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Targeted Bayesian Learning

Ivan Diaz Munoz, Alan E. Hubbard, and Mark J. van der Laan

Abstract

Targeted maximum likelihood estimation (van der Laan & Rubin 2006) is a loss-
based semi-parametric estimation method that yields a substitution estimator of a
target parameter of the probability distribution of the data that solves the efficient
influence curve estimating equation, and thereby yields a double robust locally
efficient estimator of the parameter of interest, under regularity conditions. The
Bayesian paradigm is concerned with including the researcher’s prior uncertainty
about the parameter through a prior distribution, which combined with the likeli-
hood yields a posterior distribution for the parameter that reflects the researcher’s
posterior uncertainty. In this paper, we present a way to work under the Bayesian
paradigm within the framework of targeted maximum likelihood estimation. In
particular, we deal with the estimation of the so-called additive causal effect, but
our results can be generalized to any d-dimensional parameter. For a general re-
view of the proposed methodology, the readers referred to (van der Laan 2008,
p. 178). We assess the performance of the proposed method through the asymp-
totic convergence of the posterior distribution to a normal limit distribution, the
variance and bias of the mean of the posterior distribution, and the coverage prob-
ability of the credible interval implied by the posterior distribution.



1. Introduction

Statistical theory is concerned with deriving inferences from observations (data) of a ran-
dom phenomenon about certain features of the probability mechanism that generates this phe-
nomenon. Those features of interest are called parameters, and can usually be described as
mappings between a set of possible distributions of the data, called model, and a d-dimensional
real space. Models are in the core of statistical theory because they allow a description of the
main features of the underlying probability mechanism based on prior knowledge about the
phenomenon. There are three main approaches for the construction of a model: parametric,
semi-parametric, and non-parametric models. A parametric model is one in which the data
O1, O2, . . . , On is assumed to be generated by a probability distribution that belongs to a set
of the form {P (O; θ) : θ ∈ Θ}, where Θ ⊂ R

k. In a semi-parametric model the parameter
space Θ satisfies Θ ⊂ R

k × F, where F is an infinite dimensional space. A non-parametric
model poses no restrictions on P (O), and assumes that P (O) belongs to the set of all possible
distributions. Note that a non-parametric model is a special case of a semi-parametric model.

Statistical theory has been developed under two main paradigms: frequentist and Bayesian.
In the context of inference, the main difference between these paradigms entails a conceptual
distinction of the random nature of θ: in frequentist statistics θ is considered unknown but
fixed, whereas Bayesian techniques treat it as a random variable.

Besides the model, whose elements are P (O|θ), Bayesian techniques incorporate to the
process of inference a distribution on θ called prior distribution, whose density is denoted
here by π(θ). More important than the discussion about the random nature of θ is the
fact that Bayesian analysis incorporates an interpretation of the densities on θ as a way to
summarize the current state of knowledge about it (Robert 2007, p. 34). Thus, π(θ) represents
the certainty about the value of θ available prior to the recollection of O′ = (O1, O2, . . . , On),
and p(θ|O) represents the certainty about it once the evidence contained in O is extracted and
the prior information is updated. The latter is called the posterior density. Bayes’s theorem
allows the calculation of the posterior density as

p(θ|O) =
p(O|θ)π(θ)∫
p(O|θ)π(θ)dθ .

Despite the revolutionary recourse of the prior and posterior distributions, parametric
Bayesian analysis suffers the same critical drawbacks as parametric frequentist analysis. First
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of all, the models used are typically very small (e.g., exponential families), and usually there
is no justifiable reason to believe that the true probability distribution belongs to such small
models. Choices of parametric models are often made based on the convenience of their ana-
lytical properties. Inferences about θ made according to such misspecified models are widely
known to be biased.

Furthermore, the research interest usually rests in a parameter different from θ, that can
be represented as a mapping from the model to a possibly multi dimensional real space. In
this article we analyze the particular case of the additive causal effect. Given a full data set
consisting of n independent and identically distributed copies of O = (Y,A,W ), where A is a
binary treatment, Y is a binary or continuous outcome, and W is a vector of covariates, the
additive causal effect is defined as

ψ0 = Ψ(P0) = EW (E0(Y |A = 1,W )− E0(Y |A = 0,W )), (1)

where P0 is the distribution of O. Any possible density of O can be factorized as

p(O) = p(Y |A,W )p(A|W )p(W ). (2)

We define

QW (W ) ≡ P (W )

g(A,W ) ≡ p(A|W )

QY (Y |A,W ) ≡ P (Y |A,W )

Q̄(P )(A,W ) ≡ EP (Y |A,W ).

We will occasionally use the notation g(P )(A,W ), to stress the dependence on P .

Standard Bayesian and frequentist techniques are aimed to do a very good job in doing
inference about θ if the assumed model contains the true distribution, but substitution estima-
tors and posterior distributions based on those techniques are not guaranteed to have optimal
properties with respect to the target parameter.

Usual estimation techniques, such as maximum likelihood or mean squared error, fit den-
sities to the data minimizing the empirical risk

∑
i L(Q)(Oi) implied by some loss function

L(Q)(O), where Q is the relevant part of P that is needed to evaluate Ψ(P ) = Ψ(Q) (e.g.,
Q = (Q̄(P ), QW )). For our parameter of interest, if Y is continuous, a common choice of loss
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function is the square loss L(Q)(O) = (Y − Q̄(P )(AW ))2. If Q̄n(A,W ) is an estimator of
Q̄(P0)(A,W ), and the empirical distribution is used as estimator of the marginal distribution
of W , a substitution estimator of (1) is given by

1

n

n∑
i=1

[Q̄n(1,Wi)− Q̄n(0,Wi)].

From a parametric Bayesian perspective, in order to get a posterior distribution of ψ0, models
for the distribution of W , and Y given A and W must be assumed. Let {QW (W ; θW ) : θW }
and {QY (Y |A,W ; θY ) : θY } be such models, and let the prior densities for θW and θY be given
by πθW and πθY , respectively. Bayesian standard procedures can be used to compute posterior
densities πθW |O and πθY |O, which using (1) can be mapped into a posterior density on ψ0.

An important challenge one would face under a Bayesian framework is mapping a prior on
ψ0 into priors on θW and θY . Parametric Bayesian techniques require that the prior information
(usually proceeding from previous studies on the same phenomenon) be summarized in the
form of prior densities on θW and θY . Such previous studies are very likely to have used
different sets of covariates W , and even different models for QY (Y |A,W ) and QW (W ), thus
providing information on different parameters θ∗W and θ∗Y . It is therefore more likely that
information arising from such studies can be summarized (or is by nature available) in terms
of a prior distribution on the parameter of interest, ψ0, which in order to use parametric
Bayesian techniques would have to be mapped into priors on θW and θY . The Bayesian
technique introduced here allows direct use of prior information on ψ0.

Targeted Maximum Likelihood Learning (van der Laan & Rubin 2006) provides a semi-
parametric frequentist framework in which the estimation procedure is targeted do the best
possible job in estimating the parameter of interest. In this article we develop a strategy
that allows to do targeted Bayesian inference of the additive causal effect, using the targeting
principles presented in van der Laan & Rubin (2006).

The organization of the article is as follows. In Section 2. the targeted maximum likelihood
estimation (TMLE) technique is introduced. In Section 3. we develop a procedure to work
with the data and a prior distribution on ψ0 in order to get its targeted posterior distribution.
Section 4. deals with the asymptotic convergence of the proposed targeted posterior distribu-
tion. In Section 5. some frequentist properties of the posterior distribution are presented, and
Section 6. presents a simulation study performed in order to assess other properties for which
analytical results are not available. Finally, Section 7. presents a discussion on the results and
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subsequent work in this area.

2. Targeted Maximum Likelihood Estimation

In this section we provide a brief introduction to the principles and uses of the TMLE. To
get a more thorough understanding of its theoretical properties and implementation we refer
the reader to the original paper (van der Laan & Rubin 2006).

Targeted maximum likelihood estimation is one of the possible approaches that allows
efficient and double robust estimation of our parameter of interest. The details of the TMLE
for this parameter can also be found in van der Laan & Rubin (2006). The efficiency of this
technique comes from the fact that the estimated distribution solves the efficient influence
curve equation of (1), given by PnD(P ) = 0. We use here the notation Pf ≡ ∫

f(o)dP (o). Pn
is the empirical distribution function, and D(P ) is the efficient influence curve of (1), given by

D(P )(O) = (Y − Q̄(P )(A,W ))
2A− 1

g(A,W )
+ Q̄(P )(1,W )− Q̄(P )(0,W )−Ψ(P ). (3)

Under the conditions stated in Theorem 1 of van der Laan & Rubin (2006), a consistent
estimator of P0 that solves the efficient influence curve equation yields a substitution estimator
of (1) that is asymptotically efficient, and thereby has the lowest asymptotic variance among
all regular and asymptotically linear estimators.

Frequentist and Bayesian procedures of the sort described in the introduction will always be
biased if the models used do not contain the true probability distribution. Furthermore, even
when the right model is used, the estimating techniques employed are targeted to accurately
describe the whole density of the data, which usually leads to a poor job in finding a good
trade-off between bias and variance in the estimation of the parameter of interest.

The joint use of super learner (van der Laan et al. 2007) and the TMLE is a technique that
aims to do a very good job on the global fit of p0 (super learning), but uses the targeted MLE
step to target the fit towards the parameter of interest. The targeting step is done in a way
such that the final fit solves the efficient influence curve equation, causing a bias reduction
in the substitution estimator of the parameter of interest. The super learner estimator of the
density, p0n, is fluctuated by means of a parametric model through p0n with parameter ε.

Below we transcribe the definition of the TMLE given in van der Laan & Rubin (2006).
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Definition 1. Let M be the statistical model, and Pn the empirical distribution function.
Given an initial estimator p0n; a parametric fluctuation {P 0

n(ε) : ε} ⊂ M satisfying p0n(0) = p0n,
and d

dε log p
0
n(ε)ε=0 = D(P 0

n); and a maximum likelihood estimator

ε(Pn|p0n) = argmax
ε

n∑
i=1

log p0n(ε)(Oi)

of ε, we define the first step targeted maximum likelihood estimator as

p1n = p0n(ε(Pn|p0n)).

This process can be iterated to define the k-step targeted maximum likelihood density esti-
mator as

pk+1
n = pkn(ε(Pn|pkn)).

The targeted maximum likelihood estimator of p is defined as

p∗n = lim
k→∞

pkn,

assuming this limit exists. The corresponding targeted maximum likelihood estimator of ψ0

is defined as ψn = Ψ(P ∗n).

A targeted maximum likelihood estimator of (1) when the outcome is continuous can be
obtained by using a normal regression model for {P 0

n(ε) : ε}. Consider an initial estimator
p0n with the marginal density of W estimated by its empirical probability distribution, an
estimator gn(A,W ) of g(A,W ), and let the conditional density of Y be

QY,n(Y |A,W ) =
1

σ(A,W )
φ

(
Y − Q̄0

n(A,W )

σ(A,W )

)
,

where Q̄0
n(A,W ) is an initial estimator of Q̄(P0)(A,W ), and φ denotes the standard normal

distribution. Consider the submodel

QY,n(ε)(Y |A,W ) =
1

σ(A,W )
φ

(
Y − Q̄0

n(A,W )− εH∗(A,W )

σ(A,W )

)
,

where H∗(A,W ) =
(

2A−1
gn(A,W )

)
σ2(A,W ). Note that this submodel fulfills the conditions of

Definition 1. Let εn be the MLE of ε in this model. p1n = p0n(εn) is the first step TMLE
of p0, with conditional density of Y given A and W given by a normal density with mean
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Q̄1
n(A,W ) = Q̄0

n(A,W ) + εnH
∗(A,W ). It can be shown that in this case convergence of the

algorithm is achieved in the first step. The TMLE of ψ0 is therefore given by

Ψ(P 1
n) =

1

n

n∑
i=1

[Q̄1
n(1,Wi)− Q̄1

n(0,Wi)].

This estimator has been proven to be consistent if either one of gn(A,W ) and Q̄0
n(A,W ) is

consistent, and it is efficient if both gn(A,W ) and Q̄0
n(A,W ) are consistent.

3. Prior, Likelihood and Posterior Distributions

In this section we find the posterior distribution of ψ0 when the likelihood of the parametric
submodel employed in the TMLE is adopted as likelihood of the data.

Let Q̄A(P )(W ) ≡ Q̄(P )(A,W ). The parameter in (1) can be written as a mapping between
M and R, defined by

Ψ(P ) = P{Q̄1(P )− Q̄0(P )}. (4)

Treating p0n as fixed, the fluctuation {P 0
n(ε) : ε} ⊂ M used in the TMLE is just a parametric

model, and the likelihood under this parametric model can be used together with the prior dis-
tribution to define the posterior distribution. This posterior distribution reflects the posterior
uncertainty about the parameter and can be used to do point and interval estimation. Firstly,
we find a submodelMε = {P 0

n(ε) : ε} ⊂ M such that p0n(0) = p0n and d
dε log p

0
n(ε)|ε=0 = D(P 0

n),
where p0n is the initial estimator of the density p0, and is considered as fixed. Secondly, we de-
termine the prior distribution on ε yielded by the prior on the parameter ψ0. For this purpose
we define a mapping f(P 0

n) : ε→ Ψ(P 0
n(ε)). Once the prior on ε is found, its posterior can be

computed and the mapping f(P 0
n) can be used to map the posterior of ε into a posterior of

ψ0.

Fluctuation Model:

We restrict our discussion to the case where a normal or a binomial model (depending
on the type of outcome) is used as working model QY,n(ε)(Y |A,W ), but the validity of this
working parametric model does not affect the consistency and efficiency of the TMLE or the
proposed targeted posterior distribution of ψ0. Furthermore, the general method described
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here can be applied using any working model satisfying the conditions of Definition 1.

Consider an initial estimator p0n of p0. Estimators Q̄0
n(A,W ) and gn(A,W ) can be obtained

through standard procedures (e.g., logit or probit regression), or through more elaborated
techniques, such as machine learning techniques. It is worth to emphasize that the efficiency
and consistency of the TMLE depend on the choice of those initial estimators, which must be
as close as possible to the real Q̄(P0)(A,W ) and g0(A,W ). To achieve this goal, we encourage
the use of the super learner (van der Laan et al. 2007). Super learner is a machine learning
technique that given a library of candidate density estimators, a loss function and a sample
size big enough, performs essentially as well or better than any of the candidates in the library,
in terms of the chosen loss function.

Let QW,n(W ) be an initial estimator of QW (W ) (e.g., the empirical probability distribution
ofW ). We fluctuate the initial estimator p0n by finding a fluctuation of Q̄0

n(A,W ) andQW,n(W )

through ε, such that the score of p0n(ε) at ε = 0 equals the efficient influence curve of Ψ at P 0
n ,

given in (3).

We use a binomial or normal distribution with constant variance for Q0
Y,n(ε)(Y |A,W ),

where only the conditional expectation Q̄0
n(A,W ) is fluctuated. The fluctuations adopted

here are given by

m(Q̄0
n(ε)(A,W )) = m(Q̄0

n(A,W )) + εH∗1 (A,W )

QW,n(ε)(W ) =
exp(εH∗2 (W ))QW,n(W )

Pn exp(εH∗2 )QW,n
,

where

H∗1 (A,W ) =
2A− 1

gn(A,W )
, (5)

H∗2 (W ) = Q̄(P 0
n)(1,W )− Q̄(P 0

n)(0,W )−Ψ(P 0
n), (6)

and m is the logit or identity link, depending on the type of outcome. It can be shown that
the model p0n(ε) obtained by using these fluctuations has score D(P 0

n) at ε = 0. In contrast
to the classic TMLE for this parameter as described in van der Laan & Rubin (2006), in
which the fluctuations of Q̄0

n(A,W ) and QW,n(W ) are done independently through ε1 and ε2,
here we fluctuate both Q̄0

n(A,W ) and QW,n(W ) through a single ε. This is done in order to
avoid dealing with a multivariate posterior distribution for ε∗ = (ε1, ε2)

′. Ensuring that all
the relevant parts of p0n are fluctuated so that d

dε log p
0
n(ε)

∣∣
ε=0

= D(P 0
n) results in a likelihood
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function with the right spread, that will ultimately result in the right coverage of the credible
intervals if the initial estimator p0n is consistent for p0.

Prior Distribution on ε:

Let Q̄n,A(ε)(W ) ≡ Q̄0
n(ε)(A,W ). The substitution estimator based on p0n(ε) is given by

Ψ(P 0
n(ε)) = P 0

n(ε)[Q̄n,1(ε)− Q̄n,0(ε)]. (7)

From the Bayesian perspective, the uncertainty in the prior knowledge of ψ0 can be incor-
porated into the inference procedure through a prior distribution on the parameter, namely
ψ0 = Ψ(P0) ∼ Π.

Let π be the density of Π. Note that the prior distribution of ψ0 defines a prior distribution
on ε through the mapping f(P 0

n) : ε → Ψ(P 0
n(ε)). The fluctuation p0n(ε) must be chosen in a

way such that this mapping is invertible. The prior on ε is given by

π∗(ε) = π[Ψ(P 0
n(ε))]J(ε),

where J(ε) is the jacobian of the transformation, defined as

J(ε) =

∣∣∣∣ ddεΨ(P 0
n(ε))

∣∣∣∣ .
Based on (7), we write

d

dε
Ψ(P 0

n(ε)) = nPn

{
d p0n(ε)

dε

(
Q̄n,1(ε)− Q̄n,0(ε)

)
+ p0n(ε)

(
d Q̄n,1(ε)

dε
− d Q̄n,0(ε)

dε

)}
,

where
d p0n(ε)(W )

dε
= p0n(ε)(W )

[
H∗2 (W )− P 0

n(H
∗
2 exp(εH

∗
2 ))

P 0
n exp(εH

∗
2 )

]
.

It can also be shown that
d Q̄n,A(ε)(W )

dε
= H∗1 (A,W ),

and
d Q̄n,A(ε)(W )

dε
= H∗1 (A,W ) Q̄n,A(ε)(W )[1− Q̄n,A(ε)(W )],

for continuous and binary outcomes, respectively.
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Targeted Posterior Distribution:

From a Bayesian perspective, the conditional density of O1, O2, . . . , On given ε, is given by∏n
i=1 p

0
n(ε)(Oi). Therefore, in our parametric working model {p0n(ε) : ε}, the posterior density

of ε is proportional to

π∗(ε)
n∏
i=1

p0n(ε)(Oi). (8)

Taking into account the factorization of the likelihood given in (2), and noting that the part of
(8) corresponding to g(A,W ) does not involve ε, simulating observations from (8) is equivalent
to simulating observations from

π∗(ε)
n∏
i=1

QY,n(ε)(Yi|Ai,Wi)QW,n(ε)(Wi). (9)

Standard Bayesian techniques such as the Metropolis-Hastings algorithm can be used to sample
a large number of draws from this posterior distribution. Once a posterior sample εi (i =
1, 2, . . . ,m) is drawn from (9), a sample from the targeted posterior distribution of ψ0 can
be computed as ψi = Ψ(P 0

n(εi)). The estimated posterior mean of ψ0 can be used as point
estimator, and a 95% credible interval can be estimated as (ψ2.5, ψ97.5), where ψk is the k-th
percentile of this posterior distribution.

Note that simulating observations from this posterior distribution is just one possible way
of computing the quantities of interest. In particular, one can use the posterior of ε and
the mapping f(P 0

n) to find the analytical form of the posterior distribution of ψ. Denote
ε = f−1(P 0

n)(ψ) = m(ψ), we have that

P (ψ|O1, . . . , On) ∝
∣∣∣∣d m(ψ)

dψ

∣∣∣∣π∗(m(ψ))
n∏
i=1

QY,n(m(ψ))(Yi|Ai,Wi)QW,n((ψ))(Wi),

where the constant of proportionality can be computed by using numerical integration. We
can now calculate the value of the posterior distribution for any value ψ, plot the posterior
distribution, or use numerical integration to find the analytical posterior mean or the posterior
percentiles.

As a particular interesting case, the targeted posterior distribution when the TMLE pro-
cedure is implemented as in (van der Laan & Rubin 2006, p. 21) is presented in Appendix 2.
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In this posterior distribution, if the TMLE of p0 is used as initial estimator p0n, the posterior
mean is equal to

μψ0|O =
w1ψn + w2μψ0

w1 + w2
,

where ψn is the targeted maximum likelihood estimator, μψ0 is the prior mean and w1 and
w2 are weights given in Appendix 2. It is important to note that w2/w1 → 0 when either the
sample size increases or the variance of the prior distribution is very large. This means that
in those situations the posterior mean reduces to the TMLE, acquiring its double robustness
and efficiency.

4. Asymptotic Convergence of the Targeted Posterior Distribu-

tion

In standard Bayesian analysis, if X is a random variable distributed as the posterior,
and θn is the maximum likelihood estimator of the parameter of the distribution of X, the
variable

√
n(X − θn) can be shown to converge to a normal distribution with mean zero,

and variance given by the inverse of the fisher information, whenever the model is correct
(Lindley 1965). This result is analogue to the central limit theorem, and is very useful in
establishing asymptotic properties of the Bayesian point and interval estimators, such as their
asymptotic bias and coverage probability. It also implies that as the sample size increases, the
information given by the prior is neglected, and only the data is used to make inferences.

An analogue result, presented in the next theorem, is valid in the case of the targeted
posterior distribution when the TMLE p∗n itself is used as initial estimator of p0.

Theorem 1. Let p∗n be the targeted maximum likelihood estimator of p0, and let {P ∗n(ε) : ε} ⊂
M be a parametric fluctuation satisfying p∗n(0) = p∗n and d

dε log p
∗
n(ε)|ε=0 = D(P ∗n), where

D(P ) is the efficient influence curve of Ψ(P ), defined in (3). Assume that there exists a
distribution P ∗ such that P0[h(ψn, P

∗
n)− h(ψ0, P

∗)]2 converges to zero, where

h(ψ, P )(O) =
d2

dψ2
log p(f−1(P )(ψ))(O);

and that h(ψn, P ∗n)− h(ψ0, P
∗) falls in a Glivenko-Cantelli class F . Define ψn = Ψ(P ∗n) (i.e.,
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ψn is the TMLE of ψ0). Note that S(ψn) = 0, where

S(ψ) =
n∑
i=1

d

dψ
log p∗n(f

−1(P ∗n)(ψ))(Oi).

Assume that π(ψ) is a prior density on ψ0 such that π(ψ) > 0 for every possible value of ψ.
Let ψ̃n be a random variable with posterior density proportional to (9). Provided that the
mapping f : ε→ Ψ(P (ε)) is invertible, the sequence

√
n(ψ̃n−ψn) converges in distribution to

T , where T ∼ N(0, σ2) and

σ2 = −
(
P0

d2

dψ2
0

log p∗(f−1(P ∗)(ψ0))

)−1

=

[
P ∗

(
σ2(P ∗)
g2(P ∗) + (Q̄∗1 − Q̄∗0 −Ψ(P ∗))2

)]2
P0

(
σ2(P ∗)
g2(P ∗) + (Q̄∗1 − Q̄∗0 −Ψ(P ∗))2

) ,

with σ2(P ∗)(A,W ) = V arP ∗(Y |A,W ) and Q̄∗A(W ) = Q̄(P ∗)(A,W ).

A proof is provided in Appendix 1. Since ψn is double robust, this theorem teaches us that
the targeted posterior distribution is also double robust in the sense that it will be centered
at ψ0 if either gn or Q̄0

n are correctly specified. Another important consequence is that if the
limit P ∗ equals the true P0, then the asymptotic variance of the posterior distribution is equal
to

σ2 = P0

(
σ2(P0)

g2(P0)
+ (Q̄1(P0)− Q̄0(P0)−Ψ(P0))

2

)
,

where Q̄A(P0) = Q̄(P0)(A,W ). This asymptotic variance equals the variance of the efficient
influence curve at P0. This means that asymptotic credible intervals are also confidence
intervals (i.e., they have coverage probability 1 − α). A correction for the cases in which
p∗ 	= p0 will be provided in the next section.

5. Frequentist Properties of the Targeted Posterior Distribution

Once the posterior sample ψi (i = 1, 2, . . . ,m) is obtained, point estimates and (1−α)100%
credible intervals for ψ0 can be computed as ψ̄ = 1

m

∑m
i=1 ψi and (ψ[mα

2
], ψ[m(1−α

2
)]), where

the limits of the interval are given by order statistics and [ ] indicates rounding to the nearest
integer.
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5.1. Correction to the Credible Intervals 12

Recall that the TMLE is double robust under certain conditions. Assume that those condi-
tions and the conditions of Theorem 1 hold. Then, we have that E(ψ̃n−ψ0) = E(ψ̃n−ψn) +
E(ψn − ψ0) converges to zero. This means that the estimated posterior mean is also double
robust.

As mentioned in the previous section, (1−α)100% credible intervals only are guaranteed to
have (1−α)100% asymptotic coverage if the initial estimator p0n converges to the true p0. This
is a very strong assumption in which we cannot usually rely. The next subsection provides a
correction factor that can be applied to the credible intervals if they are required to have 1−α
asymptotic coverage probability.

5.1. Correction to the Credible Intervals

The TMLE can be written as

ψn − ψ0 =
1

n

n∑
i=1

IC(Oi) + o

(
1√
n

)
,

where IC denotes the influence curve of ψn. Assume that the conditions of Theorem 1 hold,
then we have that

√
n(ψ̃n − ψn)→ N(0, σ2),
√
n(ψn − ψ0)→ N(0, σ2∗),

where σ2 is given in Theorem 1 and σ2∗ = V ar(IC(O)). Denote by qβ the β percentile of the
distribution of ψ̃n. Then

qβ 
 ψn + zβ
σ√
n
,

where zβ is the β percentile of a standard normal distribution. This means that

P [(qβ , q1−β) � ψ0] 
 P

(
ψn − z1−β σ√

n
< ψ0 < ψn + z1−β

σ√
n

)

= P

(
−z1−β σ

σ∗
<

√
n(ψn − ψ0)

σ∗
< z1−β

σ

σ∗

)
.
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Therefore, for the credible interval (qβ , q1−β) to have coverage probability 1− α, the value of
β must be chosen such that

z1−β
σ

σ∗
= z1−α/2, (10)

which means that β = 1 − Φ−1
(
z1−α/2 σ∗

σ

)
, where Φ(x) is the N(0, 1) cumulative density

function. Since P0 and P ∗ are not known, the value of σ2 cannot be computed. However an
estimate can be obtained by replacing P0 by Pn and P ∗ by P 0

n . The variance σ2∗ can also be
estimated by the empirical variance of ICn(O) (estimated influence curve).

6. Simulation

In order to explore some other frequentist properties of the targeted posterior distribu-
tion, and compare the Bayesian estimators with the classic TMLE, a simulation study was
performed. In this section we describe the simulation scheme used, introduce the frequentist
criteria used, and finally present the results.

The data was generated based on the following scheme:

Simulate W from N2

⎛
⎝
⎛
⎝.5

2

⎞
⎠ ,

⎛
⎝2 .3

.3 .8

⎞
⎠
⎞
⎠.

Given W = w, simulate A from a bernoulli distribution with probability expit(−.2 +

.1w1 − .2w2 + .05w1w2), where expit is the inverse of the logit function.

Given W = w and A = a, draw Y from a bernoulli distribution with probability
expit(−.2 + .07a− .2w1 + .02w2 + .2aw1 − .5aw2 − .01w1w2 − .003aw1w2).

This probability distribution yields a parameter value of ψ0 = −.1764. For each of the sample
sizes 30, 50, 100, 150, 200 and 250, one thousand data sets were generated. A beta distribution
in the interval (−1, 1) was used as prior, and three different sets of parameters were used,
corresponding to a uniform prior, a beta density with mean ψ0 and variance 0.1, and a beta
density with mean ψ0 and variance 0.25. The uniform prior corresponds to the situation in
which no prior information is available, and the other two correspond to situations in which
there are different levels of certainty about the prior information. These three priors are
plotted in Figure 1.
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Var = 0.10
Var = 0.25
ψ = − 0.1764

Figure 1: Prior densities of ψ0.

Consider the following model

W ∼ N2(μ,Σ); A|W ∼ Ber(expit(X ′β1)); Y |A,W ∼ Ber(expit(M ′β2)),

where X ′ = (1,W1,W2,W1 ×W2) and M ′ = (X ′, A,A ×X ′). Note that this model contains
the real data generating distribution.

A misspecified model (i.e., a model that does not include true Q0) was also considered
by not including interaction terms in M ′. The TMLE estimator based on these two models
was used as initial estimator p0n, and the Metropolis Hastings algorithm was used to draw
1000 observations from the posterior distribution given by (9). A brief description of this
algorithm is presented in Appendix 3. The mean and variance of the posterior distribution
were computed numerically, and a normal distribution was used as proposal density for the
Metropolis Hastings algorithm. The average acceptance rate of this procedure was 70%.

The estimated posterior mean was used as estimator of ψ0. Its variance and bias were
estimated for each sample size. The 2.5th and 97.5th percentiles of the posterior sample were
used as estimators of the limits of the 95% credible intervals; corrected credible intervals based
on (10) were also computed. The performance of these intervals was assessed through their
average length and coverage probability, estimated by the percentage of times that the interval
contained the parameter. Bias, variance, coverage probability and average length were also
computed for the classic TMLE and its confidence interval. The results are shown in Figure
2 and 3.
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Figure 2: Variance and bias of the posterior mean for different sample sizes when the
model for Q̄ is correctly and incorrectly specified. (a) shows the variance for
correctly specified Q̄, (b) shows the bias for correctly specified Q̄, (c) show the variance
for misspecified Q̄, and (d) shows the bias for misspecified Q̄.

As expected, the inclusion of additional unbiased information reduces the variance of the
estimators for small sample sizes, causing a bigger impact when the certainty about that ad-
ditional knowledge is high. It is important to note that the variance of the posterior mean
seems to be unaffected by the misspecification of the parametric model for Q̄0, though this
simulation is not enough to believe that this type of robustness applies in general. Bayesian
estimators appear to be more biased than the TMLE, specially if Q̄0 is misspecified and a uni-
form distribution is used as prior for ψ0. However, all the estimators seem to be asymptotically
unbiased.
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Figure 3: Coverage probability and length of credible intervals for different sample sizes
when the model for Q̄ is correctly and incorrectly specified. (a) shows the coverage
probability for correctly specified Q̄, (b) shows the length for correctly specified Q̄ (c) show
the coverage probability for misspecified Q̄, (d) shows the length for misspecified Q̄, (e)
shows the coverage probability of the corrected intervals, and (e) shows the length of the
corrected intervals.
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Figure 3 shows the coverage probability and length of corrected and uncorrected credible
intervals for cases in which the true and misspecified Q̄0 are used. Although all the intervals
have asymptotic right coverage, credible intervals with misspecified Q are somewhat conser-
vative for some small sample sizes, having wider lengths and a coverage probability that is
barely greater than the pre-specified level (95%). This means that the variance of the posterior
distribution is greater if Q̄0 is misspecified, therefore reflecting some kind of “inefficiency” of
the posterior distribution due to misspecification of Q̄0. The correction to the credible inter-
vals proposed in (10) operates causing (above discussion) a slight and almost imperceptible
decrease in the coverage probability and length of the intervals for all sample sizes, thereby
providing an adjustment for the conservativeness of the intervals.

7. Discussion

A methodology to do targeted inference for the additive causal effect under the Bayesian
paradigm is now available. Prior information on the effect of a binary treatment on an out-
come can be directly used jointly with new data to update the knowledge about such effect.
This update involves the computation of a targeted posterior distribution of the parameter of
interest, whose mean has been found to be asymptotically double robust in the same sense as
the targeted maximum likelihood estimator: it is a consistent estimator of the parameter of
interest if either the model for the conditional expectation of the outcome or the treatment
mechanism is misspecified. The asymptotic variance of the targeted posterior distribution
has been proven to be equal to the variance of the efficient influence curve when the initial
estimator of the density p0 is consistent. This implies, amongst other characteristics, that
credible intervals will also be confidence intervals in the sense that their credibility level will
also be equal to their coverage probability. If consistency of the initial estimator is not a
sensible assumption, but credible intervals are desired to have a specified coverage probability,
a methodology to choose the right percentiles was provided.

A simulation study showed that misspecification of the model for the expectation of the
outcome leads to wider credible intervals. Moreover, it showed that in the particular case stud-
ied, the uncorrected credible intervals based on misspecified Q̄0 also have the right asymptotic
coverage probability, suggesting the possibility that for some cases, even if p0n is not consistent,
1 − α credible intervals also have 1 − α coverage probability. It is therefore needed a more
thorough understanding of the properties of the targeted posterior distribution, that allows us
to identify such cases. The simulation also showed that the credible intervals for a misspeci-
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fied Q̄0 were conservative for small sample sizes. The correction provided generated a slight
correction of that conservativeness.

The methodology presented here is completely general, and is directly applicable to allow
the computation of targeted posterior distributions for any pathwise differentiable parameter
for which a TMLE can be computed. Future work in this area includes the determination of
the analytical form of targeted posterior distributions for other interesting parameters, as well
as simulations and theoretical studies that provide a comprehensive understanding of those
targeted posterior distribution.

Appendix 1

Theorem 1. Let u(P )(ψ)(Oi) ≡ p(f−1(P )(ψ))(Oi). Let ψ̃n be a random variable with distri-
bution given by the targeted posterior distribution of ψ0.

ψ̃n ∼ pψ̃n
(ψ) ∝ π(ψ)

n∏
i=1

u(P ∗n)(ψ)(Oi)

we define T =
√
n(ψ̃n − ψn). The density of T is given by

pT (t) =
1√
n
pψ̃n

(
ψn +

t√
n

)

∝ π

(
ψn +

t√
n

) n∏
i=1

u(P ∗n)
(
ψn +

t√
n

)
(Oi)

We have that

log pT (t) = log c+ log π

(
ψn +

t√
n

)
+

n∑
i=1

log u(P ∗n)
(
ψn +

t√
n

)
(Oi)

A Taylor series expansion in t around zero yields

n∑
i=1

log u(P ∗n)
(
ψn +

t√
n

)
(Oi) =

t2

2

1

n

n∑
i=1

d2

dψ2
n

log u(P ∗n)(ψn)(Oi) +Rn

=
t2

2
Pn

d2

dψ̂n
2 log u(P

∗
n)(ψn) +Rn. (11)
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Note that the linear term of this expansion vanishes because

S(ψn) =

n∑
i=1

d

dψn
log p∗n(f

−1(P ∗n)(ψn))(Oi)

=
d

dψ
f−1(P ∗n)(ψ)

∣∣∣∣
ψ=ψn

n∑
i=1

d

dε
log p∗n(ε)(Oi)

∣∣∣∣
ε=0

= 0,

and εn = 0 is the MLE of ε in the model {P ∗n(ε) : ε}. The remainder term Rn, which can be
written as

t3

6

1

n3/2

n∑
i=1

d3

dψ3
1

log u(P ∗n)(ψ1)(Oi)

for some ψ1 between zero and ψn, is of order n−
1
2 , and is therefore negligible compared with

the other term in (11) which is of order 1.

Define hn = h(ψn, P
∗
n) and h0 = h(ψ0, P

∗), and note that

Pnhn − P0h0 = (Pn − P0)h0 + (Pn − P0)(hn − h0) + P0(hn − h0).

The first term in this sum converges to zero by the law of the large numbers, the second term
converges to zero because hn−h0 falls in a Glivenko-Cantelli class, and the last term converges
to zero because it is bounded by P0(hn − h0)2, which converges to zero. This proves that

Pn
d2

dψ2
n

log u(P ∗n)(ψn) −→ P0
d2

dψ2
0

log u(P ∗)(ψ0)

which in turn proves that pT (t) converges, up to a constant, to

exp

(
− t2

2σ2

)
,

where

σ2 =

(
P0

d2

dψ2
0

log p∗(f−1(P ∗)(ψ0))

)−1
.
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This asymptotic variance can be written as

−σ−2 = P0
d2

dψ2
0

log p0n(f
−1(P ∗)(ψ0))

= P0

[
d2

dε2
log p∗(ε)

∣∣∣∣
ε=0

(
d

dψ0
f−1(P ∗)(ψ0)

)2

+
d

dε
log p∗(ε)

∣∣∣∣
ε=0

d2

dψ2
0

f−1(P ∗)(ψ0)

]

= P0

[
d2

dε2
log p∗(ε)

∣∣∣∣
ε=0

(
d

dψ0
f−1(P ∗)(ψ0)

)2
]

Note that
− d2

dε2
log p∗(ε)

∣∣∣∣
ε=0

=
σ2(P ∗)
g2(P ∗)

+ (Q̄∗1 − Q̄∗0 −Ψ(P ∗))2,

where σ2(P ∗)(A,W ) = V arP ∗(Y |A,W ) and Q̄∗A = Q̄(P ∗)(A,W ). On the other hand, since Ψ

is pathwise differentiable we know that

d

dε
Ψ(p∗(ε))

∣∣∣∣
ε=0

= P ∗[D(P ∗)s(P ∗)]

where D(P ∗) is the canonical gradient given by the efficient influence curve at P ∗ and s(P ∗)
is the score of P ∗(ε) at ε = 0 which is precisely D(P ∗). Therefore

(
d

dψ0
f−1(P ∗)(ψ0)

)2

= (P ∗D2(P ∗))−2

=

[
P ∗

(
σ2(P ∗)
g2(P ∗)

+ (Q̄∗1 − Q̄∗0 −Ψ(P ∗))2
)]−2

,

and we conclude that

σ2 =

[
P ∗

(
σ2(P ∗)
g2(P ∗) + (Q̄∗1 − Q̄∗0 −Ψ(P ∗))2

)]2
P0

(
σ2(P ∗)
g2(P ∗) + (Q̄∗1 − Q̄∗0 −Ψ(P ∗))2

)

Appendix 2

Posterior distribution if only Q is fluctuated.
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If the outcome is continuous, we can consider a linear model for Q̄0
n(ε)(A,W ), this is

Q̄0
n(ε)(A,W ) = Q̄0

n(A,W ) + εH∗1 (A,W ), (12)

where H∗1 is defined in (5). In this case, the mapping Ψ(p0n(ε)) can be written as

Ψ(P 0
n(ε)) =Pn

(
Q̄n,1 − Q̄n,0

)
+ εPn

(
H∗1,1 −H∗1,0

)
=Ψ

(
P 0
n

)
+ εPn

(
H∗1,1 −H∗1,0

)
(13)

where Qn,A(W ) ≡ Q̄0
n(A,W ) and H∗1,A ≡ H∗1 (A,W ). The jacobian of this transformation is

J(ε) = |Pn(H∗1,1 −H∗1,0)|.

If a normal distribution with mean μψ0 and variance σ2ψ0
is considered as prior for ψ0, the

prior distribution for ε is given by

fΠ∗(ε) =
1

σψ0

φ

(
Ψ(P 0

n(ε))− μψ0

σψ0

)
|Pn(H∗1,1 −H∗1,0)|.

This implies that the prior of ε is a normal distribution with mean με and variance σ2ε , where

με =
μψ0 −Ψ(P 0

n)

Pn(H∗1,1 −H∗1,0)
; σε =

σψ0

|Pn(H∗1,1 −H∗1,0)|
.

Let us considerQY,n(ε)(Y |A,W ) to be a normal distribution with mean Q̄0
n(A,W )+εH∗1 (A,W )

and variance σ2(Q̄0
n)(A,W ), and denote Q̄0

n ≡ Q̄0
n(A,W ), H∗1 ≡ H∗1 (A,W ) and σ2

Q̄0
n
≡

σ2(Q̄0
n)(A,W ). The part of the likelihood corresponding to QY,n(ε)(Y |A,W ) can be writ-

ten as follows

n∏
i=1

QY,n(ε)(Yi|Ai,Wi) ∝ exp

(
−nPn

(
Y − Q̄0

n − εH∗1
)2

σ2
Q̄0

n

)
.

Then, the posterior for ε is

p(ε|O1, . . . On) ∝ exp

(
−nPn

(
Y − Q̄0

n − εH∗1
)2

2σ2
Q̄0

n

− (ε− με)
2

2σ2
ε

)

∝ exp

(
−ε2

(
nPn

(H∗1 )
2

2σ2
Q̄0

n

+
1

2σ2
ε

)
+ ε

(
nPn

H∗1 (Y − Q̄0
n)

σ2
Q̄0

n

+
με

σ2
ε

))
.
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Now let

σ2ε|O =

(
nPn

(H∗1 )2

σ2
Q̄0

n

+
1

σ2ε

)−1
; and με|O =

(
nPn

H∗1 (Y − Q̄0
n)

σ2
Q̄0

n

+
με
σ2ε

)
σ2ε|O

Then,

p(ε|O1, . . . On) ∝ exp

(
−(ε− με|O)2

2σ2ε|O

)
,

which is a normal distribution with mean με|O and variance σ2ε|O.

Note that the maximum likelihood estimator of ε in the model (12), under a normal distri-
bution, is given by

εn =

Pn
H∗

1 (Y−Q̄0
n)

σ2
Q̄0
n

Pn
(H∗

1 )
2

σ2
Q̄0
n

,

So that the posterior mean με|O is, as expected, a weighted average of the maximum likelihood
estimator and με, the prior mean of ε.

The posterior distribution of ψ0 is also normal with mean

μψ0|O = Ψ(P 0
n) + με|OPn

(
H∗1,1 −H∗1,0

)
,

and variance
σ2ψ0|O = σ2ε|O[Pn

(
H∗1,1 −H∗1,0

)
]2.

By plugging in με|O and σ2ε|O, and working out the algebraic details, we get that

μψ0|O =
w1

[
Ψ(p0n) + εnPn(H

∗
1,1 −H∗1,0)

]
+ w2μψ0

w1 + w2
=
w1ψ̂n + w2μψ0

w1 + w2
,

σ2ψ0|O =
w2

w1 + w2
σ2ψ0

,

where

w1 = nPn
(H∗1 )2

σ2Q0

; and w2 =
[Pn(H

∗
1,1 −H∗1,0)]2
σ2ψ0

.

Note the posterior mean of ψ0 is just a weighted average of the T-MLE of ψ0 and its prior
mean. Also, if the variance of the prior is very large compared to [Pn(H

∗
1,1−H∗1,0)]2, the weight

of the prior mean is very small, and the posterior mean of ψ0 is just its TMLE.
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Appendix 3

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo method for sampling
observations from a probability distribution whose analytic form is not easy to handle. As-
sume that p(x) is the density from which observations are going to be drawn. The Metropolis-
Hastings algorithm requires only that a function proportional to this density can be calculated.
This is one of the most important aspects of the algorithm, since the constants of proportion-
ality that arise in Bayesian applications are usually very difficult to compute. The algorithm
generates a chain x1, x2, . . . , xn by using a proposal density q(x′, xi) at each step to generate
a new proposed observation, x′, that depends only on the previous state of the chain, xi. This
proposal is accepted as xi+1 if

α < min

{
p(x′)q(xi, x′)
p(xi)q(x′, xi)

, 1

}
,

where α is drawn from a uniform distribution in the interval (0, 1). If the proposal is not
accepted, the previous value is preserved in the chain, xi+1 = xi. For additional references on
the Metropolis-Hastings algorithm, the reader is referred to (Robert 2007, p.303).

For the sake of simulating observations from the targeted posterior distribution of ε, a
normal distribution was used as proposal density. The mean and variance of the posterior
were computed numerically, and used as parameters of this normal distribution. The starting
value of the chain was set to zero. The acceptance rate was computed as the proportion of
times that the proposal was accepted.

The R function used to draw samples of size n from the posterior distribution of ε is
described below.

mh.epsilon <- function (n, posterior, e0, sd0){
n = n + 1
e <- cand <- pr <- numeric(n); e[1] <- e0
for(i in 2:n){

cand[i] <- rnorm(1, mean = e[i-1], sd = sd0)
p <- (posterior(cand[i]) * dnorm(e[i-1],mean = cand[i],

sd = sd0))/(posterior(e[i-1]) * dnorm(cand[i],
mean = e[i-1], sd = sd0))

pr[i] <- min(p, 1)
e[i] <- sample(c(cand[i], e[i-1]), 1, prob=c(pr[i],

1-pr[i]))

Hosted by The Berkeley Electronic Press



REFERENCES 24

}
return(e[-1])}
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