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Gains in Power from Structured Two-Sample
Tests of Means on Graphs

Laurent Jacob, Pierre Neuvial, and Sandrine Dudoit

Abstract

We consider multivariate two-sample tests of means, where the location shift be-
tween the two populations is expected to be related to a known graph structure.
An important application of such tests is the detection of differentially expressed
genes between two patient populations, as shifts in expression levels are expected
to be coherent with the structure of graphs reflecting gene properties such as bio-
logical process, molecular function, regulation, or metabolism. For a fixed graph
of interest, we demonstrate that accounting for graph structure can yield more
powerful tests under the assumption of smooth distribution shift on the graph. We
also investigate the identification of non-homogeneous subgraphs of a given large
graph, which poses both computational and multiple testing problems. The rele-
vance and benefits of the proposed approach are illustrated on synthetic data and
on breast cancer gene expression data analyzed in context of KEGG pathways.
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Abstract

We consider multivariate two-sample tests of means, where the location shift
between the two populations is expected to be related to a known graph structure.
An important application of such tests is the detection of differentially expressed
genes between two patient populations, as shifts in expression levels are expected
to be coherent with the structure of graphs reflecting gene properties such as
biological process, molecular function, regulation, or metabolism. For a fixed
graph of interest, we demonstrate that accounting for graph structure can yield
more powerful tests under the assumption of smooth distribution shift on the
graph. We also investigate the identification of non-homogeneous subgraphs
of a given large graph, which poses both computational and multiple testing
problems. The relevance and benefits of the proposed approach are illustrated
on synthetic data and on breast cancer gene expression data analyzed in context
of KEGG pathways.
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1 Introduction

The problem of testing whether two data generating distributions are equal has been
studied extensively in the statistical and machine learning literatures. Practical ap-
plications range from speech recognition to functional Magnetic Resonance Imaging
(fMRI) and genomic data analysis. Parametric approaches typically test for diver-
gence between two distributions using statistics based on a standardized difference of
the two sample means, e.g., Student’s t-statistic in the univariate case or Hotelling’s
T 2-statistic in the multivariate case [Lehmann and Romano, 2005]. A variety of non-
parametric rank-based tests have also been proposed. More recently, Harchaoui et al.
[2007] and Gretton et al. [2007] devised kernel-based statistics for homogeneity tests
in a function space.

In several settings of interest, prior information on the structure of the distribution
shift is available as a graph on the variables. Specifically, suppose we observe covari-
ates {X1

1 , . . . , X
1
n1
} ∈ Rp from a first multivariate normal distribution N (µ1,Σ) and

{X2
1 , . . . , X

2
n2
} ∈ Rp from a second such distribution N (µ2,Σ). In cases where a graph

G = (V , E) encodes some type of prior information on the expected relationship be-
tween the p variables, the putative location or mean shift δ = µ1−µ2 may be expected
to be partly “coherent” with G, e.g., each node has a shift which is similar to the shift
of the nodes pointing to it. Classical tests, such as Hotelling’s T 2-test, consider the
null hypothesis H0 : µ1 = µ2 against the alternative H1 : µ1 6= µ2, without reference
to the graph. Our goal is to take into account the graph structure of the variables in
order to build a more powerful two-sample test of means under alternative hypotheses
where the distribution shift is coherent with the graph.

An important motivation for the development of our graph-structured test is the
detection of groups of genes whose expression changes between two conditions. For
example, identifying groups of genes that are differentially expressed (DE) between
patients for which a particular treatment is effective and patients which are resistant
to the treatment may give insight into the resistance mechanism and even suggest
targets for new drugs. In such a context, expression data from high-throughput mi-
croarray and sequencing assays gain much in relevance from their association with
graph-structured prior information on the genes, e.g., Gene Ontology (GO; http:

//www.geneontology.org) or Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg). Most approaches to the joint analysis of gene ex-
pression data and gene graph data involve two distinct steps. Firstly, tests of dif-
ferential expression are performed separately for each gene. Then, these univariate
(gene-level) testing results are extended to the level of gene sets, e.g., by assessing the
over-representation of DE genes in each set based on p-values for Fisher’s exact test
(or a χ2 approximation thereof) adjusted for multiple testing [Beissbarth and Speed,
2004] or based on permutation adjusted p-values for weighted Kolmogorov-Smirnov-
like statistics [Subramanian et al., 2005]. Another family of methods directly performs
multivariate tests of differential expression for groups of genes, e.g., Hotelling’s T 2-
test [Lu et al., 2005]. It is known [Goeman and Bühlmann, 2007] that the former
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family of approaches can lead to incorrect interpretations, as the sampling units for
the tests in the second step become the genes (as opposed to the patients) and these
are expected to have strongly correlated expression measures. This suggests that direct
multivariate testing of gene set differential expression is more appropriate than pos-
terior aggregation of individual gene-level tests. On the other hand, while Hotelling’s
T 2-statistic is known to perform well in small dimensions, it loses power very quickly
with increasing dimension [Bai and Saranadasa, 1996], essentially because it is based
on the inverse of the empirical covariance matrix which becomes ill-conditioned. In ad-
dition, such direct multivariate tests on unstructured gene sets do not take advantage
of information on gene regulation or other relevant biological properties. An increasing
number of regulation networks are becoming available, specifying, for example, which
genes activate or inhibit the expression of which other genes. As stated before, incorpo-
rating such biological knowledge in DE tests is important. Indeed, if it is known that a
particular gene in a tested gene set activates the expression of another, then one expects
the two genes to have coherent (differential) expression patterns, e.g., higher expres-
sion of the first gene in resistant patients should be accompanied by higher expression
of the second gene in these patients. Accordingly, the first main contribution of this
paper is to propose and validate multivariate test statistics for identifying distribution
shifts that are coherent with a given graph structure.

Next, given a large graph and observations from two data generating distributions
on the graph, a more general problem is the identification of smaller non-homogeneous
subgraphs, i.e., subgraphs on which the two distributions (restricted to these sub-
graphs) are significantly different. This is very relevant in the context of tests for gene
set differential expression: given a large set of genes, together with their known regula-
tion network, or the concatenation of several such overlapping sets, it is important to
discover novel gene sets whose expression change significantly between two conditions.
Currently-available gene sets have often been defined in terms of other phenomena
than that under study and physicians may be interested in discovering sets of genes
affecting in a concerted manner a specific phenotype. Our second main contribution is
therefore to develop algorithms that allow the exhaustive testing of all the subgraphs
of a large graph, while avoiding one-by-one enumeration and testing of these subgraphs
and accounting for the multiplicity issue arising from the vast number of subgraphs.

As the problem of identifying variables or groups of variables which differ in distri-
bution between two populations is closely related to supervised learning, our proposed
approach is similar to several learning methods. Rapaport et al. [2007] use filtering
in the Fourier space of a graph to train linear classifiers of gene expression profiles
whose weights are smooth on a gene network. However, their classifier enforces global
smoothness on the large regularization network of all the genes, whereas we are con-
cerned with the selection of gene sets with locally-smooth expression shift between
populations. In Jacob et al. [2009], sparse learning methods are used to build a classi-
fier based on a small number of gene sets. While this approach leads in practice to the
selection of groups of variables whose distributions differ between the two classes, the
objective is to achieve the best classification performance with the smallest possible
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number of groups. As a result, correlated groups of variables are typically not selected.
Other related work includes Fan and Lin [1998], who proposed an adaptive Neyman
test in the Fourier space for time-series. However, as illustrated below in Section 5,
direct translation of the adaptive Neyman statistic to the graph case is problematic,
as assumptions on Fourier coefficients which are true for time-series do not hold for
graphs. In addition, the Neyman statistic converges very slowly towards its asymptotic
distribution and the required calibration by bootstrapping renders its application to our
subgraph discovery context difficult . By contrast, other methods do not account for
shift smoothness and try to address the loss of power caused by the poor conditioning
of the T 2-statistic by applying it after dimensionality reduction [Ma and Kosorok, 2009]
or by omitting the inverse covariance matrix and adjusting instead by its trace [Bai
and Saranadasa, 1996, Chen and Qin, 2010]. Vaske et al. [2010] recently proposed DE
tests, where a probabilistic graphical model is built from a gene network. However, this
model is used for gene-level DE tests, which then have to be combined to test at the
level of gene sets. Several approaches for subgraph discovery, like that of Ideker et al.
[2002], are based on a heuristic to identify the most differentially expressed subgraphs
and do not amount to testing exactly all the subgraphs. Concerning the discovery of
distribution-shifted subgraphs, Vandin et al. [2010] propose a graph Laplacian-based
testing procedure to identify groups of interacting proteins whose genes contain a large
number of mutations. Their approach does not enforce any smoothness on the detected
patterns (smoothness is not necessarily expected in this context) and the graph Lapla-
cian is only used to ensure that very connected genes do not lead to spurious detection.
The Gene Expression Network Analysis (GXNA) method of Nacu et al. [2007] detects
differentially expressed subgraphs based on a greedy search algorithm and gene set DE
scoring functions that do not account for the graph structure.

The rest of this paper is organized as follows: Section 2 explains how to build
a lower-dimension basis in which to apply the multivariate test of means. Section 3
presents our graph-structured two-sample test statistic and states results on power gain
for smooth-shift alternatives. Section 4 describes procedures for systematically testing
(without fully enumerating) all the subgraphs of a large graph. Section 5 presents
results for synthetic data as well as a breast cancer gene expression dataset analyzed
in the light of pathways from the KEGG (Kyoto Encyclopedia of Genes and Genomes)
database. Finally, Section 7 summarizes our findings and outlines ongoing work.

2 Graph-based dimensionality reduction

As stated in the introduction, each of the two main paradigms for testing differen-
tial expression of a gene set have their limitations. Two-step methods generally do
not directly test the existence of a mean shift between two multivariate distributions
[Goeman and Bühlmann, 2007]. The second step, which often treats the genes as the
sampling units, renders the interpretation of p-values problematic and may lead to a
large loss of power or Type I error control when sets of genes have correlated expression.
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Multivariate statistics, on the other hand, allow a direct formulation of and solution
to the testing question: the sampling units are vectors of gene expression measures
(e.g., corresponding to patients) and the question is whether two such sets of random
vectors are likely to have arisen from distributions with equal means. Figure 1 illus-
trates another classical advantage of multivariate approaches: genes taken individually
may have extremely small mean shifts between two populations, although their joint
distributions clearly differ between the two populations. Here, again, this phenomenon
typically happens for sets of genes whose expression measures are correlated, which is
not unlikely for pathways or annotated gene sets.
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Figure 1: Synthetic example of the joint distribution of the expression measures of two
genes in two patient populations. The color and shape of the plotting symbols indicate
the patient group and the x- and y-axes correspond to the expression measures of the
first and second gene, respectively.

Unfortunately, with moderate sample sizes, multivariate statistics lose power quickly
in high dimension. If some type of side information is available regarding particular
properties of the expression shift, a possible approach to get the best of both worlds
would be to: (1) project the vectors of covariates in a new space of lower dimension
that preserves the distribution shift, i.e., the distance between the expression measures
of the two groups, and (2) apply the multivariate statistic in this new space. One could
thus perform the appropriate multivariate test, while avoiding the loss of power caused
by the high dimensionality of the original covariate space.

A possible source of information about the expression shift is the growing number of
available gene networks. Indeed, while the difference in mean expression between two
groups of patients may not be entirely coherent with an existing network (e.g., because
of noise in the data, errors in the annotation, or inappropriateness of the chosen network
for the biological question of interest), it is reasonable to expect that this shift will not
be entirely contradictory with the given graph structure. For example, repressed genes

5

Hosted by The Berkeley Electronic Press



should be more connected to other repressed genes than to over-expressed genes. Given
this assumption, we intend to build a space of lower dimension than the original gene
space, but which preserves most of the distribution shift between the two populations.

More precisely, consider a network of p genes, represented by a graph G = (V , E),
with |V| = p nodes and edge set E . Let δ ∈ Rp denote the mean shift, i.e., the vector of
differences in mean expression measures for these p genes between the two populations
of interest. Suppose we expect the shift δ to be coherent with the graph G, in the sense
that it has low energy EG(δ) for a particular energy function EG defined on G. Then,
we wish to build a space of lower dimension k � p capturing most of the low energy
functions. To this end, we start by finding the function that has the lowest possible
energy, then the function that has lowest possible energy in the orthogonal space of
the first one, up to the kth function with lowest energy in the orthogonal subspace of
the first k − 1 functions. That is, for each i ≤ k, we define

ui =

 arg min
f∈Rp

EG(f)

such that ui ⊥ uj, j < i.
(1)

If EG is a positive semi-definite quadratic form EG(δ) = δ>QGδ, for some positive
semi-definite matrix QG = UΛU>, where U is an orthogonal matrix and Λ a diagonal
matrix with elements λi, i = 1, . . . , p, then the solution to Equation (1) is given by
the k eigenvectors of QG corresponding to the smallest k eigenvalues. It is easy to
check that these eigenvalues are the energies of the corresponding functions ui, i.e.,
EG(ui) = λi.

Different choices of QG lead to different notions of coherence of the expression
shift with the network. A classical choice is the graph Laplacian L. Suppose G is
an undirected graph with adjacency matrix A, with aij = 1 if and only if (i, j) ∈ E
and aij = 0 otherwise, and degree matrix D = Diag (A1), where 1 is a unit column-
vector, Diag(x) is the diagonal matrix with diagonal x for any vector x, and Dii =
di. The Laplacian matrix of G is then typically defined as L = D − A or Lnorm =
I − D−

1
2AD−

1
2 for the normalized version, leading to energies

∑
i,j∈V (δi − δj)2 and∑

i,j∈V

(
δi√
di
− δj√

dj

)2

, respectively. Note that, in this case, the Laplacian matrix L,

energy E, and basis functions ui extend the classical Fourier analysis of functions
on Euclidean spaces to functions on graphs, by transferring the notions of Laplace
operator, Dirichlet energy, and Fourier basis, respectively.

More generally, any positive semi-definite matrix can be chosen. In the case of
gene regulation networks, we do not necessarily expect as strong a coherence as that
corresponding to the Dirichlet energy defined by the graph Laplacian, since some of
the annotated interactions may not be relevant in the studied context and some an-
tagonist interactions may cancel each other. For example, if a gene is activated by two
others, one who is under-expressed and the other over-expressed, we may observe no
change in the expression of the gene, but a non-zero Dirichlet energy

∑
i,j∈V (δi − δj)2.
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Additionally, for applications like structured gene set differential expression detection,
one may use negative weights for edges that reflect a negative correlation between two
variables, e.g., a gene i whose expression inhibits the expression of another gene j. In
this case, a small variation of the shift on the edge between i and j should correspond
to a small |δi + δj|. This can be achieved in the same formalism by simply considering
a signed version of the adjacency matrix A, i.e., aij = 1 if gene i activates gene j and
−1 if it inhibits gene j. A signed version of the graph Laplacian is then Lsign = D−A,
where D is still the degree matrix, i.e. D = Diag (|A|1), |A| denoting the entry-wise
absolute value of A. Note that such a signed Laplacian was used as a penalty for
semi-supervised learning in Goldberg [2007].

In the context of this work, we moreover consider directed graphs G = (V , E),
where the edge set E consists of ordered pairs of nodes. The adjacency matrix A is
asymmetric, with entries aij 6= 0 if and only if (i, j) ∈ E , i.e., there is an edge going
from node vi to node vj. We then use the following energy function:

EG(δ) =

p∑
i:d−i 6=0

δi − 1

d−i

∑
(j,i)∈E

ajiδj

2

, (2)

where d−i
∆
=
∑p

j=1 |aji| is the indegree of node vi, i.e., the number of directed edges
that connect any node to vi. According to this definition, an expression shift will have
low energy if the difference in mean expression of any given gene between the two
populations is similar to the (signed) average of the differences in mean expression for
the genes that either activate or inhibit it.

It is immediate to check that EG(δ) = δ>MGδ, with MG
∆
= (Ĩ − D−1

− A>)>(Ĩ −
D−1
− A>), whereD−

∆
= Diag

(
(d−i )i=1,...,p

)
is the matrix of indegrees, Ĩ

∆
= Diag

(
(I(d−i 6= 0))i=1,...,p

)
is a modification of the identity matrix where diagonal elements corresponding to nodes
with zero indegree are set to zero, and the value of the indicator function I is 1 if its
argument is true and zero otherwise. Note that a very similar function was used in the
context of regularized supervised learning by Sandler et al. [2009].

Following our principle to build a lower dimension space, we should use the first few
eigenvectors of MG to obtain orthonormal functions with low energy. As an example,
Figure 2 displays the eigenvectors of MG for a simple four-node graph with

D =


1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 1

 , A =


0 1 0 0
1 0 1 −1
0 1 0 0
0 −1 0 0

 ,

where A takes negative values for negative interactions, such as expression inhibition.
The first eigenvector, corresponding to the smallest energy (eigenvalue of zero), can be
viewed as a “constant” function on the graph, in the sense that its absolute value is
identical for all nodes, but nodes connected by an edge with negative weight take on
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values of opposite sign. By contrast, the last eigenvector, corresponding to the highest
energy, is such that nodes connected by positive edges take on values of opposite sign
and nodes connected by negative edges take on values of the same sign. Note that, for
this particular example, the adjacency matrix is symmetric, which needs not always be
the case. Actually, here, the signed Laplacian would have the same eigen-decomposition
(this is not the case for all undirected graphs). For a slightly different graph:

A =


0 1 0 0
0 0 0 0
0 1 0 0
0 1 0 0

 ,

which is the same as above but with directed edges and only positive interactions to
avoid confusion, Figure 3 shows that the two notions of energy lead to two different
bases. While the signed Laplacian matrix has only one (constant) eigenvector of null
energy, two of energy 1, and one of 4, MG has three orthogonal vectors of null energy.
Note, however, that the first and last eigenvectors are still the same across the two
bases.

Figure 2: Eigenvectors of MG and of the signed Laplacian Lsign for a simple undirected
four-node graph. The corresponding eigenvalues are 0, 1, 1, 16

3
and 0, 1, 1, 4. Nodes are

colored according to the value of the eigenvector, where green corresponds to high
positive values, red to high negative values, and black to 0. “T”-shaped edges have
negative weights.

While we introduce this idea in the context of gene regulation networks and test-
ing for differential expression, the same dimensionality reduction principle applies to
any multivariate testing problem for which the variables have a known structure, as
represented by a graph.

In the remainder of this paper, we denote by f̃ = U>f the coefficients of a vector
f ∈ R|V| after projection on a basis U (typically the eigenvectors of a QG matrix).
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Figure 3: Eigenvectors of the signed Laplacian Lsign (top) and of MG (bottom) for
a simple directed four-node graph. The corresponding eigenvalues are 0, 1, 1, 4 for
the Laplacian and 0, 0, 0, 4

3
for MG. Nodes are colored according to the value of the

eigenvector, where green corresponds to high positive values, red to high negative
values, and black to 0.

3 Graph-structured two-sample test of means un-

der smooth-shift alternatives

For multivariate normal distributions, Hotelling’s T 2-test, a classical test of location
shift, is known to be uniformly most powerful invariant against global-shift alternatives.
The test statistic is based on the squared Mahalanobis norm of the sample mean shift
and is given by T 2 = n1n2

n1+n2
(x̄1 − x̄2)>Σ̂−1(x̄1 − x̄2), where ni, x̄i, and Σ̂−1 denote, re-

spectively, the sample sizes, means, and pooled covariance matrix, for random samples
drawn from two p-dimensional Gaussian distributions, N (µi,Σ), i = 1, 2. Under the
null hypothesis H0 : µ1 = µ2 of equal means, NT 2 follows a (central) F -distribution
F0(p, n1 +n2− p− 1), where N = n1+n2−p−1

(n1+n2−2)p
. In general, NT 2 follows a non-central F -

distribution F ( n1n2

n1+n2
∆2(δ,Σ); p, n1 +n2−p− 1), where the non-centrality parameter is

a function of the Mahalanobis norm of the mean shift δ, ∆2(δ,Σ) = δ>Σ−1δ, which we
refer to as distribution shift. In the remainder of this paper, unless otherwise specified,
T 2-statistics are assumed to follow the nominal F -distribution, e.g., for critical value
and power calculations.
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For any orthonormal basis U and, in particular, for our graph-based basis, direct

calculation shows that T 2 = T̃ 2 ∆
= n1n2

n1+n2
(x̄1 − x̄2)>U

(
U>Σ̂U

)−1

U>(x̄1 − x̄2), i.e., the

statistic T 2 in the original space and the statistic T̃ 2 in the new space are identical.
More generally, for k ≤ p, the statistic in the original space after filtering out dimensions
above k is the same as the statistic T̃ 2

k restricted to the first k coefficients in the new
space defined by U :

T̃ 2
k

∆
=

n1n2

n1 + n2

(x̄1 − x̄2)>U[k]

(
U>[k]Σ̂U[k]

)−1

U>[k](x̄1 − x̄2)

=
n1n2

n1 + n2

(x̄1 − x̄2)>U1kU
>
(
U1kU

>Σ̂U1kU
>
)+

U1kU
>(x̄1 − x̄2),

where A+ denotes the generalized inverse of a matrix A, the p× k matrix U[k] denotes
the restriction of U to its first k columns, and 1k is a p× p diagonal matrix, with ith
diagonal element equal to one if i ≤ k and zero otherwise. Note that, as retaining the
first k dimensions is a non-invertible transformation, this filtering indeed has an effect
on the test statistic, that is, we have T̃ 2

k 6= T̃ 2 in general. As the Mahalanobis norm
is invariant to linear invertible transformations, using an invertible filtering (such as
weighting each component according to its corresponding eigenvalue) would have no
impact on the test statistic.

Hotelling’s T 2-test is known to behave poorly in high dimension; the following
lemma shows that gains in power can be achieved by filtering. Specifically, let δ̃ = U>δ
and Σ̃ = U>ΣU denote, respectively, the mean shift and covariance matrix in the

new space. Given k ≤ p, let ∆2
k(δ,Σ) = δ>[k]

(
Σ[k]

)−1
δ[k] denote the distribution shift

restricted to the first k dimensions of δ and Σ, i.e., based on only the first k elements
of δ, (δi : i ≤ k), and the first k × k diagonal block of Σ, (σij : i, j ≤ k). Under
the assumption that the distribution shift is smooth, i.e., lies mostly in the first few
graph-based coefficients, so that ∆2

k(δ̃, Σ̃) is nearly maximal for a small value of k,
Lemma 1 states that performing Hotelling’s test in the new space restricted to its first
k components yields more power than testing in the entire new space. Equivalently, the
test is more powerful in the original space after filtering than in the original unfiltered
space. Note that this result holds because retaining the first k new components is a
non-invertible transformation.

Lemma 1. For any level α and any 1 < l ≤ p− k, there exists η(α, k, l) > 0 such that

∆2
k+l(δ̃, Σ̃)−∆2

k(δ̃, Σ̃) < η(α, k, l)⇒ βα,k(∆
2
k(δ̃, Σ̃)) > βα,k+l(∆

2
k+l(δ̃, Σ̃)),

where βα,k(∆
2) is the power of Hotelling’s T 2-test at level α in dimension k for a

distribution shift ∆2, according to the nominal F -distribution F ( n1n2

n1+n2
∆2; k, n1 + n2 −

k − 1).

Proof. This lemma is a direct application of Corollary 2.1 in Das Gupta and Perl-
man [1974] to Hotelling’s T 2-test in the new space. The bottom line of the proof
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of Das Gupta and Perlman [1974]’s result is that βα,k can be shown to be a contin-
uous and strictly decreasing function of k, so that a strictly positive increase in the
non-centrality parameter ∆2 of the F -distribution is necessary to maintain power when
increasing dimension.

Note that the increase in shift η(α, k, l) required to maintain power when increas-
ing dimension can be evaluated numerically for any (α, k, l). In particular, a direct
application of Lemma 1 yields the following corollary:

Corollary 1. If ∀ 1 < l ≤ p− k, ∆2
k(δ̃, Σ̃) = ∆2

k+l(δ̃, Σ̃), then

βα,k(∆
2
k(δ̃, Σ̃)) > βα,k+l(∆

2
k+l(δ̃, Σ̃)).

According to Corollary 1, if the distribution shift lies in the first k new coefficients,
then testing in this subspace yields strictly more power than using additional coeffi-
cients. In particular, if there exists k < p such that δ̃j = 0 ∀ j > k (i.e., the mean
shift is smooth) and Σ̃ is block-diagonal such that σ̃ij = 0 ∀ i < k, j > k, then gains in
power are obtained by testing in the first k new components. Although non-necessary,
this condition is plausible when the mean shift lies at the beginning of the spectrum
(i.e., has low energy), as the coefficients which do not contain the shift are not expected
to be correlated with the ones that do contain it.

Note that the result in Lemma 1 is more general, as testing in the first k new
components can increase power even when the distribution shift partially lies in the
remaining components, as long as the latter portion is below a certain threshold. Fig-
ure 4 illustrates, under different settings, the increase in distribution shift necessary to
maintain a given power level against the number of added coefficients.

Under the same block-diagonal covariance assumption, we have the following second
corollary which directly relates the energy of the mean shift vector to the gain in power :

Corollary 2. Consider any positive semi-definite matrix QG = UΛU>, with corre-
sponding energy function EG(f) = f>QGf , and mean shift δ = µ1−µ2, with projection
δ̃ = U>δ in the eigenvector basis of QG. Then, at any level α and for any k < p, there
exists c(α, k) > 0 such that

EG(δ) ≤ c(α, k)λks0 +
k−1∑
i=1

λiδ̃
2
i ⇒ βα,k(∆

2
k(δ̃, Σ̃)) > βα,p(∆

2
p(δ̃, Σ̃)),

where s0 denotes the smallest eigenvalue of the last (p− k)-block of Σ̃.

Proof. From the block-diagonality assumption, we have that

∆2
p −∆2

k ≤
∑p

i=k δ̃
2
i

s0

≤
∑p

i=k λiδ̃
2
i

λks0

=
EG(δ)−

∑k−1
i=1 λiδ̃

2
i

λks0

,

so the result directly follows from Lemma 1, with c(α, k) = d(α, k, p).
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Corollary 2 states that if the energy of the mean shift vector δ is small enough,
i.e., if the mean shift is coherent enough with the network, then testing in the first k
dimensions of the new basis is more powerful than testing in the original space. The
corresponding upper bound on the mean shift energy can be quantified for a given
generative setting (µ1, µ2,Σ), graph G, and level α. Tighter and looser bounds can
be straightforwardly derived using the same principle for the diagonal and general
covariance cases, respectively.

If for some reason one expects that the mean shift δ is smooth (rather than the dis-
tribution shift ∆), i.e., δ̃ lies at the beginning of the spectrum, and that the covariance
between coefficients that contain the shift and those that do not is non-zero, then one
should use test statistics based on estimators of the unstandardized Euclidean norm
‖δ‖ of this shift, e.g., Z [Bai and Saranadasa, 1996][Equation (4.5)] or Tn [Chen and
Qin, 2010]. Results similar to Lemma 1 can be derived for these statistics. Namely, the
corresponding tests gain asymptotic power when applied at the beginning of the spec-
trum, provided the Euclidean norm of δ only increases moderately as coefficients with
higher energies are added. The results follow from Bai and Saranadasa [1996][The-
orem 4.1] and Chen and Qin [2010][Equations (3.11)–(3.12)], using the fact that, by
Cauchy’s interlacing theorem, the trace of the square of any positive semi-definite
matrix is larger than the trace of the square of any of its principal submatrices.
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Figure 4: Left: Increase in distribution shift required for Hotelling’s T 2-test to maintain
a given power when increasing the number of tested new coefficients: ∆2

k+l − ∆2
k vs.

l such that βα,k+l(∆
2
k+l) = βα,k(∆

2
k). Power βα,k+l(∆

2
k+l) computed under the non-

central F -distribution F
(

n1n2

n1+n2
∆2
k+l; k + l, n1 + n2 − (k + l)− 1

)
, for n1 = n2 = 100

observations, k = 5, and α = 10−2. Each line corresponds to the fixed shift ∆2
k and

power βα,k(∆
2
k) pair indicated in the legend. Right: Zoom on the first 30 dimensions.
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4 Non-homogeneous subgraph discovery

A systematic approach for discovering non-homogeneous subgraphs, i.e., subgraphs
of a large graph that exhibit a significant shift in means, is to test all of them one-
by-one. In practice, however, this can represent an intractable number of tests, so it
is important to be able to rapidly identify sets of subgraphs that all satisfy the null
hypothesis of equal means. To this end, we devise a pruning approach based on an
upper bound on the value of the test statistic for any subgraph containing a given set
of nodes.

4.1 Exact algorithm

Given a large graph G with p nodes, we adopt the following classical branch-and-
bound-like approach to test subgraphs of size q ≤ p at level α. We start by checking,
for each node in G, whether the Hotelling T 2-statistic in the first k new components of
any subgraph of size q containing this node can be guaranteed to be below the level-α
critical value T 2

α,k (e.g., (1− α)-quantile of F0(k, n1 + n2 − k − 1) distribution). If this
is the case, the node is removed from the graph. We then repeat the procedure on the
edges of the remaining graph and, iteratively, on the subgraphs up to size q − 1, at
which point we test all the remaining subgraphs of size q.

Specifically, for a subgraph g of G of size q ≤ p, Hotelling’s T 2-statistic in the first
k ≤ q new components of g is defined as

T̃ 2
k (g) =

n1n2

n1 + n2

(x̄1(g)− x̄2(g))>U[k]

(
U>[k]Σ̂(g)U[k]

)−1

U>[k](x̄1(g)− x̄2(g)),

where U[k] is the q×k restriction of the matrix of q eigenvectors of the Laplacian of g to
its first k columns (i.e., U[k](g), where we omit g to ease notation) and x̄i(g), i = 1, 2,

and Σ̂(g) are, respectively, the empirical means and pooled covariance matrix restricted
to the nodes in g. We make use of the following upper bound on T̃ 2

k (g).

Lemma 2 (Upper bound on T̃ 2
k ). For any subgraph g of G of size q ≤ p, any subgraph

g′ of g of size q′ ≤ q, and any k ≤ q, then

T̃ 2
k (g) ≤ T 2(ν(g′, q − q′)) ,

where ν(g′, r) is the r-neighborhood of g′, that is, the union of the nodes of g′ and the
nodes whose shortest path to a node of g′ is less than or equal to r.

The proof involves the following result:

Lemma 3 (Bessel inequality for Mahalanobis norm). Let Σ ∈ Rp,p be an invertible
matrix and P ∈ Rp,k, k ≤ p, be a matrix with orthonormal columns. For any x ∈ Rp,

x>Σ−1x ≥ x>P
(
P>ΣP

)−1
P>x.
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Proof. First note that, by orthonormality of the columns of P , P>ΣP is indeed invert-
ible, and that

Σ−1 − P
(
P>ΣP

)−1
P> = Σ−

1
2

(
I − Σ

1
2P
(
P>Σ

1
2 Σ

1
2P
)−1

P>Σ
1
2

)
Σ−

1
2 ,

where Σ
1
2P
(
P>Σ

1
2 Σ

1
2P
)−1

P>Σ
1
2 is an orthogonal projection, with eigenvalues either

0 or 1. Thus, I−Σ
1
2P
(
P>Σ

1
2 Σ

1
2P
)−1

P>Σ
1
2 is positive-semi-definite, as its eigenvalues

are also either 0 or 1. The result follows from properties of products of positive-semi-
definite matrices.

We can now prove Lemma 2.

Proof. By Lemma 3,

T̃ 2
k (g) ≤ n1n2

n1 + n2

(x̄1(g)− x̄2(g))>U
(
U>Σ̂(g)U

)−1
U>(x̄1(g)− x̄2(g))

=
n1n2

n1 + n2

(x̄1(g)− x̄2(g))>Σ̂(g)−1(x̄1(g)− x̄2(g)) = T 2(g).

As g ⊂ ν(g′, q − q′), applying Lemma 3 a second time with the compression from
ν(g′, q − q′) to the nodes of g yields the result.

Note that the bound takes into account the fact that the T 2-statistic is eventually
computed in the first few components of a basis which is not known beforehand : at
each step, for each potential subgraph g′ which would include the subgraph g which we
consider for pruning, the T̃ 2

k (g′) that we need to upper bound depends on the graph
Laplacian of g′.

4.2 Mean-shift approximation

For “small-world” graphs above a certain level of connectivity and q large enough, the
(q − s)-neighborhood of g′, ν(g′, q − s), tends to be large, at least at the beginning of
the above exact algorithm, and the number of tests actually performed won’t decrease
much compared to the total number of possible tests. One can, however, identify much
more efficiently the subgraphs whose sample mean shift in the first k components of

the new space has Euclidean norm ‖ˆ̃δ[k](g)‖ = ‖U>[k](x̄1(g) − x̄2(g))‖ above a certain
threshold. Indeed, it is straightforward to see that

‖U>[k](x̄1(g)− x̄2(g))‖2 ≤ ‖U>(x̄1(g)− x̄2(g))‖2

= ‖x̄1(g)− x̄2(g)‖2

≤ ‖x̄1(g′)− x̄2(g′)‖2

+ max
v1,...,vq−s∈ν(g′,q−s)

‖x̄1(v1, . . . , vq−s)− x̄2(v1, . . . , vq−s)‖2.
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This inequality can then be used in the procedure described in Section 4.1, to identify
all subgraphs for which the Euclidean norm of the sample mean shift exceeds a given

threshold: ‖ˆ̃δ[k](g)‖2 > θ. For any α, if this threshold θ is low enough, all the subgraphs

with T̃ 2
k (g) > T 2

α,k are included in this set. Performing the actual T 2-test on these pre-
selected subgraphs yields exactly the set of subgraphs that would have been identified
using the exact procedure of Section 4.1. More precisely, we have the following result:

Lemma 4. For any threshold θ > 0, k ≤ q ≤ p, and any subgraph g of size q such that

‖ˆ̃δ[k](g)‖2 < θ,

NT̃ 2
k (g) > T 2

α,k ⇒ λmin( ˆ̃Σ[k](g)) <
Nn1n2θ

(n1 + n2)T 2
α,k

,

where T 2
α,k is the level-α critical value for T̃ 2

k ( e.g., (1 − α)-quantile of F0(k, n1 +

n2 − k − 1)), N = n1+n2−k−1
(n1+n2−2)k

and λmin( ˆ̃Σ[k](g)) denotes the smallest eigenvalue of

ˆ̃Σ[k](g) = U[k]Σ̂(g)U>[k].

Proof. As I − ( ˆ̃Σ[k](g))−1λmin( ˆ̃Σ[k](g)) � 0, it follows that, for any x,

x>( ˆ̃Σ[k](g))−1x ≤ ‖x‖2

λmin( ˆ̃Σ[k](g))
.

Lemma 4 states that for any subgraph which would be detected by Hotelling’s

T 2-statistic T̃ 2
k (g) but not by the Euclidean criterion ‖ˆ̃δ[k](g)‖2, the sample covariance

matrix in the restricted new space (after filtering) has an eigenvalue below a certain
threshold. This implies that such false negative subgraphs (from the Euclidean ap-
proximation to the exact algorithm) have a small mean shift in the new space, but
in a direction of small variance. In context of gene expression, this is related to the
well-known issue of the detection of DE genes by virtue of their small variances. Even
though the differences in expression appear to be significant for these genes, they cor-
respond to small effects that may not be interesting from a practical point of view
(i.e., biologically insignificant . Methods for addressing this problem are proposed in

Lönnstedt and Speed [2001]. Note that λmin(Σ̂(g))) ≤ λmin( ˆ̃Σ[k](g))); thus, the remark
on variances holds for both the new and original spaces. However, if q is large, we
expect λmin(Σ̂(g)) to be very small, while filtering somehow controls the conditioning
of the covariance matrix.

4.3 Multiple hypothesis testing

Testing for homogeneity over the potentially large number of subgraphs investigated as
part of the above algorithms immediately raises the issue of multiple testing. However,
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the present multiplicity problem is unusual, in the sense that one does not know in
advance the total number of tests and which tests will be performed specifically. Stan-
dard multiple testing procedures, such as those in Dudoit and van der Laan [2008], are
therefore not immediately applicable.

In an attempt to address the multiplicity issue, we apply a permutation proce-
dure to control the number of false positive subgraphs under the complete null hy-
pothesis of identical distributions in the two populations. Specifically, one permutes
the class/population labels (1 or 2) of the n1 + n2 observations and applies the non-
homogeneous subgraph discovery algorithm to the permuted data to yield a certain
number of false positive subgraphs. Repeating this procedure a sufficiently large num-
ber of times produces an estimate of the distribution of the number of Type I errors
under the complete null hypothesis of identical distributions.

5 Results

We evaluate the empirical behavior of the procedures proposed in Sections 3 and 4,
first on synthetic data, then on breast cancer microarray data analyzed in context of
KEGG pathways.

5.1 Synthetic data

The performance of the graph-structured test is assessed in cases where the distribution
shift ∆2 satisfies the smoothness assumptions described in Section 3. We first generate
a connected random graph G with p = 20 nodes. Next, we generate 10, 000 datasets in
the space corresponding to the basis U defined by the eigenvectors of the QG matrix
for the graph G; an inverse transformation is applied to random vectors generated is
this new space. Each dataset comprises n1 = n2 = 20 Gaussian random vectors in Rp,
with null mean shift δ for 5, 000 datasets and non-null mean shift δ for the remaining
5, 000. For the latter datasets, the non-zero shift is built in the first k0 = 3 graph-based
coefficients (the shift being zero for the remaining p − k0 coefficients): δ̃i 6= 0 if and
only if i ≤ k0 and ∆2(δ,Σ) = ∆2(δ̃, Σ̃) = δ̃>Σ̃−1δ̃ = 1. We consider two covariance
settings. In the first one, the covariance matrix in the new space is diagonal, with
diagonal elements equal to 1√

p
. In the second one, correlation is introduced between

the shifted coefficients only. Specifically, for i, j ≤ k0, Σ̃ij = 0.5√
p

if i 6= j, Σ̃ii = 0.9√
p

otherwise.
Figure 5 displays receiver operator characteristic (ROC) curves for mean shift de-

tection by the standard Hotelling T 2-test, T 2 in the first k0 graph-based coefficients,
T 2 in the first k0 principal components (PC), the adaptive Neyman test of Fan and
Lin [1998], and a modified version of this fourth test where the correct value of k0 is
specified. Note that we do not consider sparse learning approaches [Jacob et al., 2009,
Jenatton et al., 2009], but it would be straightforward to design a realistic setting where
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such approaches are outperformed by testing, e.g., by adding correlation between some
of the functions under H1.
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Figure 5: ROC curves for the detection of a smooth shift using various test statistics.
Left: Diagonal covariance structure. Right: Block-diagonal covariance structure. Top:
Comparison of tests based on the standard Hotelling T 2-statistic in the original space,
T 2-statistic in the first k0 graph-based coefficients, and T 2-statistic in the first k0

principal components. Bottom: Comparison with the adaptive Neyman statistics of
Fan and Lin [1998].

The first important comparison is between the classical Hotelling T 2-test versus the
T 2-test in the new graph-based space (top two plots of Figure 5). As expected from
Lemma 1, testing in the restricted space where the shift lies performs much better than
testing in the full space which includes irrelevant coefficients. The difference can be
made arbitrarily large by increasing the dimension p and keeping the shift unchanged.
The graph-structured test retains a large advantage even for moderately smooth shifts,
e.g., when k0 = 3 and p = 5. Of course, this corresponds to the optimistic case
where the number of shifted coefficients k0 is known. Figure 6 shows the power of the
test in the new space for various choices of k. Even when missing some coefficients
(k < k0) or adding a few non-relevant ones (k > k0), the power of the graph-structured
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test is higher than that of the T 2-test in the full space. The principal component
approach is shown because it was proposed for the application which motivated our
work [Ma and Kosorok, 2009] and as it illustrates that the improvement in performance
originates not only from dimensionality reduction, but also from the fact that this
reduction is in a direction that does not decrease the shift. We emphasize that power
entirely depends on the nature of the shift and that a PC-based test would outperform
our graph-based test when the shift lies in the first principal components rather than
graph-based coefficients. The statistics of Bai and Saranadasa [1996] and Chen and
Qin [2010] are also largely outperformed by our graph-structured statistic (ROC curves
not shown in Figure 5 for the sake of readability), which illustrates that working in
the new space solves the problem of high-dimensionality for which these statistics were
designed. Here again, for a non-smooth shift, the comparison would be less favorable.
Finally, we consider the adaptive Neyman test of Fan and Lin [1998] (bottom two
plots of Figure 5), which takes advantage of smoothness assumptions for time-series.
This test differs from our graph-structured test, as Fourier coefficients for stationary
time-series are known to be asymptotically independent and Gaussian. For graphs, the
asymptotics would be in the number of nodes, which is typically small, and necessary
conditions such as stationarity are more difficult to define and unlikely to hold for data
like gene expression measurements. In the uncorrelated setting, the modified version of
the Fan and Lin [1998] statistic based the true number of non-zero coefficients performs
approximately as well as the graph-structured T 2. However, for correlated data, it loses
power and both versions of the Neyman test can have arbitrarily degraded performance.
This, together with the need to use the bootstrap to calibrate this test, illustrates that
direct transposition of the Fan and Lin [1998] test to the graph context is not optimal.

To evaluate the performance of the subgraph discovery algorithms proposed in
Section 4, we generated a graph of 100 nodes formed by tightly-connected hubs of sizes
sampled from a Poisson distribution with parameter 10 and only weak connections
between these hubs (Figure 7). Such a graph structure mimics the typical topology
of gene regulation networks. We randomly selected one subgraph of 5 nodes to be
non-homogeneous, with smooth shift in the first k0 = 3 coefficients. The mean shift
was set to zero on the rest of the graph. We set the norm of the mean shift to 1 and
the covariance matrix to identity, so that detecting the shifted subgraph is impossible
by just looking at the mean shift on the graph.

We evaluated run-time for full enumeration, the exact branch-and-bound algorithm
based on Lemma 2 (Section 4.1), and the approximate algorithm based on the Euclidean
norm (Section 4.2). We also examined run-time on data with permuted class labels,
as the subgraph discovery procedure is to be run on such data to evaluate the number
of false positives and adjust for multiple testing. Averaging over 20 runs, the full
enumeration procedure took 732± 9 seconds per run and the exact branch-and-bound
627± 59 seconds on the non-permuted data and 578± 100 seconds on permuted data.
Over 100 runs, the approximation at θ = 0.5 (λmin = 0.52) took 204 ± 86 seconds
(129 ± 91 on permuted data) and the approximation at θ = 1 (λmin = 1.04) took
183 ± 106 seconds (40 ± 60 on permuted data). The latter approximation missed the
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Figure 6: Power of the T 2-test in the first k graph-based coefficients for a graph of 20
nodes, when the actual distribution shift ∆2 = 1 is evenly distributed among the first
k0 = 5 graph-based coefficients and with n1 = n2 = 20.

non-homogeneous subgraph in 5% of the runs.
While neither the exact nor the approximate bounds are efficient enough to allow

systematic testing on huge graphs for which the exact approach would be impossible,
they allow a significant gain in speed, especially for permuted data, and will thus prove
to be very useful for multiple testing adjustment.

5.2 Breast cancer gene expression data

We also validated our methods using the microarray dataset of Loi et al. [2008], which
comprises the expression measures of 15, 737 genes for 255 patients treated with ta-
moxifen. Using distant metastasis-free survival as a primary endpoint, 68 patients are
labeled as resistant to tamoxifen and 187 are labeled as sensitive to tamoxifen. Our
goal is to detect structured groups of genes which are differentially expressed between
resistant and sensitive patients.

We first tested individually 323 connected components from 89 KEGG pathways
corresponding to known gene regulation networks, using the classical Hotelling T 2-test
and the T 2-test in the new graph-based space retaining only the first 20% coefficients
(k = 0.2p). For each of the 323 graphs, (unadjusted) p-values were computed under the
nominal F -distributions F0(p, n1 + n2− p− 1) and F0(k, n1 + n2− k− 1), respectively.
The Benjamini and Hochberg [1995] procedure was then applied to control the false
discovery rate (FDR) at level 0.05.
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Figure 7: Random graph used in the evaluation of the pruning procedure.

Since there is no gold standard regarding which pathways are actually involved
in endocrine resistance, practical validation of the entire set of detected pathways
requires advanced biological expertise and further experiments and is the subject of
ongoing collaborations. Nonetheless, inspection of our list reveals several pathways
which would not have been detected (or would have been farther down in the list)
without accounting for the network structure and which have recently been shown
to be central in tamoxifen resistance. Many of these pathways involve the Ras/Raf-
1/MAPK cascade [McGlynn et al., 2009], like one of the connected components of
the prostate cancer pathway shown in Figure 8 and one connected component of the
GnRH pathway shown in Figure 9. The former also involves the over-expressed FGFR1,
whose amplification was very recently implicated in endocrine therapy resistance by
Turner et al. [2010]. The latter pathway involves over-expressed src, which is also a
well-studied target when trying to prevent tamoxifen resistance [Herynk et al., 2006].
Both pathways have a much smaller p-value when accounting for their graph structure
than when testing in the original gene space : 10−4 versus 0.02 for the prostate cancer
pathway and 10−3 versus 0.11 for the GnRH signaling pathway. This is because the
differences in expression of individual genes are insufficient to be significant in 36 and 19
dimensions, respectively, while the expression shift projected in the first 8 and 4 graph-
based directions, respectively, is significant. Note that the corresponding p-values for
the hypergeometric enrichment test are 0.15 and 0.31. The complete gene lists of
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the two components are reported in Tables 1 and 2, respectively. Using a system-
based approach like our proposed graph-based test therefore allows to recover several
known results (which may not have been obvious from the same data when looking at
each gene individually) and may give insight regarding other resistance mechanisms by
highlighting connections between these results.

Another example of a network selected only when accounting for graph structure is
Leukocyte transendothelial migration, shown in Figure 10. To the best of our knowledge,
this pathway is not specifically known to be involved in tamoxifen resistance. However,
its role in resistance is plausible, as leukocyte infiltration was recently found to be
involved in breast tumor invasion [Man, 2010]; more generally, the immune system and
inflammatory response are closely related to the evolution of cancer. Here again, the
p-value of the hypergeometric test is extremely high (0.31). The entire list of genes in
this component is reported in Table 3.

We then ran our branch-and-bound non-homogeneous subgraph discovery proce-
dure on the cell cycle pathway, whose largest connected component, after restriction to
edges of known sign (inhibition or activation), has 86 nodes and 442 edges. Specifically,
we sought to detect differentially expressed subgraphs of size q = 5, after pre-selecting
those for which the squared Euclidean norm of the empirical shift exceeds θ = 0.1; for
a test in the first k = 3 components at level α = 10−4, this corresponds to λmin < 0.23
and to an expected removal of 95% of the subgraphs under the approximation that the
squared Euclidean norm of the subgraphs follows a χ2

5-distribution.
For α = 10−4, over 100 runs on permuted data, only 9 rejected the null hypoth-

esis for at least one subgraph. More precisely, 4 of these 9 runs detected 1 subgraph
and the others detected 3, 6, 6, 21, and 26 subgraphs. In contrast, 41 overlapping
subgraphs (Figure 11) were detected on the original data, corresponding to a con-
nected subnetwork of 25 genes. Some of these genes have large individual differential
expression, namely TP53 whose mutation has been long-known to be involved in ta-
moxifen resistance [Andersson et al., 2005, Fernandez-Cuesta et al., 2010]. Accordingly,
its negative regulator MDM2 is over-expressed and its positive regulator CREBBP is
under-expressed. E2F1, whose expression level was recently shown to be involved in
tamoxifen resistance [Louie et al., 2010], is also part of the identified network, as well
as CCND1 [Barnes, 1997, Musgrove and Sutherland, 2009]. Some other genes in the
network have quite low t-statistics and would not have been detected individually.
This is the case of CCNE1 and CDK2, which were also described in [Louie et al., 2010]
as part of the same mechanism as E2F1. Similarly, CDKN1A was recently found to
be involved in anti-œstrogene treatment resistance [Musgrove and Sutherland, 2009]
and in ovarian cancer, which is also a hormone-dependent cancer [Cunningham et al.,
2009]. Interestingly, RBX1, a gene coding for a RING-domain E3 ligase known to be
involved in degradation of estrogen receptor α (ERα) [Ohtake et al., 2007], appears to
be over-expressed in resistant patients. This may suggest that some of the resistant
ER+ patients had fewer receptors and, as a result, their tumors were relying less on
estrogen for their growth; hence, the limited effect of selective estrogen receptor mod-
ulator (SERM) like tamoxifen. The networks also contains CDK4, whose inhibition
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has been described in Sutherland and Musgrove [2009] as acting synergistically with
tamoxifen or trastuzumab. More generally, a large part of the network displayed in
Figure 2A of Musgrove and Sutherland [2009] is included in our network, along with
other known actors of tamoxifen resistance. Our system-based approach to pathway
discovery therefore directly identifies an important set of interacting genes and may
therefore prove to be more efficient than iterative individual identification of single
actors.

6 Software implementation

The graph-structured test of Section 3 is implemented in the R software package
DEGraph, released through the Bioconductor Project (release 2.7). Instructions for
download and installation are available at http://bioconductor.org/help/bioc-views/
2.7/bioc/html/DEGraph.html. Note that implementations of the branch-and-bound
algorithms are not part of the package yet, but are available upon request.

7 Discussion

We developed a graph-structured two-sample test of means, for problems in which
the distribution shift is assumed to be smooth on a given graph. We proved quanti-
tative results on power gains for such smooth-shift alternatives and devised branch-
and-bound algorithms to systematically apply our test to all the subgraphs of a large
graph, without enumerating and testing these subgraphs one-by-one. The first algo-
rithm is exact and reduces the number of explicitly tested subgraphs. The second is
one approximate, with no false positives and a quantitative result on the type of false
negatives (with respect to the exact algorithm). The non-homogeneous subgraph dis-
covery method involves performing a large number of tests, with highly-dependent test
statistics. However, as the actual number of tested hypotheses is unknown, standard
multiple testing procedures are not directly applicable. Instead, we use a permutation
procedure to estimate the distribution of the number of false positive subgraphs. Such
resampling procedures (bootstrap or permutation) are feasible due to the manageable
run-time of the pruning algorithms of Section 4. Results on synthetic data illustrate
the good power properties of our graph-structured test under smooth-shift alternatives,
as well as the good performance of our branch-and-bound-like algorithms for subgraph
discovery. Very promising results are also obtained on the drug resistance microarray
dataset of Loi et al. [2008].

Future work should investigate the use of other bases, such as graph-wavelets [Ham-
mond et al., 2009], which would allow the detection of shifts with spatially-located non-
smoothness, for example, to take into account errors in existing networks. More sys-
tematic procedures for cutoff selection should also be considered, e.g., two-step method
proposed in Das Gupta and Perlman [1974] or adaptive approaches as in Fan and Lin
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[1998]. The pruning algorithm would naturally benefit from sharper bounds. Such
bounds could be obtained by controlling the condition number of all covariance matri-
ces, using, for example, regularized statistics which still have known non-asymptotic
distributions, such as those of Tai and Speed [2008]. Concerning multiple testing,
procedures should be devised to exploit the dependence structure between the tested
subgraphs and to deal with the unknown number of tests. The proposed approach
could also be enriched to take into account different types of data, e.g., copy number
for the detection of DE gene pathways. More subtle notions of smoothness, e.g., “and”
and “or” logical relations [Vaske et al., 2010], could also be included. An interesting
alternative application would be to explore the list of pathways which are known to
be differentially expressed (or detected by the classical T 2-test), but which are not de-
tected by the graph-based approach, to infer possible mis-annotation in the network.
Other applications of two-sample tests with smooth-shift on a graph include fMRI and
eQTL association studies.

Finally, it would be of interest to compare our testing approach with structured
sparse learning, for the purpose of identifying expression signatures that are predictive
of drug resistance. Methods should be compared in terms of prediction accuracy and
stability of the selected genes across different datasets, a central and difficult problem in
the design of such signatures [Ein-Dor et al., 2005, He and Yu, 2010, Haury et al., 2010].
The comparison should also take into account the merits of the sparsity-inducing norm
over the hypothesis testing-based selection, as well as the influence of the smoothness
assumption. The latter could indeed also be integrated in a sparsity-inducing penalty
by applying, e.g., Jacob et al. [2009] to the reduced graph-based representation of the
pathways, yielding a special case of multiple kernel learning [Bach et al., 2004].
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Table 1: Prostate cancer pathway. Gene list
with univariate t-statistics and corresponding nomi-
nal p-values. The unadjusted p-values for the T 2-
statistics in the original space and in the graph-
based reduced space are p-value(Hotelling)=0.019 and p-
value(netHotelling)=0.00014, respectively. The p-value
for the standard hypergeometric enrichment test is p-
value(hyper)=0.15.

Gene Entrez Gene symbol t-statistic p-value
369 ARAF 0.25 0.81
673 BRAF 0.87 0.39

1950 EGF -1.3 0.19
1956 EGFR -0.22 0.82
2064 ERBB2 1.1 0.25
2260 FGFR1 1.7 0.098
2263 FGFR2 -2.4 0.019
2885 GRB2 1.9 0.056
3265 HRAS 2.7 0.0085
3479 IGF1 -3.5 0.00058
3630 INS 0.29 0.77
3645 INSRR 0.88 0.38
3845 KRAS 0.76 0.45
4893 NRAS 0.45 0.65
5154 PDGFA -0.81 0.42
5155 PDGFB 3.2 0.0021
5156 PDGFRA -3.1 0.0024
5159 PDGFRB -0.88 0.38
5290 PIK3CA 0.38 0.71
5291 PIK3CB -0.23 0.82
5293 PIK3CD -2.6 0.0092
5294 PIK3CG -0.59 0.56
5295 PIK3R1 -1.8 0.07
5296 PIK3R2 1.4 0.17
5594 MAPK1 0.44 0.66
5595 MAPK3 0.99 0.32
5604 MAP2K1 1.1 0.26
5605 MAP2K2 0.84 0.4
5894 RAF1 0.73 0.47
6654 SOS1 0.73 0.47
6655 SOS2 0.28 0.78
7039 TGFA 3.3 0.0015
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8503 PIK3R3 -0.35 0.72
23533 PIK3R5 0.71 0.48
56034 PDGFC -1.8 0.071
80310 PDGFD -2.8 0.0068

Table 2: GnRH signaling pathway. Gene list
with univariate t-statistics and corresponding nomi-
nal p-values. The unadjusted p-values for the T 2-
statistics in the original space and in the graph-
based reduced space are p-value(Hotelling)=0.11 and p-
value(netHotelling)=0.0012, respectively. The p-value
for the standard hypergeometric enrichment test is p-
value(hyper)=0.31.

Gene Entrez Gene symbol t-statistic p-value
1839 HBEGF -0.8 0.43
1956 EGFR -0.22 0.82
2002 ELK1 1.6 0.1
2885 GRB2 1.9 0.056
3265 HRAS 2.7 0.0085
3845 KRAS 0.76 0.45
4313 MMP2 -1.9 0.066
4893 NRAS 0.45 0.65
5578 PRKCA -0.97 0.33
5579 PRKCB1 -1.8 0.075
5580 PRKCD -0.74 0.46
5594 MAPK1 0.44 0.66
5595 MAPK3 0.99 0.32
5604 MAP2K1 1.1 0.26
5605 MAP2K2 0.84 0.4
5894 RAF1 0.73 0.47
6654 SOS1 0.73 0.47
6655 SOS2 0.28 0.78
6714 SRC 2.6 0.012
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Table 3: Leukocyte transendothelial migration pathway.
Gene list with univariate t-statistics and correspond-
ing nominal p-values. The unadjusted p-values for the
T 2-statistics in the original space and in the graph-
based reduced space are p-value(Hotelling)=0.073 and
p-value(netHotelling)=1.5e-05, respectively. The p-value
for the standard hypergeometric enrichment test is p-
value(hyper)=0.31.

Gene Entrez Gene symbol t-statistic p-value
60 ACTB -0.64 0.53
71 ACTG1 1.4 0.15

387 RHOA 0.067 0.95
394 ARHGAP5 -0.58 0.56
998 CDC42 0.94 0.35

1432 MAPK14 1.9 0.057
1535 CYBA -1.1 0.27
1536 CYBB -1 0.31
2770 GNAI1 0.066 0.95
2771 GNAI2 -0.87 0.39
2773 GNAI3 1.1 0.3
2909 GRLF1 -1.8 0.072
3676 ITGA4 -2.1 0.037
3683 ITGAL -1.6 0.12
3684 ITGAM -2.2 0.03
3688 ITGB1 -1.1 0.27
3689 ITGB2 -1.9 0.056
3702 ITK -1 0.32
4313 MMP2 -1.9 0.066
4318 MMP9 1.2 0.22
4633 MYL2 0.72 0.47
4636 MYL5 0.63 0.53
4688 NCF2 -0.12 0.9
4689 NCF4 -0.85 0.4
5290 PIK3CA 0.38 0.71
5291 PIK3CB -0.23 0.82
5293 PIK3CD -2.6 0.0092
5294 PIK3CG -0.59 0.56
5295 PIK3R1 -1.8 0.07
5296 PIK3R2 1.4 0.17
5600 MAPK11 0.79 0.43
5603 MAPK13 2 0.052
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5879 RAC1 0.45 0.65
5880 RAC2 -2.4 0.02
5906 RAP1A -1.1 0.27
5908 RAP1B 0.25 0.8
6093 ROCK1 -1.7 0.098
6300 MAPK12 2.1 0.038
6494 SIPA1 -1.4 0.18
7070 THY1 0.083 0.93
7294 TXK 0.85 0.4
7409 VAV1 -1.6 0.11
7410 VAV2 0.69 0.49
7412 VCAM1 -1.2 0.23
8503 PIK3R3 -0.35 0.72
9475 ROCK2 0.53 0.6

10398 MYL9 -0.92 0.36
10411 RAPGEF3 -2.1 0.04
10451 VAV3 -1.3 0.19
10627 MRCL3 0.96 0.34
11069 RAPGEF4 -0.74 0.46
23533 PIK3R5 0.71 0.48
27035 NOX1 -0.034 0.97
29895 MYLPF 0.64 0.53
50508 NOX3 1.1 0.25
58498 MYL7 0.14 0.89
83593 RASSF5 -5.2 8.6e-07
93408 MYLC2PL -0.87 0.39

103910 MRLC2 0.36 0.72
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Figure 8: Scaled difference in sample mean expression measures between tamoxifen-
resistant and sensitive patients, for genes in one component of the KEGG prostate
cancer pathway. Nodes are colored according to the value of the difference in means,
with green corresponding to high positive values, red to high negative values, and black
to 0. Red arrows denote activation.
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Figure 9: Scaled difference in sample mean expression measures between tamoxifen-
resistant and sensitive patients, for genes in one component of the KEGG GnRH sig-
naling pathway. Nodes are colored according to the value of the difference in means,
with green corresponding to high positive values, red to high negative values, and black
to 0. Red arrows denote activation.
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Figure 10: Scaled difference in sample mean expression measures between tamoxifen-
resistant and sensitive patients, for genes in one component of the KEGG leukocyte
transendothelial migration pathway. Nodes are colored according to the value of the
difference in means, with green corresponding to high positive values, red to high
negative values, and black to 0. Red arrows denote activation, blue arrows inhibition.
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Figure 11: Difference in sample mean expression measures between tamoxifen-resistant
and sensitive patients, for genes in the two overlapping subgraphs detected at α =
10−4. Nodes are colored according to the value of the difference in means, with green
corresponding to high positive values, red to high negative values, and black to 0. Red
arrows denote activation, blue arrows inhibition.
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