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Estimation of Causal Effects of Community
Based Interventions

Mark J. van der Laan

Abstract

Suppose one assigns two interventions to a small number K of different popu-
lations or communities, and one measures covariates and outcomes on a random
sample of independent individuals from each of the K populations. We investi-
gate the problem of identification and estimation of the causal effect of the choice
of intervention assigned at the community level, and, if the intervention is time-
dependent, the causal effect of the changes in the intervention at time t, on the
outcome. The challenge one is confronted with is that different populations have
different environmental factors and that the intervention and environment are as-
signed to the whole population instead of to the individual. The question we wish
to address is if one can still estimate the causal effect of the intervention one would
have obtained if one would have combined all units across the multiple popula-
tions, each unit having their assigned environment and individual covariates, ran-
domly assign the intervention among the two possible interventions to the unit,
and then compare the outcome distributions for the two treatment groups: i.e., if
one would have carried out the ideal experiment of randomizing treatment allo-
cation to the units of the combined population, thereby dealing with confounding
due to different units having different environments and corresponding individual
covariates.

We apply the roadmap based on causal modeling with a nonparametric structural
equation model, which involves 1) defining the target causal effect as a param-
eter on the nonparametric structural equation model, 2) addressing the identifi-
ability from the observed data, and, 3) given an identifiability result under the
required assumptions, the efficient estimation of the resulting statistical target
parameter through targeted maximum likelihood substitution estimators, using



cross-validation to fine tune the estimators. The fundamental identifiability as-
sumption we make is that one collects baseline covariates on the individual that
block the effect of the environment on the outcome of interest, which is formu-
lated as an exclusion restriction assumption in the nonparametric structural equa-
tion model.

In addition, we utilize the understanding of the causal identifiability assumptions
to evaluate the matched sampling design in which the units of different commu-
nities are matched on individual factors. We present efficient weighted targeted
maximum likelihood estimators for these matched sampling designs, and we es-
tablish the concrete theoretical gain in information for the target parameter relative
to independent sampling, by application of general results on case-control biased
sampling in van der Laan (2008).

Our methods can be reasonably well applied to the case that the intervention
causes infectious behavior among individuals, possibly resulting in an enhanced
effect, and to the case that interaction between individuals creates dependence
between the individuals. However, the methods would not take into account the
effect of this dependence among individuals on the assessment of uncertainty in
the point estimates. For that purpose we also propose an estimate of standard
error of the point estimate that takes into account arbitrary (and unknown to the
user) dependence structures that still permit a central limit theorem based normal
approximations.

Our framework and methods are extended to the case that the communities are
followed up over time and exposed to a single time-dependent treatment regimen,
while also being subjected to changes in environment over time. In particular, we
consider the case of estimation of a causal effect of a change in treatment over time
based on observing a single community over time under a certain time-dependent
treatment regimen.

We also generalize our results to causal effects of combined community based
intervention and individually assigned treatment on an outcome of interest. It is
shown that G-computation formulas and corresponding estimators developed for
causal effects of individually assigned treatments can be fully utilized to estimate
these causal effects.

Finally, we consider the case in which one is not willing to assume the exclu-



sion restriction assumption, but many communities are sampled. For that purpose
we propose statistical inference that naturally adapts to the degree at which the
exclusion restriction assumption is approximated and the number of communities
that are sampled. This allows for a unified framework for analyzing studies that
involve community based interventions.



1 Introduction.

There is a rich literature on assessment of causal effects of treatment on an outcome
based on data at the individual level on a random sample of individuals, both in
randomized trials and observational studies. In such studies treatment is ”assigned”
at the individual level and one also collects covariate and outcome data on each
individual. The fundamental problem this part of the causal inference literature
needs to address is the utilization of covariates measured at individual level to
control for the fact that the treatment empirically or theoretically is a function
of such covariates. The fundamental identification problem, involving expressing a
well defined causal effect as a parameter of the distribution of the observed data,
is addressed by the G-computation formula under the sequential randomization
assumption, and, semiparametric model-based efficient estimators of the resulting
statistical target parameter of the distribution of the data have been developed.

Over the last years, due to the increasing need to evaluate community based
programs in practice, there is growing interest in understanding causal effects of
treatments or exposures assigned at the community level, while one still collects
data at the individual level for random samples of individuals within these commu-
nities. These type of designs result in a new challenge for the semiparametric causal
inference literature that seems to not have received much attention yet.

Current practice typically involves using parametric regression models such as
mixed linear models. The parametric model approach avoids careful definition of
the causal effect of interest as a parameter of the distribution of the data, but
instead, one typically focusses on a regression coefficient in a guaranteed misspecified
regression model, and one proceeds in estimation, assessment of uncertainty, and
interpretation, without acknowledging that the regression model is misspecified.
Even if the non-testable causal assumptions for identifiability of a causal effect
would be valid, the resulting statistical parameter estimates and inference will be
biased.

In this article we aim to study the estimation problem relying on a roadmap
involving 1) causal modeling through nonparametric structural equation models
(NPSEM), allowing us to define the causal effect of interest, 2) establishing the
required identifiability conditions, 3) comitting to a nonparametric/semiparametric
statistical models for the data generating distribution implied by these NPSEM,
and 4) semiparametric efficient estimation of the statistical target parameter, rep-
resenting the causal effect under the stated identifiability conditions, with targeted
maximum likelihood (substitution) estimators, which naturally integrates the state
of the art in machine learning through so called loss-based super learning with semi-
parametric efficient estimation of a target parameter.

Specifically, suppose one assigns two interventions of interest to K different pop-
ulations/communities, one takes a random sample of independent units from each of
the K populations, and one takes measurements at the individual level on covariates,
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and an outcome of interest.
The question we wish to address is, if one can still estimate the effect one would

have targeted if one would have combined all units across the multiple populations,
sample a unit from this combined population with its environment and individual
covariate profile, randomly assign the intervention among the two possible inter-
ventions to the unit, and then compare the outcome distributions for the different
treatment groups: i.e., if one would have carried out the ideal randomized trial
involving random allocation of the treatment choice at the individual/unit level
keeping the individual in its environment/neighborhood/community. The challenge
one is confronted with is that the treated and control communities have different en-
vironmental factors, that the treatment and environment are assigned to the whole
population instead of being measured at the individual level, and that only few
communities are sampled, thereby not allowing for asymptotics in the number of
communities.

We apply the roadmap of causal modeling with a nonparametric structural equa-
tion model, defining the target causal effect as a parameter on the nonparametric
structural equation model, addressing the identifiability from the observed data
under interpretable causal assumptions, and finally the efficient estimation of the
resulting target parameter through targeted maximum likelihood estimation, com-
bined with super learning. The fundamental assumption we make is that one collects
baseline covariates on the individual that block the effect of the environment on the
outcome of interest, which is formulated as an exclusion restriction assumption in
the nonparametric structural equation model.

In addition, we utilize our understanding of the causal identifiability assumptions
to evaluate the use of matching in the community based studies, thereby aiming to
make the different communities similar in their individual covariate distributions.
We present efficient weighted targeted maximum likelihood estimators for these
matched cohort designs, by application of general results on semiparametric models
for case-control biased sampling in van der Laan (2008). This also allows us to
evaluate its concrete theoretical gain in information for the target parameter relative
to independent random sampling.

Our methods can be reasonably well applied to the case that individuals within
a community are correlated, and that the intervention causes infectious behavior
among individuals, and thereby possibly an enhanced effect. Even though our
NPSEM does not model this enhanced effect, our statistical target parameters im-
plied by the NPSEM will incorporate the enhanced effect. We also provide a general
CLT-based method for assessment of uncertainty that takes into account the depen-
dence among individuals, without a need to know underlying independent clusters
of units or other type of independence structure.

We will also consider the extreme case in which one observes a single community
at the individual level under a single time-dependent treatment regimen. A com-
mon problem is to assess a causal effect of a time-dependent intervention strategy
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on a particular population that is followed up over time, but, by necessity or by
design, only one such time-dependent intervention is carried out. For example, this
time-dependent intervention might represent an exposure such as air-pollution for
a particular population of individuals, where the airpollution is measured at the
community level so that it is the same for each individual.

Off course, it is impossible to nonparametrically identify the causal effect of one
treatment regime relative to another treatment regime on the population distribu-
tion of a particular outcome of interest, measured at the individual level, from the
population distribution of the data, if everybody individual in the target popula-
tion receives the same treatment. However, such data sets arise naturally and the
causal questions are intriguing, and important. The kind of causal questions that
arise are questions like ”Did the introduction of the death penalty change crime
rates?” , ”Did the introduction of this particular law (e.g., abortion), change the
population distribution of a particular outcome of interest?”, ”Did the introduction
of a marketing television campaign change the population distribution of the be-
havior of the subjects?”, ”Did the roll-out of this HIV-prevention program in this
country reduce the infection rate?”, ”Did the change in air-pollution increase or
decrease asthma prevalence in California?”, ”Did the sudden reduction in hormone
replacement therapy reduce breast cancer or some other clinical outcome?”, ”Did
the change in greenhouse gasses in the atmosphere cause global warming?”, and so
on. One observes a change in treatment over time and a change in outcomes of
interest, and one wonders if there is a causal relation.

Current practice analyzes these data sets, and these analyses are used to suggest
causal effects. Therefore, it is important to provide a formal statistical frame-
work that 1) defines causal parameters as parameters in a nonparametric structural
equation model, 2) provides the non-testable assumptions that allow identifiability
of the causal target parameters from the observed data distribution, and 3) pro-
vide corresponding semiparametric efficient estimators and confidence intervals of
the corresponding statistical parameter that represents the causal target parameter
under these identifiability conditions.

1.1 Organization of article.

This article is organized as follows. In Section 2 we address the case that one
follows up a sample of individuals for each of two communities that is assigned a
treatment and control regimen. The identification result and the corresponding pro-
posed targeted maximum likelihood estimators involve adjustment by pre-treatment
covariates measured at the individual level in order to block the confounding due to
different environments. This assumption will be referred to as an exclusion restric-
tion assumption (on the NPSEM). In particular, the benefit of a matching design is
analyzed. The extension of our identifiability results and estimators to the assign-
ment of a time-dependent treatment and control regimen to the two communities is
developed as well. In Section 3 we extend our identifiability result and corresponding
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targeted ML estimators to K populations.
In Section 4 we consider estimation and inference without assuming the exclu-

sion restriction assumption, thereby operating in a nonparametric statistical model
and acknowledging that the statistical target parameter will only approximate the
wished causal effect, where the approximation depends on the number of communi-
ties and the degree at which the exclusion restriction assumption is violated/holds.
Statistical inference w.r.t. the wished causal effect is developed, where the proposed
estimate of the standard error data adaptively adapts to the degree of violation of
the exclusion restriction assumption and the number of sampled communities.

In Section 5 we consider identification, estimation and inference, of the causal
effect of a change in treatment, when one observes a single community exposed to a
single time-dependent treatment regimen. In Section 6 we generalize our results to
the identification of a causal effect of the community based intervention combined
with an individualized assigned treatment. In Section 7 we take a break, and sum-
marize our findings into a practical conclusion. In Section 8 we consider assessment
of uncertainty of our proposed estimates that incorporates dependence among ob-
servations within the community. We end this article with a summary and some
concluding remarks.

1.2 Some literature on statistical methods for analyzing community
based interventions.

I acknowledge that I am not very familiar yet with the current literature on causal
inference that directly addresses community based interventions. I hope to add
relevant references as time processes and welcome suggestions. A helpful article is
Oakes (2004), which reviews methods for causal inference for neighborhood effects
in social epidemiology. We refer to this article as an overview article putting this
causal inference problem in context of the social epidemiology and some of the
causal inference literature. Overall, from his article one concludes that the causal
inference literature has not focussed much at all on community based interventions
(at least up till 2004), and generalized mixed linear regression models, incorporating
the hierarchical structure, have dominated this literature instead.

Oakes points out the overlap between the epidemiologists neighborhood effects
and educational scientists school effects. The problem addressed by the educational
scientists (Raudenbush and Bryk (1986), Raudenbush and Whillms (1995), Rau-
denbush and Sampson (1999),Coleman et al. (1966), Aitkin and Longford (1986),
Goldstein (1995)) is to estimate the effect of teachers on student achievement, while
the analogous problem for social epidemiologists is to estimate the effect of toxic
dumps, smoking policies, increases in social networking, and so on, on neighbor-
hood’s health. He points out that both share the characteristic that the studies are
observational and that the data structure is hierarchical in the sense that it involves
measurements on both the individuals and the groups in which the individuals op-
erate. So from a statistical point of view there is hardly a difference between these
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two schools.
He also points out the long recognized importance of studying contexts such

as neigborhoods ( Cassel (1976), McMichael (1999), Susser (1999), Berkman et al.
(2000), Krieger (2001)). We quote: ”Social forces, above and beyond any individual,
have been repeatedly shown to play an important role in how we perceive, measure,
and address health and illness” (Parsons (1951), Starr (1982), Rose (1985), Clark
et al. (1991), Barr (1995), McKinlay (1996), Feldman et al. (1997)). This is the very
motivation for the field of social epidemiology, which concerns the study of effects
of social forces and relationships on health.”

In addition, Oakes states, after having stressed the enormous literature on con-
textual effects: ”Yet due largely to persistent and complex methodological obstacles,
along with a lack of attention to them, the causal effect of neighborhood contexts
on health continues to confuse and elude us (see Hook (2001)). There appear to be
no multilevel neighborhood effect studies with observational data, including those
cited above, that directly confront causal inference.”

Oakes proceeds to motivates causal models for the mean counterfactual outcome
of an individual under set neighborhood interventions, thereby defining a causal ef-
fect of a neighborhood intervention on an individual outcome. He presents mixed
linear models for the counterfactual mean outcome as a function of an individual
and neighborhood specific covariates. He considers the required randomization as-
sumption and experimental treatment assignment assumption, well known in the
causal inference literature, under which the coefficients in the mixed linear model
can be interpreted as a conditional causal effect, within strata of the covariates that
entered the model. He concludes that these non-testable causal assumptions are of-
ten unrealistic due to unmeasured confounding and perfectly predictive confounding
of the intervention.

Oakes presents the following comment on the enormous use (and abuse) of mixed
linear models. We quote from Oakes review ”The theoretical foundation of multilevel
models lies in variance component methodology, which in its modern form dates
back to Fishers work circa 1925 (Draper (1995)). A ground-breaking advance came
when Lindley and Smith (1972) formulated their empirical Bayes regression model,
but it was not until the introduction of the EM algorithm (Dempster et al. (1977))
that computational feasibility was obtained. Laird and Ware (1982) popularized
the model for biostatisticians, Bryk, Raudenbush, Goldstein and Mason for social
scientists (Mason et al. (1984), Goldstein (1987), Bryk and Raudenbush (1992)).
From our perspective, the widespread (ab)use of the model is due to the recent
introduction of user- friendly software, especially HLM and MlWin, and an accessible
translation for SAS users by Verbeke and Molenbergs (1997) and Singer (1998). See
also Kreft et al. (1994), Leeuw and Kreft (2001). ”

Oakes also states: ”Understandably, none of the more recent and rigorous discus-
sions of causal inference in either epidemiology or social science (Susser (1973),Green-
land (1990), Greenland (2001), Greenland (2002), Manski (1993), Halloran and
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Struchiner (1995), Morgenstern (1995), M.E.Sobel (1995), Kaufman and Cooper
(1995), Kaufman and Poole (2000), Kaufman and Kaufman (2001), Robins (2001),
Maldonado and Greenland (2002)) addressed multilevel neighborhood effects re-
search directly. Finally, none of the many noteworthy general discussions on causal
inference with observational data (e.g. Campbell and Stanley (1963), Cochran
(1965), McKinlay (1975), Heckman (1979), Leamer (1983), Smith (1990), Rubin
(1991), Clogg and Haritou (1997), Copas and Li (1997), Freedman (1997), Winship
and Morgan (1999), Pearl (2000), Rosenbaum (2002)) address neighborhood effects
or multilevel mod- els, which appear to present some unique issues.”

After discussing the lack of identifiability of causal effects from observational
studies of neighborhood effects, Oakes proposes randomized community trials as the
important way forward. Randomized community trials involve randomly assigning
an intervention among a set of possible interventions to a collection of communi-
ties/neighborhoods. Clearly, to claim identifiability of a causal effect on an outcome
based on such trials, purely based on the fact that the intervention was randomized
to a sample community, one will need to sample a large number of communities:
i.e., the community now plays the role of the experimental unit in the causal infer-
ence literature on observational studies and randomized trials in which treatment is
assigned at the individual level.

Examples of randomized community trials, such as mass-media campaigns to
improve health knowledge, the repair of bad sidewalks, or community policing ini-
tiatives, are provided in (Charlton et al. (1985), Meyer et al. (1991), Shipley et al.
(1995), Holder et al. (1997), Feldman et al. (1998), LeFort et al. (1998), Persky et al.
(1999), Biglan et al. (2000), Luepker et al. (2000)).

Some of our contributions relative to causal mixed linear models.

In particular, we provide the following contribution to this current literature based
on the application of (mixed) linear regression models to assess the causal effect
of an intervention assigned to a community. We use NPSEM to define the wished
marginal causal effect. Initially, we focus on the case that we have large number of
observations at the individual level for relatively few communities (e.g., two), so that
we cannot rely on asymptotics in the number of communities, and, as a consequence,
can also not rely on the intervention being assigned at random to the community.
We introduce a concrete interpretable exclusion restriction assumption, namely the
existence of individually measured covariates that block the effect of the environment
on the outcome, that allows the identification of the causal effect of the community
based intervention. Nonetheless, our methods are also extended to the randomized
community trials, possibly involving many communities, but in a manner so that
the statistical inference will adapt to the degree at which the exclusion restriction
assumption holds: if the exclusion restriction holds, the number of individuals will
drive the precision, and if it fails to hold, the number of communities will drive the
precision, and in the more realistic grey zone, it adapts naturally.
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We assume nonparametric or semi-parametric models for the observed data dis-
tribution, thereby avoiding the bias in effect estimates and statistical inference due
to miss-specified linear regression models. This semi-parametric model approach
requires defining the statistical target parameter (i.e., causal parameter of interest
under the causal assumptions) as a parameter of the observed data distribution for
any possible observed data distribution, avoiding the common misplaced practice of
defining an effect as a coefficient in a misspecified parametric model.

To deal with confounding, matching by design plays an important role, beyond
the statistical adjustment. For that purpose, we incorporate matched cohort designs
in which the communities receiving the treatment are matched with the communities
receiving the control w.r.t. their covariate distributions for the individuals, for a
few of the measured covariates. For each of the statistical estimation problems we
develop the efficient targeted maximum likelihood methodology to obtain the wished
causal effect estimates and corresponding confidence intervals. We also generalize
our results to arbitrary causal parameters of interest of interventions that have a
community component and an individually assigned treatment component.

2 Assigning two interventions to two different commu-
nities.

We consider a study that involves assigning a treatment to one population and a
control treatment to another population, sampling units from the treatment and
control population, and measuring covariates and outcome on each sampled unit.

Let A ∈ {a0, a1} be a variable indicating the two treatment-regimens, and let
E ∈ {e0, e1} be a variable indicating the two regimens of environmental factors that
supposedly measures well the differences in environment relevant to the outcome of
interest. For convenience, we will often refer to A = 1 for A = a1 and A = 0 for
A = a0, and we will refer to A = 0 as control. For the population that is exposed to
treatment we have (A,E) = (1, e1) and for the population that is exposed to control
we have (A,E) = (0, e0). Clearly, the experimenter that is interested in assessing
the causal effect of A = 1 versus A = 0 would prefer to see that e0 = e1. The
treatment could be a time-dependent exposure over a time-window.

In this section we first focus on establishing the causal effect of assigning the
whole regimen A = 0 (i.e. A = (a0(t) : t)) versus A = 1 (i.e. A = (a1(t) : t)),
while later we will also address estimation of the causal effect of just the t-specific
component A(t) = a0(t) versus A(t) = a1(t) at time t.

Typically, the realization of (A,E) is generated as follows: one would select two
populations, whose environment defines two e-profiles, and then one randomly as-
signs the two possible treatments to these two regions, giving the realized (1, e1),
(0, e0) for (A,E). The combined population represents the target population of
units, and our causal NPSEM below describes a mechanism for assigning (E,A) ∈
{(e1, 1), (e1, 0), (e0, 1), (e0, 0)} to a sampled unit from that target population, and
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subsequently measuring covariate and outcome data on that unit. This NPSEM al-
lows us to define the outcome distribution under set treatment, keeping the selection
of the environment random, and define corresponding causal effects of treatment on
the outcome.

Observed data. For the treated population we sample n1 units providing n1 i.i.d
observations of (M1, Y1) defined as a draw from the conditional probability distri-
butions of (M,Y ), given (A,E) = (1, e1). Similarly, we sample n0 units from the
control population providing n0 i.i.d observations of (M0, Y0) from the conditional
distribution of (M,Y ), given (A,E) = (0, e0). These random variables M,Y could
be time-dependent processes.

2.1 The causal model and causal parameter.

In this subsection we formally define the causal effect by a NPSEM, and provide the
link to the observed data, laying the ground work for addressing the identifiability
from the observed data.

NPSEM. Let M = (W = M(0),M(1)) and assume that W are measurements on
the unit taken before it was exposed to treatment. For example, the time ordering
for the variables measured on the unit might be given by

E −W −A−M(1)− Y.

What matters is that we know that W is only a function of E, and not of A. Since
our target population of units is the combined population, we assume that E has
only two possible values e0, e1, so that E is also a binary variable. The NPSEM
with endogenous variables X = (E,W,A,M(1), Y ) is given by:

U = (UE , UW , UA, UM(1), UY ) ∼ PU
E = fE(UE)
W = fW (E,UW )
A = fA(E,W,UA)

M(1) = fM(1)(E,W,A,UM(1))
Y = fY (E,W,A,M(1), UY ).

This defines a random variable (U,X) on the unit. This NPSEM allows us to define
counterfactuals such as Y (1) = Y (A = 1), Y (0) = Y (A = 0) corresponding with
setting A = 1 and A = 0, respectively. Similarly, it defines random variables Y (e, a)
corresponding with interventions setting E = e,A = a. These counterfactuals are
random variables defined as functions of (U,X) obtained by intervening on the
system that generates (U,X).
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Link to observed data. We will assume that UA, UE are independent of
UW , UM(1), UY : i.e., we assume that A,E are randomized, which is a natural as-
sumption on the NPSEM. In that case, the observed data can be viewed as two
i.i.d. samples of size n1, n0 from the counterfactual (post-intervention) distribution
for the intervention A = 1, E = e1 and A = 0, E = e0, respectively. That is, one
observes n1 i.i.d observations on the counterfactual (W (e1),M(1)(a1, e1), Y (a1, e1))
and n0 i.i.d. observations on the counterfactual (W (e0),M(1)(a0, e0), Y (a0, e0)).

Our goal is now to define the parameter of interest/causal effect of interest on
the NPSEM, as a parameter of the distribution of (U,X), and then, under certain
additional assumptions on the NPSEM, establish identifiability of this causal effect
from the two post intervention distributions P1,e1 and P0,e0 identified by our observed
data.

Target parameter on NPSEM: We define our parameter of interest in the
NPSEM for X = (E,W,A,M(1), Y ) as

ΨF (PU,X) = E{Y (1)− Y (0)}, (1)

where the reader is reminded that Y (a) is the counterfactual defined by setting
A = a, for a ∈ {0, 1}. This additive causal effect of A on Y corresponds with
randomly assigning treatment or control to each unit in the combined population
that has characteristics measured by (E,W ), and taking the difference in means
for the treatment and control group. Such an ideal experiment would thus create a
treatment group and control group that has units with both e0 and e1-environments,
and these environmental factors would be approximately balanced between the treat-
ment and control group. That is, this target parameter is free from environmental
confounding.

2.2 Identifiability of target causal effect from observed data.

We now need to address the identifiability of E{Y (1)− Y (0)} from the probability
distributions P1,e1 and P0,e0 from which we have two samples. For this purpose we
make the additional assumption on the NPSEM that the effect of E on Y only goes
through W : i.e, the fY equation in the above NPSEM is replaced by

Y = fY (W,A,M(1), UY ). (2)

Under this exclusion restriction assumption (2) and the strong randomization
assumption stating that (E,W,A) is independent of Y (e, w, a) in the NPSEM, we
have the following identifiability result:

EY (1)− EY (0)
=
∑

w[E(Y (1, e1) |W (1, e1) = w)− E(Y (0, e0) |W (0, e0) = w)]P (W = w),9
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where

P (W = w) = P (E = e1)P (W = w | E = e1) + P (E = e0)P (W = w | E = e0)
= αP1,e1(w) + (1− α)P0,e0(w),

and α = P (E = e1). We also assume that α is known, or equivalently, that the
marginal distribution of E in the NPSEM is known. A standard choice for α is
given by α = n1/n, which corresponds with a combined population in which the
population is weighted by the number of observations sampled from that population
(which might be proportional to the population size of that population). Thus, α
can be viewed as a choice that defines the target combined population on which we
wish to define the additive causal effect of setting treatment versus control.

Heuristics behind ”no residual environmental confounding” assumption
(2). The idea behind this assumption (2) is that e1 (e0), although common to all
units in the region, results in unit specific effects of e1 (e0) on Y , which is some
function f() of characteristics C of the unit and e1 (e0). Suppose we are able to
observe this particular function of the characteristics C of the unit and e1 for each
unit, so that it is captured by W : e.g., W (e1) = f(C1, e1) is this particular function
of e1 and the characteristics. Similarly, W (e0) = f(C0, e0) is this same function of
e0 and the characteristics of the unit in the control population. By controlling for
W = W (E), we are then able to control for the difference in environments for the
two populations (i.e., e0 6= e1) at the individual level. Even if W does not succeed
in capturing the complete effect of e on the unit-specific outcome Y , controlling for
it, will still help to take away some of the difference in outcome distributions of Y
that is purely due to the differences between the two environmental profiles e0 and
e1.

Let’s consider an example. Consider a study that is interested in evaluating
the causal effect of an intervention such as circumcision/diaphram/condom use/ in
preventing HIV-infection. For that purpose we consider two cohorts of non-infected
individuals from two different regions, and in one region everybody gets exposed to
the intervention (e.g., all circumcised, exposed to educational program, and so on),
and the other cohort is a control region. The outcome measured at the individual
level is the HIV-infection status during the course of the study. Comparing the
infection rates in the two cohorts is problematic since it is known that the proportion
of HIV-infected individuals in the treatment region is different from the proportion
of HIV-infected individuals in the control region. This is an example of different
environments that will affect the chance of an individual to become infected: i.e,
there is a higher probability of being infected in one cohort versus the other cohort.
What covariates should we measure to block this effect of the different region-specific
infection rates? Let the proportion of infected individuals for the treatment and
control region be r1 and r0, respectively. Suppose we measure at the individual
level the average number of sexual contacts and partners per month. We could now
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propose an individual risk measure for being infected with HIV at baseline (i.e.,
before the treatment starts): e.g., for an individual in the treatment region it might
be r1 times number of sexual partners, and for an individual in the control region it
is r0 times the number of sexual partners. We include this covariate as a component
of W , giving us a component of W (e1) and W (e0). So, given two people with similar
sexual lifestyles, the person in a low risk environment will get a lower level assigned to
this risk measure than the person in a high risk environment. One might now argue
that this covariate will help to block the effect of the differential infection rates
in the two regions, and thereby makes the exclusion restriction assumption more
reasonable: one might argue that a person in the treated region and control region
with the same value for this blocking covariate and other pre-treatment covariates
are now having the same probability of being infected during this study.

We will state the identifiability result formally as a theorem. For the sake of
simplicity, we will ignore the intermediate covariate M(1) since it plays no role in
the identifiability result.

Theorem 1 NPSEM. Consider a NPSEM with structural equations for the en-
dogenous X = (E,W,A, Y ),

E = fE(UE)
W = fW (E,UW )
A = fA(E,W,UA)
Y = fY (E,W,A,UY ),

and exogenous U = (UE , UW , UA, UY ). Let A ∈ {0, 1}, E ∈ {e0, e1} and let α =
P (E = e1) be known.
Counterfactuals. Let Y (1) = fY (W, 1, UY ) and Y (0) = fY (W, 0, UY ) denote the
counterfactuals corresponding with setting A = 1 and A = 0, respectively. We also
define (W (e1), Y (1, e1)) and (W (e0), Y (0, e0)) as the post-intervention random vari-
able corresponding with setting A = 1, E = e1 and A = 0, E = e0, respectively. We
also define Y (e, w, a) = fY (w, a, UY ) as the post-intervention counterfactual of Y
corresponding with intervention E = e,W = w,A = a. We denote the distributions
of (W (e1), Y (1, e1)) and (W (e0), Y (0, e0)) with P1,e1 and P0,e0, respectively.
Observed data. Let O = (B,W (B) ≡ W (eB), Y (B)), where B ∼ Bernoulli(α) ∈
{(0, e0), (1, e1)}, conditional on B = (1, e1), O is distributed as (W (e1), Y (1, e1)) ∼
P1,e1, and, conditional on B = (0, e0), O is distributed as (W (e0), Y (0, e0)) ∼ P0,e0.
In particular, we note that the marginal distribution of B equals the marginal dis-
tribution of E. We also note that P (W (B) = w) = PW (e1)(w)α+PW (e0)(w)(1−α).
Let PO be the probability distribution of O: PO = PO(PU,X). We observe n i.i.d.
observations on O.
Relevance to two sample problem. We note that the distribution of PO also
approximates the two sample experiment in which one samples n0 i.i.d. observations
from P0,e0, and n1 i.i.d. observations from P1,e1, with n1/(n0 + n1) = α.

11
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Target parameter on NPSEM. Consider the following parameter of the distri-
bution of (U,X):

ΨF (PU,X) = EY (1)− EY (0).

Exclusion and Randomization assumption on NPSEM. Assume that Y is
only a function of E through W , i.e., Y = fY (W,A,UY ) in the NPSEM. Assume also
that the distribution of U = (UE , UW , UA, UY ) is such that (E,W,A) is independent
of Y (e, w, a) for all e, w, a.
Identifiability Result. Then

ΨF (PU,X) = EW (B){E(Y (B) |W (B), B = (1, e1))− E(Y (B) |W (B), B = (0, e0))}
≡ Ψ(P0).

Proof. Firstly, for the full data parameter, we have

ψF0 = EY (1)− EY (0)
= EfY (1,W,UY )− EfY (0,W,UY )
=
∑

w{E(fY (1, w, UY ) |W = w)− E(fY (0, w, UY ) |W = w)}P (W = w)
=
∑

w{EfY (1, w, UY )− EfY (0, w, UY )}P (W = w),

where we used that W is independent of Y (e, w, a), by assumption. We note that
P (W = w) = P (W (e1) = w | E = e1)P (E = e1) + P (W (e0) = w | E = e0)P (E =
e0) = PW (e1)(w)α+ PW (e0)(w)(1− α).

Consider now the parameter ψ0 of observed data. Since, given B = (1, e1),
(W (B), Y (B)) is distributed as (W (e1), Y (1, e1)), we have

E(Y (B) |W (B) = w,B = (1, e1)) = E(fY (1, w, UY ) |W (e1) = w)
= E(fY (1, w, UY ) | A = 1, E = e1,W = w)
= EfY (1, w, UY ),

where the second equality is implied by (A,E) being independent of Y (e, w, a), given
W , and the third equality is implied by (E,W,A) being independent of Y (e, w, a),
both consequences of our strong randomization assumption.

Similarly, E(Y (B) |W (B) = w,B = (0, e0)) = EfY (A = 0, w, UY ). In addition,
ψ0 involves averaging w.r.t P (W (B) = w) = PW (e1)(w)α+ PW (e0)(w)(1− α).

Thus,

ψ0 =
∑
w

{EfY (A1, w, UY )− EfY (A = 0, w, UY )}P (W = w),

which is thus identical to ψF0 . This completes the proof. 2

Commitment to statistical parameter and model for observed data. Based
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on this theorem, we propose the following parameter of the distribution of the
observed data structure O = (B,W (B), Y (B)) with B bernoulli in {(1, e1), (0, e0)}:

Ψ(PO) ≡ EW (B) {E(Y (B) |W (B), B = (1, e1))− E(Y (B) |W (B), B = (0, e0))} .

Under the NPSEM, the marginal distribution of E being known, the strong ran-
domization assumption that (E,W,A) is independent of Y (e, w, a) as well as the
assumption that E affects Y only through W , as stated in Theorem, we have that
Ψ(PO) = EY (1) − Y (0). Either way, we suggest that Ψ(P0) is also an interesting
treatment effect measure as a pure statistical parameter, i.e., without the causal as-
sumptions, but its causal interpretation under these non-testable assumptions, adds
a lot of flavor to this statistical parameter.

The model for the probability distribution P0 ofO = (B,W = W (B), Y = Y (B))
is nonparametric, and the statistical target parameter is Ψ(PO) = EWE(Y | B =
(1, e1),W )− E(Y | B = (0, e0),W ).

2.3 Estimation and inference.

The targeted maximum likelihood estimator of this statistical parameter has been
defined previously and statistical inference as well (see, e.g., van der Laan and Rubin
(2006) for the targeted MLE, and van der Laan and Gruber (2010), Gruber and
van der Laan (2010) for the collaborative targeted MLE). Since we have arrived at
the pure statistical estimation stage, we will denote O = (B,W = W (B), Y = Y (B))
and the pooled sample with Oi, i = 1, . . . , n = n1 + n2. One starts out with
applying a super learner to fit Q0 = E(Y | B,W ) and subsequently one applies
targeted maximum likelihood estimation to update this initial super learner estimate
Q0
n. The marginal distribution of W is estimated with the empirical of the pooled

sample Wi, i = 1, . . . , n = n1 + n2. The targeted maximum likelihood estimate
requires a fit of P (B = 1 | W ). The estimator is double robust in the sense that it
remains unbiased if one either consistently estimates g0(1 | W ) ≡ P (B = 1 | W ) or
Q0(B,W ) ≡ E(Y | B,W ). The estimator is efficient if the initial estimator Q0

n is
consistent and gn is consistent as well, and if gn is misspecified (but Q0

n is consistent),
it can both be super efficient as well as inefficient, depending on its limit. The
targeted maximum likelihood estimator can be further refined with the collaborative
targeted maximum likelihood estimation method, resulting in a collaborative double
robust estimator, that has generally better finite sample efficiency, and is consistent
under weaker conditions.

This double robustness of the targeted maximum likelihood estimator in terms
of the factors g0, Q0 of the distribution of (W,B, Y ), translates into the following
robustness in terms of the distributions P0,e0 , P1,e1 for the two samples. Firstly, we
note that P̄ (w) ≡ P (W = w) = αPW (e1)(w) + (1 − α)PW (e0)(w). We also define
Q1(w) = E(Y (e1, 1) | W (e1) = w), Q0(w) = E(Y (e0, 0) | W (e0) = w), and we note
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that

Q0(B,W ) = E(Y | B,W ) = I(B = 1)Q1(W ) + I(B = 0)Q0(W ),

g0(1 |W ) = P (B = 1|W = w) =
P (B = 1,W = w)

P (W = w)
=
P (W = w|B = 1)P (B = 1)

P (W = w)

=
Pe1(w)α
P̄ (w)

,

g0(0 |W ) = P (B = 0|W = w) =
Pe0(w)(1− α)

P̄ (w)
.

Thus, the double robustness of the targeted MLE for estimation of ψ0 in a nonpara-
metric model for O = (B,WB, YB) in terms of g0, Q0 can be restated as follows:
the targeted MLE will be consistent if either the outcome regressions Q1, Q0 on the
covariates are consistently estimated for both samples, or if the ratio P1/P0 of the
covariate distributions for the two samples is correctly estimated. In particular, the
identifiability condition 0 < P (B = 1 | W ) < 1 a.e. translates into 0 < α < 1, and
that the Radon-Nykodym derivatives Pe0(w)/Pe1(w) <∞ and Pe1(w)/Pe0(w) <∞
for the covariate distributions are bounded. Thus, if a covariate can have a certain
value in population 1, then that value should also occur in population 2, and visa
versa.

Statistical inference for the targeted MLE can be based on the influence curve
for ψ0 in the nonparametric model for O = (B,W = W (B), Y = Y (B)), given by

D∗(O) =
1− 2B

g0(B |W )
(Y −Q0(B,W )) +Q0(1,W )−Q0(0,W )− ψ0.

That is, one can estimate the asymptotic variance of the targeted MLE with σ2
n =

1/n
∑n

i=1 D̂
∗2(Oi) and an asymptotic 0.95-confidence interval for ψ0 is given by

ψn ± 1.96σn/
√
n, where D̂ is the estimate of the efficient influence curve obtained

by substituting the estimates gn, Qn of g0, Q0.

2.4 Causal effect among the treated population.

We will consider another statistical parameter ψt0 = EW {E(Y | W,B = (1, e1)) −
E(Y | W,B = (0, e0)}, which is referred to as the treatment effect among the
treated. Even though our results regarding the matched cohort design only concern
the statistical target parameter, for the sake of interpretation, we like to know its
causal interpretation under the NPSEM, the exclusion, and strong randomization
assumption. The following theorem provides us with the wished identifiability result.

Theorem 2 NPSEM. Consider a NPSEM with structural equations for the en-
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dogenous X = (E,W,A, Y ),

E = fE(UE)
W = fW (E,UW )
A = fA(E,W,UA)
Y = fY (E,W,A,UY ),

and exogenous U = (UE , UW , UA, UY ). Let A ∈ {0, 1}, E ∈ {e0, e1} and let α =
P (E = e1).
Counterfactuals. Let Y (1) = fY (W, 1, UY ) and Y (0) = fY (W, 0, UY ) denote the
counterfactuals corresponding with setting A = 1 and A = 0, respectively. We also
define (W (e1), Y (1, e1)) and (W (e0), Y (0, e0)) as the post-intervention random vari-
able corresponding with setting A = 1, E = e1 and A = 0, E = e0, respectively. We
also define Y (e, w, a) = fY (w, a, UY ) as the post-intervention counterfactual of Y
corresponding with intervention E = e,W = w,A = a. We denote the distributions
of (W (e1), Y (1, e1)) and (W (e0), Y (0, e0)) with P1,e1 and P0,e0, respectively.
Observed data. Let O = (B,W (B) ≡ W (eB), Y (B)), where B ∼ Bernoulli(α) ∈
{(0, e0), (1, e1)}, conditional on B = (1, e1), O is distributed as (W (e1), Y (1, e1)) ∼
P1,e1, and, conditional on B = (0, e0), O is distributed as (W (e0), Y (0, e0)) ∼ P0,e0.
In particular, we note that the marginal distribution of B equals the marginal dis-
tribution of E. We also note that P (W (B) = w) = PW (e1)(w)α+PW (e0)(w)(1−α).
Let PO be the probability distribution of O: PO = PO(PU,X). We observe n i.i.d.
observations of O.
Relevance to two sample problem. We note that a sample of n = n0 + n1

i.i.d. observations from the distribution of PO also approximates the two sample
experiment in which one samples n0 i.i.d. observations from P0,e0, and n1 i.i.d.
observations from P1,e1, in which case n1/(n0 + n1) = α.
Target parameter on NPSEM. Consider the following parameter of the distri-
bution of (U,X):

ΨF (PU,X) = E[Y (1)− Y (0) | (A,E) = (1, e1)).

Exclusion and Randomization assumption on NPSEM. Assume that Y is
only a function of E through W , i.e., Y = fY (W,A,UY ) in the NPSEM, and that
the distribution of U = (UE , UW , UA, UY ) is such that (E,W,A) is independent of
Y (e, w, a) for all e, w, a. We also assume that the distribution of E is known.
Identifiability result. Then

ΨF (PU,X) = Ψt(PO)
≡
∑

w Pe1(w)){E(Y (B) |W (B) = w,B = (1, e1))− E(Y (B) |W (B)− w,B = (0, e0))},

where Pe1(w) = P (W (e1) = w) = P (W (B) = w | B = (1, e1)).
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Proof. Firstly, for the full data parameter, we have

ψF0 = E[Y (1)− EY (0) | (E,A) = (e1, 1))
= E[fY (1,W,UY ) | (E,A) = (e1, 1)]− E[fY (0,W,UY ) | (E,A) = (e1, 1)]
=
∑

w E[fY (1, w, UY ) |W = w, (E,A) = (e1, 1))P (W (e1) = w)
−
∑

w E(fY (0, w, UY ) |W = w, (E,A) = (e1, 1))P (W (e1) = w)
=
∑

w{EfY (1, w, UY )− EfY (0, w, UY )}P (W (e1) = w),

where we used that E,W,A is independent of Y (e, w, a), by assumption.
Consider now the parameter ψt0 of the distribution of the observed data. Since,

given B = (1, e1), (W (B), Y (B)) is distributed as (W (e1), Y (1, e1)), we have

E(Y (B) |W (B) = w,B = (1, e1)) = E(fY (1, w, UY ) |W (e1) = w)
= E(fY (1, w, UY ) | A = 1, E = e1,W = w)

EfY (1, w, UY ),

where the second equality is implied by (A,E) being independent of Y (e, w, a), given
W , and the third equality is implied by (E,W,A) being independent of Y (e, w, a),
both consequences of our strong randomization assumption. Similarly, it follows
that E(Y (B) | W (B) = w,B = (0, e0)) = EfY (A = 0, w, UY ). In addition, ψ0

involves averaging w.r.t P (W (e1) = w).
Thus,

ψ0 =
∑
w

{EfY (A1, w, UY )− EfY (A = 0, w, UY )}P (W (e1) = w),

which is identical to ψF0 . This completes the proof. 2

2.5 The causal effect among the treated, and its targeted MLE.

In this subsection we consider the statistical parameter Ψt(P0) = EW (e1){E(Y (B) |
B = (1, e1),W (B) = W (e1)) − E(Y (B) | B = (0, e0),W (B) = W (e1))} defined
above, an effect among the treated. This parameter will play an important role in
the next subsections, since matched cohort design will be shown to be particularly
optimal for targeting this effect among the treated. In this subsection we will develop
the targeted MLE for this parameter.

Suppose we observe n i.i.d. observations of O = (W,A, Y ), W baseline covari-
ates, subsequently assigned binary treatment A, and final outcome Y of interest.
Note, in our application, we have O = (W,B, Y ) so that B will play the role of A
in the sequel of this subsection. The statistical parameter of interest is then given
by E(E(Y | A = 1,W )− E(Y | A = 0,W ) | A = 1).

Suppose the model is nonparametric and we wish to estimate the following pa-
rameter of the data generating distribution P0 of O = (W,A, Y )

Ψ(P0) = E0 {E0(Y | A = 1,W )− E0(Y | A = 0,W ) | A = 0} .
16
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Under an NPSEM implied by the ordering W,A, Y and the randomization assump-
tion A ⊥ Y (a), given W , one can interpret this parameter as E(Y (1)−Y (0) | A = 0).

Another way of representing this parameter is Ψ(P0) = −E0(Y − E(Y | A =
1,W ) | A = 0), i.e., among the non-treated one evaluates the outcome minus the
predicted outcome if, contrary to the fact, one would have been treated, and one
takes the population average of all these differences.

Suppose one wishes to estimate the effect among the treated, as in our applica-
tion, given by

Ψ1(P0) = E0 {E0(Y | A = 1,W )− E0(Y | A = 0,W ) | A = 1} ,

which under the causal assumptions can be represented as E(Y (1)− Y (0) | A = 1).
Switching the roles of A = 1 and A = 0 in the formulas below provides the efficient
influence curve and targeted MLE of −Ψ1(P0). We will make this specific below.

Note that P0 is determined by the marginal distribution PW of W , the condi-
tional distribution PA|W of A, given W , and the conditional distribution PY |A,W of
Y , given A,W . The parameter Ψ(P0) depends on P0 through both PW , PY |A,W as
well as the treatment mechanism PA|W . We will denote the treatment mechanism
with g0 and the other two factors of the likelihood with Q0.

The efficient influence curve of the target parameter. Firstly, consider the
parameter P → Ψ(P )(1) = EP (EP (Y | A = 1,W ) | A = 0). The efficient influence
curve of this parameter is given by

D∗1(P ) =
I(A = 1)
P (A = 0)

g(0 |W )
g(1 |W )

(Y −Q(1,W )) +
I(A = 0)
P (A = 0)

(Q(1,W )−Ψ(P )(1)).

Here Q(P )(a,W ) = EP (Y | A = a,W ) and g(P )(a |W ) = P (A = a |W ).
The efficient influence curve of Ψ(P )(0) = EP (EP (Y | A = 0,W ) | A = 0) at P

is given by

D∗0(P ) =
I(A = 0)
P (A = 0)

(Y −Q(0,W )) +
I(A = 0)
P (A = 0)

(Q(0,W )−Ψ(P )(0)).

Thus the efficient influence curve of Ψ(P ) = Ψ(P )(1)−Ψ(P )(0) is given by

D∗(P ) =
{
I(A = 1)
P (A = 0)

g(0 |W )
g(1 |W )

− I(A = 0)
P (A = 0)

}
(Y −Q(A,W ))

+
I(A = 0)
P (A = 0)

{Q(1,W )−Q(0,W )−Ψ(P )} .

The efficient influence curve of Ψ(P ) = EP {EP (Y | A = 1,W ) − EP (Y | A =
0,W ) | A = 1} is obtained by changing roles of A = 1 and A = 0, and taking minus
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sign, giving

D∗(P ) =
{
I(A = 1)
P (A = 1)

− I(A = 0)
P (A = 1)

g(1 |W )
g(0 |W )

}
(Y −Q(A,W ))

+
I(A = 1)
P (A = 1)

(Q(1,W )−Q(0,W )−Ψ(P )).

Double robustness of efficient influence curve. This efficient influence
curve of Ψ(P ) can be represented as an estimating function D∗(Q, g, ψ), where we
suppress the dependence on the scalar P (A = 0). We note that this estimating
function is double robust in the sense that it is an unbiased estimating function for
ψ0, if either Q is correctly specified, or g is correctly specified. Formally, this is
stated as

P0D
∗(Q, g, ψ0) = 0 if Q = Q0 or g = g0,

and g(1 | W ) > 0 a.e. Here we recall the notation Pf ≡
∫
f(o)dP (o). This double

robustness result can be explicitly verified.
In fact, we can establish a stronger so called collaborative double robustness,

defined as follows. Let W (Q) be a subset/reduction of W so that conditioning on
W (Q) also fixes (Q − Q0)(a,W ) for a ∈ {0, 1}. Then, for all Q and corresponding
g0(Q) = P (A = · |W (Q)) for such a W (Q) ⊂W , we have

P0D
∗(Q, g0(Q), ψ0) = 0.

Note that this implies, in particular, P0D
∗(Q0, g) = 0 for all g, since, if Q = Q0,

then we can select W (Q) as the empty set. Thus, g0 only needs to adjust for the
covariates that still play a role in Q−Q0.

One could use this estimating function to define a closed form asymptotically
efficient double robust estimator ψDR defined as the solution of the efficient influence
curve estimating equation,

0 = PnD
∗(Qn, gn, ψ),

given estimators Qn of Q0 and gn of g0.
We can also compute a collaborative double robust asymptotically efficient tar-

geted maximum likelihood estimator, which has various previously presented advan-
tages: in particular, it is guaranteed to be a substitution estimator, and it will only
pursue adjustment in gn that remains helpful after the adjustment carried out by
Qn, thereby resulting in more effective adjustment sets and bias reduction.

A targeted maximum likelihood estimator is a substitution estimator Ψ(P̂ ∗),
where the estimated data generating distribution P̂ ∗ is such that it solves the efficient
influence curve estimating equation,

0 = PnD
∗(Q(P̂ ∗), g(P̂ ∗),Ψ(P̂ ∗)).
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As a consequence, the substitution estimator (TMLE) Ψ(P̂ ∗) is double robust and
efficient, and collaborative double robust if one uses the collaborative targeted max-
imum likelihood estimator that builds gn based on the log-likelihood of Q0, as pre-
sented in detail in van der Laan and Gruber (2010).

Targeted maximum likelihood estimator. Let’s now explain the targeted max-
imum likelihood algorithm that maps an initial estimator P̂ into a targeted fit
P̂ ∗. Suppose Y is binary. Given an initial estimator Qn of E(Y | A,W ), an ini-
tial estimator gn of P (A | W ), empirical distribution of W , in order to compute
the targeted MLE, we define the fluctuation logitQn(ε1)(A,W ) = logitQn(A,W ) +
ε1C1(gn)(A,W ), and Logit(gn(ε2)(0 |W )) = Logit(gn(0 |W ))+ε2C2(P̂ )(W ), where
these two clever covariates are defined as

C1(g) =
{
I(A = 1)
P (A = 0)

g(0 |W )
g(1 |W )

− I(A = 0)
P (A = 0)

}
C2(P ) =

1
P (A = 0)

{Q(P )(1,W )−Q(P )(0,W )−Ψ(P )} .

These two one-dimensional fluctuations of the regression Qn and the treatment
mechanism gn represents a fluctuation P̂ (ε) of P̂ , where the empirical distribution
of W is hold fixed: the empirical distribution is already unbiased for the parameter
of interest so that no fluctuation is needed. We estimate ε with maximum likelihood:
note that ε1 is estimated with standard linear logistic regression fixing Qn as an off-
set, and ε2 is estimated with standard linear logistic regression fixing gn(0 | W ) as
offset in the logistic regression model for P (A = 0 |W ).

This maximum likelihood estimator εn = (ε1n, ε2n) now defines an update P̂ 1 =
P̂ (εn). This targeted maximum likelihood updating is iterated till convergence and
the final P̂ ∗, identified by a Q∗n, g

∗
n (and the empirical for PW ), is called the targeted

maximum likelihood estimator of the distribution P0, while Ψ(P̂ ∗) is called the
targeted maximum likelihood estimator of ψ0. We have that the targeted maximum
likelihood estimator Ψ(P̂ ∗) solves the efficient influence curve estimating equation,
as presented above. We can use machine learning/super learning to obtain the initial
P̂ (i.e. Qn and gn).

Since P̂ ∗ solves, in particular,

0 =
1
n

n∑
i=1

I(Ai = 0)
P (A = 0)

{
Q∗n(1,Wi)−Q∗n(0,Wi)−Ψ(P̂ ∗)

}
,

it follows that the targeted MLE Ψ(P̂ ∗) can also be evaluated as

Ψ(P̂ ∗) = Ê(Q∗n(1,W )−Q∗n(0,W ) | A = 0),

i.e., as the empirical mean of Q∗n(1,W ) − Q∗n(0,W ) among the observations with
Ai = 0. Apparently, in this evaluation g∗n can be ignored.
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Collaborative targeted MLE. The collaborative double robustness of the
efficient influence curve allows us to also implement the collaborative targeted MLE
of van der Laan and Gruber (2010). In this case, given the initial estimator Qn, one
starts with a gn being an intercept model, and one selects the main term extensions
of gn that yields the maximal gain in log-likelihood of the Q-factor during the
targeted maximum likelihood algorithm that starts at Qn and this extension gn.
This process is iterated thereby building a main term regression model for g0 that is
based on the log-likelihood of Q. If there is no main term extension that improves
the log-likelihood, then one carries out the previous TMLE update of Qn using
the previous g-fit, and one starts extending the current g-fit based on the log-
likelihood of the TMLE-update of the just updated Qn, so that the log-likelihood
of Q always increases during these steps. This generates a sequence of targeted
maximum likelihood estimators indexed by the number of moves that were used to
build the g-fit. The number of moves used to build g is selected with likelihood based
cross-validation, possibly penalizing the cross-validated log-likelihood as proposed
in van der Laan and Gruber (2010).

Many variations of this collaborative TMLE algorithm can be considered. The
main terms can include propensity score dimension reductions indexed by different
adjustment sets, so that the above algorithm is still arbitrarily nonparametric. The
common goal is to generate a sequence of targeted maximum likelihood estimators
(Qj∗n , g

j∗
n ) corresponding with starting estimators (Qjn, g

j
n), where the log-likelihood

of Qj∗n is increasing in j, and gjn (and thereby gj∗n ) is increasingly nonparametric.
The choice for the number of moves j is then selected based on likelihood based
cross-validation.

2.6 Designing the two sample study.

We now understand the estimator as an estimate of the statistical parameter ψ0,
and we also understand under what condition this statistical parameter ψ0 equals
the wished additive causal effect ψF0 . From that we conclude that it is important
to measure all individual characteristics that can explain the effect of differences in
the environments (i.e., e0, e1) of the two populations on the individual outcome, so
that units in population 1 with W = w are exchangeable with units in population
0 with W = w, w.r.t. the counterfactual outcome distributions. However, if e0 is
very different from e1, then the covariate distributions Pe0 and Pe1 will be different,
thereby possibly generating lack of experimentation for g0: i..e g0(1 |W ) gets close
to 0 or 1 for some W -values. This increases the asymptotic variance of the targeted
MLE, even if it does not result in non-identifiability: in other words, the variance
of the efficient influence curve for ψ0 increases when the covariate distributions Pe0
and Pe1 are getting more separated. As a consequence, even if all the wished W
can be measured so that the effect of E on Y can be blocked, it is still very crucial
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that the two populations are quite comparable w.r.t. to the factors e that have
an impact on the outcome. The better job one does on that front, the smaller the
asymptotic variance of the targeted MLE adjusting for W will be. This raises the
issue of using a matched cohort design, involving matching a unit from the treated
population with a unit from the control population based on a set of variables that
are not affected by the treatment.

Two target parameters: average causal effect, and average causal ef-
fect among treated. Recall that we defined a random variable O = (B,W =
W (B), Y = Y (B)) ∼ PO representing the data on a random draw from the two
populations combined, and representing the two sample problem of sampling n0

observations from Pa0=0,e0 and n1 observations from Pa1=1,e1 . We work with the
random experiment defined by O because it allows us to view the data set as one
sample of i.i.d observations, while we fully respect the true two sample estimation
problem. The model M for PO is nonparametric.

We will be considering two target statistical parameters of PO:

ψ0 = EW {E(Y | B = (1, e1),W )− E(Y | B = (0, e0),W )}
ψt0 = E(E(Y | B = (1, e1),W )− E(Y | B = (0, e0),W ) | B = (1, e1)).

Theorem 1 proves that under an NPSEM in which (E,W,A) is randomized and in
which Y is only affected by E through W , we have ψ0 = E{Y (1) − Y (0)} is the
additive causal effect of A, one would obtain if one would be able to randomize A
individually to each unit in the combined population and take a difference in means
for the two samples, and sample size is infinity. Similarly, Theorem 2 shows that
under these same assumptions ψt0 = E(Y (1) − Y (0) | B = (1, e1)) is an additive
causal effect of treatment for population 1, i.e. the treated population. As we will
see the latter parameter is easier to identify from the data and makes the matched
cohort design (defined below) particularly effective and optimal.

The efficient influence curves for ψ0 and ψt0 are given by

D∗(Q0, g0, ψ0)(O) =
{
I(B = 1)
g0(1 |W )

− I(B = 0)
g0(0 |W )

}
(Y −Q0(B,W ))

+Q0(1,W )−Q0(0,W )−Ψ(Q0)

D∗t(Q0, g0, ψ
t
0) =

{
I(B = 1)
P (B = 1)

− I(B = 0)
P (B = 1)

g0(1 |W )
g0(0 |W )

}
(Y −Q(B,W ))

+
I(B = 1)
P (B = 1)

(Q(1,W )−Q(0,W )−Ψ(P0)).

Matched cohort sampling: Instead of the two sample design considered above
which we treat as the equivalent of sampling n0 + n1 i.i.d. copies of O = (B,W, Y ),
we can also consider the following matched cohort sampling:
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• Let M ⊂W be a subset of the covariates W which represents the variable we
will match on.

• Sample W (e1), Y (1, e1) from the conditional distribution of (W,Y ), given B =
(1, e1). Let m1 denote the observed value of M1: i.e., M1 = m1.

• Sample J times W (e0), Y (0, e0) from the conditional distribution (W,Y ), given
B = (0, e0) and M = m1.

• Let
Om ≡

(
(W (e1), Y (1, e1)), (W (e0)j , Y (0, e0)j), j = 1, . . . , J

)
,

be the cluster of matched observations.

• Repeat this experiment n times, resulting in n clusters Omi , i = 1, . . . , n.

• It is noted that the dependence of observations within a cluster is only due
to the matching on variable M : e.g., if the matching variable is empty, each
cluster consists of i.i.d. copies.

2.7 Estimation in matched cohort designs.

Matched cohort designs provide a biased sample from the distribution of O =
(B,W, Y ), so that a new identifiability result is required: we only provided the
identifiability based on sampling i.i.d. copies of O. Targeted maximum likelihood
estimation and efficient estimation in general, based on this type of case-control
sampling, including matched case-control/cohort sampling, was studied in van der
Laan (2008) and Rose and van der Laan (2008). In this work it is assumed that the
following quantities are known

q0 = P (B = 1)) =
n1

n0 + n1

q̄0(M) =
q0

P (B = 1 |M)
P (B = 0 |M).

The knowledge of these quantities allows one to identify any parameter that would
have been identifiable under regular i.i.d sampling of O = (B,W, Y ). Therefore, this
knowledge allows us to target the causal effect parameters ψ0 and ψt0 of interest.

The case-control weighted targeted MLE is now defined by applying the targeted
MLE of ψ0 or ψt0 presented above, based on i.i.d. sampling of (B,W, Y ), but giving
each observation a weight. The observations with Bi = 1 are assigned the weight
q0 = n1/(n0 +n1). The Ji observations with Bi = 0 that were matched to a Bi = 1,
receive weight q̄0(Mi)/J . The resulting case-control weighted targeted MLE now
targets the same parameter ψ0 or ψt0, is asymptotically efficient, and it has the same
double robustness property as the targeted MLE applied to the i.i.d. (B,W, Y ). In
addition, the efficient influence curve of ψ0, ψt0 for this matched cohort sampling
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model is given below, and can be used for statistical inference based on the case-
control weighted targeted MLE as usual.

The kind of knowledge needed to determine these weights to cor-
rect for the matched sampling. Suppose one can determine for each match-
ing category m, the proportion of units that have M = m in the two popula-
tions/communities. This yields, P (M = m|B = 1), P (M = m|B = 0) for eachm. In
addition, we can set P (B = 1) = n1/n, which corresponds with P (E = e1) = n1/n
in the NPSEM and thereby affects the interpretation of the marginal causal effects.
This particular choice corresponds with the sampling actually used, and thereby is
well supported by the data, but other choices can be accommodated as well. For
example, if one aims to target the combined population, while n1, n0 are not pro-
portional to population size, then P (B = 1) is different from n1/n. Off course, the
required weights q0(M) are now determined by Bayes rule.

2.8 Evaluating gain of matching cohorts, relative to no-matching
of the two cohorts.

In van der Laan (2008) it is shown that the efficient influence curve for the param-
eter ψ0 based on sampling the cluster Om equals a ”case-control”-weighted efficient
influence curve for the parameter ψ0 based on sampling the data structure O. That
is,

Dm(Q, g, ψ0)(Om) = q0D
∗(Q, g, ψ0)(1,W (e1), Y (1, e1))

+
q̄0(M(e1))

J

J∑
j=1

D∗(Q, g, ψ0)(0,W (ej0), Y (0, ej0))

Dtm(Q, g, ψt0) = q0D
∗t(Q, g, ψt0)(1,W (e1), Y (1, e1))

+
q̄0(M(e1))

J

J∑
j=1

D∗t(Q, g, ψt0)(0,W (ej0), Y (0, ej0)).

This design includes the ”no-matching” choice by setting M equal to empty set, and
J = n0/n1, in which case q̄0(M) = 1 − q0, and the case and control observations
in the cluster are now independent. That is, if we set M empty, then this design
corresponds with our original two sample study design we started out with.

Evaluating the benefit of matching in the design. The reader needs to recall
that the variance of the efficient influence curve for a parameter (e.g) ψ0 is the infor-
mation bound for that parameter in the semiparametric model: as a consequence,
any regular estimator has a larger asymptotic variance than the variance of the ef-
ficient influence curve, and an estimator is asymptotically efficient if and only if it
is asymptotically linear with influence curve equal to the efficient influence curve.
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Therefore, by studying the variance of the efficient influence curve of Dm, Dtm

we can investigate if matching does decrease the variance relative to the no-matching
design, and thereby increases the amount of information generated by the matching
design for the purpose of estimation of ψ0, ψ

t
0.

To consider the comparison of a matching design with no-matching, we focus
on the case that J = 1, since the argument should not depend on the number of
controls that are matched to the case. The efficient influence curve for ψ0 based on
sampling the cluster observation Om is given by

Dm = q0

{
1

g0(1|W (e1))
(Y (1, e1)−Q0(1,W (e1))) +Q0(1,W (e1))−Q0(0,W (e1))−Ψ(Q0)

}
+q̄0(M(e1))

{
− 1

g0(0|W (e0))
(Y (0, e0)−Q0(0,W (e0))) +Q0(1,W (e0))−Q0(0,W (e0))−Ψ(Q0)

}
.

The efficient influence curve for ψt0 based on sampling the cluster observation Om

is given by:

−Dtm = q0

{
− 1

P (B=1) (Y (1, e1)−Q(1,W (e1))) + 1
P (B=1) {Q(0,W (e1))−Q(1,W (e1)) + Ψ(P )}

}
+q̄0(M(e1))

{
1

P (B=1)
g0(1|W (e0))
g0(0|W (e0))

(Y (0, e0)−Q(0,W (e0)))
}
.

Firstly, it is good to see that indeed, if M is empty, and thereby q̄0(M) = 1 − q0,
then Dm, Dtm correspond with i.i.d sampling of O = (B,W, Y ) and corresponding
efficient influence curve D∗, D∗t, for ψ0 and ψt0 given above: Dm, Dmt just combine
observations from control and treatment sample in the cluster Om, but since the ob-
servations in a cluster are now independent, this coupling serves no purpose beyond
that it allows us to compare the efficient influence curve with matching with the
efficient influence curve for the original no-matching two sample design. Therefore,
the question ”Is matching improving the design w.r.t. target parameter?” corre-
sponds with ”Is the variance of the efficient influence curve Dm, Dtm smaller when
M is close to W , relative to M is low dimensional, with the extreme being that M
is empty.

To answer this question we simply write down the efficient influence curves for
M being empty and M = W for both target parameters. For that purpose we
denote q0 = g0(1), P (B = 1 |M) = g0(1 |M) to stress that these are related to the
conditional probability distribution g0(· |W ) = P0(B = · |W ) of B, given W . This
means that we can denote q̄0(M) = {g0(1)/g0(1 |M)}g0(0 |M).

Additive Causal effect, no matching:

Dm =
g0(1)

g0(1 |W (e1))
(Y (1, e1)−Q0(1,W (e1)))

+g0(1) {Q0(1,W (e1))−Q0(0,W (e1))−Ψ(Q0)}

− 1− g0(1)
g0(0 |W (e0))

{Y (0, e0)−Q0(0,W (e0))}

+
1− g0(1)

g0(0 |W (e0))
{Q0(1,W (e0))−Q0(0,W (e0))−Ψ(Q0)}.
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Causal effect, matching (M):

Dm =
g0(1)

g0(1 |W (e1))
(Y (1, e1)−Q0(1,W (e1)))

+g0(1) {Q0(1,W (e1))−Q0(0,W (e1))−Ψ(Q0)}

− g0(1)g0(0 |M(e1))
g0(1 |M(e1))g0(0 |W (e0))

(Y (0, e0)−Q0(0,W (e0)))

+
g0(1)g0(0 |M(e1))
g0(1 |M(e1))

{Q0(1,W (e0))−Q0(0,W (e0))−Ψ(Q0)} .

Causal effect, full matching (M = W ):

Dm =
g0(1)

g0(1 |W (e1))
(Y (1, e1)−Q0(1,W (e1)))

+g0(1) {Q0(1,W (e1))−Q0(0,W (e1))−Ψ(Q0)}

− g0(1)
g0(1 |W (e0))

(Y (0, e0)−Q0(0,W (0, e0)))

+g0(0 |W (e0)) {Q0(1,W (e0))−Q0(0,W (e0))−Ψ(Q0)} ,

where W (e0) = M(e1) = W (e1) with probability 1. We note that the inverse
weighting by g(0 |W ) and g(1 |W ) is reduced to inverse weighting by g(1|W )
only, due the matching. Therefore, it seems that matching reduces the variance
in many cases, and, at least, weakens the required identifiability condition to
only g0(1|W ) > 0 a..e. Explicit calculations, not carried out here, will have to
provide more support for this claim.

Causal effect among treated, No matching design:

−Dtm = −(Y (1, e1)−Q(1,W (e1))) + {Q(0,W (e1))−Q(1,W (e1))−Ψ(P )}

+
g0(0)
g0(1)

g0(1 |W (e0))
g0(0 |W (e0))

(Y (0, e0)−Q(0,W (e0))).

Causal effect among treated, Matching design:

−Dtm = −(Y (1, e1)−Q(1,W (e1))) + {Q(0,W (e1))−Q(1,W (e1)) + Ψ(P )}

+
g0(0 |M(e1))
g0(1 |M(e1))

g0(1 |W (e0))
g0(0 |W (e0))

(Y (0, e0)−Q(0,W (e0))).

Causal effect among treated, full matching design (M = W ):

−Dtm = −(Y (1, e1)−Q(1,W (e1))) + {Q(0,W (e1))−Q(1,W (e1)) + Ψ(P )}
+(Y (0, e0)−Q(0,W (e0)))

= Y (1, e1)− Y (0, e0)−Ψ(P ).

Note that the estimator ψtn that solves the efficient influence curve equation
PnD

tm(Qn, gn, ψt) = 0 is given by ψtn = PnY (1, e1)−PnY (0, e0), a difference of
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sample means between the two groups, where the observation Y (1, e1), Y (0, e0)
are from a subject with the same covariate W . This suggests strongly that the
efficient influence curve for the full-matching design has the smallest variance,
thereby establishing the benefit of matching for the purpose of estimation of
ψt0.

Remark concerning matching in case-control sampling relative to matched
cohort sampling. As shown in Rose and van der Laan (2009), by practical
demonstration in simulation studies, case-control studies using matching carry typ-
ically less information about the parameter of interest than regular case-control de-
signs. This can easily be seen by the approach followed above. Suppose the underly-
ing data structure is (W,A, Y ), M ⊂W , and let ψ0 be the target parameter with effi-
cient influence curve D∗ under i.i.d sampling of (W,A, Y ), and nonparametric model
for the distribution of (W,A, Y ). Consider matched case-control sampling, condi-
tioning on a binary variable R being a function of (W,A, Y ) (playing the role of either
Y or A say): one samples a ”case”, W,A, Y given R = 1, let M1 = m1, and subse-
quently one samples a control (W,A, Y ), given R = 0 and M = m1. By the general
results in van der Laan (2008), the efficient influence curve under this matched-case-
control sampling is given by q0D

∗(R = 1,W1, A1, Y1)+q̄0(M1)D∗(R = 0,W0, A0, Y0).
To make this matched sampling design effective one hopes to see that the weight
q̄0(M1) cancels/stabilizes an inverse weight that appears in D∗(R = 0,W0, A0, Y0).
Since the inverse weighting in D∗ concerns inverse weighting by P (A | W ), mul-
tiplying by a q̄0(M) that has a P (A | M) in denominator can indeed do the job.
Thus conditioning on R = A and using matching can help. Indeed, above we de-
termined that this happens in our setting with R = A. However, since the inverse
weighting in D∗ concerns inverse weighting by P (A |W ), using the matching when
one conditions on Y , as in typical case-control studies, will never cancel or stabilize
such weights, but induces additional unstable weighting by q̄0(M) instead: Here one
needs to note that in this case q̄0(M) = P (Y = 1)P (Y = 0 | M)/P (Y = 1 | M)
thus creating a singularity if P (Y = 1 |M) can get small.

Summary regarding optimizing the design. If one can select two populations
for which the pre-treatment covariate distributions Pe1 , Pe0 are almost equivalent,
i.e. Pe1(W ) ≈ Pe0(W ), while W blocks any effect of E on Y , then that implies that
P (B = 1 | W ) ≈ P (B = 1), and thereby will result in an excellent information
bound for any target parameter ψ0. On the other hand, if this is not possible, then
one still has the good option of using a matched cohort design, and targeting the
causal effect for the treatment-population, ψt0.
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2.9 Extension to causal effect of treatment at time t.

We will now extend the above framework to causal effects of changes in treatment
over time t.

Suppose we observe n = n1 + n0 i.i.d. copies of (B,W (B), Y (B)), where
B ∈ {(e0, a0), (e1, a1)}, B is Bernoulli with probability n1/n, conditional on B =
(e1, a1), (W (B), Y (B)) follows a distribution Pe1,a1 , and, conditional onB = (e0, a0),
(W (B), Y (B)) follows a distribution Pe0,a0 . Here W and Y are time-dependent pro-
cesses over time t = 1, . . . , τ .

We assume an NPSEM:

U ∼ PU

E = fE(UE)
A = fA(E,M,UA)

W (t) = fW (t)(M, Ȳ (t− 1), W̄ (t− 1), Ā(t), Ē(t), UW (t))
Y (t) = fY (t)(M, Ȳ (t− 1), W̄ (t), Ā(t), Ē(t), UY (t))

t = 1, . . . , τ.

Here E ∈ {e0, e1} and A ∈ {a0, a1}. The relation to the observed data is that
the sampling distributions Pe0,a0 and Pe1,a1 are the distribution of the counterfac-
tuals (W (e0, a0), Y (e0, a0)) and (W (e1, a1), Y (e1, a1)), respectively, defined by this
NPSEM.

Let Y ∗(t) be an outcome of interest measured after A(t). We define the following
t-specific causal effects, ψ0(t) and ψt0(t) on the NPSEM:

ΨF (PU,X)(t) ≡ EY ∗Ā(t−1)a1(t)Ē(t)(t)− EY
∗
Ā(t−1)a0(t)Ē(t)(t)

ΨF∗(PU,X)(t) ≡ E
{
Y ∗Ā(t−1)a1(t)Ē(t)(t)− Y

∗
Ā(t−1)a0(t)Ē(t)(t) | (E,A) = (e1, a1)

}
.

This corresponds with only intervening onA(t) by setting it at a1(t) and a0(t), result-
ing in two counterfactuals Y (1)(t) = Y ∗

Ā(t−1)a1(t)Ē(t)
(t), and Y (0)(t) = Y ∗

Ā(t−1)a0(t)Ē(t)
(t),

so that these target parameters can also be denoted with E(Y (1)(t)− Y (0)(t)) and
E(Y (1)(t)− Y (0)(t) | (A,E) = (a1, e1)).

Define

E∗(t) ≡ Ā(t− 1), Ē(t)
W ∗(t) ≡ W̄ (t− 1), Ȳ (t− 1).

In addition, we have A(t) ∈ {a0(t), a1(t)}, and outcome Y ∗(t). The original NPSEM
above, implies that these four variables also satisfy an NPSEM, in which one first
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draws E∗, then W ∗(t), then A(t), and finally Y ∗(t):

U ∼ PU

E∗(t) = fE∗(t)(UE∗(t))
W ∗(t) = fW ∗(t)(E

∗(t), UW ∗(t))
A(t) = fA(t)(E

∗(t),W ∗(t), UA(t))
Y ∗(t) = fY ∗(t)(E

∗(t),W ∗(t), A(t), UY ∗(t)).

This NPSEM for the endogenous nodes (E∗(t),W ∗(t), A(t), Y ∗(t)) defines counter-
factual random variables Y ∗(A(t) = a1(t))(t) and Y ∗(A(t) = a0(t))(t), by interven-
ing on A(t), and counterfactual random variables Y ∗(e∗(t), a(t))(t), by intervening
on e∗(t), a(t).

Our observed data corresponds with observing n = n1+n0 i.i.d. (B,W ∗(B)(t), Y ∗(B)(t)),
where B ∈ {(e0, a0), (e1, a1)} and P (B = (e1, a1)) = P (E∗(t) = e∗1(t)) with e∗1(t)
deterministically determined by (E,A) = (e1, a1), and, conditional on B = (e0, a0),
(W ∗(B)(t), Y ∗(B)(t)) is distributed as its counterfactual analogue corresponding
with setting (E,A) = (e0, a0), and thereby setting E∗(t) = e∗0(t) and A(t) = a0(t).
Similarly, the above statement applies conditional on B = (e1, a1).

We have now reformulated the causal effect estimation problem as a t-specific
version of the problem addressed in previous subsections. As a consequence, we
can apply Theorem 1 to this t-specific identification problem, which proves that, if
(E∗(t),W ∗(t), A(t)) is independent of the counterfactuals Y ∗(e∗(t), w∗(t), a(t))(t),
and Y ∗(t) = fY ∗(t)(W ∗(t), A(t), UY ∗(t)) is not a function of E∗(t), then

Ψ(PU,X)(t) = E(Y (1)(t)− Y (0)(t))
= EW ∗(B)(t)E(Y ∗(B)(t) | B = (e1, a1),W ∗(B)(t))
−EW ∗(B)(t)E(Y ∗(B)(t) | B = (e0, a0),W ∗(B)(t))

≡ Ψ(P0)(t)

This statistical parameter of the distribution P0 of the dataO = (B,W ∗(B)(t), Y ∗(B)(t))
can be double robust and efficiently estimated with targeted MLE as in previous
subsections.

One might also be concerned with estimation of a weighted average across time
t of Ψ(P0)(t). In that case, one can substitute the targeted MLE for Ψ(P0)(t) for
each t, or, one can apply a single targeted MLE targeting the weighted average to
a pooled sample that includes τ t-specific records (t,W ∗(t), Y ∗(t)) for each subject.

Similarly, we have this result for the t-specific causal effect among the treated
population,

Ψ∗(PU,X)(t) = E(Y (1)(t)− Y (0)(t) | (E,A) = (e1, a1))
= E {E(Y ∗(B)(t) | B = (e1, a1),W ∗(B)(t)) | B = (e1, a1)}
−E {E(Y ∗(B)(t) | B = (e0, a0),W ∗(B)(t)) | B = (e1, a1)}

≡ Ψ∗(P0)(t)
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Again, we already developed the targeted MLE for this target parameter of P0 in
the previous subsections, and the same remark as above applies.

For ψ∗0(t) or ψ0(t) we could employ the matched sampling design, matching
on a subset of W ∗(t). However, that design would then be targeted towards this
particular t-specific effect. If one is concerned with estimation of an average of
ψ∗0(t), then, one should only match on covariates that are not affected by any of
the A(t): i.e., one would then match on the covariates M that were realized before
one assigned the treatment regimen A, or, more general, are not affected by the
treatment regimen.

Again, the combination of using matching in the design and the adjustment by
W ∗(t) carried out by targeted MLE provides a good way to deal with the different
environmental factors e0 and e1 in the two samples.

3 Assigning two interventions to multiple populations.

The above framework can be generalized to handle multiple populations. The theo-
rem below, which generalizes Theorem 1, proves that nothing fundamental changes:
the well defined causal effects on the NPSEM allow an identifiability result under
the same assumptions as stated, and subsequently one applies targeted MLE to
estimate these statistical parameters. To achieve these assumptions one wants to
collect individual covariates that can block effect of the environmental factors that
are different between populations, and for the sake of optimizing the design, one
also wants to match on such individual covariates across the multiple populations.

Theorem 3 NPSEM. Consider a NPSEM with structural equations for the en-
dogenous X = (E,W,A, Y ),

E = fE(UE)
W = fW (E,UW )
A = fA(E,W,UA)
Y = fY (E,W,A,UY ),

and exogenous U = (UE , UW , UA, UY ). Let A ∈ {0, 1}, E ∈ {e1, . . . , eJ}. Let α be
the marginal probability distribution of E.
Counterfactuals. Let Y (1) = fY (E,W, 1, UY ) and Y (0) = fY (E,W, 0, UY ) denote
the counterfactuals corresponding with setting A = 1 and A = 0, respectively. We
also define (W (ej), Y (1, ej)) and (W (ej), Y (0, ej)) as the post-intervention random
variable corresponding with setting A = 1, E = ej and A = 0, E = ej, respectively,
j = 1, . . . , J . We also define Y (e, w, a) = fY (e, w, a, UY ) as the post-intervention
counterfactual of Y corresponding with intervention E = e,W = w,A = a, e ∈
{e1, . . . , eJ}, a ∈ {0, 1}, and all possible w.
Observed multi-sample data set. Let B = ((aj , ej) : j = 1, . . . , J) be a set
with J given treatment and exposure combinations. We denote the distributions of
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the corresponding counterfactuals (W (ej), Y (aj , ej)) with Paj ,ej , j = 1, . . . , J . We
observe nj i.i.d. observations from Paj ,ej , j = 1, . . . , J .
Reformulation of observed data. Let O = (B,W (B) ≡ W (eB), Y (B)), where
B ∼ α, B ∈ B, conditional on B = (aj , ej), O is distributed as (W (ej), Y (aj , ej)) ∼
Paj ,ej , j = 1, . . . , J . Let P (B = (aj , ej)) = α(j), j = 1, . . . , J , be the marginal
proability distribution of B. We note that P (W (B) = w) =

∑J
j=1 PW (ej)(w)α(j).

Let PO be the probability distribution of O: PO = PO(PU,X).
Relevance to multi-sample data set. We note that the distribution of PO also
approximates the multi-sample data structure in which one samples nj i.i.d. obser-
vations from Paj ,ej , j = 1, . . . , J , by setting α(j) = nj/

∑
j nj.

Target parameter on NPSEM. Consider the following parameter of the distri-
bution of (U,X):

ΨF (PU,X) = EY (1)− EY (0),

the additive causal effect of setting A = 1 versus A = 0.
Exclusion and Randomization assumption on NPSEM. Assume that Y is
only a function of E through W , i.e., Y = fY (W,A,UY ) in the NPSEM, and that
the distribution of U = (UE , UW , UA, UY ) is such that (E,W,A) is independent of
Y (e, w, a) for all e, w, a.
Identifiability result. Let B0,B1 be the partitioning of B into the regimens with
aj = 0 and the regimens with aj = 1, respectively. Then, for any (aj , ej) ∈ B1, we
have

EY (1) = EW (B)E(Y (B) |W (B), B = (aj , ej)),

and, for any (aj , ej) ∈ B0, we have

EY (0) = EW (B)E(Y (B) |W (B), B = (aj , ej)).

In particular,

EY (1)− Y (0) =
1
| B1 |

∑
b∈B1

EW (B))E(Y (B) |W (B), B = b)

− 1
| B0 |

∑
b∈B0

EW (B)E(Y (B) |W (B), B = b).

Most importantly, we have the following identifiability result:

E(Y (1) |W = w) = E(Y (B) | B ∈ B1,W (B) = w)
E(Y (0) |W = w) = E(Y (B) | B ∈ B0,W (B) = w),

and thereby

E(Y (1)−Y (0)) = EW (B)E(Y (B) | B ∈ B1,W (B))−E(Y (B) | B ∈ B0,W (B)). (3)
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Proof. Firstly, for the full data parameter, we have

ΨF
1 (PU,X) = EY (1) = EfY (1,W,UY )

=
∑

w E(fY (1, w, UY ) |W = w)P (W = w)
=
∑

w EfY (1, w, UY )P (W = w),

where we used at the last equality that W is independent of Y (e, w, a), by assump-
tion. We note that P (W = w) =

∑J
j=1 P (W (ej) = w | E = ej)P (E = ej) =∑J

j=1 PW (ej)(w)αE(j).
Consider now the parameter Ψj(P0) = EW (B)E(Y (B) | W (B), B = (1, ej)) of

the distribution of observed data structureO. Since, givenB = (1, ej), (W (B), Y (B))
is distributed as (W (ej), Y (1, ej)), we have

E(Y (B) |W (B) = w,B = (1, ej)) = E(fY (1, w, UY ) |W (ej) = w)
= E(fY (1, w, UY ) | A = 1, E = ej ,W = w)
= EfY (1, w, UY ),

where the second equality is implied by (A,E) being independent of Y (e, w, a), given
W , and the third equality is implied by (E,W,A) being independent of Y (e, w, a),
both consequences of our strong randomization assumption.

In addition, the observed data parameter Ψj(P0) for EY (1) involves averaging
w.r.t P (W (B) = w) =

∑J
j=1 PW (ej)(w)P (B = (aj , ej)). By assumption, P (B =

(aj , ej)) = P (E = ej) = αE(j).
Thus, we conclude

Ψj(P0) =
∑
w

{EfY (A = 1, w, UY )− EfY (A = 0, w, UY )}P (W = w) = ΨF
1 (PU,X).

This completes the proof that the full data parameter ΨF
1 of the distribution of

(U,X), as defined by the NPSEM, can be identified as a mapping Ψ applied to the
observed data distribution O implied by the distribution of (U,X).
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We will now prove the last statement. We have

E(Y (B) | B ∈ B1,W (B) = w) =
∑

y yP (Y (B) = y | B ∈ B1,W (B) = w)
=
∑

y y
P (Y (B)=y,B∈B1,W (B)=w)

P (B∈B1,W (B)=w)

=
∑

y y

P
b∈B1

P (Y (b)=y,B=b,W (b)=w)P
b∈B1

P (W (b)=w,B=b)

=
∑

y y

P
b∈B1

P (Y (b)=y|B=b,W (b)=w)P (W (b)=w,B=b)P
b∈B1

P (W (b)=w,B=b)

=
∑

y y

P
b=(1,e)∈B1

P (Y (1,e)=y|W (e)=w)P (W (b)=w,B=b)P
b∈B1

P (W (b)=w,B=b)

=
∑

y y

P
b=(1,e)∈B1

P (Y (1,w)=y|W (e)=w)P (W (b)=w,B=b)P
b∈B1

P (W (b)=w,B=b)

by exclusion restriction assumption

=
∑

y y

P
b=(1,e)∈B1

P (Y (1,w)=y)P (W (b)=w,B=b)P
b∈B1

P (W (b)=w,B=b)

by strong randomization assumption
=
∑

y yP (Y (1, w) = y)
=
∑

y y(P (Y (1) = y |W = w)
= E(Y (1) |W = w).

This completes the proof. 2

The analogue theorem for the causal effect among the treated is generalized in
the same way.

3.1 Efficient influence curve, Targeted ML Estimation, and statis-
tical inference

The last identifiability result stated in the theorem teaches us that, under the ex-
clusion restriction and randomization assumption, the causal parameter EY (a) cor-
responds with statistical parameter

EY (a) = Ψa(P0) = EW (B)E(Y (B) | B ∈ Ba,W (B)).

Thus, we can identify the additive causal effect of the community based intervention,
EY (1)− Y (0), with the statistical target parameter

Ψ(P0) = EW (B){E(Y (B) | B ∈ B1,W (B))− E(Y (B) | B ∈ B0,W (B))}.

The efficient influence curve, targeted MLE, collaborative targeted MLE, and sta-
tistical inference based on an estimate of the efficient influence curve, has been
presented earlier, and corresponds exactly with the statistical target parameter
EW {E(Y | A = 1,W ) − E(Y | A = 0,W )} based on observing n i.i.d. copies
of (W,A, Y ) with Y = Y (B), W = W (B), and A = I(B ∈ B1). Thus, the practical
conclusion is that one can create one combined sample from the J community-
specific samples, reduce each observation to W,A, Y by ignoring the data on envi-
ronmental factors, and apply the targeted MLE.
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4 Estimation and inference without the exclusion re-
striction assumption

Suppose the exclusion restriction assumption fails to hold. Our proposed parameter
of the distribution of O involves a difference of EW (B)E(Y (B) | B ∈ Ba,W (B)) for
the treated a = 1 and control a = 0. This suggest that if A is independent of E
(i..e., A is randomly assigned to communities), then the bias of this parameter due
to violation of the exclusion restriction assumption will be decreasing in the number
of communities J . In this section we aim to incorporate this residual confounding
by differences in environments of the treated and untreated communities in the sta-
tistical inference. Our proposed targeted ML estimator is unchanged, with the only
remark that, if the number of communities is quite large, we recommend including
environmental factors in the definition of W (B), so that they are also potentially
used in the adjustment: the collaborative targeted MLE could be used to make this
decision data adaptively. This section is thereby only concerned with understanding
the target of this targeted MLE as a causal parameter, and taking into account its
bias w.r.t. a wished causal effect by appropriately enlarging the variance estimator.

4.1 Testing the exclusion restriction assumption.

Consider two communities (a1, e1) and (a2, e2) which received the same treatment, so
that a1 = a2. Under the exclusion restriction assumption we have that EW (B)E(Y |
W (B), B = (a1, e1)) − EW (B)E(Y | W (B), B = (a2, e2)) = 0 for any such pair of
communities with a1 = a2. We could estimate the two parameters using stratifica-
tion by community when estimating E(Y |W (b), B = b), constructing a t-statistic,
and carry out a test of the null hypothesis that the difference equal zero. In par-
ticular, we could target the difference between the average of all Ψej ,aj (P0) across
{j : aj = 1} and the average of all Ψej ,aj (P0) across {j : aj = 0}, and carry out a
single targeted maximum likelihood based test for testing that this difference equals
zero, where the estimation of E(Y |W (b), B = b) is stratified by the a-component.

We conclude that the exclusion restriction assumption is a testable assumption.

4.2 The wished causal target of TMLE without the exclusion re-
striction assumption, and estimation of standard error of TMLE
relative to this causal target

The following theorem establishes the bias of the target parameter Ψ(P0), when not
assuming the exclusion restriction assumption, w.r.t. a well defined causal effect of
treatment, as a function of the number J of sampled communities and the degree of
violation of the exclusion restriction assumption. In particular, it provides us with
an augmentation of the variance of the previously presented targeted ML estimator
that takes into account that we only observe a finite sample of J communities while
the exclusion restriction assumption might be violated.
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Theorem 4 NPSEM-J . Consider a J-specicic NPSEM with structural equations
for the endogenous XJ = (EJ ,W J , AJ , Y J),

EJ = fEJ (UEJ )
W J = fW (EJ , UW )
AJ = fA(EJ ,W J , UA)
Y J = fY (EJ ,W J , AJ , UY ),

and exogenous UJ = (UEJ , UW , UA, UY ). Let AJ ∈ {0, 1}, EJ ∈ {e1, . . . , eJ}.
Let αJ be the marginal probability distribution of E. We note that all random
variables are indexed by J because we are concerned in behavior of target parameter
and estimator for J large. We also note that the deterministic functions in the
NPSEM for W,A, Y are the same for each J , and the corresponding exogenous
errors (UW , UA, UY ) also have a common distribution.
Counterfactuals. Let Y J(1) = fY (EJ ,W J , 1, UY J ) and Y J(0) = fY (EJ ,W J , 0, UY J )
denote the counterfactuals corresponding with setting AJ = 1 and AJ = 0, respec-
tively. We define (W J(ej), Y J(1, ej)) and (W J(ej), Y J(0, ej)) as the post-intervention
random variable corresponding with setting AJ = 1, EJ = ej and AJ = 0, EJ = ej,
respectively, j = 1, . . . , J . We also define Y (e, w, a) = fY (e, w, a, UY ) as the post-
intervention counterfactual of Y J (same for all J) corresponding with intervention
EJ = e,W J = w,AJ = a, e ∈ {e1, . . . , eJ}, a ∈ {0, 1}, and all possible w.
Observed multi-sample data set. Let BJ = ((aj , ej) : j = 1, . . . , J) be a set with
J given treatment and exposure combinations. We denote the distributions of the
corresponding counterfactuals (W J(ej), Y J(aj , ej)) with P Jaj ,ej

, j = 1, . . . , J . We
observe nj i.i.d. observations from P Jaj ,ej

, j = 1, . . . , J . Let n =
∑J

j=1 nj.
Reformulation of observed data. Suppose that OJ = (BJ ,W J(BJ) ≡W J(eBJ ), Y J(BJ))
where BJ ∼ αJ , BJ ∈ BJ , and conditional on BJ = (aj , ej), OJ is distributed
as (W J(ej), Y J(aj , ej)) ∼ P Jaj ,ej

, j = 1, . . . , J . Let P (BJ = (aj , ej)) = αJ(j),
j = 1, . . . , J , be the marginal probability distribution of B. We set αJ(j) = nj/n.
We note that P (W J(BJ) = w) =

∑J
j=1 PW (ej)(w)αJ(j), which equals P (W J = w)

of the NPSEM. Let PO be the probability distribution of O, which is identified by
PU,X : PO = PO(PU,X).
Relevance to multi-sample data set. We note that the distribution of PO also
approximates the multi-sample data structure in which one samples nj i.i.d. obser-
vations from Paj ,ej , j = 1, . . . , J , by setting αJ(j) = nj/

∑
j nj.

Randomization assumptions. Assume the distribution of UJ = (UJE , UW , UA, UY )
is such that (EJ ,W J , AJ) is independent of Y (e, w, a) for all e, w, a. Assume that
the realized {bj : j = 1, . . . , J} are the outcomes of J times drawing from a distri-
bution of (E,A) with E varying over a possibly infinite set and A ∈ {0, 1}: at least,
approximately for J large. Assume also that A is independent of E (e.g., in a ran-
domized community intervention trial). As a consequence, the marginal distribution
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of B in our observed data formulation is distributed as the distribution of (E,A)
with E independent of A.
Results. Suppressing J , we have

E(Y (B) | B ∈ Ba,W (B) = w)

=
∑

y y
P

b∈Ba
P (Y (b)=y|W (b)=w)P (W (b)=w,B=b)P

b∈Ba
P (W (b)=w,B=b)

=
P

b∈Ba
E(Y (b)|W (b)=w)P (W (e)=w)α(e)P

b∈Ba
P (W (e)=w)α(e) .

Thus,

EW (B)E(Y (B) | B ∈ Ba,W (B)) =
P JE|A=a

∑
w P̄

J(w)Q̄E,a(w)PE(w)α(E)

P JE|A=aPE(w)α(E)
,

where P̄ J(w) = P (W (B) = w), Pe(w) = P (W (e) = w), Q̄b(w) = E(Y (B) | B =
b,W (B) = w), and P JE|A=a is the empirical distribution of the conditional distribu-
tion of E, given A = a, based on Bj = (Ej , Aj), j = 1, . . . , J .

We view this parameter as a function Φa(P JE|A=a), treating it as random through
the empirical distribution of E, given A = a, based on Bj = (Ej , Aj), j = 1, . . . , J .
The statistical parameter

ΨJ(P J0 ) ≡ EW (B)E(Y (B) | B ∈ B1,W (B))− EW (B)E(Y (B) | B ∈ B0,W (B)) (4)

equals
Φ̄(P JB) ≡ Φ1(P JE|A=1)− Φ0(P JE|A=0).

If the exclusion restriction assumption holds for the J-specific NPSEM, then this
equals EY (1) − Y (0). However, without this assumption, note that a difference of
Φ̄(P JB) from zero can be due to both a true treatment effect or a difference between
P JE|A=1 and P JE|A=0.
Wished target parameter with no residual confounding due to environ-
mental factors. We define a wished target as its limit if P JE|A=a is replaced by its
limit PE|A=a for both a ∈ {0, 1}, while we keep P̄ J(w) fixed at J :

Φ̄(PB) = Φ1(PE|A=1)− Φ0(PE|A=1)

= PE|A=1

P
w P̄

J (w)Q̄E,1(w)PE(w)α(E)

PE|A=1PE(w)α(E) − PE|A=1

P
w P̄

J (w)Q̄E,0(w)PE(w)α(E)

PE|A=1PE(w)α(E) ,

where, by assumption, PE|A=1 = PE.
Asymptotic (in J) linearity of statistical target parameter as estimate of
wished target parameter: We have

Φ̄(P JB)− Φ̄(PB) =
1
J

J∑
j=1

IC(Bj) + oP

(
1√
J

)
,
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where

IC(Bj) = IC1(Bj)− IC0(Bj),

ICa(Bj) = I(Aj = a)
∑
w

{
fBj (w)
PBgB(w)

− PBfB(w)
P 2
BgB(w)

gBj (w)
}
,

fB(w) = P̄ J(w)Q̄B(w)PE(w)α(E),
gB(w) = PE(w)α(E).

Thus, we have that Φ̄(P JB)− Φ̄(PB) is approximately normally distributed with mean
0 and variance

σ2(J) =
VARIC(B)

J
. (5)

In particular, if in the J-specific NPSEM, Y = fY (W,A,UY ) does not depend on
E, i.e., if the exclusion restriction holds, then σ2(J) = 0.

The variance of Φ̄(P JB) can be estimated as

1
J2

J∑
j=1

ˆIC(Bj)2,

where ˆIC is obtained by replacing PB by its empirical distribution of B1, . . . , BJ , and
the functions fB and gB are estimated as well with their empirical counterparts.

4.3 Variance estimation incorporating residual confounding due to
violation of exclusion restriction assumption.

Consider the statistical parameter ΨJ(P J0 ) = ΨJ(Q0) (4). This statistical parameter
and the estimator is not affected by the exclusion restriction assumption to be true
or not. In the previous section we proposed a targeted MLE of this target parameter
ΨJ(Q0), which is a substitution estimator obtained by plugging in a Q̄∗n estimator
of Q̄0(w, a) = E(Y (B) | W (B) = w,B ∈ Ba) and the empirical distribution to
estimate the distribution W J(BJ). Under regularity conditions, this targeted MLE
ΨJ(Q∗n) is an asymptotically linear estimator of ψJ0 with an influence curve ICJ(OJ),
conditional on the values (ej , aj), j = 1, . . . , J . Let σ̂2 = 1/N

∑
j,i{ ˆIC

J
(OJji)}2 be

the estimated variance of the influence curve, so that σ̂2/N is an estimate of the
variance of ΨJ(Q∗n).

Our wished target is ψ0 = Φ̄(PB) as defined in the theorem. Note that ΨJ(Q0)−
ψ0 is random through Bj = (Ej , Aj), j = 1, . . . , J . This implies that ΨJ(Q∗n) −
ΨJ(Q0) and ΨJ(Q0) − ψ0 are asymptotically uncorrelated, and thus independent
(both are asymptotically normally distributed).

Therefore, we can conclude that

ΨJ(Q∗n)− ψ0 ∼ N
(

0,
σ̂2

N
+ σ2(J)

)
for N and J large,
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where σ2(J) is defined by (5), and it equals the contribution to the variance due to
dependence of Q̄0(E,W,A) on E (i.e., due to violation of the exclusion restriction
assumption). Note that the variance-term σ2(J) is of the order 1/J , while the
variance of the targeted MLE is of the order N .

We conclude that, without assuming the exclusion restriction assumption, the
above results can be used to not only target the parameter ΨJ(Q0) (which equals
EY (1) − Y (0) under the exclusion restriction assumption), but target the target
parameter ψ0 that takes out the residual environmental confounding due to differ-
ences in the environmental factors between treated and non-treated communities
that could not be explained by the individually measured covariates. Our proposed
variance estimate naturally adapts in the sense that it approximates the variance of
the targeted MLE of ΨJ(Q0) if the exclusion restriction assumption holds, while it
gets appropriately augmented otherwise.

5 Causal effect of changes in treatment over time when
a single time-dependent treatment regimen is assigned
to a population

Our previous results have applications that are easily overseen. For that purpose,
we start this section with providing a general way to think of our templates and the-
orems. One observes a sample of observations from a probability distribution that
is indexed by a choice of intervention and external environmental factors, across
a collection of combined interventions and environmental values. These different
probability distributions generate the same data structure, such as a vector (W,Y )
of covariates and an outcome. The samples might be independent as in sampling
from different populations, but, as we point out in this section, they can as well
be dependent as in sampling the same group across time. The key is that one
assumes that each of these probability distributions are treatment-environment-
specific counterfactual distributions defined by intervening on a single NPSEM. We
define treatment-specific counterfactual outcome distributions on this same NPSEM,
which are defined as the outcome of the experiment that first draws randomly from
the set of possible environments, subsequently draws a covariate from the environ-
ment specific distribution, sets treatment, and finally draws the outcome, given the
environment, covariate, and treatment. Differences between these treatment-specific
counterfactual outcome distributions define now interesting causal effects that are
free from environmental confounding. Our identifiability results provide now the
conditions under which these distributions and thereby the corresponding causal
contrasts are identified from the data generating distributions. Specifically, we de-
fine statistical parameters that equal the wished causal effects under well understood
conditions on the NPSEM and the sampling (e.g., number) of the intervention and
environment values.
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The different environments can correspond with different populations, different
neighborhoods or communities, but also different time-points at which the sample
was taken. The exclusion restriction assumption states that the effect of different
environmental factors on the outcome only occurs through the individually measured
covariates. For example, if one sampled from a population at two different time
points (e.g., a year apart), either involving independent sampling or sampling of one
cohort over two time points, then changes in outcome distribution over time, in the
absence of a change of treatment, need to be completely explained by a change in
covariate distribution.

5.1 A two time-point example.

Consider a study in which we observe a sample of subjects from a population and
expose them in the first year to a treatment A(1) = 0 and the second year to a
treatment A(2) = 1. The data on these n subjects can be coded as (Wi(t), Yi(t)),
t ∈ {1, 2}, i = 1, . . . , n, where Wi(t) denotes the individual history before A(t),
and Yi(t) is the subsequent outcome measured after A(t), t = 1, 2. One might also
observe other changes that have occurred from time t = 1 to t = 2 which are coded by
E(t) at t = 1, 2. Thus, the data on one unit i is collected according to the following
time-ordering E(1),Wi(1), A(1), Yi(1), E(2),Wi(2), A(2), Yi(2). Suppose one wishes
to estimate the causal effect of this change in treatment from A(1) = 0 to A(2) = 1,
and let’s assume that A(t) can only have two values {0, 1}.

To formally define a causal effect we define the following NPSEM:

U ∼ PU

E = fE(UE)
W = fW (E,UW )
A = fA(E,UA)
Y = fY (E,W,A,UY ).

The observed data corresponds with observing n draws from the counterfactual
(W (e(1)), Y (e(1), a(1))) and (W (e2), Y (e(2), a(2))) corresponding with interventions
E = e(1), A = a(1), and E = e(2), A = a(2), respectively. The causal effect of
interest is EY (1) − Y (0), where Y (a) is the counterfactual corresponding with in-
tervention A = a. Note that Y (a) involves first randomly drawing the environment
E ∈ {e(1), e(2)} among the two environments with probability 0.5 on each, draw-
ing covariates from the corresponding environment specific distribution, setting the
intervention A at a, and finally drawing the outcome Y . Our identifiability results
shows that if (E,W,A) is randomized, and Y = fY (W,A,UY ), then

EY (A = 1)−EY (A = 0) =
∑
w

P̄W (w){E(Y (2) |W (2) = w)−E(Y (1) |W (1) = w)},
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where P̄W (w) = 0.5PW (1)(w) + 0.5PW (2)(w). For the sake of estimation of this
statistical target parameter, one could still treat this as a two sample problem, as
in previous sections. That is, one can represent the data as 2n observations on
(W,B, Y ), B ∈ {(e(1), a(1)), (e(2), a(2))}, and apply the targeted MLE for the sta-
tistical parameter EWE(Y | B = (e(2), a(2)),W )− EWE(Y | B = (e(1), a(1)),W ),
treating the sample as 2n i.i.d. observations. For statistical inference one now needs
to run a bootstrap involving resampling subjects or use influence curve based infer-
ence taking into account that the two influence curve values (from i.i.d. influence
curve) for the coupled observations on one subject define the single influence curve.
That is, our previously presented targeted MLE for the two sample problem is di-
rectly applicable, but statistical inference needs to respect the fact that two of the
observations are from the same subject.

We now consider a slight variation of the above example in which different sub-
jects are sampled at the second time point. Consider now a study in which we
observe a sample of n1 subjects from a population I in year 1 and observe a sample
of n2 independent subjects from a population II (possibly equal to population I) in
year 2. The first sample is exposed to treatment A(1) = 0 and the second sample
is exposed to treatment A(2). The data on these n1 + n2 subjects can be coded
as (Wi(t), Yi(t)), i = 1, . . . , nt, t ∈ {1, 2}, where Wi(t) denotes the individual his-
tory before A(t), and Yi(t) is the subsequent outcome measured after A(t), t = 1, 2.
One might also observe other changes in sampling population that have occurred
from time t = 1 to t = 2 which are coded by E(t) at t = 1, 2. Thus, the data
on one unit i from t-th sample is collected according to the following time-ordering
E(t),Wi(t), A(t), Yi(t), t = 1, 2. Suppose one wishes to estimate the causal effect of
this change in treatment from A(1) = 0 to A(2) = 1, and let’s assume that A(t) can
only have two values {0, 1}.

To formally define a causal effect we define the following NPSEM:

U ∼ PU

E = fE(UE)
W = fW (E,UW )
A = fA(E,UA)
Y = fY (E,W,A,UY ).

We assume that the observed data corresponds with observing n1 draws from the
counterfactual W (e(1)), Y (e(1), a(1)) and n2 draws from W (e2), Y (e(2), a(2)), cor-
responding with interventions E = e(1), A = a(1), and E = e(2), A = a(2),
respectively. The causal effect of interest is EY (1)− Y (0), where Y (a) is the coun-
terfactual corresponding with intervention A = a. Note that Y (a) involves first
randomly drawing the environment E ∈ {e(1), e(2)} among the two environments
with probability α = n1/(n1 +n2) on e(1), drawing covariates from the correspond-
ing environment specific distribution, setting the intervention A at a, and finally
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drawing the outcome Y . Our identifiability results shows that if (E,W,A) is ran-
domized, and Y = fY (W,A,UY ), then

EY (A = 1)−EY (A = 0) =
∑
w

P̄W (w){E(Y (2) |W (2) = w)−E(Y (1) |W (1) = w)},

where P̄W (w) = αPW (1)(w) + (1 − α)PW (2)(w). For the sake of estimation of this
statistical target parameter, one can treat this as a two sample problem, as in pre-
vious sections. That is, one can represent the data as n1 + n2 i.i.d. observations on
(W,B, Y ), B ∈ {(e(1), a(1)), (e(2), a(2))}, and apply the targeted MLE for the sta-
tistical parameter EWE(Y | B = (e(2), a(2)),W )− EWE(Y | B = (e(1), a(1)),W ).

5.2 Generalization to multiple time points.

Consider a study in which we observe a sample of subjects from a population
over time and expose them to a treatment regimen A(t), t = 1, . . . , τ . The data
on these n subjects can be coded as (Wi(t), Yi(t)), t ∈ {1, . . . , τ}, i = 1, . . . , n,
where Wi(t) denotes the individual history before A(t), and Yi(t) is the subsequent
outcome measured after A(t). Let E(t) denote the environmental factors present
at time t and relevant for Y (t), which includes Ā(t − 1) = (A(1), . . . , A(t − 1)).
Thus, the data on one unit i is collected according to the following time-ordering
E(1),Wi(1), A(1), Yi(1), . . . , E(τ),Wi(τ), A(τ), Yi(τ). Suppose one wishes to esti-
mate the causal effect of a change in treatment on the outcome, and let’s assume
that A(t) can only have two values {0, 1}.

To formally define a causal effect we define the following NPSEM:

U ∼ PU

E = fE(UE)
W = fW (E,UW )
A = fA(E,UA)
Y = fY (E,W,A,UY ).

This NPSEM allows us to define counterfactuals and corresponding causal effects.
The causal effect of interest is EY (1)−Y (0), where Y (a) is the counterfactual corre-
sponding with intervention A = a, a ∈ {0, 1}. Drawing Y (a) involves first randomly
drawing the environment E ∈ {e(t) : t = 1, . . . , τ} among the t environments with
probability 1/τ on each, drawing covariates W from the corresponding environment
specific distribution, setting the intervention A at a, and finally drawing the outcome
Y . The observed data corresponds with observing n draws from the counterfactual
W (e(t)), Y (e(t), a(t)) corresponding with interventions E = e(t), A = a(t), across
t = 1, . . . , τ . As before, we reformulate the combined data as an i.i.d. sample on
(B,W (B), Y (B)) with B ∈ {(e(t), a(t)) : t = 1, . . . , τ}, and, given B = (e(t), a(t)),
the distribution ofW (B), Y (B) equals the distribution ofW (e(t)), Y (e(t), a(t)). Our
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identifiability results shows that if (E,W,A) is randomized, and Y = fY (W,A,UY ),
then, for each t,

EY (a) =
∑
w

P̄W (w)E(Y (B) | B ∈ Ba,W (B) = w),

where P̄W (w) =
∑

t
1
τ PW (t)(w), and Ba = {(e(t), a(t)) : a(t) = a} consists of all

time-points for which a(t) = a. In particular, this yields the following identifiability
result for the additive causal effect of a change in treatment:

EY (A = 1)− EY (A = 0) =∑
w P̄W (w) {E(Y (B) | B ∈ B1,W (B) = w)− E(Y (B) | B ∈ B0,W (B) = w)} .

For the sake of estimation of this statistical target parameter, one could treat
the n observations as a pooled sample of n ∗ τ observations, ignoring the de-
pendence. That is, one can represent the data as τn observations on (W,B, Y ),
B ∈ {(e(t), a(t)) : t = 1, . . . , τ}, and apply the targeted MLE for the statistical
parameter EWE(Y | A = 1,W ) − EWE(Y | A = 0,W ), treating the sample as τn
i.i.d. observations, where A denotes the second component of B. For the sake of
statistical inference one now needs to run a bootstrap involving resampling from
the n subjects, or use influence curve based inference taking into account that the τ
influence curve values (from i.i.d. influence curve representation) for the time-series
of observations on one subject define the single influence curve. That is, our previ-
ously presented targeted MLE for the multi sample problem is directly applicable,
but statistical inference needs to respect the fact that the τ observations across time
t are from the same subject.

6 Generalization to causal effect of community based
intervention on arbitrary parameters of data gener-
ating distribution for individuals.

We have been focussing on the causal effect of a community based intervention on
the mean outcome. In this section we generalize our approach to causal effect of
the community based intervention on arbitrary parameters, thereby including the
causal effect of joint interventions at both the community level as well as at the
individual level. The next theorem generalizes our identifiability results.

Theorem 5 Consider a NPSEM,

E = fE(UE)
W = fW (E,UW )
A = fA(E,UA)
O = fO(E,W,A,UO).
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This allows us to define the counterfactuals O(e, w, a), O(e, a), and O(a) = O(E, a)
corresponding with intervention (E = e,W = w,A = a), (E = e,A = a), and
A = a, respectively. Let α() be the marginal distribution of E on {e1, . . . , eJ}.

We observe nj i.i.d. observations on (W (ej), O(ej , aj)) for a collection of (ej , aj) ∈
B = {(e1, a1), . . . , (eJ , aJ)}, j = 1, . . . , J . Let Pb be the distribution of (W (b), O(b)
for b ∈ B.

We reformulate this observed data set as n =
∑

j nj i.i.d. on (B,W (B), O(B)),
where P (B = (ej , aj)) = nj/n and P (W (B), O(B) | B = b) ∼ Pb.

We assume the strong randomization assumption stating that (E,W,A) is in-
dependent of O(e, a, w) for all (e, a, w), and the exclusion restriction assumption
O = fO(W,A,UO) stating that O is not a function of E.

We have the following identifiability result:

P (W (E) = w,O(E, a) = o) = P̄ (w)P (O(B) = o | B ∈ Ba,W = w),

where P̄ (w) =
∑

b=(e,a) P (W (e) = w)α(e). In particular,

P (O(E, a) = o) =
∑
w

P̄ (w)P (O(B) = o | B ∈ Ba,W = w).

Proof. For notational convenience, we denote fO(W,A,UO) with f(W,A,U). We
have

P (W (E) = w,O(E, a) = o) = P (W (E) = w, f(W,a, U) = o)
=
∑

e P (E = e,W (e) = w, f(w, a, U) = o)
=
∑

e P (O(a,w) = o |W (e) = w,E = e)P (W (e) = w,E = e)
=
∑

e P (O(a,w) = o)P (W (e) = w,E = e)
by strong RA

= P (O(a,w) = o)
∑

e P (W (e) = w,E = e)
= P (O(a,w) = o)P̄ (w)
by definition of P̄ (w)

= P (O(a,w) = o |W (e) = w)P̄ (w)
by strong RA.

= P (O(B) = o | B = (e, a),W (e) = w)P̄ (w),

where we used at last step that

P (O(a,w) = o,W (E) = w) = P (O(B) = o,W (E) = w | B = b),

and thereby

P (O(a,w) = 0 |W (E) = w) = P (O(B) = o | B = b,W (E) = w).

Let A(B) denote the A-component of B = (E,A). We have for any function h,

E(h(O(B)) | A(B) = a,W (B) = w) = E{E(h(O(B)) | B,A(B) = a,W (B) = w) | A(B) = a,W (B) = w)}
= {E(h(O(B)) | B,A(B) = a,W (B) = w)},42
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where we used that E(h(O(B)) | B,W (B) = w) only depends on B through A.
Thus, by letting h(o) = I(O = o), it follows

P (O(B) = o | B = (e, a),W (B) = w) = P (O(B) = o | B ∈ Ba,W (B) = w).

This proves now

P (W (E) = w,O(E, a) = o) = P (O(B) = o | B ∈ Ba,W (B) = w)P̄ (w).

This completes the proof. 2

Identifiability of causal parameters. Suppose one wishes to estimate a partic-
ular parameter of the distributions of O(E, a) ∼ Pa for different a, such as

Ψ(P1)−Ψ(P0).

For example, Ψ(Pa) might represent a parameter of a G-computation formula for
the counterfactual distribution of O(E, a) under an intervention on an individually
measured treatment AI that is included in the observation O(E, a): i.e., this would
be a counterfactual O(E, a, aI), defined in an augmented NPSEM, corresponding
with a joint intervention on A and AI . In this manner, Ψ(Pa) corresponds with a
distribution corresponding with setting a community based intervention A = a and
an individual treatment regimen AI = aI .

Under the stated no residual environmental confounding assumption (exclusion
restriction assumption on NPSEM), the theorem teaches us that we can identify Pa
as the distribution of O under the density PO(B)|B∈Ba,W (B)PW (B) for a joint (O,W ).
For many parameters Ψ

Ψ(Pa) = EW (B)Ψ(PO(B)|B∈Ba,W (B)) ≡ Ψa(P ),

i.e., one can evaluate it as an average over w w.r.t distribution of W (B) of the
same parameter of the conditional distribution of O(B), given B ∈ Ba,W (B) = w.
In general, Pa = Pa(P ) is now identified by the distribution P of observed data
structure (B,W (B), O(B)).

G-computation formulas for joint community and individual interven-
tions. The above theorem states that P (W (E) = w,O(a) = o) = P (W (E) =
w)P (O(B) | A = a,W (E) = w). This teaches us also that the distribution of
O(a, aI) under a joint intervention including an intervention AI = aI in an aug-
mented NPSEM (incorporating equations for O), is the same as the G-computation
formula for the joint intervention treating the data as (W,A, (AI , L(A,AI)), i.e.,
respecting the time-ordering, ignoring E, and treating the data as observed directly
from the NPSEM. This means that we can now obtain, under the stated conditions,
identifiability results for all wished causal effects of joint community and individual
treatment assignments.
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The statistical estimation problem. Thus, the above theorem establishes the
wished identifiability result representing the wished causal parameter as a parameter
Ψ(P ) of the probability distribution of the observed data structure (B,W (B), O(B)).
Suppose that the model M for P is the nonparametric model: we prefer not to in-
clude the no-residual confounding assumption in the observed data model, since we
are interested in statistical inference for this same parameter Ψ(P ) without this as-
sumption as well, in particular, incorporating the residual environmental confound-
ing in an variance estimate. The statistical estimation problem is now defined: we
observe i.i.d. (Bi,Wi(Bi), Oi(Bi)) ∼ P , i = 1, . . . , n, P ∈ M, and we wish to esti-
mate the statistical parameter Ψ(P ) such as Ψa(P ) or a contrast Ψ(P ) representing
Ψ1(P )−Ψ0(P ).

Double robust mapping for identifying mean of functions of counterfactu-
als. To construct a semi-parametric efficient estimator of Ψ(P ), such as the targeted
MLE, one will need to obtain the efficient influence curve D∗(P ) of Ψ. We are now
concerned with presenting a general approach for obtaining this efficient influence
curve, assuming that it is well understood how to obtain the efficient influence curve
of Ψ(P ) if one would have observed directly from the NPSEM (W,A,O).

The identifiability theorem for the distribution of O(a) has the following im-
plications for identifying a mean of a function D(O(a)), which could represent an
estimating function or loss function.

Lemma 1 Consider a function D of O(a). Under the assumptions stated in previ-
ous theorem, including the exclusion restriction assumption, the following holds.

We have the following Inverse probability of community intervention mapping:

ED(O(a)) = E

{
D(O(B))

I(B ∈ Ba)
P (B ∈ Ba |W (B))

}
.

We have the following double robust inverse probability of community of intervention
mapping:

S(D) =
I(B ∈ Ba)

P (B ∈ Ba |W (B))
{D(O)− E(D(O) | B ∈ Ba,W (B))}

+E(D(O) | B ∈ Ba,W (B)).

View S = S(Q, g,D) as indexed by nuisance parameters g0(a | W (B)) = P (B ∈
Ba |W (B)), and Q0(a,W (B)) = E(D | B ∈ Ba,W (B)). We have

E(SQ,g(D)) = ED(O(a)),

if g(a |W (B)) > 0 a.e., and either Q = Q0 or g = g0.
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This mapping can be used to map an (optimal and double robust) estimating func-
tion or loss function (e.g., loglikelihood) based on sampling i.i.d. O(a) into an (op-
timal and double robust) estimating function based on the observed data structure
(B,W (B), O(B)), where B itself is reduced to just the A component.

General algorithm for computing the efficient influence curve. Given our
assumptions, we have the following general strategy for computing the efficient in-
fluence curve of a causal parameter ΨF ((Pa : a)) = Ψ(P ), which can be viewed as
a function of the counterfactual distributions Pa of O(a) = O(E, a) for one or more
a-values.

• View the observed data structure (B,W (B), O(B)) as (W,A,O(A)), ignoring
E, where O(a) ∼ Pa. Thus our observed data is viewed as a standard point
treatment missing data structure on counterfactuals O(a) and the covariates
W play the role of baseline/pre-treatment covariates. In addition, treat A
as being randomized, conditional on W : P (A = a | W,O(a)) = P (A =
a | W ). In this world we can identify P (W = w,O(a) = o) = P (O(A) |
A = a,W = w)P (W = w) with the standard point-treatment G-computation
formula, which corresponds exactly with our identifiability result. Use this
G-computation formula to represent ΨF (Pa : a) = Ψ(P ) as parameter of the
observed data distribution of (W,A,O(A)), which again, corresponds exactly
with our identifiability result.

• In this standard missing data problem, compute the efficient influence curve
D∗(P ) for the parameter ΨF (Pa : a) = Ψ(P ) at a P of (W,A,O(A)). This
will also be the efficient influence curve based on the actual data structure
(B,W (B), O(B)), suppressing information of E.

Remark. We suggest that E could be included in W (B), and the algorithm used
to construct the estimator of Ψ(P ) needs to decide if the particular E factors are
resulting in too much violation of P (A = a | W (B)) > 0 a.e. In this way, if
the number of communities grows, certain factors of E can start to be included and
adjusted for. In particular, the collaborative targeted maximum likelihood estimator
could be used to data adaptively decide which E factors to still include.

6.1 Example: Causal effect of combined community based inter-
vention and individual treatment.

Suppose that we have two communities, one gets assigned a treatment and another a
control. We sample individuals from the two communities, and on each individual we
observe the data structure (W,W I , AI , Y ), where W are pre-community intervention
baseline covariates, W I are pre-treatment covariates, AI is an individually assigned
treatment, and Y is an outcome of interest. We assume an NPSEM for the nodes
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E,A,W,W I , AI , Y , allowing us to define counterfactuals of Y under set values of
E,A,W . It is assumed that the functions for W I , AI , Y exclude E: i.e., we assume
that the effect of E on the individual data structure is blocked by the covariate
W . We also assume the strong randomization assumption stating that (E,A,W ) is
independent of (W I , AI , Y )(e, a, w) for all set values of (e, a, w). Suppose we wish
to estimate the mean counterfactual outcome of EY (a, aI) under a set community
based intervention A = a and a treatment AI = aI . We can represent the two
samples as a combined i.id. sample on (B,W (B), O(B)), where B = (A,E) ∈
{(1, e0), (0, e1)}, and O(B) = (W I(B), AI(B), Y (B)).

Following the general recipe presented above, to estimate the counterfactual
mean we can treat the observed data structure as i.i.d. observations on (W,A,W I , AI , Y )
and identify the distribution of (W,W I , Y )(a, aI) by the G-computation formula:

P (W )P (W I | A = a,W )P (Y | AI = aI ,W I , A = a,W ),

which also identifies the marginal distribution of Y (a, aI). In particular, we can
estimate EY (a, aI) with the targeted MLE of EY (a, aI) defined as this parameter
of the G-computation formula.

7 Practical conclusion.

What have we learned after this journey?
Identifying and estimating a causal effect of treatment on an outcome distribu-

tion based on data generated by assigning a treatment at the unit-level, possibly in
response to baseline and intermediate covariates, across many units, is by now an
intensively studied and reasonably well understood problem: that is, one observes n
i.i.d. copies (Ai, Xi(Ai)), and one wishes to estimate a parameter of the distribution
of X(a) for some specified a-values under the assumption that the treatment assign-
ment is a deterministic function of observables (only), and a non-zero exogenous er-
ror (so that there is treatment experimentation given all these observed confounder
values). In this case the fundamental problem to address is to utilize covariates
measured at individual level to control for the fact that the treatment empirically or
theoretically is a function of such covariates. The identification problem is addressed
by the G-computation formula under the sequential randomization assumption, and,
for example, semiparametric model-based efficient targeted maximum likelihood es-
timators of the resulting statistical target parameter of the distribution of the data
have been developed.

A different problem is to identify and estimate a causal effect of treatment on
an outcome distribution based on data generated by assigning a single treatment
to a community of units, across few communities that will differ by environmental
factors. That is, one observes many observations on a counterfactual X(ej , aj),
across a few values (ej , aj) of environmental settings ej and treatment value aj ,
j = 1, . . . , J . The fundamental problem to address is to utilize covariates measured
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at the individual level to control for the fact that the community that was exposed
to treatment had a different environment than the community that was exposed to
control. Stating that treatment level was assigned randomly (or deterministically
in balanced way) to the few communities is good, but far from sufficient. Stating
that one measures the environmental factors that make the communities different
is good, since it allows some adjustment by them, but is far from sufficient, and
useless if there are say only two communities.

The identification result for a causal effect of treatment is now obtained by as-
suming that the outcome does not depend on the environmental factors beyond the
measured pre-treatment covariates, and one also needs to assume that the these pre-
treatment covariates are randomized itself, given the environmental factors. These
assumptions allow us to identify the counterfactual outcome distribution correspond-
ing with setting the treatment in the NPSEM.

Given the identification result, the statistical parameter that identifies the wished
causal effect of treatment is defined, so that the statistical estimation problem is well
defined. We presented a targeted MLE of the counterfactual mean EY (a), which
is a substitution estimator obtained by plugging in an estimator of Q̄0(w, a) =
E(Y (B) |W (B) = w,B ∈ Ba), and then averaging w.r.t. the empirical distribution
of the pooled sample of the covariates. That is, we can treat the data structure
as (W,A, Y ) and apply the targeted MLE for estimation of the target parameter
EWE(Y |W,A = a). This is what a naive person would have done who is ignorant
of the underlying data generating experiment, but treats it as the regular causal
inference problem in which each individual gets assigned a treatment A in response
to the baseline covariates W .

We showed that without the exclusion restriction assumption, the targeted sta-
tistical parameter will still be a (non-wished) causal effect, but the latter is subject
to bias w.r.t. a wished causal effect, due to a difference between the empirical distri-
bution of the environmental factors in the treated and untreated communities. We
show that this bias will disappear when the number of communities increases and
the treatment is randomized across communities. We present a variance estimate
that takes into account the residual bias, thereby allowing us to do honest statis-
tical inference for the wished causal effect in the model that does not assume the
exclusion restriction assumption, while our variance estimate still approximates the
uncorrected variance if the exclusion restriction assumption happens to hold, and,
always adapts to the degree at which the exclusion restriction assumptions fails to
hold.

In addition, we found that this approach to causal effect estimation of a com-
munity based intervention, possibly combined with an intervention on individually
assigned treatment nodes, can be completely generalized: for each community, for
each individual in that community, determine the pre-intervention covariates W
that might block the effect of the environment on the outcome, add the community
based intervention A as a treatment that comes after W , augment this (W,A) with
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the subsequent longitudinal data structure measured on the individual that might
also include individually assigned treatment nodes, and proceed as if the goal is to
estimate a causal effect of an intervention on A and possibly other nodes in the
longitudinal data structure, using the standard G-computation formula, and corre-
sponding targeted MLE. That is, the estimators developed for estimation of causal
effects of individually assigned interventions based on an NPSEM, the consistency
assumption, and sequential randomization assumption, can be applied to estimate
the effects of community based interventions combined with interventions on indi-
vidually assigned treatments based on community based sampling, by formulating
the data on each unit as (W,A,O) and proceed as usual viewing A as an initial
treatment node. The assumptions under which these statistical target parameters
represent the wished causal effect now include, beyond the sequential randomization
assumption needed for the individually assigned treatment, the assumption that W
blocks the effect of the environment on O, beyond randomization (E,W,A) in the
underlying NPSEM.

8 Handling dependence among sampled individuals within
a community.

Suppose that the NPSEM proposed in previous sections applies for each marginal
draw with a common marginal distribution for the exogenous input U , but inputs
U of the NPSEM are correlated among individuals in the community: i.e., given
a draw of E,A, the repeated draws of W,Y are correlated, but, marginally, the
NPSEM applies. We define a causal effect as a parameter of this common marginal
distribution of (U,X). Our observed data sample is still n = n0 + n1 draws of
(B,W (B), Y (B)), representing the two-sample study corresponding with a treat-
ment and control region, but, given B = (1, e1), the repeated draws are correlated,
and similarly, given B = (0, e0).

For example, suppose our target parameter is still the additive causal effect
EY (A = 1) − EY (A = 0), or the causal effect among the treated. This target
parameter is only a function of the common marginal distribution of the U ’s: it is
not affected by the joint distribution of the U ’s across the individuals in the com-
munity. The identifiability result also still applies, since it is a statement about
writing a parameter of the common distribution of (U,X) as a function of the
corresponding distribution of O, so that such an identifiability result is not af-
fected by the joint distribution of the U ’s. Thus, this result show, under the ex-
clusion and randomization assumption, EY (1) − Y (0) = EW (B){E(Y (B) | B =
(1, e1),W (B)) − E(Y (B) | B = (0, e0),W (B))}, where the parameter of the ob-
served data distribution of (B,W (B), Y (B)) only concerns the common marginal
distribution of (Wi(1, e1), Yi(1, e1)), i = 1, . . . , n1, and the common marginal distri-
bution of (Wi(0, e0), Yi(0, e0)), i = 1, . . . , n0. That is, we are not concerned with a
target parameter that depends on this joint distribution of the U ’s across the units.
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This now suggests to estimate this target parameter with the same targeted max-
imum likelihood estimator treating the sample as n i.i.d. observations (Bi,Wi(Bi), Yi(Bi)),
i = 1, . . . , n = n0 + n1. This is not different from using a pooled estimator treating
the observations as i.i.d to a repeated measures regression.

Incorporating dependence when estimating the standard error. It is at
the point of assessment of the uncertainty/standard error of this targeted MLE of
ψ0 that we need to take into account the dependence between the units. Can we
provide an inferential method that provides a reasonable adjustment while it still
reduces to the i.i.d statistical inference when the dependence is negligible? Since
the estimator is algorithmically identical as applied to the i.i.d. case we will assume
that the same first order Tailor expansion is appropriate to base inference on. Let
IC(Oi) be the influence curve of the targeted MLE ψn. So we will work with the
approximation that

ψn − ψ0 ≈ (Pn − P0)IC =
1
n

n∑
i=1

IC(Oi). (6)

We will assume that the dependence between individuals is weak enough so that
ψn is still asymptotically normally distributed. In particular, it is assumed that
(ψn − ψ0)/SE(ψn) converges to a normal distribution with mean zero and variance
1, where SE(ψn) is the standard error of ψn. We will estimate the variance of ψn
with the variance of 1/n

∑
i IC(Oi), where this variance can be decomposed as

σ2
n =

1
n

n∑
i=1

EIC(Oi)2 +
2
n2

∑
i<j

E{IC(Oi)IC(Oj)}.

Under independence the second term equals zero, but in this case we will estimate
this contribution, which results in the estimate

σ̂2
n =

1
n

n∑
i=1

ˆIC(Oi)2 +
2
n2

∑
i<j

ˆIC(Oi) ˆIC(Oj).

We note that this estimate will be asymptotically equivalent with the estimate
1/n

∑
i

ˆIC
2
(Oi) one would use in the i.i.d. case, if there happens to be no depen-

dence. In addition, if in truth the n observations consist of m i.i.d. clusters of J
observations, but this is unknown to us, then

σ̂2
n ≈

1
m

m∑
i=1

 1
J

J∑
j=1

IC(Oi(j))


2

.

That is, in this case the estimate of the variance corresponds with respecting the fact
that the true influence curve of the estimator is ¯IC(Oi) = 1/J

∑
j IC(Oi(j)) for the

49

Hosted by The Berkeley Electronic Press



cluster observation Oi = (Oi(j) : j), and thereby obtains the right variance of the
estimator. In general, this estimator does not require knowledge of the dependence
structure and thus also handles the case that there is no replication of independent
units, as long as the dependence is weak enough so that a CLT applies. Statistical
inference is now based on the approximation that ψn ∼ N(ψ0, σ̂

2
n). For example, a

0.95-confidence interval would be ψn ± 1.96σ̂n.

Diagnosing too much dependence for a CLT-based confidence interval.
Even though the above method will be able to adapt to underlying (but unknown)
cluster dependence it does rely on the assumption that ψn−ψ0, and, in particular, its
first order expansion 1/n

∑
i IC(Oi), is asymptotically normally distributed. Thus,

the amount of dependence has to be limited enough so that a CLT-approximation is
still valid. Having presented the above method, we would now like to provide a tool
to diagnose that the data does not allow a CLT-based approximation of ψn − ψ0.

We wish to investigate if 1/n
∑

i IC(Oi) follows approximately a mean zero nor-
mal distribution. For that purpose we propose a resampling method for resampling
O#

1 , . . . , O
#
n for which the marginal distribution of O#

j is the empirical Pn, as in the

regular non-parametric bootstrap, but for which the joint distribution of O#
1 , . . . , O

#
n

is such that

VAR

(
1
n

∑
i

IC(O#
i

)
= σ̂2

n.

In other words, we set the dependence level so that it corresponds with our esti-
mate of the variance of the linear approximation of ψn − ψ0. Under such a sam-
pling distribution we can now evaluate the distribution of ¯ICn/σ̂n, where ¯ICn =
1/n

∑
i IC(Oi), and, the distribution of (ψ#

n − ψn)/σ̂n, and determine if these two
distributions are indeed approximately N(0, 1).

We have two particular proposals. Firstly, one could come up with some model
for a joint distribution of O1, . . . , On incorporating dependence with some tuning
parameter α, simulate a large number B (e.g., 10,000) times a correlated set of
n observations, O#

b = (O#
1b, . . . , O

#
nb), b = 1, . . . , B, and corresponding influence

curves IC(O#
1b), . . . , IC(O#

nb). In this model one does not necessarily worry about
the marginals of O# being equal to the empirical distribution, since we correct for
this in the next step.

Let F#
1 , . . . , F

#
n be the marginal cumulative distribution functions of IC(O#

1b), . . . , IC(O#
nb),

respectively. Let Fn be the empirical cumulative distribution function of IC(O1), . . . , IC(On).
Let Qj = F−1

n F#
j be the quantile-quantile function that maps a random variable

with distribution F#
j into a random variable with distribution Fn. This quantile-

quantile function can be generalized to discrete distributions as in Yu and van der
Laan (2002): x→ F−1

n (UF (x) + (1−U)F (x−)), where U ∼ U(0, 1), is the general-
ized quantile-quantile function mapping a random variable with distribution F (e.g,
discrete) into random variable with distribution Fn. We now consider the trans-
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formed IC#
1b = Q1(IC(O#

1b)), . . . , IC
#
nb = Qn(IC(O#

nb)) resampled influence curves,
b = 1, . . . , B. These still reflect the dependence structure of the original resampled
influence curves, but the marginal distributions are now equal to the empirical Fn
as required. The tuning parameter α is now fine-tuned to obtain the level σ̂2

n for
the variance of 1/n

∑
i IC

#
i across its B-replicates.

Secondly, concretely, we propose the following nonparametric bootstrap method
for creating the wished dependence while maintaining the marginal distributions
equal to the empirical. From k = 1, . . . ,K sample K i.i.d. observations O#

k from the
empirical distribution Pn. From k = K + 1, . . . , n, sample n−K i.i.d. observations
O#
k by drawing from the uniform distribution on O#

1 , . . . , O
#
K . This results in a

sample O#
1 , . . . , O

#
n whose marginal distributions are Pn, but the effective sample

size is K < n, thereby creating dependence. The smaller one chooses K the more
dependence one incorporates and K = n corresponds with full independence. One
selects K so that the variance of 1/n

∑
i IC(O#

i ) across the B replicates equals
σ̂2
n. For this choice of K we evaluate the distribution of ¯ICn/σ̂n, where ¯ICn =

1/n
∑

i IC(Oi), and, the distribution of (ψ#
n − ψn)/σ̂n, and determine if these two

distributions are indeed approximately N(0, 1).

Remark about interactivity of individuals modifying the treatment effect.
In many cases, the intervention assigned to a community affects the individual
outcomes not only directly but also indirectly through other individuals that interact
with the individual. The NPSEM for the marginal distribution for a randomly
drawn individual from such a community could involve covariate measurements in
W that measure the interactivity of the individual with others in the community. In
this way, the marginal distribution modeled by the NPSEM would thus still model
enhanced or suppressed effects of treatment for heavily connected individuals relative
to less connected individuals. In addition, our proposed standard error estimate will
take into account the effect of dependence of the exogenous errors/inputs U of the
NPSEM on the standard error of the targeted MLE estimator of the target causal
effect defined as a parameter of the marginal distribution of the NPSEM, without
a need to specify elaborate random effect or other dependence models for which we
lack knowledge.

9 Discussion.

This article provided a number of non-obvious contributions to the literature on
causal inference for community based interventions.

In the setting that we observe two populations under two different treatment
regimens, while collecting data at the individual level, we made the following con-
tributions. We define a causal effect of treatment intervention a1 versus a0 as the
difference in means between treatment group and control group in the ideal exper-
iment in which one is able to randomize each unit of the combined population to
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treatment or control. We show that this causal effect can be identified under a ran-
domization assumption and under the assumption that we can collect covariates at
the individual level that are not affected by the treatment and that block the effect of
the differences in the environment between the two populations. As a consequence,
for this target parameter there is a clear role for covariates, but different in flavor
from the classical causal inference case in which treatment is assigned at individual
level: the main purpose of the covariates is to remove bias by blocking the effect of
different environments between the populations on the outcome distributions.

Moreover, the statistical parameter representing this additive causal effect in-
volves computing the mean outcome as a function of the covariates for the treatment
population, and similarly for the control population, taking the difference between
these covariate-value specific mean outcomes, and averaging the difference over all
units in the combined sample.

Secondly, we present the (collaborative) targeted maximum likelihood estimator,
based on first using super learning to estimate these regressions, and a subsequent
targeted maximum likelihood step relying on an estimate of the probability of being
selected in population 1 as a function of the covariates. The targeted maximum
likelihood estimator is double robust and efficient. That is, with our formulation
we make it possible to use the state of the art statistical methodology in causal
inference, and obtain fully efficient and double robust estimators of the causal effect
of an intervention assigned at the population.

Thirdly, we show that this approach, somewhat surprisingly, can also be used
to estimate the additive causal effect of setting treatment at time t (choosing be-
tween the observed treatment level at time t for population 1 versus the observed
treatment level at time t for population 2). The past treatment and past environ-
ment is viewed as the environment variable assigned at the population level, current
treatment at time t is viewed as the treatment assigned at the population level, and
the individual past before treatment at time t represents the covariates that block
the effect of differential environment. In this manner, the same methodology can
be applied, providing us with double robust and efficient targeted maximum like-
lihood estimators of the t-specific causal effects of community based interventions,
and user-supplied summary measures of these t-specific causal effects.

Another contribution concerns the extension to matched cohort designs for these
studies. We extend our estimators to matched cohort sampling in which individuals
from the treated population are matched to one or more individuals from the control
population. We use general results on efficient influence curves and targeted maxi-
mum likelihood estimation for case-control sampling as established in van der Laan
(2008) to compute the semiparametric information bounds and present the targeted
maximum likelihood estimator for these matched cohort designs. We show that
the matched cohort design is very much targeted towards the causal effect among
the treatment population, showing the strong potential benefits of matching for the
purpose of this causal effect among the treated.
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Up till this point we focussed on the case that the number of communities is small
(two), but, the estimators are perfectly applicable to the case that the number of
communities is large, which is in a sense a less challenging case. In particular, we
generalized our identifiability theorems to the case that one assigns two possible
interventions to J communities. We presented the efficient influence curve for the
target parameter and the targeted MLE. In particular, our i.i.d. representation
of this multi-sample data structure in terms of (B,W (B), Y (B)) shows that the
effective sample size will be

∑
j nj , the sample size across all communities.

Finally, we considered the case that the exclusion restriction assumption does not
hold. We use the same targeted MLE if the exclusion assumption is assumed to hold
or not. We show that our statistical target parameter (as estimated by the targeted
MLE) remains a well understood causal effect (involving adjustment by the environ-
ments as well), but one that is subject to residual bias due to a difference in the em-
pirical distribution of the environmental factors between the treated and untreated
communities. We redefine a causal target that is unconfounded by the environmental
factors by averaging across an infinite sample of environments/communities, while
it still equals the additive causal effect of treatment, EY (1) − Y (0), under the ex-
clusion restriction assumption, for each fixed number of communities. Asymptotics
of the targeted MLE relative to this new generalized causal target in both the num-
ber of communities as well as sample sizes within communities is used to establish
a central limit theorem for the targeted MLE minus this generalized causal effect.
The bias due to the residual environmental confounding is viewed as a mean zero
random variable, so that it naturally translates into a augmented variance estimate.
This results in an adaptive variance estimator that naturally adapts to the degree of
violation of the exclusion restriction assumption, and the number of communities J :
so even for J finite, it can result in a variance estimate comparable with the variance
of the targeted MLE if the exclusion restriction assumption happens to hold, but a
variance that is O(1/J) represents the other extreme possibility.

Subsequently, we noted that the identification of the causal effect for sampling J
communities that are different due to environmental factors E can be mapped into an
identification of the causal effect of sampling individuals at different time-points: i.e.,
let time t play the role of E. In this manner, we extended our results to identification
and estimation of a causal effect of treatment at time t based on following up a single
cohort of individuals exposed to a single time-dependent treatment, under a same
exclusion restriction assumption on an appropriate NPSEM that allows one to define
the causal effect.

In many community based intervention studies there is dependence between the
sampled units within the communities due to interaction of the units. A measure
of interconnectivity of an individual should be an important covariate to measure
and to utilize, allowing the NPSEM to define causal effects that are modified by the
interconnectivity of the unit. If the community is the experimental unit and one
samples many communities, then the i.i.d. causal inference estimation methodology
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and theory is applicable. If the number of communities is small and there is depen-
dence among individuals within the community, then the only hope for statistical
inference is that the dependence is weak enough to allow for a central limit theo-
rem. For that purpose we provided an adjustment in statistical inference that is able
to estimate the standard error of our estimate of the causal effect that takes into
account hidden dependencies, such as underlying cluster structure. The observed
dependence, such as the ratio between an i.i.d. based variance estimate and our
proposed variance estimate that incorporates correlations, is an interesting param-
eter itself, providing a measure of the effective sample size each community-specific
sample provides. This might be important designing studies w.r.t. power.

Our proposed approach to handle dependence needs to be evaluated in simulation
studies and studied in more detail. Finally, we generalized our findings to arbitrary
data structures measured at the individual level, and estimation of causal effect of
the community based intervention combined with interventions on treatment or cen-
soring nodes for the individually collected data structure. With this generalization,
our work provides a general recipe for analyzing complex observational studies that
also involve community based interventions.
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