011 0.037 0.037 0.722 −0.278 0.214 0.291
TMLElin 0.986 −0.014 0.042 0.042 −0.263 −1.263 2.581 4.173

http://biostats.bepress.com/ucbbiostat/paper265



In simulation 1, when Q̄0 is correctly estimated all estimators perform quite

well, though as expected, IPTW is the least efficient. However, when Q̄0 is incor-

rectly estimated, the MLE estimator is biased and has high variance relative to the

other estimators. Because gn(A | W ) is correctly specified, IPTW and aug-IPTW

provide unbiased estimates, as do both TMLEs. TMLElog is on a par with TMLElin,

as there is no sparsity in the data, and both are more efficient than any of the other

estimators.

In simulation 2 all estimators except IPTW are unbiased when Q̄0 is correctly

estimated. In this case, both TMLE estimators have higher variance than aug-IPTW,

and all three are more efficient than IPTW, but less efficient than the parametric

MLE estimator. Though asymptotically the IPTW estimator is expected to be un-

biased in this simulation, since gn is a consistent estimator of g02 , these results

demonstrate that in finite samples, heavily weighting a subset of observations not

only increases variance, but can also bias the estimate.

When the model for Q̄0 is misspecified in simulation 2, The MLE estimator is

even more biased than it was in simulation 1. The efficiency of all three double-

robust efficient estimators suffers in comparison with simulation 1 as well. Never-

theless, TMLElog, using the logistic fluctuation, has the lowest MSE of all estima-

tors. Its superiority over TMLElin in terms of bias and variance is clear. TMLElog

also outperforms aug-IPTW with respect to both bias and variance, and performs

much better than IPTW or MLE.

4 Discussion.
When an estimation procedure incorporates weights, observations with large weights

can heavily influence the point estimate and inflate the variance. Truncating these

weights is a common approach to reducing the variance, but it generally introduces

bias. The presented TMLE of an additive causal effect of a point treatment inter-

vention, incorporating a logistic fluctuation of the initial conditional mean estimate,

dampens the effect of these heavily weighted observations, thereby heavily reduc-

ing the reliance on truncation. As a substitution estimator, the proposed TMLE of

the additive causal effect respects the global constraints of the observed data model.

Simulation study results indicate that this approach is on a par with, and in the con-

text of sparsity often superior to, fluctuating on the linear scale. In particular it

is more robust when there is sparsity in the data, outperforming MLE, IPTW, and

aug-IPTW.

For the sake of demonstration we considered estimation of the additive causal

effect. However, the same targeted MLE, using the logistic fluctuation, can be used

to estimate other point-treatment causal effects, including parameters of a marginal
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structural model. The newly proposed loss function has also applications in predic-

tion of a bounded outcome, and for targeted MLE of the causal effect of a multiple

time point intervention in which the final outcome is bounded and continuous. We

also pointed out that the proposed fluctuation function and loss function, and cor-

responding targeted MLE, should also be used for continuous outcomes for which

no a priori bounds are known, by simply using the minimal and maximal observed

outcome values. In this way, these choices naturally robustify the targeted MLE

by enforcing that the updated initial estimator will not predict outcomes outside the

observed range.

The TMLE approach presented here using a logistic fluctuation of an initial esti-

mate of the conditional mean of the continuous outcome retains all properties of tar-

geted maximum likelihood estimators, including influence curve-based inference.

The method presented here extends to collaborative targeted maximum likelihood

estimation without modification.
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