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Observational Study and Individualized
Antiretroviral Therapy Initiation Rules for

Reducing Cancer Incidence in HIV-Infected
Patients

Romain Neugebauer, Michael J. Silverberg, and Mark J. van der Laan

Abstract

Targeted Maximum Likelihood Learning (TMLL) has been proposed as a general
estimation methodology that can, in particular, be applied to draw causal infer-
ences based on marginal structural modeling with observational data using either
a point treatment approach (all confounders are assumed not to be affected by the
exposure(s) of interest) or a longitudinal data approach (some confounders may
be affected by one of the exposures of interest). While formal development of
TMLL has included road maps for applications in longitudinal data approaches,
real-life implementations have been restricted to studies based on a point treat-
ment approach. In this article, we illustrate the application of TMLL using a
longitudinal approach to investigate the comparative effectiveness in delaying on-
set of AIDS-defining cancers of two clinical guidelines regarding “when to start”
combination antiretroviral therapy based on a patient’s evolving CD4 count level.
The analysis is based on observational data from the Kaiser Permanente electronic
medical record to fit a non-parametric dynamic marginal structural model with the
so-called inverse probability of action weighted-reduced data-targeted minimum
loss-based estimator (IPAW-R-TMLE). The estimator is developed using formal
results from previous, theoretical articles on TMLL before providing details on its
implementation for this analysis.



1 Introduction

In this article, targeted maximum likelihood learning (van der Laan and Rubin (2006)) is illustrated with a data
analysis from a longitudinal observational study to investigate the question of “when to start” antiretroviral
therapy to reduce the incidence of AIDS-defining cancer in a population of HIV-infected patients.

1.1 Combination antiretroviral therapy initiation

A key clinical question regarding the management of HIV/AIDS is when to start combination antiretroviral
therapy (ART), defined in the department of health and human services (DHHS) guidelines (DHHS (2010))
as a regimen containing three or more individual antiretroviral medications. Since the introduction of protease
inhibitors in 1996, marking the beginning of the combination ART era, DHHS guidelines for the initiation of ART
have undergone several revisions. CD4+ T-cell count levels have been the primary marker used to determine
treatment eligibility, although other factors have also been considered, such as HIV RNA levels, history of an
AIDS-defining illness (CDC (1992)), and ability of the patient to adhere to therapy. Early in the ART era (i.e.
prior to 2001) guidelines supported the notion of hit early, hit hard whereby all patients with AIDS or AIDS-free
patients with CD4<500 cells/µl initiate ART. In 2001, however, guidelines strongly supported ART initiation
only for patients with AIDS or AIDS-free patients with CD4<200 cells/µl, and indicated there was conflicting
or lack of data to support initiation at higher CD4 levels. In 2007, guidelines began to see a shift back to the
concept of hit early, hit hard with a strong recommendation for treatment initiation for AIDS-free patients with
CD4<350. Current DHHS guidelines published in 2009 (DHHS (2010)) strongly support initiating ART for
patients with CD4+ T-cell counts below 350 cells/µl based on clinical trial data. The guidelines also indicate
a moderate to strong recommendation for initiating ART for patients with CD4+ T-cell counts between 350
to 500 cells/µl, based on data from observational studies. Finally, current guidelines provide some support for
initiating therapy with CD4>500 cells/µl, although the guidelines indicated evidence for such early treatment
is sparse.

1.2 HIV, immunodeficiency and cancer incidence

The primary outcome considered in ART treatment guidelines described above have always been reductions in
HIV-related morbidity and mortality. Until recently, however, guidelines have not considered the effect of CD4
thresholds on the risk of specific comorbidities, such as cancer.

Since 1996, individuals with HIV infection in developed countries have seen a precipitous decline in mortality
and a decreased incidence for AIDS-defining cancers (ADC), specifically Kaposi sarcoma (KS) and Non-Hodgkins
lymphoma (NHL), as well as opportunistic infections. However, with increasing age in this population, there has
been a rise in other chronic conditions associated with aging, including non-AIDS-defining cancers (NADC) such
as lung and anal cancers, which are now more common than ADC (Crum-Cianflone et al. (2009), Engels et al.
(2008), Silverberg et al. (2007)). Both ADC, and several NADC, particularly those with a known infectious
cause, continue to pose a higher risk for HIV-infected persons than for the general population (Silverberg et al.
(2009), Engels et al. (2008), Patel et al. (2008)). This increased risk in part may be due to higher prevalence
of cancer risk factors in this group such as smoking (Clifford et al. (2005), Hessol et al. (2004), Phelps et al.
(2001)), alcohol use (Hessol et al. (2004), Murillas et al. (2005)), and oncogenic virus coinfection, such as human
papillomavirus (HPV) or hepatitis B and C (Evans and Kaslow (2006), Martin et al. (1998), Palefsky et al.
(1999), Vallet-Pichard and Pol (2004)).

At the same time, HIV infection and associated immune deficiency may also contribute to the higher risk. It is
possible, for example, that the impaired immune system may result in the general reduced immune surveillance
for malignant cells (Burnet (1970)). Alternatively, an impaired ability of the immune system to suppress
oncogenic viruses may also result in a higher risk of these cancers (Palefsky et al. (1999), Rauch et al. (2008)).
This mechanism is further supported by a large meta-analysis by Grulich et al. (2007) who compared cancers
elevated in persons with HIV infection and organ transplant recipients. These two very different populations
have few shared risk factors for cancer except both populations have suppressed immune systems (Grulich et al.
(2007), Serraino et al. (2007)). Most of the cancers seen with increased frequency in both populations compared

1

Hosted by The Berkeley Electronic Press



to general population rates had a known infectious cause including ADC, as well as several infection-related
NADC. Others have demonstrated a higher risk of Hodgkins disease (Engels et al. (2008), Clifford et al. (2005),
Frisch et al. (2001), Goedert et al. (1998), Grulich et al. (1999), Bedimo (2008)), oral/pharynx (Engels et al.
(2008), Frisch et al. (2001)), anal (Bedimo (2008), Piketty et al. (2008)), liver (Serraino et al. (2007)) and penile
(Frisch et al. (2001)) cancers with advanced immunosuppression measured mainly by closer proximity to an
AIDS diagnosis (Engels et al. (2008), Frisch et al. (2001), Goedert et al. (1998), Grulich et al. (1999)) or low
CD4+ T-cell counts (Patel et al. (2008), Clifford et al. (2005), Bedimo (2008), Piketty et al. (2008)). One study
did indicate a higher risk of Hodgkins disease with less immunosuppression (Biggar et al. (2006)).

As described, there have been no studies that have directly evaluated whether earlier treatment in fact
reduces the burden of cancer or other specific comorbidities. In this analysis, we therefore evaluate how two
different CD4-based ART initiation strategies influence the burden of ADC.

1.3 The Kaiser Permanente electronic medical record

This analysis was conducted within Kaiser Permanente of Northern California (KPNC), a large integrated health
care delivery system that provides comprehensive medical services to approximately 3.2 million members in a
14-county region in Northern California, representing 30% of the surrounding population (N. Gordon, personal
communication). Based on comparison to 2000 U.S. Census data, KPNC members are similar to the general
population with respect to age and race/ethnicity, but have slightly higher income and education levels (N.
Gordon, personal communication). These data are consistent with earlier work that found the KPNC members
to be similar to the underlying geographic population, but with some underrepresentation of the very poor
(Krieger (1992)).

KPNC maintains complete databases on hospitalizations, outpatient visits, laboratory tests and prescrip-
tions. Numerous disease registries are maintained at the KPNC Division of Research (DOR), including HIV and
cancer, which have been used to conduct rigorous and cost-efficient research. Linkage across these databases is
possible since members are assigned a unique lifetime medical record number. The source data are generated as
part of routine clinical care, and therefore continuously collected based on the interaction of each patient with
KPNC (i.e., no set visit schedule).

1.3.1 KPNC HIV Registry

The KPNC HIV Registry, developed initially in 1989, includes all known cases of HIV infection dating back to
the early 1980s (>19,000 cumulative KPNC members). However, this analysis was limited to patients followed
after 1996 corresponding to availability of combination ART. Health plan members are initially identified as
possibly HIV-infected if they are found to have one or more of the following indicators identified from electronic
databases: 1) positive HIV antibody test; 2) detectable HIV viral load; 3) CD4/CD8 ratio < 1.0; 4) prescription
for any antiretroviral drug; 5) outpatient documentation of HIV infection; 6) HIV/AIDS discharge diagnosis; 7)
pathology report for Kaposis sarcoma or Pneumocystis carinii pneumonia; and 8) CDC AIDS case report forms,
infection control nurse notes, and internal physician reporting. Next, medical chart confirmation of potential
cases is performed. The case ascertainment methodology is estimated to have >95% sensitivity and >99%
specificity based on comparisons of the registry and clinician HIV case lists. Data elements maintained in the
HIV registries include gender, race/ethnicity, HIV risk group, dates of known HIV and AIDS diagnoses and
dates of death.

1.3.2 KPNC Cancer Registry

The KPNC cancer registry is a contributing site to the Surveillance, Epidemiology, and End Results (SEER)
program registry. All medical facilities in California are required by law to report all newly diagnosed cases
of cancer to the California Cancer Registry (CCR), through a network of 10 regional registries that together
capture the cancer incidence experience of the entire state. All registries follow SEER practices in verifying
and coding incident cancers. Therefore, the KPNC-maintained cancer registry is of comparable accuracy and
completeness to that of SEER. SEER requirements include categorization of histopathology, invasiveness, tumor
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size, extension, and lymph node involvement. The cancer registry maintained at DOR contains data on all
members since 1988 and from selected medical centers since 1947.

1.3.3 Pharmacy Database

Comprehensive electronic outpatient pharmacy prescription data have been available since 1994. Over 95% of
members have a drug benefit with minimal co-pay and fill their prescriptions at KPNC pharmacies located at
each facility. Members without a drug benefit typically purchase their prescriptions at these same pharmacies
because of convenience and often discounted cost. For HIV patients, pharmacy data are even more complete since
KPNC pharmacies are approved AIDS Drug Assistance Program facilities that provide free HIV prescription
drugs to qualifying HIV patients with no or limited prescription drug benefit. Prescription data available
include brand/generic name, dose, formulation, drug class, # pills dispensed, and date and time filled. For HIV
patients, the source pharmacy data is mapped to a monthly file with a flag for each and every antiretroviral
medication a patient received during that month. Receipt of combination ART was guided by DHHS guidelines
and defined as a regimen containing three or more antiretrovirals (DHHS (2010)).

1.3.4 Laboratory Tests

A region-wide laboratory database has been in place in KPNC since 1994. Typically, all laboratory tests
(inpatient and outpatient) performed on KPNC members are captured in this database including specialized
tests that are sent out to reference labs. CD4+ cell count test results have been captured electronically since
1989. Routine quality assurance checks are performed to comply with state and national standards.

1.3.5 Outpatient & Hospital-Based Care databases

Outpatient databases include all physician diagnoses associated with outpatient encounters at KPNC facilities
since 1995. Hospital discharge diagnoses (ICD-9) and procedure codes (ICD-9 and CPT) have been available
since 1984. Data regarding care at non-KPNC facilities are included in a billing claims database.

1.3.6 Administrative/Death

Date of birth, gender, membership dates and vital status are available on all members. Race/ethnicity is
available in hospitalization databases and on all members included in the HIV registry (by medical chart review).
Deaths are identified from hospitalization, health plan, death certificates, and Social Security Administration
data sets.

1.4 A longitudinal observational study

1.4.1 Study population

The described databases were used to retrospectively identify a cohort of adult HIV-infected patients within
KPNC followed between 1996-2007 who met the following eligibility criteria:

• HIV-infected

• at least 18 years old

• KPNC member during years 1996-2007

• never previously treated with antiretrovirals

• at least one CD4 count measurement is available in the previous year

• never previously diagnosed with an AIDS-defining cancer

Based on these eligibility criteria, a total of 6,250 HIV-infected patients were identified.
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1.4.2 Follow-up

The start of follow-up for patients was the date at which they met all of the eligibility criteria defined above.
Patients were then followed until they achieved the outcome of interest, i.e., incident ADC, or until right censored
due to occurrence of a competing event: death, discontinuation of KPNC health insurance, or administrative
censoring at the end of the study on December 31, 2007. Small gaps in KPNC health insurance of less than
three months were ignored which more likely represented administrative glitches as opposed to lack of health
plan coverage. In addition, ART discontinuation lasting less than six months were also ignored.

1.5 Illustration of targeted maximum likelihood learning

1.5.1 Research question

The aim of this analysis is to compare the effectiveness in delaying onset of ADC of two clinical guidelines
regarding “when to start” ART. Specifically, the following research question is addressed: Should ART be
initiated when a patient’s CD4 count drops below 350 cells/µl (current guideline) or should ART initiation
be instead delayed until his/her CD4 count drops below 200 cells/µl (official guideline for years 2001-2007)?
The target population for whom this effect is of interest is composed of all patients who are HIV-infected,
aged 18-years or older, ART-naive, never-diagnosed with AIDS-defining cancer and engaged in medical care as
demonstrated by a receipt of a CD4 testing.

1.5.2 Dynamic marginal structural model

Addressing this research question involves the estimation of the effect of two personalized ART intervention rules
(each based on the patients’ CD4 count profile over time) on the distribution of the resulting failure times defined
as the patients’ times to cancer onset. A dynamic marginal structural model (dMSM) provides an adequate
representation of such an effect since dMSMs are models for the distribution of rule-specific counterfactual
outcomes (Murphy et al. (2001); van der Laan (2006); Orellana et al. (2006)). Specifically in this analysis, a
dMSM is used to represent the distributions of counterfactual failure times had patients been treated according
to a given treatment guideline which dynamically maps each patient’s evolving CD4 count to the decisions
to treat or not with ART over time (Hernan et al. (2006)). More precisely, each of the two decision rules of
interest are indexed by a CD4 count threshold denoted by θ (equal to 200 or 350) and can be described as
follows: “Only initiate ART once the patient’s CD4 count drops below θ and continue treatment with ART
without interruption thereafter.”

2 Data structure

The data for this analysis are approached as realizations of n independent and identically distributed (i.i.d.)
copies of the following random process:

O = (T̃ = min(T,C),∆ = I(T ≤ C), L(0), A(0), L(1), A(1), . . . , L(t), A(t), . . . , L(T̃ ), A(T̃ ), L(T̃ + 1)) ∼ P0.

where:

• n = 6, 250 is the sample size, i.e. the number of patients in the cohort.

• t denotes a discrete time stamp that indexes the consecutive intervals of τ = 180 days following a patient’s
study entry. Thus, τ denotes the number of days used to discretize the patient’s follow-up time that is
originally expressed on a finer time scale (days). The interval of days represented by t is denoted by
[tτ, (t+ 1)τ [. In particular, t = 0 represents the first τ days of a patient’s follow-up: [0, τ [.

• O denotes the collection of random variables that represent measurements of subject-matter attributes
characterizing one patient for the entire duration of follow-up (time-independent variables) or for a period
of τ days (time-dependent variables). Each of these random variables is described below. The data set
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for this analysis is thus composed of observations on n copies of such random processes that are assumed
to be i.i.d..

• P0 denotes the unknown joint distribution of the collection of random variables that compose the observed
data process O.

• T̃ is the follow-up time expressed in units of τ days since study entry and is defined as the minimum between
the time to cancer onset, T , and the time to right-censoring, C: T̃ ≡ min(T,C). The right-censoring time
is defined as the minimum between the time to the administrative end of the study (December 31st

2007) and the minimum time to a competing event (all expressed in units of τ days since study entry).
Competing events are dis-enrollment from the Kaiser Permanente health plan and death. Note that the
time to cancer onset, T , is the failure time of interest (i.e. outcome) in this analysis. Note also that
unlike t for t = 0, . . . , T̃ − 1 which represents a monitoring interval of τ days [tτ, (t + 1)τ [, the follow-up
time t = T̃ typically represents a shorter monitoring interval: The actual follow-up time expressed in days
typically falls within the interval of τ days: [T̃ τ, (T̃ + 1)τ [.

• ∆ is the binary indicator that cancer onset occurs prior to a competing event: ∆ = 0 represents right-
censoring of the patient’s data.

• A(t) is referred to as the action at time t, i.e. the variables at time t on which hypothetical interventions
are considered below for the purpose of explicitly defining a causal estimand that represents the causal
effects for which statistical inference is of interest to answer the research question. In this analysis, the
action at time t is the collection of the treatment and right-censoring status at time t, A(t) ≡ (A1(t), A2(t))
where:

– A1(t) is a binary variable that represents treatment status at time t (a value of 1 indicates treatment
with ART). Since time t represents an interval of τ days, [tτ, (t + 1)τ [, the following protocol was
devised to map the information available on daily ART status during this interval to the binary
representation above: A patient was deemed to initiate ART on the first day of a sequence of at least
two consecutive months during which the patient was treated with ART. The values for all treatment
variables before ART initiation were set to 0, i.e. the value for each A1(t) such that t represents
an interval of τ days that all precede ART initiation was set to 0. Values for all other treatment
variables, A1(t), were mapped to 1 except for all time points t that include or follow the first day of a
sequence of 6 consecutive months when the patient had discontinued ART (discontinuation of ART
is defined as being treated with less than three antiretroviral medications). For such time points,
treatment with ART was deemed interrupted and the value for A1(t) was set to 0 for t representing
the interval of τ days when first discontinuation of ART was deemed to occur and was set to NA (i.e.
considered missing) for all subsequent time points. Note that this missing treatment information
could have been recovered but is irrelevant for the estimation of the causal estimand of interest in
this analysis (see section 4.3) and was thus left indeterminate.

– A2(t) is a binary variable that denotes the indicator of right-censoring at or before time t, i.e.
A2(t) = I(C ≤ t). It is entirely defined by both T̃ and ∆:

∗ If ∆ = 0, A2(t) = 0 for all t = 0, . . . , T̃ − 1 and A2(T̃ ) = 1.

∗ If ∆ = 1, A2(t) = 0 for all t = 0, . . . , T̃ .

In section 4, we describe interventions on the action process (A(0), A(1), . . .) which define the causal
estimand whose estimation is the goal of this analysis.

• L(t) is referred to as the covariate at time t. It is the collection of time-independent (e.g. age at study
entry) and/or time-dependent random variables (e.g. CD4 count) other than the action at time t. Such
variables typically represent subject-matter attributes that occur before the action at time t and otherwise
are assumed not to be affected by the actions at time t or thereafter, (A(t), A(t + 1), . . .). In particular,
L(0) is referred to as the baseline covariate and represents the collection of subject-matter attributes (e.g.
age at study entry) which are not affected by any actions (A(0), A(1), . . .).
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In particular, the covariate L(t) contains information on the failure time through the outcome variable
Y (t) = I(T ≤ t − 1) ∈ L(t) which denotes the indicator of failure at or before time t − 1 for t > 0 and
Y (0) ≡ 0 by convention since all patients are cancer free at study entry. Note that failure time T is
not observed if right-censoring, C, occurs first, i.e. the observation for the outcome variable Y (T̃ + 1) is
missing if ∆ = 0. More specifically, we have:

– If ∆ = 0, Y (t) = 0 for t = 0, . . . , T̃ and Y (T̃ + 1) is missing (NA).

– If ∆ = 1, Y (t) = 0 for t = 0, . . . , T̃ and Y (T̃ + 1) = 1.

The outcome variable, Y (T̃+1), is the only covariate relevant at time T̃+1 for this analysis and information
on other attributes at that time is thus ignored, i.e. L(T̃ + 1) ≡ Y (T̃ + 1).

A list and brief descriptions of the subject-matter attributes considered in this analysis are provided in
Table 1. Except for the attribute ’ART’, measurements of all other attributes in this table are represented
by covariates in L(t). Note that all such covariates are discrete since all attributes were measured on a
discrete scale or, for clarity in the description of the approach, they were discretized from measurements
obtained on a continuous scale.

The number of time-independent and time-dependent attributes are denoted by p = 15 and q = 4. The
covariates in L(t) that represent time-independent attributes are denoted by Lj(t) for j = 1, . . . , p such
that j represents an arbitrary order of the time-independent attributes in Table 1. The covariates in
L(t) that represent time-dependent attributes are denoted by Lj(t) for j = p + 1, . . . , p + q such that j
represents an order of the time-dependent attributes in Table 1 where Lp+1(t) and Lp+2(t) represent the
indicator of past failure (i.e. Lp+1(t) ≡ Y (t)) and the CD4 count variable respectively. We thus have:

(Lj(0))j=1,...,p+q ⊂ L(0),

where Lj(0) for j = 1, . . . , p represent the time-independent covariates collected at baseline and Lj(0) for
j = p+ 1, . . . , p+ q represent the time-dependent covariates collected at baseline. Similarly, we have

(Lj(t))j=p+1,...,p+q ⊂ L(t) for t = 1, . . . , T̃ ,

where Lj(t) for j = p+ 1, . . . , p+ q represent the time-dependent covariates collected at time t. Finally,
we have:

L(T̃ + 1) = Lp+1(T̃ + 1) = Y (T̃ + 1).

Table 2 summarizes the link between the measurements of the subject-matter attributes in Table 1 and
the notation adopted above to represent these data with the covariates in L(t) for t = 0, . . . , T̃ + 1. Note
that each measurement of these subject-matter attributes at any given time point t were derived from
daily measurements of these attributes during follow-up for each patient. The following protocol was
devised to map the initial data available on a fine time scale (measured in units of one day) to the data
representation adopted in this analysis based on a coarsened time scale (measured in units of τ days).

To respect the so-called time-ordering assumption which imposes that covariates L(t) be not affected by
actions at time t and thereafter, (A(t), A(t − 1), . . .), the daily data on time-dependent attributes during
follow-up were mapped to an observation of Lj(t) for j ∈ {p+ 1, . . . , p+ q} as follows:

– For all time points t representing intervals [tτ, (t + 1)τ [ that do not contain the day when ART is
deemed to be initiated, Lj(t) represents the last measurement for attribute j available 1) at time
t− 1 (i.e. the last measurement obtained during interval [(t− 1)τ, tτ [) if t > 0 and 2) within the year
preceding study entry if t = 0.

– For the time point t representing the interval [tτ, (t+1)τ [ that contains the day when ART is deemed
to be initiated, Lj(t) represents the last measurement for attribute j available 1) at time t − 1 or
time t but always prior to the actual day when ART was initiated if t > 0 and 2) within the year
preceding study entry or at time point 0 but always prior to the actual day when ART was initiated
if t = 0.
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Once this mapping was implemented, observations for p
′

= 5 time-independent attributes (’race’, ’cen-
susEdu’, ’censusPov’, ’censusInc’, and ’riskHIV’) were left missing. Similarly, observations for q

′

= 2
time-dependent attributes (’CD4’ and ’VL’) were left missing. Such observations were imputed and in-
dicators of imputation (named ’I.censusEdu’, ’I.censusPov’, ’I.censusInc’, ’I.race’, ’I.riskHIV’, ’I.CD4’,
and ’I.VL’ respectively) were created. Each of these indicators are denoted by Lj(t) such that Lj(t) for

j = p+q+1, . . . , p+q+q
′

represent the indicators of imputation for the time-dependent attributes ordered
arbitrarily (’CD4’ and ’VL’) and Lj(t) for j = p+ q+ q

′

+1, . . . , p+ q+ q
′

+ p
′

represent the indicators of
imputation for the time-independent attributes ordered arbitrarily (’race’, ’censusEdu’, ’censusPov’, ’cen-
susInc’, and ’riskHIV’). These covariates are included in the definition of L(t) and the covariate process
is thus defined as

L(0) ≡ (Lj(0))j=1,...,p+q+q
′+p

′ , L(t) ≡ (Lj(t))j=p+1,...,p+q+q
′ for t = 1, . . . , T̃ and L(T̃+1) = Lp+1(T̃+1).

Table 2 summarizes the mapping between the notation adopted above for all covariates in L(t) and the
measurements of the subject-matter attributes these covariates represent.

The following imputation method was used for missing observations of the time-independent (’race’ and
’riskHIV’) and time-dependent (’censusEdu’, ’censusPov’, ’censusInc’, ’CD4’, and ’VL’) covariates at t = 0:

– If the underlying subject-matter attribute was measured on a discrete scale, the missing observations
for the covariate were imputed with the mode of all non-missing observations of the covariate at
t = 0.

– If the underlying subject-matter attribute was measured on a continuous scale, the missing observa-
tions for the covariate were imputed with the average of all non-missing observations of this attribute
at time t = 0 before being recoded on the discrete scale (see Table 1).

In addition, for the covariates ’race’ and ’riskHIV’, the imputation above was implemented conditional on
the covariate ’sex’.

The following forward imputation method was used for missing observations of time-dependent covariates
at any time t > 0: The missing observation for Lj(t) was imputed with the last non-missing and non-
imputed observation of the covariates (Lj(0), . . . , Lj(t − 1)) if available and otherwise with the imputed
observation for Lj(0).

For conciseness, we adopt the following shorthand notation to represent the history of measurements on a
given subject-matter attribute between time point 0 and t: ·̄(t) ≡ (·(0), . . . , ·(t)) and by convention ·̄(t) is nil
for t < 0. Using this notation, the observed data for one patient can be summarized as follows:

O = (T̃ = min(T,C),∆ = I(T ≤ C), L̄(T̃ + 1), Ā(T̃ )).

Tables 3 through 13 and Fig. 1 provide summaries of the distributions of the random variables that compose
this longitudinal process O.
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Table 2: Mapping of the subject-matter attribute measurements into the covariates, L(t), and actions, A(t), of the
observed data process O.

Attribute Variable representation Number of levels

sex L1(0) 2
race L2(0) 4
censusEdu L3(0) 4
censusPov L4(0) 4
censusInc L5(0) 4
riskHIV L6(0) 4
enrollYear L7(0) 12
yearsHIV L8(0) 4
ageAtEntry L9(0) 3
everSmoke L10(0) 2
everAlcohol L11(0) 2
everDrug L12(0) 2
everHepatitisB L13(0) 2
everHepatitisC L14(0) 2
everObese L15(0) 2

Y L16(t) for t = 0, . . . , T̃ + 1 n(t, 16) ≡ 2

CD4 L17(t) for t = 0, . . . , T̃ n(t, 17) ≡ 4

VL L18(t) for t = 0, . . . , T̃ n(t, 18) ≡ 4

clinicalAIDS L19(t) for t = 0, . . . , T̃ n(t, 19) ≡ 2

I.CD4 L20(t) for t = 0, . . . , T̃ n(t, 20) ≡ 2

I.VL L21(t) for t = 0, . . . , T̃ n(t, 21) ≡ 2
I.race L22(0) 2
I.censusEdu L23(0) 2
I.censusPov L24(0) 2
I.censusInc L25(0) 2
I.riskHIV L26(0) 2

ART A1(t) for t = 0, . . . , T̃ 2

Table 3: Distribution (counts and percentages) of the indicator of observed failure (∆).

0 1

6073 177
97.2 2.8

Table 4: Distribution (counts and percentages) of the race covariate in L(0). A missing observation for a female patient
was imputed with ’Black’ and a missing observation for a male patient was imputed with ’White’.

NA Other White Black Hispanic

433 367 3350 1233 867
6.9 5.9 53.6 19.7 13.9
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Table 5: Distribution (counts and percentages) of the riskHIV covariate in L(0). A missing observation for a female
patient was imputed with ’HET’ and a missing observation for a male patient was imputed with ’MSM’.

NA HET IDU MSM OTH

826 1002 493 3849 80
13.2 16 7.9 61.6 1.3

Table 6: Distribution (counts and percentages) of the binary covariates in L(0).

L(0) 0 1

sex 5590 660
89.4 10.6

everSmoke 3553 2697
56.8 43.2

everAlcohol 5361 889
85.8 14.2

everDrug 5227 1023
83.6 16.4

everHepatitisB 6005 245
96.1 3.9

everHepatitisC 5752 498
92 8

everObese 3528 2722
56.4 43.6

clinicalAIDS 5623 1129
83.3 16.7

Table 7: Distribution (counts and percentages) of the ordinal covariates in L(0). The missing observations for censusEdu,
censusPov, and censusInc were imputed with the values 3, 3, and 3 respectively.

L(0) NA 1 2 3 4 5 6 7 8 9 10 11 12

censusEdu 13 1575 1548 1567 1547
0.2 25.2 24.8 25.1 24.8

censusPov 13 1580 1560 1545 1552
0.2 25.3 25 24.7 24.8

censusInc 13 1586 1535 1553 1563
0.2 25.4 24.6 24.8 25

enrollYear 0 1795 571 500 453 430 420 371 365 361 359 352 273
0 28.7 9.1 8 7.2 6.9 6.7 5.9 5.8 5.8 5.7 5.6 4.4

yearsHIV 0 2167 2616 968 499
0 34.7 41.9 15.5 8

ageAtEntry 0 3514 1869 867
0 56.2 29.9 13.9

CD4 0 1902 1303 1301 1744
0 30.4 20.8 20.8 27.9

VL 0 509 944 3627 1170
0 8.1 15.1 58 18.7
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Figure 1: Kaplan-Meier curve associated with time to cancer onset (reminder: t=0 represents the first 180 days of
follow-up and Y (t+ 1) = I(T ≤ t)).

Table 12: Distribution (counts and percentages) of the indicator variable that the patient experienced ART at least

once during follow-up (i.e. I(
PT̃

t=0A1(t) > 0)).

never experienced ART experienced ART

2182.0 4068.0
34.9 65.1

Table 13: Distribution (counts and percentages) of the CD4 levels prior ART initiation for the patients who experienced
ART at least once during follow-up (i.e. Lp+1(min({t : A1(t) = 1}))).

1 2 3 4

1731 1178 659 500
42.6 29 16.2 12.3

3 Likelihood of the data

Following the time ordering of actions and covariates encoded in the directed acyclic graph implied by Fig. 2
(Pearl (2009)), the likelihood of the observed data can be factorized as

P (O) =

T̃+∆
∏

t=0

P (L(t) | L̄(t− 1), Ā(t− 1))

T̃
∏

t=0

P (A(t) | Ā(t− 1), L̄(t)).
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L(t− j) . . . L(t) L(t+ 1)

A(t− j) . . . A(t− 1) A(t)

Figure 2: Template of the directed acyclic graph that encodes the time ordering of all variables of the observed data
process O. The complete graph can be derived by sequentially drawing the nodes and arcs implied by this template for
t = 0, . . . , T̃ and j ≤ t.

Note that the the first product of conditional probabilities ends with the conditional probability of L(T̃ )
given all past actions, Ā(T̃ − 1), and past covariates, L̄(T̃ − 1), when the patient’s data are right-censored, i.e.
∆ = 0, since L(T̃ + 1) ≡ Y (T̃ + 1) is then missing with probability one. Otherwise, the first product ends with
the conditional probability of L(T̃ + 1) given past actions, Ā(T̃ ), and past covariates, L̄(T̃ ) when the patient’s
cancer onset is observed, i.e. ∆ = 1.

The two products of the likelihood above are referred to as the Q part and g part of the likelihood. The
Q part of the likelihood is composed of the product of the conditional probabilities of covariates given past
covariates and actions whereas the g part of the likelihood is composed of the product of the conditional
probabilities of actions given past actions and covariates. The g part of the likelihood is also referred to as
the ’action mechanism’. Following this terminology, the notation for the likelihood of the observed data can be
summarized as

P =

T̃+∆
∏

t=0

QL(t)

T̃
∏

t=0

gA(t), (1)

where the factors P (L(t) | L̄(t− 1), Ā(t− 1)) are denoted by QL(t) and the factors P (A(t) | Ā(t− 1), L̄(t)) are
denoted by gA(t).

At each time point t, the covariate L(t) is composed of a collection of discrete covariates denoted by Lj(t):

L(0) ≡ (Lj(0))j=1,...,p+q+q
′+p

′

L(t) ≡ (Lj(t))j=p+1,...,p+q+q
′ for t = 1, . . . , T̃

L(T̃ + 1) ≡ Lp+1(T̃ + 1),

where, as described in Table 2, for p = 15, q = 4, q
′

= 2, and p
′

= 5:

• j = 1, . . . , p indexes the covariates that represent the time-independent attributes listed in Table 1,

• j = p+ 1, . . . , p+ q indexes the covariates that represent the time-dependent attributes listed in Table 1
such that p+ 1 represents ’Y’ and p+ 2 represents ’CD4’,

• j = p + q + 1, . . . , p + q + q
′

indexes the indicators of imputations for the q
′

time-dependent attributes
that have missing observations,
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• j = p + q + q
′

+ 1, . . . , p + q + q
′

+ p
′

indexes the indicators of imputations for the p
′

time-independent
attributes that have missing observations.

The factors QL(t) of the likelihood for t = 1, . . . , T̃ + ∆ can thus be factorized as

QL(t) =

nT̃ (t)
∏

j=1

QLp+j(t) (2)

where nT̃ (t) ≡ q + q
′

for t = 1, . . . , T̃ , nT̃ (T̃ + 1) ≡ 1, and QLp+j(t) ≡ P (Lp+j(t) | Pa(Lp+j(t))) with
Pa(Lp+j(t)) ≡ (L̄(t− 1), Lp+1(t), . . . , Lp+j−1(t), Ā(t− 1)). Note that the notation above makes implicit use of

the convention that (Lj(t), . . . , Lj
′ (t)) for j

′

< j is nil.
Similarly, at each time point t, the action A(t) is composed of a treatment, A1(t), and an indicator of

right-censoring, A2(t): The factors gĀ(t) of the likelihood can thus be factorized as

gA(t) = gA1(t)gA2(t), (3)

where gA1(t) ≡ P (A1(t) | Ā(t− 1), L̄(t), A2(t)) and gA2(t) ≡ P (A2(t) | Ā(t− 1), L̄(t)).
Based on equations (2) and (3), the likelihood (1) can be further factorized as

P = QL(0)

T̃+∆
∏

t=1

nT̃ (t)
∏

j=1

QLp+j(t)

T̃
∏

t=0

gA1(t)gA2(t). (4)

Since each covariate Lp+j(t) for t = 1, . . . , T̃ + ∆ and j = 1, . . . , nT̃ (t) is discrete with n(t, p+ j) categories
(see Table 2), it can be recoded with n(t, p + j) − 1 binary variables: Lp+j,m(t) ≡ I(Lp+j(t) = m) for m =
1, . . . , n(t, p + j) − 1, i.e. Lp+j(t) = (Lp+j,m(t))m=1,...,n(t,p+j)−1. This recoding of the information in Lp+j(t)
leads to the following factorization

QLp+j(t) =

n(t,p+j)−1
∏

m=1

QLp+j,m(t), (5)

where QLp+j,m(t) represents the conditional probability of Lp+j,m(t) given Pa(Lp+j(t)) and Lp+j,l(t) for l =
1, . . . ,m− 1:

QLp+j,m(t) ≡ P (Lp+j,m(t) | Pa(Lp+j,m(t))) with Pa(Lp+j,m(t)) ≡ (Pa(Lp+j(t)), Lp+j,1(t), . . . , Lp+j,m−1(t)).

Note that this conditional probability is degenerate, i.e. equal to 1 at Lp+j,m(t) = 0, if one of the indicators
Lp+j,l(t) in Pa(Lp+j,m(t)) is 1. Note also that if Lp+j(t) is binary (n(t, p + j) = 2), then Lp+j,1(t) = Lp+j(t)
and QLp+j,1(t) = QLp+j(t). Based on equation (5), the likelihood (4) can be further factorized as

P = QL(0)

T̃+∆
∏

t=1

nT̃ (t)
∏

j=1

n(t,p+j)−1
∏

m=1

QLp+j,m(t)

T̃
∏

t=0

gA1(t)gA2(t). (6)

4 Target parameter as mapping from the distribution of the data

In this section, the causal effect of interest in this analysis is introduced as the effect on a cumulative risk of cancer
onset of so called dynamic interventions on ART. Under an identifiability assumption, it is expressed as a function
of the likelihood of the observed data. This latter estimand is referred to as the target parameter. First, however,
the definition of effects of treatment interventions on a survival outcome is formalized with the counterfactual
statistical framework (Neyman (1990); Robins (1986, 1987)) based on static treatment interventions to introduce
the concepts and notation on which the more complex definition of effects of dynamic treatment interventions
is based.
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4.1 Effect definition based on static interventions

A natural approach for defining causal effects relies on a priori specification of interventions on one treatment or
a sequence of treatments over time. Such treatment interventions are referred to as static interventions since they
may not be modified based on the patients baseline condition nor in response to the patient’s changing condition
over time (that may have resulted from the earlier sequence of treatment interventions), i.e. the sequence of
treatments to be experienced by a patient according to any of these interventions is statically determined by a
treatment decision made at baseline only and independent of the patient’s baseline condition. Although often
implicit, the effects of these treatment interventions on an outcome are formally defined as contrasts between the
distributions of potential outcomes (a.k.a. counterfactual outcomes). A potential outcome refers to the outcome
following a particular treatment intervention. These effect definitions based on static treatment interventions
are illustrated below based on fictitious “ideal experiments” to investigate the effects on cancer onset of static
interventions on ART use over one or more time intervals.

The following two-step experiment is conceptualized for each patient in the cohort to investigate the effect
of ART use during time interval t = 0 on the risk of cancer onset before time interval t = 1:

• Implement the following ART intervention denoted by a1(0) = 0: Treatment with ART is withheld from
the patient during time interval t = 0. The patient’s indicator of failure (i.e. cancer onset) before time
interval t = 1, denoted by I(T ≤ 0), is recorded. This potential outcome is denoted by Ya1(0)=0(1) where
the subscript represents the intervention that led to this outcome.

• Next, go back in time to t = 0 (so that the experimental conditions at baseline are identical) and proceed
with the following ART intervention denoted by a1(0) = 1: Treatment with ART is imposed on the
patient. The patient’s indicator of failure at time interval t = 1, denoted by I(T ≤ 0), is recorded. This
new potential outcome is now denoted by Ya1(0)=1(1).

This conceptual experiment is ideal in the sense that it permits the direct estimation of the following contrast
between the distributions of the two intervention-specific outcomes described above:

P (Ya1(0)=1(1) = 1) − P (Ya1(0)=0(1) = 1).

By definition of the potential outcomes, this contrast is interpretable causally as representing the average effect
of ART use during time interval t = 0 on the risk of failure before time interval t = 1.

This experiment can be extended to investigate the average effects of ART use during two time intervals
t = 0 and t = 1 on the cumulative risks of failure before both time intervals t = 1 and t = 2:

• Implement the following ART intervention denoted by (a1(0), a1(1)) = (0, 0): Treatment with ART is
withheld from the patient during time intervals t = 0 and t = 1 and the resulting indicators of failure
before time intervals t = 1 and t = 2 are recorded and denoted by Ya1(0)=0(1) and Y(a1(0),a1(1))=(0,0)(2).

• Go back in time to t = 0 and proceed with the following ART intervention denoted by (a1(0), a1(1)) =
(0, 1): Treatment with ART is withheld from the patient during time interval t = 0 and then imposed
during time interval t = 1. The outcome at time interval t = 1 corresponds with the outcome Ya1(0)=0(1)
previously recorded. The outcome at time interval t = 2, denoted by Y(a1(0),a1(1))=(0,1)(2), is recorded.

• Go back in time to t = 0 and proceed with the following ART intervention denoted by (a1(0), a1(1)) =
(1, 0): Treatment with ART is imposed on the patient during time interval t = 0 and then withheld
during time interval t = 1. The outcomes at time intervals t = 1 and t = 2 are recorded and denoted by
Ya1(0)=1(1) and Y(a1(0),a1(1))=(1,0)(2).

• Go back in time to t = 0 and proceed with the following ART intervention denoted by (a1(0), a1(1)) =
(1, 1): Treatment with ART is imposed on the patient during both time intervals t = 0 and t = 1.
The outcome at time interval t = 1 corresponds with the outcome Ya1(0)=1(1) previously recorded. The
outcome at time interval t = 2, denoted by Y(a1(0),a1(1))=(1,1)(2), is recorded.
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With the data from the experiment above, the following causal parameters can be directly estimated and
represent the average effects of ART use during two time intervals on the cumulative risks of failure before time
intervals t = 1 and t = 2:

P (Ya1(0)=1(1) = 1) − P (Ya1(0)=0(1) = 1) (7)

P (Y(a1(0),a1(1))=(1,1)(2) = 1) − P (Y(a1(0),a1(1))=(0,0)(2) = 1) (8)

P (Y(a1(0),a1(1))=(1,1)(2) = 1) − P (Y(a1(0),a1(1))=(0,1)(2) = 1) (9)

P (Y(a1(0),a1(1))=(1,1)(2) = 1) − P (Y(a1(0),a1(1))=(1,0)(2) = 1) (10)

P (Y(a1(0),a1(1))=(0,0)(2) = 1) − P (Y(a1(0),a1(1))=(0,1)(2) = 1) (11)

P (Y(a1(0),a1(1))=(0,0)(2) = 1) − P (Y(a1(0),a1(1))=(1,0)(2) = 1) (12)

P (Y(a1(0),a1(1))=(0,1)(2) = 1) − P (Y(a1(0),a1(1))=(1,0)(2) = 1) (13)

Note that all such contrasts are functions of the probabilities P (Yā1(t)(t + 1)) for t = 0 and t = 1. In the
description above, the indicators of failure are assumed to always be observed at any time of the experiment,
i.e. right-censoring is always prevented. This is conceptualized by an intervention on the right-censoring
process, ā2(t), along with the interventions on ART use, ā1(t), for t = 0 and t = 1. The effects of ART use
on the cumulative risks of failure over time is thus formally defined by contrasts between the probabilities
P (Yā(t)(t + 1)) for different joint interventions on both use of ART and occurrence of a right-censoring event
denoted by ā(t) = (ā1(t), ā2(t)) such that ā2(t) = 0 for t = 0 and t = 1.

Further extension over time of the conceptual experiment above permits the definition of the effects of
interventions on ART use during more than two time intervals on the cumulative risks of failure over time
denoted by P (Yā1(t)(t+1)) for t = 0, . . . ,K whereK denotes a fixed, arbitrary follow-up time. To further extend
this experiment, data on all other attributes represented by the covariates L(t) in the real life experiment (see
Table 1) can be collected through time K, in addition to the outcome attribute (indicator of failure). Similar
to the outcome attribute, these attributes are represented by a multi-dimensional potential covariate at each
time interval t ≤ K denoted by Lā(K)(t). Time ordering of action and covariate measurements in the ideal
experiment implies the equality Lā(K)(t) = Lā(t−1)(t). Note that the potential covariate at any time interval
t, Lā(t−1)(t), includes the potential outcome Yā(t−1)(t): Yā(t−1)(t) ∈ Lā(t−1)(t). Under any action interventions
ā(K) in this conceptual experiment, failure may occur during follow-up. Such potential failure times are denoted
by Tā1(K) ≤ K and defined by (Ȳā(K)(Tā1(K)) = 0, Yā(K)(Tā1(K)+1) = 1, . . . , Yā(K)(K+1) = 1). By convention,
if failure does not occur during follow-up under action intervention ā(K), i.e. Ȳā(K)(K + 1) = 0, the potential
failure time Tā1(K) is defined as ∞ and, otherwise, the remainder of the potential covariate process after failure
time Tā1(K) occurs is defined by the degenerate variables:

Lā(t−1)(t) = Yā(K)(Tā1(K) + 1), where P (Lā(t−1)(t) = 1) = 1 for t = Tā1(K) + 2, . . . ,K + 1.

The collection of all potential covariates collected over time during this extended ideal experiment are referred
to as the full data and denoted by X :

X ≡ (L̄ā(K)(K + 1))ā(K)∈A(K) ∼ FX ,

where A(K) represents the collection of ART and right-censoring interventions of interest: A(K) ≡ {ā(K) =
(ā1(K), ā2(K)) : ā2(K) = 0}, and FX represents the distribution of the full data process X .

As illustrated above with the causal contrasts (7) through (13), causal effects of interventions on ART use
through time K on time to cancer onset are formally defined as a function of the distribution of these full data.
In particular, they can be defined by the collection of contrasts between cumulative risks of failure

P (Yā(t)(t+ 1) = 1) − P (Yā
′ (t)(t+ 1) = 1) = P (Tā1(t) ≤ t) − P (T

ā
′

1(t)
≤ t) (14)

for t = 0, . . . ,K and any two different action interventions ā(K) ∈ A(K) and ā
′

(K) ∈ A(K). Thus, causal
parameters can be denoted by Ψ(FX) and in particular the causal parameter in this analysis defined in the next
subsections. Unlike the causal contrasts (14) which are defined based on so-called static interventions on the
action process, the causal parameter of interest in this analysis is defined based on dynamic interventions on
the action process as described below.
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4.2 Effect definition based on dynamic interventions

In the previous subsection, causal effects were defined by contrasting the distribution of potential outcomes
following treatment interventions a priori specified (i.e. independently of the patient’s condition). Clinical
practice, however, involves treatment decisions which are continuously adjusted to the patient’s evolving medical
history (e.g. response to previously experienced treatments) and are not set a priori at baseline. Thus, it
may often be less clinically relevant to compare the health effect of static treatment interventions than to
compare the effectiveness of competing medical guidelines, i.e. adaptive treatment strategies which map the
patient’s unfolding medical history to subsequent treatment decisions. Following such treatment strategies
leads to treatment interventions over time which are referred to as dynamic interventions since the treatment
experienced by each patient at any point in time is not set a priori at baseline but is rather adjusted based on
the patient’s current circumstances.

The effect of interest in this study (see section 1) is an example of a causal effect defined by dynamic
treatment interventions. Specifically, our aim is to evaluate the comparative effectiveness between two ART
initiation strategies guided by the patient’s evolving CD4 count. These adaptive treatment strategies are
referred to as individualized action rules. The individualized action rules of interest are each indexed by a
CD4 count threshold, denoted by θ ∈ Θ where Θ = {200, 350}, and are each defined as a vector function
dθ = (dθ(0), . . . , dθ(K)) where each function, dθ(t) for t = 0, . . . ,K, is a decision rule for determining the action
(treatment and right-censoring) to be experienced by a patient during time interval t. A decision rule dθ(t)
maps the action and covariate history measured up to a given time interval t to an action regimen (i.e. an
intervention) during time interval t: dθ(t) : (L̄(t), Ā(t − 1)) 7→ (a1(t), a2(t)). In this analysis, the decision rules
of interest are defined such that dθ(t)((L̄(t), Ā(t− 1)) is:

• (a1(t), a2(t)) = (0, 0) (i.e. no ART use and no right-censoring) if and only if the patient was not previously
treated with ART (i.e. Ā(t− 1) = 0) and the previous CD4 count measurement was greater than or equal
to the threshold θ (i.e. Lp+1(t) ≥ θ).

• (a1(t), a2(t)) = (1, 0) (i.e. ART use and no right-censoring) otherwise.

The individualized action rules, dθ for θ ∈ Θ, implied by the time-specific decision rules above, dθ(t) for
t = 0, . . . ,K, are monotone in the sense that if a patient follows one of these rules, dθ, then s/he is not treated
with ART until his/her CD4 count falls below the threshold θ for the first time and from then on the patient
remains treated with ART.

The potential covariate process that could be observed on a patient in an ideal experiment where interventions
on the action process according to a decision rule dθ are carried out through time K is denoted by L̄dθ

(K + 1)
respectively. This process corresponds with one of the potential covariate processes in the full data: L̄dθ

(K+1) =
L̄ā(K)(K+1) such that the action regimen ā(K) = (ā1(K), ā2(K)) corresponds to interventions according to the
individualized action rule dθ, i.e. a(0) = dθ(0)(L(0)), a(1) = dθ(1)(L̄(1), a(0)), . . ., a(K) = dθ(K)(L̄(K), ā(K −
1)) (in particular: a2(t) = 0 for all t = 0, . . . ,K). Note that such dynamic treatment interventions through
time K according to the adaptive treatment strategy dθ, i.e. ā(K) above, are only functions of the observed
covariate process L̄(K) and are thus denoted by dθ(L̄(K)). Similar to the case of static interventions, failure
may occur during follow-up under any such dynamic treatment intervention, dθ(L̄(K)). Such potential failure
times are denoted by Tdθ

≤ K and defined by (Ȳdθ
(Tdθ

) = 0, Ydθ
(Tdθ

+ 1) = 1, . . . , Ydθ
(K + 1) = 1).

As with static ART interventions, causal effects of adaptive ART strategies on time to cancer onset are
formally defined as a function of the distribution of the full data process X . In particular, they can be defined
by the collection of contrasts between cumulative risks of failure

P (Ydθ
(t+ 1) = 1) − P (Yd

θ
′
(t+ 1) = 1) = P (Tdθ

≤ t) − P (Td
θ
′
≤ t)

for t = 0, . . . ,K and any two different individualized action rules dθ with θ ∈ Θ and dθ
′ with θ

′ ∈ Θ.

4.3 Target parameter

For our research question, the comparative effectiveness between the two adaptive ART strategies indexed by
the CD4 thresholds 200 and 350 is of interest. Fig. 3 represents the percentages of patients following the
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corresponding two individualized action rules over time denoted by d200 and d350.
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Figure 3: Percentages of patients following each of the two individualized action rules of interest indexed by a CD4
count threshold of 200 and 350 cells per µl (reminder: t = 0 represents the first 180 days of follow-up).

The empirical distribution of observed events described in Table 9 indicates that two thirds of the observed
cancer onsets occurred in the first four time points of follow-up. Thus, to ease the computing time required
for implementation of the targeted maximum likelihood estimation procedure while illustrating the computing
steps involved without loss of generality, we restrict the focus of this analysis to the evaluation of a single causal
contrast between the cumulative risks of failure within two years from study entry under the individualized
action rules d350 and d200:

ψ = P (Td350 ≤ 3) − P (Td200 ≤ 3)

= P (Yd350(K + 1) = 1) − P (Yd200(K + 1) = 1), (15)

where K = 3. Note that this parameter is a function of the full data distribution as is made explicit with the
notation ψ = Ψ(FX).

Under the sequential randomization assumption (SRA) (Robins (1986))

Yā(K)(K + 1) ⊥ A(t) | L̄(t), Ā(t− 1) for all ā(K) ∈ A(K) and t = 0, . . . ,K, (16)

the marginal distribution of the counterfactual process (Tdθ
= t, L̄dθ

(t + 1)) with t ≤ K from the full data is
equal to the Q part of the observed data likelihood (6) where 1) Tdθ

plays the role of the follow-up time T̃ , 2) ∆
is set to 1, and 3) the action values are set according to the decision rule dθ in any of the conditioning events,
i.e.

P (Tdθ
= t, L̄dθ

(t+ 1)) = QL(0)

t+1
∏

t
′=1

nt(t
′

)
∏

j=1

n(t
′

,p+j)−1
∏

m=1

QLp+j,m(t′)|Padθ
(Lp+j,m(t′)), (17)

where the conditional probabilities QLp+j,m(t′ )|Padθ
(Lp+j,m(t′ )) are the conditional probabilities QLp+j,m(t′) de-

fined in section 3 where the action values are set according to the decision rule dθ in the conditioning events
and where the outcome values are set to lp+1(t

′

) = 0 for t
′

= 1, . . . , t and lp+1(t
′

) = 1 for t
′

= t + 1.
Equality (17) is referred to as the G-computation formula (Murphy et al. (2001); Robins (1986)). Recall that
the covariate Lp+1,dθ

(t) of Ldθ
(t) corresponds with the outcome variable also denoted by Ydθ

(t) and that
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P (Tdθ
= t) = P (Ȳdθ

(t) = 0, Ydθ
(t + 1) = 1). By integrating out covariates from the right-hand side of the

G-computation formula (17), the distribution of the counterfactual failure times, P (Tdθ
= t), can be derived as

a function of the Q part of the observed data likelihood:

P (Ȳdθ
(t) = 0, Ydθ

(t+ 1) = 1) =
∑

l(0), lp+j,m(t′),j 6=1,t
′ 6=t+1

Ql(0)

t+1
∏

t
′=1

nt(t
′

)
∏

j=1

n(t
′

,p+j)−1
∏

m=1

Qlp+j,m(t′ )|Padθ
(lp+j,m(t′)), (18)

where Ql(0) is the probability QL(0) at L(0) = l(0) for a given value l(0) and Qlp+j,m(t′ )|Padθ
(lp+j,m(t′ )) are the

conditional probabilities QLp+j,m(t′ )|Padθ
(Lp+j,m(t′ )) at 1) Lp+j,m(t

′

) = lp+j,m(t
′

) for t
′ 6= t + 1 and j 6= 1 for

given values lp+j,m(t
′

), and at 2) L(0) = l(0). We denote the right-hand side of equality (18) with Φ(Q, t, θ).

Using that P (Ydθ
(t+ 1) = 1) =

∑t
t
′=0 P (Ȳdθ

(t
′

) = 0, Ydθ
(t

′

+ 1) = 1) and equality (18), the causal estimand ψ
defined by (15) can be expressed as a function of the Q part of the observed data likelihood under the SRA:

ψ =

K
∑

t=0

Φ(Q, t, 350)−
K

∑

t=0

Φ(Q, t, 200) (19)

The parameter ψ as defined by equality (19) is the target parameter in this analysis: It is a mapping from
the Q part of the likelihood of the observed data into a one-dimensional euclidean parameter as made explicit
by the notation ψ = Ψ(Q). We denote its true value with ψ0 = Ψ(Q0) where Q0 denotes the Q part of the
true likelihood of the observed data denoted by P0. Note that under the SRA, the target parameter can be
interpreted causally since it then corresponds to the causal parameter ψ = Ψ(FX) from equality (15). The
validity of the SRA in this analysis is discussed in section 5.4.

5 Targeted maximum likelihood estimation procedure

In this section, we develop an “inverse probability of action weighted-reduced data-targeted minimum loss-based
estimator” (IPAW-R-TMLE) for estimation of the previously defined target parameter ψ (van der Laan (2008)).
Implementation of this IPAW-R-TMLE is illustrated with data from the KPNC electronic medical record.
Section 5.1 provides a formal presentation of the IPAW-R-TMLE. Section 5.2 describes the R-TMLE which
provides the basis for implementation of the IPAW-R-TMLE in this analysis. Finally, section 5.3 describes the
implementation of the IPAW-R-TMLE and the corresponding results for the estimation of the target parameter
ψ.

5.1 Definition and property of the IPAW-R-TMLE

A targeted minimum loss-based estimator (TMLE) of a target parameter ψ0 = Ψ(Q0) is characterized by two
ingredients: a choice of loss function for Q0, and a parametric fluctuation working model to fluctuate Q. These
two choices combined determine the estimating function D(Q, η) ≡ d

dǫ
L(Qη(ǫ))

∣

∣

ǫ=0
whose estimating equation

PnD(Q∗
n, ηn) = 0 will be solved by the resulting (iterative) TMLE Q∗

n. If D is the efficient influence curve,
then this TMLE is an efficient TMLE. The efficient TMLE, based on (e.g.) the log-likelihood loss function
L(Q) and efficient influence curve estimating function D∗(), can be quite involved for complex longitudinal
data structures with time-dependent covariates, since Q0 may be a very high-dimensional function. Therefore,
it is of interest to also provide TMLE for which Q0 is chosen to be of lower dimension, at cost of having to
work with a loss function Lη0(Q) that is indexed by an unknown nuisance parameter, and fluctuation model
that generates an inefficient estimating function D(). For that purpose van der Laan (2008) proposed a general
class of so called inverse probability of censoring weighted-reduced data-TMLE (IPCW-R-TMLE), which only
requires computation of the efficient TMLE for a user supplied reduced (simplified) data structure, but weights
the loss function in this procedure with inverse probability of censoring weights.

Let O = (L(0), A(0), . . . , L(K), A(K), L(K+1)) ∼ P0. Assume a non-parametric structural equation model
(NPSEM): A(t) = fA(t)(Pa(A(t)), UA(t)), t = 1, . . . ,K, L(t) = fL(t)(Pa(L(t)), UL(t)), t = 1 . . . ,K + 1, where
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Pa(A(t)) = (Ā(t − 1), L̄(t)), and Pa(L(t)) = (Ā(t − 1), L̄(t − 1)). Here A(t) denote the intervention nodes
which can include both treatment and censoring actions and we may then refer to the IPCW-R-TMLE by
IPAW-R-TMLE as is done in this article to make the dual nature of the intervention nodes explicit. This
NPSEM allows us to define counterfactuals La or Ld indexed by static interventions a or dynamic treatments
d, respectively. We assume the sequential randomization assumption on the error nodes U in the NPSEM, so
that the G-computation formula provides us with the identifiability of any parameter of the distribution of a
counterfactual Ld for a given rule d, possibly a static rule.

Specifically, under this SRA, the probability distribution of the observed data random variable O = (A,L =
LA) factorizes into a factor Q0 implied by the full data distribution of the counterfactuals X = (La : a) and a

factor g0(· | X) =
∏K

t=0 g0A(t)(A(t) | Pa(A(t))) that corresponds with the conditional distribution of A, given
X :

PQ0,g0(O) =

K+1
∏

t=0

Q0L(0)(L(t) | Pa(L(t))

K
∏

t=0

g0A(t)(A(t) | Pa(A(t)))

Note that for clarity, we used the notation A for Ā(K) and a for ā(K) above. By the SRA which implies
coarsening at random (see section 1.2.3 of van der Laan and Robins (2003)), we have Q0L(t)(l(t) | l̄(t− 1), ā(t−
1)) = P (La(t) = l(t) | L̄a(t − 1) = l̄(t − 1)) so that indeed Q0 represents the identifiable part of the full data
distribution of the counterfactuals X .

A statistical model M for P0 can be represented as all probability distributions PQ,g with Q ∈ Q and g ∈ G
for some specified models Q and SRA-model G for Q0 and g0, respectively. Given a parameter Ψ : Q → R

d,
our goal is to estimate Ψ(Q0).

The basic idea of IPCW-R-TMLE is now the following. Our target parameter can also be written as a
function of the distribution of a reduction Lr

a of the counterfactual La, obtained by removing a number of the
time-dependent components of La(t). Thus, we can write our parameter as Ψ(Q0) = Ψr(Qr

0), where Qr
0(a, l

r)
represents the distribution of Lr

a: Q
r
0Lr(t)(l

r(t) | l̄r(t − 1), ā(t − 1)) = P (Lr
a(t) = lr(t) | L̄r

a(t − 1) = l̄(t − 1)).
Now, we note that the inverse-weighted log-likelihood loss function, for any marginal probability distribution
gr of A, Lg0(Q

r) ≡ −gr/g0 logQr, is a valid loss function for Qr
0, since

Qr → P0 logQrgr/g0 = PQ0,gr logQr = PQr
0,gr logQr,

is maximized at Qr
0. To see this, we use the representation O = (A,LA) and that Q0(a, l) = P0(La = l) so that:

EQ0,gr logQr(A,Lr
A) = EQr

0

∑

a

logQr(a, Lr
a)gr(a),

which is indeed maximized at Qr
0. In addition, the inverse probability weighted reduced data efficient influence

curve, D(Qr, gr, g0) ≡ D∗r(Qr, gr)gr/g0, is a targeted estimating function for the target parameter Ψr(Qr
0),

which has good robustness properties. We can now apply this TMLE as described in the next subsections with
this inverse weighted log likelihood loss function, a fluctuation working model {Qr

gr(ǫ) : ǫ} with score at ǫ = 0
equal to the reduced data efficient influence curve Dr∗(Qr, gr).

We go beyond this choice of IPCW-log-likelihood loss function since it is more efficient to inverse weight the
factors Q0Lr(t) of Qr

0 separately with more stable weights gr(Ā(t − 1) | Xr)/g0(Ā(t − 1) | X). This results in
the IPCW-log-likelihood loss function

Lgr,g0(Q
r) ≡

∑

t

− logQr
Lr(t)

gr(Ā(t− 1) | Xr)

g0(Ā(t− 1) | X)
,

which defines the IPAW-R-TMLE we implemented in this article.
From a practical implementation point of view, this just means that we apply the TMLE (referred to as R-

TMLE) for the reduced data structure presented in the next subsection, but assign weights to observations and
time-points at each step of the estimation procedure as described in subsection 5.3: Thus, the initial estimator,
and the fitting of ǫ involve now weighted regressions.
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5.2 R-TMLE implementation and results

In this analysis, the R-TMLE is implemented for the data structure described in section 2 where all measure-
ments of the time-dependent covariates corresponding to viral load (’VL’) and past clinical AIDS-defining events
(’clinicalAIDS’) are ignored after baseline, i.e. where the covariates Lp+j(t) for j = 3, . . . , q+q

′

and t > 0 in the
observed data O are treated as nil (see Table 2). In other words, the R-TMLE described below corresponds with
the TMLE applied to the simplified data where the only time-dependent covariates considered after baseline
represent outcome and CD4 count measurements. Below, we describe the steps involved in the implementation
of this R-TMLE starting with the presentation of the IPAW estimating function which provides the basis for
the derivation of the efficient influence curve and the clever covariates associated with this R-TMLE. In an
abuse of notation, the R-TMLE implementation is described using the same notation for the reduced data as
the one previously adopted to represent the original data. Thus, all references to the covariates Lp+j(t) for

j = 3, . . . , q + q
′

and t > 0 in the notation below should be ignored (i.e. these variables are considered nil in
this subsection) since they are not part of the reduced data.

5.2.1 IPAW estimating function

An inverse probability of action weighted (IPAW) estimating function (van der Laan and Robins (2003); Tsiatis
(2006)) for the target parameter ψ is defined as

DIPAW(g, ψ) ≡ I
(

Ā(Ť ) = d350(L̄(Ť ))
)

∏Ť
t=0 gA1(t)gA2(t)

Y (Ť + 1) − I
(

Ā(Ť ) = d200(L̄(Ť ))
)

∏Ť
t=0 gA1(t)gA2(t)

Y (Ť + 1) − ψ (20)

where Ť is defined as the minimum between the follow-up time, T̃ , and K = 3, i.e. Ť = min(K, T̃ ). Recall that
the outcome variable Y (t + 1) is also denoted by Lp+1(t + 1) and Lp+1,1(t + 1) (see section 3). We use these
three representations for the same variable interchangeably in the next subsections.

5.2.2 Efficient influence curve and clever covariate

As described in section 3.2 of van der Laan (2010), the IPAW estimating function can be mapped into the
efficient1 influence curve for ψ, denoted by D∗(Q, g, ψ), by projecting it onto the tangent space of Q:

D∗(Q, g, ψ) = Π
(

DIPAW | TQ

)

,

where DIPAW is short-hand notation for DIPAW(g, ψ) (see definition (20)). Theorem 2 in van der Laan (2010)
applied to the factorization (6) of the likelihood of the reduced, observed data leads to the following result:

Π
(

DIPAW | TQ

)

= Π
(

DIPAW | TL(0)

)

+

T̃
∑

t=1

2
∑

j=1

n(t,p+j)−1
∑

m=1

Π
(

DIPAW | TLp+j,m(t)

)

+ ∆Π
(

DIPAW | TLp+1,1(T̃+1)

)

,

where Π
(

DIPAW | TL(0)

)

= E(DIPAW | L(0)) and Π
(

DIPAW | TLp+j,m(t)

)

= H∗
Lp+j,m(t)

(

Lp+j,m(t)−QLp+j,m(t)(1)
)

for t = 1, . . . , T̃ , j = 1, 2 and m = 1, . . . , n(t, p+ j)−1 or (t, j,m) = (T̃ +1, 1, 1), with QLp+j,m(t)(1) representing
the conditional probability of Lp+j,m(t) defined in section 3 and evaluated at Lp+j,m(t) = 1, and

H∗
Lp+j,m(t) = E

(

DIPAW | Lp+j,m(t) = 1, Pa(Lp+j,m(t))
)

− E
(

DIPAW | Lp+j,m(t) = 0, Pa(Lp+j,m(t))
)

. (21)

Note that the ψ component of DIPAW is a constant that appears in both expectations defining H∗
Lp+j,m(t).

Equality (21) thus reduces to

H∗
Lp+j,m(t) = E

(

D
′

IPAW | Lp+j,m(t) = 1, Pa(Lp+j,m(t))
)

− E
(

D
′

IPAW | Lp+j,m(t) = 0, Pa(Lp+j,m(t))
)

(22)

1relative to the reduced data
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with

D
′

IPAW(g) =
I
(

Ā(Ť ) = d350(L̄(Ť ))
)

∏Ť
t=0 gA1(t)gA2(t)

Y (Ť + 1) − I
(

Ā(Ť ) = d200(L̄(Ť ))
)

∏Ť
t=0 gA1(t)gA2(t)

Y (Ť + 1).

Note that D
′

IPAW(g) is only a function of the observed data collected up to Ť + 1 which excludes Lp+j,m(t) for

t > Ť + 1. As a result, the equality (22) for t > Ť + 1 reduces to H∗
Lp+j,m(t) = 0. Note also that D

′

IPAW(g) can

be represented as D
′

IPAW(O | g) = D1(Ā(Ť ),L̄(Ť+1))
Q

Ť
t=0 gA1(t)gA2(t)

with D1(Ā(Ť ), L̄(Ť + 1)) defined as

(

I
(

Ā(Ť ) = d350(L̄(Ť ))
)

− I
(

Ā(Ť ) = d200(L̄(Ť ))
)

)

Y (Ť + 1).

From theorem 2 in van der Laan (2010), equality (22) can thus be rewritten as

H∗
Lp+j,m(t) =

1
∏t−1

t
′=0

gA1(t
′ )gA2(t

′)

×
(

EQ

(

∑

ā(t,K)

D1 | Lp+j,m(t) = 1, Pa(Lp+j,m(t))
)

− EQ

(

∑

ā(t,K)

D1 | Lp+j,m(t) = 0, Pa(Lp+j,m(t))
)

)

, (23)

where 1) D1 is short-hand notation for D1(Ā(t−1), ā(t, Ť ), L̄(Ť +1)) and 2) ā(t, t
′

) = (a(t), . . . , a(t
′

)) for t
′ ≥ t

and nil otherwise. In addition, note that the second expectation in (23) is 0 when j = 1 and t = K + 1. We
thus have

H∗
Lp+1,1(K+1) =

I
(

Ā(Ť ) = d350(L̄(Ť ))
)

− I
(

Ā(Ť ) = d200(L̄(Ť ))
)

∏K
t
′=0 gA1(t

′)gA2(t
′ )

.

Finally, note that both expectations in (23) are equal when j = 2 and t = K+1. We thus have: H∗
Lp+2,m(K+1) =

0.
From all the results above, the efficient2 influence curve for ψ, D∗(Q, g, ψ) is defined as

Π
(

DIPAW | TL(0)

)

+

Ť
∑

t=1

2
∑

j=1

n(t,p+j)−1
∑

m=1

Π
(

DIPAW | TLp+j,m(t)

)

+ ∆I(T̃≤K)Π
(

DIPAW | TLp+1,1(Ť+1)

)

, (24)

with I(T̃ ≤ K) representing the indicator that the follow-up time T̃ is lower than or equal to K,

Π
(

DIPAW | TL(0)

)

= E(DIPAW | L(0)),

Π
(

DIPAW | TLp+j,m(t)

)

= H∗
Lp+j,m(t)

(

Lp+j,m(t) −QLp+j,m(t)(1)
)

, where

for t = 1, 2, 3

H∗
Lp+j,m(t) =

1
∏t−1

t
′=0

gA1(t
′ )gA2(t

′)

×
(

EQ

(

∑

ā(t,K)

D1 | Lp+j,m(t) = 1, Pa(Lp+j,m(t))
)

− EQ

(

∑

ā(t,K)

D1 | Lp+j,m(t) = 0, Pa(Lp+j,m(t))
)

)

, (25)

and

H∗
Lp+1,1(K+1) =

I
(

Ā(K) = d350(L̄(K))
)

− I
(

Ā(K) = d200(L̄(K))
)

∏K
t
′=0 gA1(t

′)gA2(t
′ )

. (26)

The variables H∗
Lp+1,1(t)

and H∗
Lp+2,m(t) are the clever covariates that are used for updating the initial

estimators of QLp+1,1(t) and QLp+2,m(t), respectively, during the implementation of the R-TMLE of the target
parameter ψ.

2relative to the reduced data
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5.2.3 Obtain Q0
n, an initial estimate of Q0

The efficient influence curve defined by equality (24) is a function of only a subset of the Q components
of the reduced, observed data likelihood3. Specifically, the following 14 components of Q are relevant for
implementation of the R-TMLE of the target parameter ψ and thus needed to be estimated:

• QL(0) ≡ P (L(0)).

• QLp+1,1(t) ≡ P (Y (t) | L̄(t− 1), Ā(t− 1)) for t = 1, 2, 3, 4 (only relevant at Ȳ (t− 1) = 0, Ā2(t− 1) = 0 and
non-missing4 Ā1(t− 1)).

• QLp+2,m(t) ≡ P (I(Lp+2(t) = m) | L̄(t − 1), Y (t), Ā(t − 1), I(Lp+2(t) = 1), . . . , I(Lp+2(t) = m − 1)) for
t = 1, 2, 3 and m = 1, 2, 3 (only relevant at Ȳ (t) = 0, Ā2(t − 1) = 0 and non-missing Ā1(t − 1) and only
unknown at I(Lp+2(t) = 1) = 0, . . . , I(Lp+2(t) = m− 1) = 0).

Thus, estimation of the target parameter ψ0 = Ψ(Q0) with the R-TMLE relies on initial estimation of the
corresponding 14 Q0 components of the true reduced data generating distribution, P0. The initial estimate of
Q0,L(0) is denoted by Q0

0,L(0),n. It was defined based on non-parametric estimation of Q0,L(0) with the empirical

distribution of L(0). The initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) are denoted by Q0
0,Lp+1,1(t),n

and

Q0
0,Lp+2,m(t),n respectively. They were defined based on sieve estimation of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) with the

DSA algorithm from Sinisi and van der Laan (2004) as described below.
The initial estimate of Q0,Lp+1,1(1) (at A2(0) = 0 and non-missing A1(0)) was obtained separately. Ten

classes of candidate estimators were considered and indexed by the size of working models ranging from 1 to
10. Candidate estimators in the class indexed by a model size s were defined by main-term, working, logistic
models composed of s terms each. Table 14 lists the variables that were considered as potential main terms
in these working models. Both deletion and substitution moves were enabled as part of the DSA algorithm
(Neugebauer and Bullard (2010)). Estimator selection was based on cross-validation with Z random 5-fold
splits of the learning set. It was repeated 10 times with Z = 10. If the same estimator was selected at least 8
times, then it was considered the initial estimator of Q0,Lp+1,1(1). Otherwise, the procedure was repeated with
a larger value for Z ≤ 30 until the initial estimator was defined. If the initial estimator remained undefined
according to the rule above at Z = 30, the estimator selected with the highest frequency was then considered
the initial estimator.

The DSA approach described above was implemented to obtain the remaining 12 estimates based on the
following three data pooling schemes:

• The initial estimates of Q0,Lp+1,1(t) for t = 2, 3, 4 (at Ȳ (t − 1) = 0, Ā2(t − 1) = 0 and non-missing
Ā1(t− 1)) were obtained simultaneously through a unique, DSA-selected, pooled estimator over the three
time intervals, t.

• The initial estimates of Q0,Lp+2,m(1) for m = 1, 2, 3 (at Y (1) = 0, A2(0) = 0, non-missing A1(0), and
I(Lp+2(t) = 1) = 0, . . . , I(Lp+2(t) = m − 1) = 0) were obtained simultaneously through a unique, DSA-
selected, pooled estimator over the three CD4 count levels, m.

• The initial estimates of Q0,Lp+2,m(t) for t = 2, 3 and m = 1, 2, 3 (at Ȳ (t) = 0, Ā2(t− 1) = 0, non-missing
Ā1(t− 1), and I(Lp+2(t) = 1) = 0, . . . , I(Lp+2(t) = m− 1) = 0) were obtained simultaneously through a
unique, DSA-selected, pooled estimator over the two time intervals, t, and the three CD4 count levels, m.

Table 14 lists the variables of the reduced data that were considered as potential main terms in the working,
logistic models involved in each of the four estimator selection procedures described above. With the exception
of the variables ’enrollyear’ and ’m’, each categorical variable X in Table 14 with l > 2 levels was not directly
considered as a potential main term. Instead, l binary variables that each represents the indicator that X is
equal to m (denoted by I(X = m)) for m = 1, . . . , l were considered as potential main terms. The variable ’t’
was not only treated as a categorical variable but was also considered directly as a potential main term.

3See equality (6) tailored to the reduced data structure.
4Recall that treatment is coded as missing after first ART discontinuation (see section 2).
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The initial estimates resulting from the application of the four estimator selection procedures described
above are summarized in Tables 15 through 18.

Table 14: Variables considered as potential main terms in the working, logistic models involved in the estimator selection
for Q0,Lp+1,1(1), Q0,Lp+1,1(t) for t = 2, 3, 4, Q0,Lp+2,m(1) for m = 1, 2, 3, and Q0,Lp+2,m(t) for t = 2, 3 and m = 1, 2, 3. The
notation I(·) denotes the indicator that statement · is true.

Variable Shorthand Q0,Lp+1,1(1) Q0,Lp+1,1(t) Q0,Lp+2,m(1) Q0,Lp+2,m(t)

t t X X

m m X X

L1(0) to L15(0) see Table 2 X X X X

L22(0) to L26(0) see Table 2 X X X X

I(L11(0) = 1 or L12(0) = 1) everAlcoholDrug X X X X

I(L13(0) = 1 or L14(0) = 1) everHepatitisBorC X X X X

L17(0) CD4.0 X X X X

L18(0) VL.0 X X X X

L19(0) clinicalAIDS.0 X X X X

L17(t− 1) CD4 X X

L17(t− 1) − L17(t− 2) lastCD4change X X
Pt−1

l=0 L17(l) sumPastCD4 X X

A1(t− 1) ART Xwith t = 1 X Xwith t = 1 X
Pt−1

l=0 A1(l) sumPastART X X

5.2.4 Calculate the optimal fluctuation

Estimation of the target parameter ψ0 = Ψ(Q0) with the R-TMLE involves the fluctuation of the initial
estimators of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) obtained previously. The optimal fluctuation of each of these initial
estimators are based on the clever covariates, H∗, defined by equalities (25) and (26). R-TMLE implementation
thus requires calculation of these clever covariates. They are functions of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and
Q0,Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3 but also the following components of the action mechanism defined
in section 3: g0,A1(t) and g0,A2(t) for t = 0, 1, 2, 3. Therefore, the derivation of estimates of g0,A1(t) and g0,A2(t)

is first needed prior to computing the clever covariates. These estimates, combined with the initial estimates of
Q0,Lp+1,1(t) and Q0,Lp+2,m(t) can then be mapped into an estimate of the clever covariates using Monte Carlo
simulations.

Obtain gn, an estimate of g0. The following 8 components of the action mechanism, i.e. the g part of the
reduced, observed data likelihood5, are relevant for implementation of the R-TMLE of the target parameter ψ
and thus needed to be estimated:

• gA1(t) ≡ P (A1(t) | Ā(t − 1), L̄(t), A2(t)) for t = 0, 1, 2, 3 (only relevant at Ȳ (t) = 0, Ā2(t) = 0, and
non-missing6 Ā1(t)).

• gA2(t) ≡ P (A2(t) | Ā(t−1), L̄(t)) for t = 0, 1, 2, 3 (only relevant at Ȳ (t) = 0, Ā2(t−1) = 0, and non-missing
Ā1(t− 1)).

Thus, estimation of the target parameter ψ0 = Ψ(Q0) with the R-TMLE relies on estimation of the corresponding
8 g0 components of the true reduced data generating distribution, P0. The 8 estimates of g0,A1(t) and g0,A2(t)

are denoted by g0,A1(t),n and g0,A2(t),n respectively. They were obtained based on sieve estimation with the
same estimator selection procedure adopted for initial estimation of the 14 Q0 components described in the
previous section. The following four data stratification/pooling schemes were applied to derive each of the 8
estimates:

5See equality (6) tailored to the reduced data structure.
6Recall that treatment is coded as missing after first ART discontinuation (see section 2).
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• The estimate of g0,A1(0) (at A2(0) = 0, and non-missing A1(0)) was obtained separately.

• The estimates of g0,A1(t) for t = 1, 2, 3 (at Ȳ (t) = 0, Ā2(t) = 0, and non-missing Ā1(t)) were obtained
simultaneously through a unique, DSA-selected, pooled estimator over the three time intervals, t.

• The estimate of g0,A2(0) was obtained separately.

• The estimates of g0,A2(t) for t = 1, 2, 3 (at Ȳ (t) = 0, Ā2(t − 1) = 0, and non-missing Ā1(t − 1)) were
obtained simultaneously through a unique, DSA-selected, pooled estimator over the three time intervals,
t.

Table 19 lists the variables of the reduced data considered as potential main terms in the working, logistic
models involved in each of the four estimator selection procedures described above. With the exception of
the variables ’enrollyear’ and ’m’, each categorical variable X in Table 19 with l > 2 levels was not directly
considered as a potential main term. Instead, l binary variables that each represents the indicator that X is
equal to m (denoted by I(X = m)) for m = 1, . . . , l were considered as potential main terms. The variable ’t’
was not only treated as a categorical variable but was also considered directly as a potential main term.

The estimates resulting from the application of the four estimator selection procedures described above are
summarized in Tables 20 through 23.

Monte Carlo simulation based on g0
n and Q0

n. The 13 clever covariates that need to be computed are
defined by equalities (25) and (26): H∗

Lp+1,1(t)
for t = 1, 2, 3, 4 and H∗

Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3.

Each of these clever covariates are used to fluctuate the initial estimators of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and
Q0,Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3 respectively.

By extending the definition of the observed outcome, Y (t) ≡ I(T ≤ t− 1), to time points t beyond the time
of an event when it is observed, i.e. for t > T when T̃ = T , the clever covariate for updating the initial estimator
of Q0,Lp+1,1(t) at Ȳ (t− 1) = 0, Ā2(t− 1) = 0, and non-missing Ā1(t− 1) for t = 1, 2, 3, 4 can be rewritten as:

H∗
Lp+1,1(t)

=
1

∏t−1
t
′=0

gA1(t
′)gA2(t

′ )

×
[

I
(

Ā(t− 1) = d350(L̄(t− 1))
)

(

1 − EQ

(

Yd350(4) | L̄(t− 1), Ā(t− 1), Y (t) = 0
)

)

−

I
(

Ā(t− 1) = d200(L̄(t− 1))
)

(

1 − EQ

(

Yd200(4) | L̄(t− 1), Ā(t− 1), Y (t) = 0
)

)]

. (27)

Note that at t = 4, equality (27) does indeed simplify to equality (26). Similarly, the clever covariate for
updating the initial estimator of Q0,Lp+2,m(t) at Ȳ (t) = 0, Ā2(t−1) = 0, non-missing Ā1(t−1), and Lp+2,1(t) =
0, . . . , Lp+2,m−1(t) = 0 for t = 1, 2, 3 and m = 1, 2, 3 can be rewritten as:

H∗
Lp+2,m(t) =

1
∏t−1

t
′=0

gA1(t
′)gA2(t

′ )

[

I
(

Ā(t− 1) = d350(L̄(t− 1))
)

×
(

EQ

(

Yd350(4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 1
)

− EQ

(

Yd350(4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 0
)

)

−

I
(

Ā(t− 1) = d200(L̄(t− 1))
)

(

EQ

(

Yd200(4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 1
)

−

EQ

(

Yd200(4) | Pa(Lp+2,m(t)), Lp+2,m(t) = 0
)

)]

. (28)

where Pa(Lp+2,m(t)) ≡
(

L̄(t− 1), Ā(t− 1), Y (t), Lp+2,1(t), . . . , Lp+2,m−1(t)
)

.
The above formulation of the clever covariates makes explicit how they can be computed by first approximat-

ing each expectation in equalities (27) and (28) by Monte Carlo simulations: Following the factorization of the
reduced, observed data likelihood7 according to the time-ordering of actions and covariates, many8 observations

7See equality (6) tailored to the reduced data structure.
8For this analysis, 10, 000 observations of each potential outcome are simulated.
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of the potential outcomes Ydθ
(4) (for θ = 200, 350) are simulated by sequentially generating future covariates

starting at the fixed covariate and action history specified by the conditional event in each expectation and by
setting future actions to the interventions implied by the individualized action rule dθ. This simulation process
ends when the outcome at time point 4 is simulated or earlier if the simulated event occurs before time point 4.
The averages of these simulated potential outcomes approximate the expectations in equalities (27) and (28).

Table 19: Variables considered as potential main terms in the working, logistic models involved in the estimator
selection for g0,A1(0), g0,A1(t) for t = 1, 2, 3, g0,A2(0), and g0,A2(t) for t = 1, 2, 3. The notation I(·) denotes the indicator
that statement · is true.

Variable Shorthand g0,A1(0) g0,A1(t) g0,A2(0) g0,A2(t)

t t X X

L1(0) to L15(0) see Table 2 X X X X

L22(0) to L26(0) see Table 2 X X X X

I(L11(0) = 1 or L12(0) = 1) everAlcoholDrug X X X X

I(L13(0) = 1 or L14(0) = 1) everHepatitisBorC X X X X

L17(0) to L19(0) see Table 2 X X

L17(t) CD4 X X

L17(t) − L17(t− 1) lastCD4change X X

A1(t− 1) ART X X
Pt−1

l=0 A1(l) sumPastART X X

5.2.5 Obtain Q∗, a targeted estimate of Q

The optimal fluctuations of the initial estimators of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) based on the clever covari-
ates computed previously, H∗

Lp+1,1(t)
and H∗

Lp+2,m(t), result in the definition of updated, one-step estimates of

Q0,Lp+1,1(t) and Q0,Lp+2,m(t) denoted by Q1
0,Lp+1,1(t),n

and Q1
0,Lp+2,m(t),n respectively.

Specifically in this analysis, each updated estimate Q1
0,Lp+1,1(t),n

for t = 1, 2, 3, 4 is defined by a separate,

t-specific maximum likelihood regression of the outcome at time t, Lp+1,1(t), on the clever covariate H∗
Lp+1,1(t)

based on a logistic model with offset equal to the logit transformation of the initial estimate Q0
0,Lp+1,1(t),n

and

based on the same observations at time t that contributed to the initial estimate of Q0,Lp+1,1(t), i.e. the updated
estimate is defined by

Q1
0,Lp+1,1(t),n

=
1

1 + exp
(

− (logit(Q0
0,Lp+1,1(t),n

) + ǫnH∗
Lp+1,1(t)

)
) ,

where ǫn is a maximum likelihood estimate.
Similarly, each updated estimate Q1

0,Lp+2,m(t),n for t = 1, 2, 3 and m = 1, 2, 3 is defined by a separate, (t,m)-

specific maximum likelihood regression of the indicator of CD4 count at time t equal to level m, Lp+2,m(t),
on the clever covariate H∗

Lp+2,m(t) based on a logistic model with offset equal to the logit transformation of

the initial estimate Q0
0,Lp+2,m(t),n and based on the same observations at time t that contributed to the initial

estimate of Q0,Lp+2,m(t). The value of the coefficient in front of the clever covariate in each of the the logistic
models defining the one-step estimates above is given in Table 24.

Implementation of the R-TMLE relies on iteration of the updating process described above until a con-
vergence criterion is met: First, starting with k = 1, the clever covariates are first re-calculated by Monte
Carlo simulations based on the latest updated estimates Qk

0,Lp+1,1(t),n
and Qk

0,Lp+2,m(t),n. Second, these latest

updated estimates are fluctuated with the newly computed clever covariates to define newly updated estimates
Qk+1

0,Lp+1,1(t),n
and Qk+1

0,Lp+2,m(t),n using the updating process above where the initial estimates Q0
0,Lp+1,1(t),n

and

Q0
0,Lp+2,m(t),n are replaced with the latest updated estimates Qk

0,Lp+1,1(t),n
and Qk

0,Lp+2,m(t),n. Third, k is incre-

mented by 1. The three-step process just described is repeated until a convergence criterion is met. Once con-
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Table 24: Estimates ǫn of the coefficients in front of the clever covariates in the logistic models defining the one-step,
updated estimates of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and Q0,Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3.

t Lp+1,1(t) Lp+2,1(t) Lp+2,2(t) Lp+2,3(t)

1 0.114 7.544 −24.694 34.977
2 −0.005 5.061 −20.949 29.879
3 0.031 1.886 −2.207 −1.892
4 0.013

verged, the last updated estimates are referred to as the targeted estimates. A brief description of a convergence
criterion is provided below along with the procedure for drawing inference with the R-TMLE based on its
influence curve. In this analysis, the updating process for estimation of Q was halted after one iteration, i.e. the
estimates Q1

0,Lp+1,1(t),n
and Q1

0,Lp+2,m(t),n were deemed the targeted estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t)

denoted by Q∗
0,Lp+1,1(t),n

and Q∗
0,Lp+2,m(t),n respectively.

5.2.6 A substitution estimator of the parameter of interest

The R-TMLE estimate of the target parameter ψ0 = Ψ(Q0) defined by equality (19) is derived by substitution
of the relevant distributions Q0 in the right hand-side of equality (19), i.e. Q0,L(0), Q0,Lp+1,1(t) for t = 1, 2, 3, 4,
and Q0,Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3, with the estimates of the empirical distribution of Q0,L(0) denoted
by Q0,L(0),n and the targeted estimates Q∗

0,Lp+1,1(t),n
and Q∗

0,Lp+2,m(t),n respectively.

Concretely, this substitution estimate can be calculated using the following two-step procedure: First, the
conditional expectations E(Ydθ

(4) | L(0)) (for θ = 200, 350 and each unique observation of L(0)) are approx-
imated by Monte Carlo simulation based on the targeted estimates Q∗

0,Lp+1,1(t),n
and Q∗

0,Lp+2,m(t),n using the

general simulation protocol described previously for the computation of the clever covariates. The resulting
estimates of E(Ydθ

(4) | L(0)) are denoted by EQ∗

0,n
(Ydθ

(4) | L(0)). Second, these estimates are mapped into the

R-TMLE estimate of ψ denoted by Ψ(Q∗
0,n) using the formula:

Ψ(Q∗
0,n) =

1

n

n
∑

i=1

EQ∗

0,n
(Yd350(4) | L(0) = li(0)) − 1

n

n
∑

i=1

EQ∗

0,n
(Yd200(4) | L(0) = li(0)).

Application of this two-step procedure in this analysis lead to the following R-TMLE point estimate of the
target parameter ψ0: 1.98e-03.

5.2.7 Influence curve based inference

Under regularity conditions, the R-TMLE estimator is asymptotically linear with influence curve (Tsiatis (2006);
van der Laan (2010)) denoted by D∗(O | Q0, g0, ψ0) and given by formula (24) evaluated at Q0, g0 and ψ0, i.e.:

Ψ(Q∗
0,n) − ψ0 =

1

n

n
∑

i=1

D∗(oi | Q0, g0, ψ0) + o(
1√
n

) (29)

A first order approximation of the variance of the R-TMLE can thus be derived as follows:

V arn(Ψ(Q∗
0,n)) =

1

n2

n
∑

i=1

D∗(oi | Q0,n, g0,n, ψ0,n)2, (30)

where Q0,n, g0,n and ψ0,n are consistent estimates of Q, g and ψ respectively. The R-TMLE point estimate
was used as the estimate ψ0,n for the computation of the influence curve evaluated at each observation i, i.e.
D∗(oi | Q0,n, g0,n, ψ0,n), along with the estimates g0,A1(t),n and g0,A2(t),n. To simplify computation in this
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analysis, the influence curve evaluated at each observation i was approximated based on the initial estimate
Q0

0,Lp+1,1(t),n
and Q0

0,Lp+2,m(t),n to derive the estimates of all components of D∗(O | Q0,n, g0,n, ψ0,n) except for

the projection Π(DIPAW | L(0)) which was instead approximated using the targeted estimates Q∗
0,Lp+1,1(t),n

and

Q∗
0,Lp+2,m(t),n. This simplification permits straightforward calculation of the influence curve evaluated at each

observation i, D∗(oi | Q0,n, g0,n, ψ0,n), using the intermediate results from the previous computing steps, i.e.
the clever covariate calculations based on the initial estimate of Q and the Monte Carlo simulations based on the
targeted estimate of Q to derive the substitution estimator, without the need for additional computation. Based
on this approach, the estimate of the standard error associated with the R-TMLE is σ0,n=2.71e-03 resulting in
the following 95%-confidence interval for ψ0: [-3.32e-03;7.28e-03].

The influence curve associated with the R-TMLE can also be used as a convergence criterion to determine
whether the updating process leading to the targeted estimate of Q should be halted. Indeed, convergence of
the updating process is reached when the estimating equation associated with the efficient influence curve given
by formula (24) is solved, i.e. when 1

n

∑n
i=1D

∗(oi | Q0,n, g0,n, ψ0,n) = 0. The empirical mean of the influence
curve can thus serve as a stopping criterion during the updating process: an empirical mean close to 0 indicates
that a solution of the estimating equations is found. The empirical mean of the influence curve approximated
with the simplified approach described above is 3.93e-03. For simplicity and because most of the bias reduction
in the R-TMLE algorithm typically occurs during the first update of the initial estimate of Q, the updating
process for estimation of Q was iterated once only for this analysis leading to the so-called one-step R-TMLE.

5.2.8 Diagnose sparse data bias

Examination of the distribution of the inverse probability of action (IPA) weights,
(
∏Ť

t=0 gA1(t)gA2(t)

)−1
, asso-

ciated with all observations of cancer onset, Y (Ť + 1) = 1, from patients who followed at least one of the two
individualized action rules of interest (d350 or d200) up to time point Ť provides evidence of practical violation
of the experimental treatment assignment assumption. As discussed in section 5.4, reliable inference with the
R-TMLE is based on the validity of this assumption. Table 25 summarizes the distribution of the IPA weights
and indicates that the weights associated with a few observations are relatively large which suggests that dy-
namic treatment with ART according to at least one of the two rules of interest is almost deterministic based
on the levels of covariates that may also be confounders of the effect of ART on the risk of cancer onset.

Table 25: Distribution of the inverse probability of action (IPA) weights.

IPA weights Frequency % Cumulative Frequency Cumulative %

<10 2523 95.03 2523 95.03
[10, 20[ 105 3.95 2628 98.98
[20, 30[ 8 0.30 2636 99.28
[30, 40[ 5 0.19 2641 99.47
[40, 50[ 2 0.08 2643 99.55
[50, 100[ 10 0.38 2653 99.92
≥ 100 2 0.08 2655 100.00

To mitigate the higher variability of the R-TMLE resulting from practical violation of the ETA assumption,
truncation of the IPA weights can be used as part of the R-TMLE implementation to improve the mean squared
error associated with R-TMLE estimation of the target parameter. Based on the distributions of the IPA
weights in this analysis, we used a truncation level of 20 for the implementation of the R-TMLE, i.e. the
clever covariates on which implementation of the R-TMLE is based were computed based on IPA weights which
were set to 20 if their values implied by the estimates g0,A1(t) and g0,A2(t) were greater than 20. The point
estimate and estimate of the standard error associated with the R-TMLE based on truncated IPA weights is
Ψ(Q∗

0,n)=1.44e-03 and σ0,n=2.68e-03 respectively which results in the following 95%-confidence interval for ψ0:
[-3.81e-03;6.69e-03].
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5.3 IPAW-R-TMLE implementation and results

To account for potential time-dependent confounding that was ignored by the R-TMLE as a consequence of the
data reduction step, the IPAW-R-TMLE relies on an estimate of the true action mechanism, i.e. the components
of the action mechanism defined by equality (3) and denoted by gA1(t) and gA2(t). These conditional distributions
should not be confused with the components of the reduced data action mechanism that were estimated in the
previous section (see Tables 20 through 23) as part of the R-TMLE implementation and that we now denote
with gr

A1(t)
and gr

A2(t)
. Estimates of gA1(t) and gA2(t) for t = 0, 1, 2, 3 were obtained based on sieve estimation

with the same estimator selection procedures implemented previously to obtain estimates of gr
A1(t)

and gr
A2(t)

for
t = 0, 1, 2, 3 with the difference that the potential main terms in the working, logistic models involved in each
of the four estimator selection procedures for estimation of gA1(t) and gA2(t) for t = 1, 2, 3 consist of not only
the variables in Table 19 but also the following time-dependent variables: L18(t) (’VL’), L19(t) (’clinicalAIDS’),
L20(t) (’I.CD4’), L21(t) (’I.VL’) and L20(t) − L20(t− 1) (’I.lastCD4change’). The estimates resulting from the
application of the four estimator selection procedures to estimate gA1(t) and gA2(t) for t = 0, 1, 2, 3 are presented
in Tables 20, 28, 22 and 29. Note that the estimates for gA1(0) and gA2(0) are identical to the estimates for gr

A1(0)

and gr
A2(0)

since gA1(0) = gr
A1(0)

and gA2(0) = gr
A1(0)

. The initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) were

derived by refitting the logistic models of Tables 15 through 18 with weights equal to w(t) ≡
Qt−1

j=0 gr
A1(t)g

r
A2(t)

Qt−1
j=0 gA1(t)gA2(t)

.

Note that w(1) = 1 and thus the initial estimates of Q0,Lp+1,1(1) and Q0,Lp+2,m(1) for implementation of the
IPAW-R-TMLE are the same as the initial estimates of Q0,Lp+1,1(1) and Q0,Lp+2,m(1) for implementation of
the R-TMLE (see Tables 15 and 17). For t > 0, the initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) for
implementation of the IPAW-R-TMLE are presented in Tables 30 and 31. The clever covariates for fluctuation
of the initial estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) were computed with Monte Carlo simulations as described
for the R-TMLE with the only difference that these Monte Carlo simulations were based on the estimates of
Q0,Lp+1,1(t) and Q0,Lp+2,m(t) from Tables 15, 30, 17, and 31 instead of the estimates from Tables 15 through 18.
The updated, one-step estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) were derived based on the updating procedure
used for implementation of the R-TMLE with the difference that the logistic models were fitted with the weights
w(t) defined above. The value in front of the clever covariate in each of the logistic models defining the one-step
estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t) is presented in Table 26. These one-step estimates were deemed the
targeted estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t).

Table 26: Estimates ǫn of the coefficients in front of the clever covariates in the logistic models defining the one-step,
updated estimates of Q0,Lp+1,1(t) for t = 1, 2, 3, 4 and Q0,Lp+2,m(t) for t = 1, 2, 3 and m = 1, 2, 3 for the implementation
of the IPAW-R-TMLE.

t Lp+1,1(t) Lp+2,1(t) Lp+2,2(t) Lp+2,3(t)

1 0.114 7.980 −19.327 33.373
2 −0.050 5.385 −21.797 −2.666
3 0.043 1.791 −11.161 27.413
4 0.013

The resulting substitution estimate of the target parameter ψ0 is equal to 1.41e-03 and corresponds to the
one-step IPAW-R-TMLE point estimate. Note that the only difference in implementation of the R-TMLE point
estimate versus that of the IPAW-R-TMLE point estimate is in the use of the weights w(t) to obtain the initial
and updated estimates of Q0,Lp+1,1(t) and Q0,Lp+2,m(t). Inference with the IPAW-R-TMLE can be derived based
on its influence curve (24) evaluated at the estimator of the action mechanism g and the targeted estimator of
Q defined by the procedure above. Note that evaluation of formula (24) to derive inference with the IPAW-R-
TMLE involves the estimates of gA1(t) and gA2(t) instead of the estimates of gr

A1(t)
and gr

A2(t)
, i.e. the clever

covariates used for fluctuation of the initial estimators of Q in the implementation of the IPAW-R-TMLE should
be multiplied by w(t) to derive the clever covariates that appear in formula (24). Based on this approach and the
same implementation shorcut employed earlier to simplify calculation of the R-TMLE influence curve evaluated
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at each observation i, the estimate of the standard error associated with the IPAW-R-TMLE is σ0,n=2.48e-03
resulting in the following 95%-confidence interval for ψ0: [-3.45e-03;6.27e-03].

Table 27 summarizes the distribution of the estimated IPA weights,
(
∏Ť

t=0 gA1(t)gA2(t)

)−1
, associated with

all observations of cancer onset, Y (Ť +1) = 1, from patients who followed at least one of the two individualized
action rules of interest (d350 or d200) up to time point Ť . A few observations are characterized by relatively
large IPA weights (> 20) which suggests some practical violation of the ETA assumption discussed in section

5.4. The ratios w(t) of the IPA weights,
(
∏Ť

t=0 gA1(t)gA2(t)

)−1
, summarized in Table 27 to the IPAW weights,

(
∏Ť

t=0 g
r
A1(t)

gr
A2(t)

)−1
, summarized in Table 25 ranges from 0.35 to 2.01. Thus, to mitigate the higher

variability of the IPAW-R-TMLE resulting from practical violation of the ETA assumption, the IPAW-R-TMLE
was implemented as described above with the difference that the clever covariates were computed based on

reduced data IPA weights,
(
∏Ť

t=0 g
r
A1(t)

gr
A2(t)

)−1
, that were truncated at 20. The point estimate and estimate

of the standard error associated with this truncated IPAW-R-TMLE is Ψ(Q∗
0,n)=7.6e-04 and σ0,n=2.46e-03

respectively which results in the following 95%-confidence interval for ψ0: [-4.07e-03;5.59e-03].

Table 27: Distribution of the inverse probability of action (IPA) weights.

IPA weights Frequency % Cumulative Frequency Cumulative %

<10 2544 95.82 2544 95.82
[10, 20[ 80 3.01 2624 98.83
[20, 30[ 15 0.56 2639 99.40
[30, 40[ 3 0.11 2642 99.51
[40, 50[ 2 0.08 2644 99.59
[50, 100[ 9 0.34 2653 99.92
≥ 100 2 0.08 2655 100.00
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5.4 Assumptions

Valid causal inference based on the IPAW-R-TMLE of the target parameter ψ0 relies on the following assump-
tions:

• The sequential randomization assumption (SRA) or sequential deconfounding (SD). The
validity of any of these two assumptions insures that sufficient information is collected to possibly identify
the effect of interest with the observed data based on the G-computation formula (17). Both the SRA and
SD are not testable with the data alone but may be motivated based on a graphical model that encodes
subject-matter assumptions about the causal links between the variables involved in the problem, i.e. a
causal directed acyclic graph (DAG) as the one implied by Figure 2. Based on such a DAG, satisfaction
of independencies that involve counterfactual variables like the SRA expressed by formula (16) may be
evaluated with the twin network method described in section 7.1.4 of Pearl (2009). Alternatively, SD may
be evaluated with the DAG based on the simpler sequential back-door criterion described in sections 4.4.3
and 11.3.7 of Pearl (2009): In the DAG implied by Figure 2, the sequential back-door criterion is met
since every action-avoiding back-door path from A(t) to Y (K + 1) is blocked by L̄(t) and Ā(t − 1) for
t = 0, . . . ,K.

• The experimental treatment assignment (ETA) assumption (a.k.a. positivity assumption). It
insures that the conditional distributions of the observed data in the G-computation formula (17) are well-
defined and thus insures the non-parametric identifiability of the target parameter ψ0. In other words,
satisfaction of the ETA assumption permits reliable estimation of the target parameter based on true
information in the data instead of extrapolation from limited information based on parametric modeling
assumptions (see section 10.1 of Gelman and Hill (2007)). Formally (van der Laan (2006); Orellana et al.
(2006)), this assumption insures that any patient may follow any of the two individualized treatment rules
of interest at any point in time:

g0(A(t) = dθ(L̄(t)) | L̄(t), Ā(t− 1) = dθ(L̄(t− 1))) > 0 FX a.e. for t = 0, . . . ,K.

Practical violation of this assumption may be tested with the data by exploring the distribution of the
inverse probability of action weights as implemented in this analysis. Minor practical violation of the ETA
assumption may be handled by weight truncation (Cole and Hernan (2008); Bembom and van der Laan
(2008)) as described earlier to potentially improve the mean squared error associated with estimation
of the target parameter. Major violations of this assumption indicate however that reliable inference is
not possible with the available data and motivate the alteration of the goal of the analysis through the
definition of a ’less ambitious’ target parameter (Moore et al. (2009); Petersen et al. (2010)).

• Consistent estimation of the treatment mechanism. This assumption motives the application of a
data-adaptive estimation procedure as the one implemented in this analysis based on the DSA algorithm to
estimate g defined by formula (3) as an alternative to the more common reliance on a priori specification
of parametric models which often do not reflect true subject-matter knowledge and may thus lead to
incorrect inference for the target parameter ψ0.

6 Discussion

Table 32 summarizes the results from the application of each estimator of the target parameter ψ0 implemented
in this analysis. Note that all inferences are consistent: The null hypothesis of a null effect ψ0 may not be
rejected based on the data from the KPNC electronic medical record and the three assumptions described
above.

If the three assumptions on which these estimators rely for drawing valid causal inference indeed hold,
the null result may reflect a truly null effect, bias due to the erroneous inclusion of patients with a prevalent
AIDS-defining cancer at study entry, and/or a lack of power to detect a relatively small9 causal risk difference

9The 95% confidence intervals suggest that the absolute value of the true causal risk difference is less than 1%.
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Table 32: Comparison of the results from the application of each estimator of the target parameter ψ0. The estimate
of the standard error of the IPAW estimators are based on 1,000 bootstrap samples. The estimator selection procedures
were not repeated for each bootstrap sample to estimate the action mechanism. Instead, the estimators selected on
the original sample were applied to each bootstrap sample resulting in new estimates for the action mechanism. The
truncated IPAW estimators based on the truncation level of 20 resulted in the same output (i.e. the IPA weights - based
on either g or gr - associated with all events occurring under one of the two rules of interest were lower than 20).

Estimator Point estimate Standard error 95% confidence interval p-value

R-IPAW (based on gr) 1.42e-03 2.69e-03 [-3.86e-03 ; 6.69e-03] 0.6
R-TMLE 1.98e-03 2.71e-03 [-3.32e-03 ; 7.28e-03] 0.46
truncated R-TMLE 1.44e-03 2.68e-03 [-3.81e-03 ; 6.69e-03] 0.59

IPAW (based on g) 6.9e-04 2.48e-03 [-4.16e-03 ; 5.54e-03] 0.78
IPAW-R-TMLE 1.41e-03 2.48e-03 [-3.45e-03 ; 6.27e-03] 0.57
truncated IPAW-R-TMLE 7.6e-04 2.46e-03 [-4.07e-03 ; 5.59e-03] 0.76

between the two adaptive treatment strategies of interest in this analysis. Below, we comment on three possible
explanations before discussing possible reasons for potential estimation bias due to violation of one or more of
the three identifiability assumptions.

Prior research evaluating appropriate treatment rules for initiation of ART have not evaluated cancers
specifically. Instead, studies have focused on more common outcomes, including all AIDS-defining events, which
includes these cancers, or all-cause mortality. Recent studies for these events have indicated that initiation of
ART at higher CD4 thresholds may reduce the risk of AIDS and death (Hernan et al. (2006); Kitahata et al.
(2009); Sterne et al. (2009)).

This analysis was restricted to the first two years of follow-up during which two thirds of all observed
onsets of AIDS-defining cancers occurred: Out of the corresponding 118 events, 13 occurred to patients who
only followed rule d200 at the time of the event, 12 occurred to patients who only followed rule d350 at the
time of the event, 51 occurred to patients who followed both rules at the time of the event, and 42 occurred
to patients who followed none of these two rules at the time of the event. The extension of this analysis to
follow-up data past two years after study entry (i.e. K > 3) may provide additional power to detect a larger,
delayed differential cumulative risk of cancer onset between the two adaptive treatment strategies of interest.
In addition, an analysis to study the effects of 1) adaptive treatment strategies that allow for a grace period
between the time a CD4 threshold is reached and the time ART is initiated (Cain et al. (2010)), and/or 2)
adaptive treatment strategies that are indexed by CD4 thresholds that are not restricted to two levels only but
that would instead include many levels θ (e.g. CD4 levels from 200 to 500 by increments of 50 cells/µl) may
permit the inclusion of observations that are currently excluded from the analysis as they do not concord with
the two rules d200 and d350. These observations may permit the relatively precise estimation of causal estimands
defined by a parametric, working, Cox dynamic marginal structural model from which the causal contrast ψ0

can be derived and possibly more precisely estimated under the smoothing assumptions encoded in such a
model, e.g. the working model λTd200

(t) exp (β(θ − 200)) for λTdθ
(t) where λTdθ

(t) represents the instantaneous
hazard of cancer at time t if the target population were to follow rule dθ. The computing and programming
difficulties involved in the estimation of such a causal estimand β with the TMLE are currently deterrents10 to
the application of the TMLE in such modeling approaches and are topics for potential future development of
the application of targeted maximum likelihood learning.

An alternative explanation for the null finding is the incorrect inclusion of prevalent cancers in the analysis.
About 30% and 20% of patients in the cohort had a CD4 count at study entry below 200 cells/µl and between
200 and 350 cells/µl respectively. It is possible that many of these HIV patients had existing, but undiagnosed

10These difficulties are compounded by the decision to discretize the time line in finer intervals (e.g. τ = 30).
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cancers at study entry when they also initiated ART. If these patients remained treated with ART through out
follow-up, the data from such patients with a CD4 count at study entry below 200 cells/µl were then deemed
consistent with following both rules d200 and d350 up to cancer diagnosis while data from such patients with
a CD4 count at study entry between 200 and 350 cells/µl were then deemed consistent with following only
rule d350. The inclusion of patients with undiagnosed ADC at study entry could thus have resulted in over
estimation of the risk of cancer onset under both rules, with the over estimation of the risk under rule d350

being possibly of a larger magnitude.
The SRA/SB assumptions may be violated in this analysis due to measurement error for some of the baseline

covariates (overweight or obese status, smoking, alcohol and drug use) which were not captured by the KPNC
electronic medical record for research purposes, but rather for clinical use. These variables, however, are not
expected to have a strong effect on ART prescription decisions, thus mitigating the concern of bias due to
mis-classification of these attributes. Practical violation of the ETA assumption is not a primary concern in
this analysis since only about 1% of the observations that contributed to the estimate suffered from large IPA
weight with even fewer weights deemed ’extreme’. This analysis was not concerned with theoretical violation
of the ETA assumption. ART initiation is essentially based on CD4 counts and symptomatic AIDS in clinical
practice. Concern that ’clinicalAIDS’ may deterministically determine which adaptive treatment strategies may
be followed by a patient may be handled by modifying the individualized rules such that ART initiation is not
only based on a CD4 count threshold but also AIDS status. Theoretical violation of the ETA assumption due
to non-compliance with ART once treatment is initiated and due to right-censoring caused by death may be
handled by the consideration of intention-to-treat individualized treatment rules (Cain et al. (2010)) and by
including death as an end point in an analysis with a combined outcome definition. Only classes of models with
no more than 10 terms and with no interaction terms were considered as part of the data-adaptive estimation
approach for g implemented in this analysis. Such decisions may be too restrictive and may have led to biased
estimation of the treatment mechanism. More aggressive data-adaptive procedures (van der Laan et al. (2007))
may be considered to alleviate this concern.

Finally, note that the inference from the IPAW and TMLE estimators in this analysis do not significantly
differ. In general, inference with the IPAW-R-TMLE may provide additional robustness compared to the IPAW
estimator if no time-dependent covariates other than the one retained in the reduced data structure confound
the effect of interest since the IPAW-R-TMLE estimator is then doubly robust (van der Laan (2008)). In most
real life applications however, several time-dependent covariates confound the effect of interest and while both
the IPAW (based on g) and IPAW-R-TMLE estimators may estimate the effect of interest consistently based
on the same three assumptions described above, the IPAW-R-TMLE estimator may provide a more precise
effect estimate when the time-dependent covariate retained in the reduced data structure has a relatively strong
effect on the outcome of interest (van der Laan (2008)). In this analysis, there was no clear gain in estimation
precision achieved by the IPAW-R-TMLE over the IPAW estimator which may be explained by a relatively
weak effect of CD4 count on the onset of AIDS-defining cancer or by a suboptimal data-adaptive estimation
procedure for modeling the relevant Q part of the reduced data likelihood. A more aggressive data-adaptive
procedures (van der Laan et al. (2007)) that includes weighting by the IPA weights based on g may be considered
to alleviate this concern.
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