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Targeted Maximum Likelihood Estimation for
Dynamic Treatment Regimes in Sequential

Randomized Controlled Trials

Paul Chaffee and Mark J. van der Laan

Abstract

Sequential Randomized Controlled Trials (SRCTs) are rapidly becoming essential
tools in the search for optimized treatment regimes in ongoing treatment settings.
Analyzing data for multiple time-point treatments with a view toward optimal
treatment regimes is of interest in many types of afflictions: HIV infection, Atten-
tion Deficit Hyperactivity Disorder in children, leukemia, prostate cancer, renal
failure, and many others. Methods for analyzing data from SRCTs exist but they
are either inefficient or suffer from the drawbacks of estimating equation method-
ology. We describe an estimation procedure, targeted maximum likelihood esti-
mation (TMLE), which has been fully developed and implemented in point treat-
ment settings, including time to event outcomes, binary outcomes and continuous
outcomes. Here we develop and implement TMLE in the SRCT setting. As in
the former settings, the TMLE procedure is targeted toward a pre-specified pa-
rameter of the distribution of the observed data, and thereby achieves important
bias reduction in estimation of that parameter. As with the so-called Augmented
Inverse Probability of Censoring Weight (A-IPCW) estimator, TMLE is double-
robust and locally efficient. We report simulation results corresponding to two
data-generating distributions from a longitudinal data structure.



1 Introduction

1.1 Background

The treatment of many types of afflictions involves ongoing therapy—that is,
application of therapy at more than one point in time. Therapy in this con-
text often involves treatment of patients with drugs, but need not be limited
to drugs. For example, the use of pill organization devices (“pillboxes”) has
been studied as a means to improve drug adherence (Petersen et al., 2007),
and others (Moodie et al., 2009) have studied the optimum time at which
infants should stop breastfeeding.

A common setting for ongoing treatment therapy involves randomization to
initial treatment (or randomization to initial treatment within subgroups of
the population of interest), followed by later treatments which may also be
randomized, or randomized to a certain subset of possible treatments given
that certain intermediate outcomes occurred, by definition, after the initial
treatment. Examples from the literature include treatment by antipsychotic
medications for reduction in severity of schizophrenia symptoms (Tunis et al.,
2006), treatment of prostate cancer by a sequence of drugs determined by
success or failure of first-line treatment (Bembom and van der Laan, 2007),
when HIV patients should switch treatments (Orellana et al. 2010, van der
Laan and Petersen 2007) and many others.

Suppose, for example, that every subject in a prostate cancer study is ran-
domized to an initial pair of treatments (A or B, say), and if a subject’s
tumor size increases or does not decrease, the subject is again randomized
to A or B at the second treatment point. On the other hand, if the subject
does well on the first treatment (tumor size decreases, say), then he or she
is assigned the same treatment at the second time point as the first. The
general term for multiple time point treatments in which treatments after
the first-line are assigned in response to intermediate outcomes is dynamic
treatment regimes or dynamic treatment rules (Murphy et al., 2001). If the
intermediate outcome in such SRCTs is affected by initial treatment, and in
turn affects decisions at the second time-point treatment as well as the final
outcome, then it is a so-called “time-dependent confounder.”
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1.2 Existing Procedures

A number of methods have been proposed to estimate parameters associ-
ated with such a study. This article describes implementation of targeted
maximum likelihood estimation for two time-point longitudinal data struc-
tures, and is based on the framework developed for general longitudinal data
structures presented in van der Laan (2010a,b).

Tunis et al. (2006) use inverse probability of treatment weighted (IPTW)
methods, Marginal Structural Models and the so-called “g-estimation” method
for analyzing the causal effect of a “continuous” treatment regime of atypi-
cal antipsychotic medications on severity of schizophrenia symptoms. This
study/analysis involved no time-dependent confounders, however. Orellana
et al. (2010) use structural marginal mean models, IPTW and the so-called
augmented inverse probability of censoring weight (A-IPCW) estimators with
a view toward estimating optimal treatment regimes for switching to HAART
therapy among HIV-positive patients. Laber et al. (2009) use Q-learning to
estimate optimal dynamic treatment regimes in Attention Deficit Hyperac-
tivity Disorder in children. Guo and Tsiatis (2005) develop what they call a
“Weighted Risk Set Estimator” for use in two-stage trials where the outcome
is a time-to-event (such as death). Bembom and van der Laan (2007) ap-
ply simple g-computation and IPTW estimation procedures in analyzing the
optimum response of prostate cancer patients to randomized first-line treat-
ment followed by second-line treatment which was either 1) the same as the
first line treatment if that had been deemed successful, or 2) randomized to
three remaining treatments if the first line had failed. This type of trial and
data closely resembles the data we simulate and analyze in the present study,
though we add baseline covariates and more than 2 levels of success in the
intermediate biomarker covariate in order to generalize the data structure to
more types of scenarios.

We present a new estimator for this longitudinal data structure: the tar-
geted maximum likelihood estimator (van der Laan et al., 2009). TMLE
has application in a wide range of data structures and sampling designs.
Though this estimator can be applied to a broad range of data structures of
longitudinal type, we focus here on the estimation of treatment-rule-specific
mean outcomes. This also covers static treatment regimes for the given data
structures.

In the next section we describe the data structure and define the likelihood for
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the scenarios we intend to analyze. Once we have specified a counterfactual
target parameter of interest and equated it with a well-defined mapping from
conditional distributions of the data to a real number, we describe TMLE
in broad outline, and in particular, the implementation of two different es-
timators grounded in the general TMLE approach. Specifically we present
the so-called efficient influence curve for certain parameters of interest and
show the relationship between elements of this object and elements of the
targeted maximum likelihood estimators. Following these general descrip-
tions we present simulation results, including details of specific treatment
rules, data generation and results in terms of bias, variance and relative
mean squared error. A short discussion of the results follows.

2 Data Structure and Likelihood

In the settings of interest here, a randomly sampled subject has data struc-
ture O = (L(0), A(0), L(1), A(1), Y = L(2)) ∼ P0, where L(0) indicates a
vector of baseline covariates, A(0) is initial randomized treatment, L(1) is,
say, an intermediate biomarker (which we first consider as binary), A(1) is
the second time point treatment (which we also take as binary), Y = L(2)
is the clinical outcome of interest and P0 is the joint distribution of O. We
take the data to be n i.i.d. copies of O. We also assume A(1) can be set in
response to L(1). The patient’s full treatment is therefore (A(0), A(1)), and
specific realizations of (A(0), A(1)) may or may not constitute realizations
of a specific dynamic treatment rule. Such “rules” are dynamic in the sense
that the regimen can be set according to a patient’s response to treatment
over time. However, even if A(0) and A(1) are both unconditionally random-
ized, parameters of the distribution of the above data can nevertheless be
identified which correspond with dynamic treatment regimens.

The data structure for such an experimental unit can be thought of as a time
series in discrete time. For many of the (not necessarily regularly-spaced)
time points there may be no observation of interest, and at others measur-
able events of interest occur. Many measurable events may occur at the same
time—e.g., assignment of treatment and recording of measured characteris-
tics. A specified set of all measured variables that respects this time-ordering,
together with possible additional knowledge about the ordering and relation-
ships of the variables, implies a particular statistical graph. The graph is
a representation of each variable and its causal relation to its parent nodes,
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the latter being defined as all variables that preceded it in the specified time-
ordering and are either direct or indirect causal antecedents. The graph can
be modified to encode not only the time-ordering of the variables but also
possible additional causal assumptions. The likelihood of this unit-specific
data structure can be factorized according to the specified time-ordering,
where the factors consist of the conditional distribution of each node given
its parents, for all nodes in the graph.

The likelihood of the data described above can be factorized as

p(O) =
2∏
j=0

P [L(j) | L̄(j − 1), Ā(j − 1)]
1∏
j=0

P [A(j) | L̄(j), Ā(j − 1)], (1)

where Ā(j) = (A(0), A(1), ..., A(j)) and L̄(j) is similarly defined. Factorizing
the likelihood in this way is suggested by the time–ordering of the variables
in O. That is, we assume L(0) is followed by A(0), and then L(1), A(1) and
outcome L(2) occur in that order. The above formula is the most general in
the sense that each factor is represented as a function of its parents as defined
by the time-ordering of the data, but in some cases a particular factor may
be a function of fewer nodes than this representation suggests. (An example
is given later in this section.)

Equation (1) is an example of the general longitudinal factorization

p0(O) =
K∏
k=1

P (N(k) | Pa(N(k))) ,

where N(k) denotes node k, corresponding to observed variable k in the
graph, and Pa(N(k)) are the parents of N(k) (van der Laan, 2010a). We
make no assumptions on the conditional distributions of N(k) for each k =
0, 1, 2...K beyond N(k)’s depending only on Pa(N(k)).

For simplicity, we introduce the notation QL(j), j = 0, 1, 2 to denote the
factors of (1) under the first product and gA(j), j = 0, 1 for those under the
second; the latter we refer to as the treatment and/or censoring mechanism.
Thus in the simpler notation we have

p(O) =
2∏
j=0

QL(j)

1∏
j=0

gA(j) = Qg.
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The factorization of the likelihood alone puts no restrictions on the pos-
sible set of data-generating distributions, but does affect the so-called G-
computation formula for the counterfactual distributions of the data under
any interventions implied by the ordering. The G-computation formula also
specifies the set of nodes on which to intervene, as well as the interventions
that correspond to the parameter of interest. For the data structures of in-
terest here, interventions will be on the treatment nodes (A(0), A(1)). These
interventions could be simply static assignment of treatment at each time
point, or the above-mentioned dynamic treatment rules.

A typical parameter of interest in point treatment settings is the treatment-
specific mean. For example if A is treatment, with levels a = {0, 1}, a
causal parameter of interest might be EY1, which is the mean outcome of
the population had that entire population received treatment 1. Similarly,
we define a treatment-specific mean for the multiple time point data struc-
ture where now a particular treatment means a specific treatment course
over time. We define a treatment rule, d as assigning d = (d0, d1) for the
treatment points (A(0), A(1)) where d0 = d0(L(0)) and d1 = d1(A(0), L̄(1));
since following the rule entails A(0) = d0(L(0)) we write d1 = d1(L̄) and
d(L̄) =

(
d0(L(0)), d1(L̄)

)
.

Under this definition we can easily express either static or dynamic treatment
rules, or a combination of the two. For example, d0 = 1 would correspond
to a static assignment for A(0), and d1 = I(L(1) = 1) ∗ 1 + I(L(1) = 0) ∗
0 is dynamic since it assigns treatment A(1) in response to the patient’s
intermediate outcome, L(1).

We can now define the G-formula to be the product across all nodes, exclud-
ing intervention nodes, of the conditional distribution of each node given its
parent nodes, and with the values of the intervention nodes fixed according
to the static or dynamic intervention of interest. This formula thus expresses
the distribution of L̄ given Ā = (A(0), A(1)) is at value d(L̄).

P (d)(L̄) =
2∏
j=0

Q
(d)
L(j)(L̄(j)), (2)

where we used the notation

Q
(d)
L(j)(L̄(j)) ≡ P (L̄(j) | L̄(j − 1), Ā(j − 1) = d(L̄(j − 1))).
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The superscript (d) here denotes that the joint distribution of L̄ is conditional
on Ā = d(L̄). We reserve subscript d to refer to counterfactually-defined
variables.

Under the right conditions on the causal graph augmented by a set of nodes
that include unobserved variables (see below), the G-computation formula
equals the counterfactual distribution of the data had one carried out the
specified intervention described by the graph. In point treatment settings
the conditions are desribed as no unblocked backdoor paths from intervention
node to outcome node, or in alternative formulation, d-separation of inter-
vention and outcome nodes conditional on some subset of observed nodes
(Pearl, 2000). Meeting these assumptions typically implies meeting the so-
called randomization assumption. In longitudinal settings, the analog is the
sequential randomization assumption (SRA) which is a generalized version
of the no unblocked backdoor path condition, applied to multiple treatment
nodes, defined formally below.

2.1 Causal and Statistical Models

We signify the non-parametric causal model of interest MF , which includes
all possible distributions compatible with a specified causal structure. Such a
structure can be encoded in the form of an acyclic graph as mentioned above,
or a set of structural equations. The set of such equations, together with
possible additional causal assumptions defines a so-called structural causal
model (SCM). Restrictions on relationships between nodes (other than those
implied by the time ordering itself) can reduce the size of the set of parent
nodes for a given node, and result in a semi-parametric causal model. The
non-parametric set of such equations (i.e., with no exclusion restrictions)
corresponding to the data structure here, for example, is

U = (UL(0), UA(0), UL(1), UA(1), UY ) ∼ PU

L(0) = fL(0)

(
UL(0)

)
A(0) = fA(0)

(
L(0), UA(0)

)
L(1) = fL(1)

(
L(0), A(0), UL(1)

)
A(1) = fA(1)

(
L(0), A(0), L(1), UA(1)

)
Y = fY (L(0), A(0), L(1), A(1), UY ) ,
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where UL(0), UA(0), etc., are the so-called exogenous variables of the system—
random inputs associated with each of the graph nodes that are not affected
by any other variable in the model. The SCM represented above does not
restrict the set of functions F =

{
fL(0), fA(0), ...fY

}
to any particular func-

tional form. Further, each node is represented as a function of the complete
set of parent nodes implied by the time ordering. If, in addition, no assump-
tions are made about the independence of the variables in U , then the causal
model is fully non-parametric. (This formulation of the SCM is based on
Pearl, 2000.)

The nodes in the graph correspond to the endogenous variables—those vari-
ables that are affected by other variables in the graph, which we denote gener-
ically as X = {X1, ...XJ}. For the SCM depicted above, the set X consists
of the observed variables, i.e., X = O. Each endogenous variable, Xj, is the
solution of a deterministic function of its parents and Uj; the latter represents
all the unknown mechanisms that are involved in the generation of Xj. The
causal model can now be expressed as all probability distributions compatible
with the SCM. Elements of the observed data model, M, can be thought of
as being indexed by the elements of MF , i.e., for every P in M, P = PPU,X

for some PU,X ∈MF , or, alternatively, M =
{
PPU,X

: PU,X ∈MF}.

Assumptions of independence between any of the U ′s have implications for
identifiability of the causal parameter in terms of the distribution of the
observed data. For example, strict randomization of A(0) makes UA(0) inde-
pendent of all other U ′s, which will typically reduce the number of additional
assumptions needed for identifiability. Excluding nodes from the parent set
of a given node restricts the set of allowed distributions of the observed data,
M, corresponding to MF .

Suppose now that we are interested in the outcomes of individuals had their
treatment regimen been assigned according to some rule, d. Given a par-
ticular SCM such as the one defined above, we can write Yd, the so-called
counterfactual outcome under rule d, as the solution to the equation

Yd = fY (L(0), A(0) = d0(L(0)), Ld(1), A(1) = d1(L̄), UY ),

where now Ld(1) is the value L(1) takes under rule d. The full SCM under
intervention d is

U = (UL(0), UL(1), UY ) ∼ PU

7
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L(0) = fL(0)(UL(0))

A(0) = d0(L(0))

Ld(1) = fL(1)(L(0), A(0) = d0(L(0)), UL(1))

A(1) = d1(L̄)

Yd = fY (L(0), d0, Ld(1), d1, UY ).

With the counterfactual outcome Yd now defined in terms of the solution to a
system of structural equations, we can define a corresponding counterfactual
parameter of PU,X , say ΨF (PU,X) = EYd, which in fact is the parameter we
concern ourselves with in this article. Using (2),

ΨF (PU,X) = EYd =
∑

l(0),l(1)

E (Yd | L(0) = l(0), Ld(1) = l(1))
1∏
j=0

QLd(j)(l̄(j)),

(3)
where QLd(j) ≡ P (Ld(j) | L̄d(j − 1)) and we omit the subscript d on L(0)
since it is prior to any treatment. In words, this parameter is the mean
outcome under PU,X when treatment is set according to Ā = d(L̄).

As mentioned above, the parent set of nodes for any given node can be
reduced if confirmed by additional knowledge of the conditional distribution
of the node. If it is known, for example, that a particular node is a function
only of a subset of its parents, then the parent nodes not in that subset can
be excluded from the conditional distribution of that node. Such putative
knowledge reduces the size of the model for the data-generating distribution,
and can be tested from the data. For example, if A(1) is assigned such
that it is only a function of L(1) then the set Pa (A(1)) \L(1) provides no
information about the probability of A(1) beyond that contained in L(1), so

P [A(1) | Pa(A(1)] ≡ P [A(1) | L(0), A(0), L(1)] = P [A(1) | L(1)].

Once an SCM is committed to, one can formally state the assumptions on
the SCM required in order for a particular G-computation formula for the
observed nodes to be equivalent to the G-computation formula for the full
set of nodes (3), which includes any relevant unobserved nodes. The latter
can be viewed as the true causal parameter of interest (Pearl, 2000).
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For the parameter of interest here, EYd, the sequential randomization as-
sumption (SRA), Yd ⊥ A(j) | Pa(A(j)) for j = 0, 1, is sufficient for equiv-
alence of the causal parameter ΨF (PU,X) and a particular parameter of the
observed data distribution Ψ(P0) for some Ψ (Robins, 1986). In particular,
the SRA implies

ΨF (PU,X) ≡ EYd = (4)

Ψ(P0) =
∑

l(0),l(1)

E
(
Y | L(0) = l(0), L(1) = l(1), Ā = d(L̄)

)
×

P (L(1) = l(1) | L(0) = l(0), A(0) = d0)×

P (L(0) = l(0)),

which is the so-called identifiability result.

Note that this parameter depends only on the Q part of the likelihood and we
therefore also write Ψ(P0) = Ψ(Q0). Note also that the first two factors in the
summand are undefined if either P

(
Ā = d(L̄) | L(0) = l(0), L(1) = l(1)

)
or

P (A(0) = d0 | L(0) = l(0)) are 0 for any (l(0), l(1)), and so we require these
two conditional probabilities to be positive. This is the so-called positivity
assumption.

In this article we present a method for semi-parametric efficient estimation of
causal effects. This is achieved through estimation of the parameters of the
G-computation formula given above. The method is based on n independent
and identically distributed observations of O, and our statistical model M,
corresponding to the causal model MF , makes no assumptions about the
conditional distribution of N(k) given its parents, for each k in the graph.

Our parameter of interest, EYd, can be approximated by generating a large
number of observations from the intervened distribution Pd and taking the
mean of the final outcome, in this case L(2). The joint distribution Pd
can itself be approximated by simulating sequentially from the conditional
distributions QLd(j), j = 0, 1, 2 to generate the observed values L(j).

EYd can also be computed analytically:

Ψ(Q0) ≡ EYd =
∑
y
y
∑

l(0),l(1)

Pd[l(0), l(1), y]

9
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SRA
=
∑
y
y
∑

l(0),l(1)

P [Y = y | Ā = d(L̄), L(0) = l(0), L(1) = l(1)]×

P [L(1) = l(1) | L(0) = l(0), A(0) = d0(L(0))]× P [L(0) = l(0)]

=
∑
y
y
∑

l(0),l(1)

Q
(d)
L(2) (l(0), l(1), y)Q

(d)
L(1) (l(0), l(1))Q

(d)
L(0)(l(0)),

The last expression is equivalent to the RHS of (4) if Y is binary. If L(0)
is continuous, the sum over l(0) is replaced by an integral. The integral
is replaced in turn by the empirical distribution if the expression above is
approximated from a large number of observations. In that case the last line
reduces to

Ψ(Q0) =
1

n

n∑
i=1

∑
y

y
∑
l(1)

Q
(d)
L(2) (L(0)i, l(1), y)Q

(d)
L(1) (L(0)i, l(1)) . (5)

The latter expression represents a well-defined mapping from the conditional
distributions QL(j) to the real line. Given an estimator Qn ≡

∏2
j=0 QL(j)n of

Q0 ≡
∏2

j=0QL(j) we arrive at the substitution estimator Ψ(Qn) of Ψ(Q0).

Next we describe the targeted maximum likelihood estimator (TMLE) of the
relevant parameters of the G-computation formula. The TMLE is double-
robust and locally efficient. The methods described here extend naturally to
data structures with more time points, and/or more than one time-dependent
confounder per time point (van der Laan, 2010a).

3 Targeted Maximum Likelihood Estimator

With the above parameter now established to be a well-defined mapping
from the distribution of the data to the real line, we turn to the estimation
of the conditional distributions, QL(j) which are the domains of the function
defining the parameter of interest, Ψ(Q0).

3.1 Basic Description

In targeted maximum likelihood estimation we begin by obtaining an initial
estimator of Q0; we then update this estimator with a fluctuation function
that is tailored specifically to remove bias in estimating the particular pa-
rameter of interest. Naturally, this means that the fluctuation function is a
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function of the parameter of interest. There are, of course, various methods
for obtaining an initial estimator: one can propose a parametric model for
each factor QL(j) and estimate the coefficients using maximum likelihood, or
one can employ machine learning algorithms which use the data itself to build
a model. The former method involves using standard software if the factors
L(j) are binary. Each of these general methods in turn has many variants.
We favor machine learning, and in particular the Super Learner approach
(van der Laan et al., 2007). We recommend the latter approach in all cases
because even if one feels one knows the true parametric model (and guessing
the true model is highly unlikely) that belief can be validated by including
this parametric model in the Super Learner library. If the model has good
predictive results (where “good” here means low estimated cross-validated
risk using an appropriate loss function) it will tend to be weighted highly
in the final model returned by the Super Learner. If not, then the data do
not support the analyst’s guess and the model will be given a low weight.
Moreover, the authors of the Super Learner algorithm have shown that this
particular machine learning approach yields a model whose asymptotic prop-
erties approach those of the “oracle” selector amongst the learners included
in the Super Learner library. There thus appears to be nothing to lose—and
everything to gain—in using this approach to obtaining an initial estimator
Q(0) of Q0. (Here we change notation slightly: the superscript (0) denotes
the initial step in a multi-step algorithm, and does not signify a treatment
rule.)

Upon obtaining an initial estimate Q(0) of Q0, the next step in TMLE is to
apply a fluctuation function to this initial estimator that is the least favor-
able parametric submodel through the initial estimate, Q(0) (van der Laan
and Rubin, 2006). This parametric submodel through Q0 is chosen so that
estimation of Ψ(Q0) is “hardest in the sense that the parametric Cramer-Rao
Lower Bound for the variance of an unbiased estimator is maximal among all
parametric submodels,” (van der Laan, 2010a). Since the Cramer-Rao lower
bound corresponds with a standardized L2 norm of dΨ(Qn(ε))/dε evaluated
at ε = 0, this is equivalent to selecting the parametric submodel for which
this derivative is maximal w.r.t. this L2 norm.

We also seek an (asymptotically) efficient estimator. This too is achieved
with the above described fluctuated update Qn(ε) because the score of our
parametric submodel at zero fluctuation equals the efficient influence curve of
the pathwise derivative of the target parameter, Ψ (also evaluated at ε = 0).

11
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TMLE thus essentially consists in 1) selecting a submodel Qg(ε) possibly
indexed by nuisance parameter g, and 2) a valid loss function L(Q,O) :
(Q,O)→ L(Q,O) ∈ R. Given these two elements, TMLE solves

Pn

{
d

d(ε)
[L(Q∗n(ε))]ε=0

}
= 0,

so if this “score” is equal to the efficient influence curve, D∗(Q∗n, gn), then we
have that Q∗n solves PnD

∗(Q∗n, gn) = 0. Now a result from semi-parametric
theory is that solving this efficient score for the target parameter yields, under
regularity conditions (including the requirement that Qn and gn consistently
estimate Q0 and g0, respectively), an asymptotically linear estimator with
influence curve equal to D∗(Q0, g0). The TMLE of the target parameter
is therefore efficient. Moreover, the TMLE is double-robust in that it is a
consistent estimator of Ψ(Q0) if either Qn or gn is consistent.

TMLE acquires this property by choosing the fluctuation function, Q∗, such
that it includes a term derived from the efficient influence curve of Ψ(Q0).

The following theorem presents the efficient influence curve for a parameter
like the ones described above. The content of the theorem will make it
immediately apparent why the fluctuation function described subsequently
takes the form it does; i.e., it will be seen how the terms in the efficient
influence curve lead directly to the form of the fluctuation function, QL(j)n(ε).

3.2 Efficient Influence Curve

We repeat here Theorem 1 from van der Laan (2010a).

Theorem 1 The efficient influence curve for Ψ(Q0) = E0Yd at the true
distribution P0 of O can be represented as

D∗ = Π(DIPCW | TQ),

where

DIPCW (O) =
I(Ā = d(L̄))

g(Ā = d(L̄) | X)
Y − ψ.

TQ is the tangent space of Q in the nonparametric model, X is the full data (in
the present context the full data X would be defined as {N(k) : k = 0, 1, 2, ..., K})
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and Π denotes the projection operator onto TQ in the Hilbert space L2
0(P0) of

square P0-integrable functions of O, endowed with inner product 〈h1, h2〉 =
EP0h1h2(O).

This subspace

TQ =
2∑
j=0

TQL(j)

is the orthogonal sum of the tangent spaces TQL(j)
of the QL(j)-factors, which

consists of functions of L(j), Pa(L(j)) with conditional mean zero, given the
parents Pa(L(j)) of L(j), j = 0, 1, 2. Recall also that we denote L(2) by ‘Y .’

Let

D∗j (Q, g) = Π(Dj | TQL(j)
).

Then
D∗0 = E(Yd | L(0))− ψ,

D∗1 = I[A(0)=d0(L(0))]
g[A(0)=d0(L(0))|X]

{
CL(1)(Q0)(1)− CL(1)(Q0)(0)

}
{L(1)− E[L(1) | L(0), A(0)]} ,

D∗2 = I[Ā=d(L̄)]

g[Ā=d(L̄)|X]

{
L(2)− E[L(2) | L̄(1), Ā(2)]

}
,

where, for δ = {0, 1} we used the notation

CL(1)(Q0)(δ) ≡ E(Yd | L(0), A(0) = d(L(0)), L(1) = δ).

We note that

E[Yd | L(0), A(0) = d0(L(0)), L(1)] = E[Y | L̄(1), Ā = d(L̄)].

We omit the rest of the theorem as presented in van der Laan (2010a) as it
pertains to data structures with up to T time points, T ∈ N.

As mentioned above, TMLE solves the efficient influence curve equation,
PnD

∗(Q∗n, gn). This is accomplished by adding a covariate to an initial esti-

mator Q
(0)
L(j) as follows. (Here L(j) is taken as binary.)

logit[QL(j)n(ε)] = logit[Q
(0)
L(j)n] + εCL(j)(Qn, gn), (6)

where, for example,
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CL(1)(Q, g) ≡ I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]

{
CL(1)(Q0)(1)− CL(1)(Q0)(0)

}
,

with CL(1)(Q0)(δ) as defined in Theorem 1, and

CL(2)(Q, g) ≡ I(Ā = d(L̄)))

g(Ā = d(L̄)) | X)
.

It immediately follows that this choice of QL(j)(ε) yields a score that is equal
to the efficient influence curve at ε = 0 as claimed.

3.3 Implementation of the TMLE’s

Below we briefly describe two different procedures for the fitting of ε, which
we call the one-step and iterative approaches, which result in two distinct
targeted maximum likelihood estimators. The iterative approach estimates
a common ε for all factors for which a fluctuation function is applied, and
the one-step estimator fits each factor separately. In the latter case ‘ε’ in
equation (6) should be replaced with ‘εj.’

We note also that there is at least one other method of fitting ε that we are
aware of, which we have not implemented in the current study. The idea
here is to start with an initial estimator Qn(ε), where this initial estimator
is defined as in equation (6), with ε chosen at some initial value (say −1 ≤
ε ≤ 1). This estimator is then plugged into the empirical efficient influence
curve estimating equation, and then numerical analysis methods are used to
find

εn = argmin
ε
|PnD∗(Qn(ε), gn)|,

where gn is an estimate of the treatment mechanism, which can be either
given or estimated from the data, and ε ∈ [a, b] where a, b are assumed to
bracket the solution εn. Q∗(ε) takes the exact form described in the pre-
vious section; i.e., it is chosen with clever covariate as described above. If
the empirical influence curve is well-behaved on ε ∈ [a, b] and the solution is
contained in that interval, then one should be able to find an εn such that
|PnD∗(Q∗(εn), gn)| is arbitrarily close to 0, which means one has found a so-

lution Q
(0)
n (εn) of the empirical efficient influence curve equation. A technical
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report on this procedure is forthcoming.

It’s worth noting that the number of different TMLE’s is not limited to the
number of methods for fitting the fluctuation function. Targeted maximum
likelihood estimators can also be indexed by different initial estimators, Q(0).
Thus, for example, one may choose an initial estimator corresponding to a
parametric model for Q0, or, as we prefer, choose one corresponding to a
data-adaptive estimator. The latter can be partitioned into many varieties
as well; thus the number of initial estimators is vast, and this translates to
a corresponding number of possible TMLE’s. The class of TMLE’s is thus
defined by the fact that they all apply a specific fluctuation function to the
initial estimator Q(0) (which is explicitly designed so that the derivative of
the loss function at zero fluctuation is equal to the efficient influence curve),
independent of the choice of Q(0), and a loss function for the purposes of
estimating ε.

Of course, some choices for Q(0) are better than others in that they will be
better approximations of Q0. Doing a good job on the initial estimator has
important performance consequences, which is one good reason to pursue an
aggressive data-adaptive approach.

One-Step TMLE

The one-step TMLE exploits the fact that estimates of the conditional distri-
butions of Y and Yd are not required in order to compute the clever covariate
term of QL(2)(ε), the latter being the final Q0 term in the time-ordering of the
factors (for a two-stage sequential randomized trial). This allows one to up-

date Q
(0)
Ld(2) ≡ P (Yd = 1 | Ld(1), L(0)) = EQ(0) [Yd | Ld(1), L(0)] with its fluc-

tuation ε2CL(2)(Q, g) first, then use this updated (i.e., fluctuated) estimate
Q∗L(2) in the updating step of the QL(1) term. We remind the reader that the

efficient influence curve—and hence CL(j)(Q, g)—is parameter-specific, and
therefore different parameters (which in our context amounts to different EYd
indexed by d) will have different realizations of the clever covariates.

As with the maximum likelihood estimator (discussed in section 4), both

estimators (one-step and iterative) require an initial estimate Q
(0)
L(j) of QL(j)

for j = 0, 1, 2, where Q
(0)
L(0) ≡ PQ(0)(L(0)) will just be estimated by the

empirical distribution of L(0). Thus the estimates Q
(0)
L(j), j = 1, 2 would
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just be, e.g., the ML estimates if that is how one obtains one’s initial es-
timate of Q0. (However, as mentioned previously, we strongly recommend
a data-adaptive/machine learning approach for obtaining the initial estima-
tors.) Upon obtaining these initial estimates of Q0, one then computes an
“updated” estimate Q∗L(2) by fitting the coefficient ε2 using (in this case of

binary factors), logistic regression. The estimate of ε2 is thus an MLE. This
means computing a column of values of CL(2) (one value per observation)
and then regressing the outcome L(2) on this variable using the logit of the

initial prediction (based on Q
(0)
L(2)) as offset. That is, for each observation a

predicted value of L(2) on the logit scale is generated based on the previ-

ously obtained Q
(0)
L(2). Then ε2,n is found by regressing L(2) on the computed

column CL(2) with logit
(
Q

(0)
L(2)

)
as offset. (This is achieved in R with the

offset argument in the glm function.)

Note that this clever covariate, CL(2), requires an estimate of g(Ā | X) =
g(Ā | L(0), L(1)) (the latter equality valid under the sequential randomiza-
tion assumption). With A(0) random and A(1) a function of L(1) only, and if
L(1) is binary or discrete, this estimate is easily obtained non-parametrically.
If L(1) is continuous, some modeling will be required.

Having obtained an estimate Q∗L(2) (which is parameter-dependent, and hence

targeted at the parameter of interest), one then proceeds to update the es-
timate of QL(1) by fitting the coefficient ε1,n—again using logistic regression
if L(1) is binary. Note that the clever covariate CL(1)(Q, g) involves an es-
timate of QL(2). Naturally, we use our best (parameter-targeted) estimate
for this, Q∗L(2), which was obtained in the previous step. Q∗ = (Q∗L(1), Q

∗
L(2))

now solves the efficient influence curve equation, and iterating the above
procedure will not result in an updated estimate of Q∗—i.e., the estimates
of ε will be zero if the procedure is repeated using the Q∗ obtained in the
previous round as initial estimator. Armed now with the updated estimate
Q∗ ≡ (Q∗L(1), Q

∗
L(2)), we obtain the one-step TMLE, Ψ(Q∗), from the G-

computation formula (5) for our parameter of interest with Q∗ in place of
Q0.

Iterative TMLE

The procedure here corresponds to estimating ε with the MLE,
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εn = argmax
ε

2∏
j=1

n∏
i=1

QL(j),n(ε)(Oi).

In contrast to the one-step approach, here we estimate a single/common ε
for all factors QL(j), j = 1, 2.

This iterative approach requires treating the observations as repeated mea-
sures. Thus, (assuming L(1) binary for the moment), each observation con-
tributes two rows of data, and instead of a separate column for L(1) and
L(2), the values from these columns are alternated in a single column one
might call “outcome.” Thus the first two rows in the data set correspond to
the first observation. Both rows are the same for this first observation except
for three columns: those for outcome, offset and clever covariate. There are
no longer separate columns for L(1) and L(2), nor for the offsets, and there
is likewise a single column for CL(j). The rows for all three columns alternate
values corresponding to j = 1 and j = 2 (as described for L(j)).

Maximum likelihood estimation of ε is then carried out by running logis-
tic regression on the outcome with CL(j) as the sole covariate, and with

the logit of the initial estimator, logit
(
Q

(0)
L(j)

)
, as offset. This value of εn

is used as coefficient for the clever covariates in the QL(j)(ε) terms for the
next iteration. Note that CL(1) = CL(1)(Qn, gn). Thus for the kth iteration

(k = 1, 2, ...), C
(k)
L(1) = C

(k)
L(1)

(
Q

(k−1)
n , gn

)
, and gn is not updated. The process

can be iterated till convergence. Convergence is hardly required, however,

if the difference |ψ(k−1)
n − ψ

(k)
n | is much smaller than var

(
ψ

(k−1)
n

)
. Here

ψ
(k)
n ≡ Ψ

(
Q(k)(ε)

)
is the kth iteration TMLE of the parameter, and the es-

timated variance, varn

(
ψ

(k−1)
n

)
can be used in place of the true variance.

Our simulations suggest that the iterated values of ψ
(k)
n are approximately

monotonic, and in any case, the value of |εn| for successive iterations typically
diminishes more than an order of magnitude. The latter fact implies that
successive iterations always produce increasingly smaller values of the abso-
lute difference |ψ(k−1)

n − ψ(k)
n |, which means that once this difference meets

the above stated criterion, the process is complete for all practical purposes.
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4 Simulations

We simulated data corresponding to the data structure described in section
2 (for binary L(1)) under varying conditions. The conditions were chosen in
order to illustrate the double-robustness property of the TMLE methods, and
to show behavior at various sample sizes. Each of these scenarios was further
subdivided into simulations that 1) assigned A(0) and A(1) randomly or 2)
assigned A(0) randomly but assigned A(1) in response to an individual’s
L(1); the latter corresponding to an individual’s intermediate response to
treatment A(0). We give the specification of these dynamic regimes in the
following section.

Another set of simulations was done for L(1) discrete with four values. In
these simulations A(1) was always set in response to L(1), i.e., L(1) was a
time dependent confounder.

For each simulated data set, we computed the estimate of our target pa-
rameter Ψ(P0) ≡ EYd for the following estimators: 1) One-step TMLE; 2)
Iterative TMLE; 3) Inverse Probability of Treatment Weighting (IPTW); 4)
Efficient Influence Curve Estimating Equation Methodology (EE); 5) Maxi-
mum Likelihood Estimation using the G-computation formula. In the Results
subsection we give bias, variance and relative MSE estimates.

Here is a brief description of each of the estimators examined.

• Maximum Likelihood
The (parametric) MLE requires a parametric specification of QL(j) for
computation of the parameter estimate, Ψ(Q0). The form used (e.g.,
QL(j),n = expit[m(L̄(j − 1), Ā(j − 1) | βn)] for some function m(· | ·))
was either that of the correct QL(j) or a purposely misspecified form,
and in either case the MLE of the coefficients β were obtained with
common software (namely, the glm function in the R language). The
estimate of EYd was then computed using the G-computation formula
(5), which, e.g., with binary Y and binary L(1), and using the empirical
distribution of L(0) yields

Ψ(Q0) =
1

n

n∑
i=1

∑
y

y
∑
l(1)

Q
(d)
L(1)(l(0)i, l(1))Q

(d)
L(2)(l(0)i, l(1), y)
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= 1
n

n∑
i=1

{
Q

(d)
L(1)(l(0)i, L(1) = 1)Q

(d)
L(2)(L(0)i, L(1) = 1, Y = 1)

+Q
(d)
L(1)(L(0)i, L(1) = 0)Q

(d)
L(2)(l(0)i, L(1) = 0, Y = 1)

}
.

The maximum likelihood estimator, which is a substitution estimator,
can thus be expressed as

ΨMLE
n = Ψ

(
Q(0)

)
= 1

n

n∑
i=1

{
Q

(0),d
L(1) (l(0)i, L(1) = 1)Q

(0),d
L(2) (l(0)i, L(1) = 1, Y = 1)

+Q
(0),d
L(1) (l(0)i, L(1) = 0)Q

(0),d
L(2) (l(0)i, L(1) = 0, Y = 1)

}
,

where we used the notation Q(0) ≡ QMLE.

The estimator thus requires estimations of QL(j) ≡ P (L(j) | Pa(L(j))),
which as mentioned above, were correctly specified for one set of sim-
ulations and incorrectly specified for another.

• One-Step TMLE
See Implementation section above.

• Iterative TMLE
See Implementation section above.

• IPTW
The IPTW estimator is defined to be

ψIPTWn =
1

n

n∑
i=1

Yi
I(Āi = d(L̄)

g[Āi = d(L̄) | Xi]
.

As with TMLE, this estimator requires estimation of g[Ā = d(L̄) | X],
which for binary factors and binary treatment is a straightforward non-
parametric computation. The IPTW estimator is known to become
unstable when there are ETA violations, or practical ETA violations.
Adjustments to the estimator that compensate for these issues have
been proposed (Bembom and van der Laan, 2008). In the simulations
at hand, g[Ā = d(L̄) | L̄] was bounded well away from 0 and 1 but was
nevertheless not estimated at all (the true distribution of A | X was
used). However, van der Laan and Robins (2002) show that there is
some efficiency gain in estimating g(Ā | L̄) over using the known true
g.
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• Estimating Equation Method
This method solves the efficient influence curve estimating equation in
ψ. That is

ψEEn = PnEQn(Yd | L(0)) +
1

n

∑
i

{
D∗1,n(Oi) +D∗2,n(Oi)

}
,

with D∗1,n, D
∗
2,n as given in Theorem 1 except that the true conditional

expectations of Y and of Yd in the expressions for D∗1 and D∗2 are
replaced with their respective sample estimates. Here we used the no-
tation Pnf =

∑n
i=1 f(Oi). The only difference between this estimator

and the so-called augmented inverse probability of censoring weights
(AIPCW) estimator is in the way the expression for the efficient influ-
ence curve is derived. The results for the AIPCW estimator should be
identical to those for the one we describe here.

Just as with the TMLE, this estimator requires model specifications
of QL(j), j = 1, 2 for estimation of E(Yd | L(0)) and for the elements
of D∗1, D

∗
2 that involve conditional expectations of Yd and of Y . Here

again we used the ML estimates of QL(j), under both correct and in-
correct model specification scenarios, i.e., we used Qn = Q(0) for the
factors involving estimates of Q0 in the estimating equation above. (See
description of the Maximum Likelihood Estimator above.)

• Naive Estimator
We also computed a ‘naive’ estimator for the simulations in which L(1)
was binary and not a confounder. This estimator gives an interesting
benchmark for comparison of variance. We define the naive estimator
as simply the average outcome among those who follow treatment rule
d:

Ψnaive
n ≡ 1∑

i I(Āi = d(L̄i))
∗
∑
i

Yi[I(Āi = d(L̄i))].

4.1 Some Specific Treatment Rules

We considered several treatment rules, one set for binary L(1) (three differ-
ent rules), and a necessarily different set (also three separate rules) for the
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discrete L(1) case. This permits easy computation of the natural parameters
of interest EYdi−EYdj , for i 6= j, where in our case, i, j = 1, 2, 3. Indeed such
parameters are arguably the ultimate parameters of interest to researchers
utilizing longitudinal data of the type described here, since they implicitly
give the optimum treatment rule among those considered. As the number
of discrete levels of L(1) increases, one can begin considering indexing treat-
ment rules by threshold levels θ of L(1) such that, e.g., assuming binary
A(0) and A(1), one could set A(1) according to A(1) = [1 − A(0)]I(l(1) <
θ) + [A(0)]I(l(1) ≥ θ).

Binary L(1)

In the binary L(1) case, we considered the following three treatment rules

• Rule 1 . A(0) = 1, A(1) = A(0)∗I(L(1) = 1)+(1−A(0))∗I(L(1) = 0).
In words, set treatment at A(0) to treatment 1, and if the patient does
well on that treatment as defined by L(1) = 1, continue with same
treatment at A(1). Otherwise, switch at A(1) to treatment 0.

• Rule 2 . A(0) either 0 or 1, and A(1) = A(0). That is, A(0) can be
either 0 or 1, but whatever it is, stay on the same treatment at A(1),
independent of patient’s response to treatment A(0).

• Rule 3 . A(0) = 0, A(1) = A(0)∗I(L(1) = 1)+(1−A(0))∗I(L(1) = 0).
In words, set treatment at A(0) to 0 and if the patient does well, stay
on treatment 0 at A(1), otherwise switch to treatment 1 at A(1). This
is identical to Rule 1 except that patients start on treatment 0 instead
of treatment 1.

Note that estimation of, or evaluation of, a rule-specific parameter does not
require that patients were actually assigned treatment in that manner, i.e.,
according to the rule. If patients were assigned treatment randomly, then
one simply needs to know which individuals in fact followed the rule in order
to estimate the rule-specific mean outcome. (However, even if A(j) were
assigned randomly for all j ∈ {0, 1} and thus the naive estimator is consistent,
the TMLE is still tailored to be more efficient.)

On the other hand, if treatment was indeed assigned according to, e.g., rules
1 or 2, then L(1) is a time-dependent confounder. These are really the cases
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of interest. In that case, if one’s estimator does not adjust for confounding
(like the naive estimator described above) the estimate will be biased. All
the estimators described above except the naive estimator attempt to adjust
for confounding in one way or another.

Discrete L(1) with Four Values

With discrete-valued L(1) (L(1) ∈ {0, 1, 2, 3}), the treatment rules were nec-
essarily modified slightly to accommodate the additional values:

• Rule 1 . A(0) = 1, A(1) = A(0)∗I(L(1) > 1)+(1−A(0))∗I(L(1) ≤ 1).
In words, set treatment at A(0) to treatment 1, and if the patient does
well on that treatment as defined by L(1) > 1, continue with same
treatment at A(1). Otherwise, switch at A(1) to treatment 0.

• Rule 2 . A(0) = 0, A(1) = A(0)∗I(L(1) > 1)+(1−A(0))∗I(L(1) ≤ 1).
Identical in principle to Rule 1 except that patients start on treatment
0 instead of treatment 1.

• Rule 3 . A(0) either 0 or 1, A(1) = A(0) ∗ I(L(1) > 1) + (1 − A(0)) ∗
I(L(1) ≤ 1). In words, set treatment at A(1) to be the same as A(0) if
the patient is doing well, and switch treatments otherwise.

4.2 Data Generation

In this section we describe the data generation process for each of the vari-
ables in the causal model. There are notable differences in the two major
sets of simulations (i.e., the binary L(1) case vs. the discrete L(1) case).

• L(0)
For both binary and discrete L(1) cases, L(0) consisted of four base-
line covariates, L(0) = (W1, ...,W4)T , three of which were distributed
Normally (W1,W2,W3)T ∼ N(µ,Σ) with µ = (0,−0.35, 0)T and with
all off-diagonal terms of Σ set to 0. The fourth baseline covariate W4

was distributed as a truncated normal, also independent of the other
baseline variables. Specifically, let random variable W ′ ∼ N(5, 1.52).
Then

W4 =

{
W ′ if 2 < W ′ < 8

0 otherwise
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• A(0)
A(0) was assigned randomly for all simulations, A(0) ∼ Ber(0.5)

• L(1)

– (1) Binary In the binary L(1) case,
L(1) ∼ Ber([1 + exp(−(Logit[QL(1)]))]

−1), where

Logit[QL(1)] = 1
2.5

(2−W1−W4−2W 2
2 +1.8W 2

3 −3W4W3 +3A(0)+
2(1− A(0))).

and with W1, ...W4 as defined above.

– (2) Discrete In the discrete L(1) case we used a hazard approach
to data generation. In other words, we code each of the categories
for L(1) ∈ {0, 1, 2, 3} as a binary variable, L(1)m:

P [L(1) = m | Pa(L(1))] = P [L(1) = m | L(1) ≥ m,Pa(L(1))]∗P [L(1) ≥ m | Pa(L(1))]

= P [L(1)m = 1 | L(1) ≥ m,Pa(L(1))]
m−1∏
s=1

{1− P [L(1)s = 1 | L(1) ≥ s, Pa(L(1))]} ,

with m = 0, 1, 2, 3. In this way, each binary factor of L(1), L(1)m,
can be generated (and modeled) as a logistic expression, and our
parameter of interest Ψ(P0) still only depends on the true joint dis-
tribution of the data through Q where now QL(1) =

∏4
m=1 QL(1)m .

Note that P [L(1)4 = 1) | L(1) ≥ 4, Pa(L(1))] = 1. For each factor
L(1)m, m = 0, 1, 2, the probabilities were generated according to

logit[QL(1)1 ] = 1
6.5

[−15 −W1 −W4 − 2W 2
2 + 1.8W 2

3 − 3W4W3 +
3A(0) + 2(1− A(0))],

logit[QL(1)2 ] = logit[QL(1)1 ] + 2.8,

logit[QL(1)3 ] = logit[QL(1)2 ] + 4.2,

• A(1)
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– (1) Binary L(1) For one set of simulations, A(1) was simply as-
signed randomly, A(1) ∼ Ber(0.5). For the other set of binary
L(1) simulations, A(1) was set according to

A(1) =

{
A(0) if L(1) = 1
A(0) with probability 0.5 otherwise

– (2) Discrete L(1) A(1) in the discrete case was set according to

A(1) =

{
A(0) if L(1) > 1
A(0) with probability 0.5 otherwise

• L(2)

– (1) Binary L(1) For the binary L(1) simulations,
L(2) ∼ Ber([1 + exp(−(Logit[QL(2)]))]

−1), where

Logit[QL(2)] = 1
2.5 (2−W1−W4−2W 2

2 +1.8W 2
3−3W4W3+3A(0)+2(1−A(0))+

2L(1)− 1.5(1− L(1)) + 6 ∗ I(d(L̄) = 1)− 6.5 ∗ I(d(L̄) = 2)−
W1(1−A(0)) +W4A(1))).

– (2) Discrete L(1) For the simulations with discrete L(1),
L(2) ∼ Ber([1 + exp(−(Logit[QL(2)]))]

−1), where

Logit[QL(2)] = 1
6 (−7−W1 −W4 − 0.7W 2

2 + 0.6W 2
3 −W4W3 + 9A(0) +

3(1−A(0))) + 1.4L(1)−W1(1−A(0)) +W4A(1) + 6 ∗ I(d(L̄) = 3).

In the above expressions I(d(L̄) = j), j = 1, 2, 3 is equal to 1 if rule j was
followed at both treatment time points (as described in section 4.1) and 0
otherwise.

4.3 Simulation Results

Note on the tables.
Estimates of bias, variance and relative mean squared error (Rel MSE) are
presented for the TMLE’s and several comparison estimators. We define
estimated relative MSE for each estimator as the ratio of its estimated MSE
to that of an efficient, unbiased estimator. The efficiency bound here is the
variance of the efficient influence curve. Thus for each estimator ψn of ψ0,
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Rel MSE ≡ (Ê(ψn)− ψ0)2 + v̂ar(ψn)

var(D∗(Q, g))/n
,

where D∗ is the efficient influence curve for the relevant parameter, ΨF .
In fact, the value used in these computations for var (D∗(Q, g)) is itself an
estimate computed from taking the variance of D∗(Q0, g0)(O) from a large
number of observations generated from P0.

The estimates of bias in all cases is not accurate to much less than 10−3. This
is because the true parameter values were also obtained by simulation from
the true Pd for each rule d with a large number of observations. Thus bias
estimates that appear to be smaller than this should be viewed as simply
being < 10−3. We indicate these estimates with an asterisk.

Qm, gc denotes simulations where g (the treatment mechanism) was cor-
rectly specified, but QL(2) was purposely misspecified. Qc, gc are simulations
for which both Q and g are correctly specified. For each trial scenario we
present results for both Qc, gc and Qm, gc. Note that the IPTW and Naive
estimators are not affected by whether or not Qn is correctly specified, since
these estimators do not estimate Q0.

Varying numbers of simulations were done under the different scenarios. The
number of simulations under each configuration (i.e., a given scenario and ei-
ther Qc, gc or Qm, gm) ranged from 1990 to 5000 depending on computation
time.

The first two tables (i.e., for Scenario I) present bias, relative efficiency and
MSE estimates for the TMLE’s as well as each of the comparison estimators,
for all three parameters specified above, i.e., those corresponding to EYd,
d = 1, 2, 3. For brevity, estimator performance for the other scenarios are
presented only for EY1. There are only minor differences in the results for
the other parameter estimates.

Scenario I: Binary L(1) and A(1) Assigned at Random

In this scenario, we have L(0) as described above, A(0) and A(1) assigned
at random and L(1) binary. Here the Naive estimator described above is
consistent (though inefficient) and we include it as an interesting benchmark.
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EY1 EY2 EY3

n = 100 Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) * 3.7e-3 1.3 -2.7e-3 6.5e-3 1.4 * 3.2e-3 1.1
TMLE (iter) * 3.7e-3 1.3 -2.7e-3 6.5e-3 1.4 * 3.2e-3 1.1
IPTW -2.7e-3 2.5e-2 8.7 1.4e-3 1.9e-2 3.9 1.9e-3 8.8e-3 3.0
MLE -2.0e-3 3.8e-3 1.4 -3.2e-3 6.9e-3 1.4 -1.9e-3 3.2e-3 1.1
EE * 3.8e-3 1.3 -2.7e-3 6.5e-3 1.4 * 3.2e-3 1.1
Naive * 7.3e-3 2.6 * 1.0e-2 2.2 * 5.0e-3 1.7

n = 250 Bias Var Rel MSE Bias var Rel MSE Bias Var Rel MSE

TMLE (1-step) * 1.2e-3 1.0 * 2.1 1.1 * 1.2e-3 1.0
TMLE (iter) * 1.2e-3 1.0 * 2.1e-3 1.1 * 1.2e-3 1.0
IPTW 1.6e-3 9.5e-3 8.4 * 7.4e-3 3.8 * 3.3e-3 2.8
MLE * 1.1e-3 1.0 * 2.1e-3 1.1 * 1.1e-3 1.0
EE * 1.1e-3 1.0 * 2.1e-3 1.1 * 1.2e-3 1.0
Naive * 2.8e-3 2.5 * 4.0e-3 2.1 * 1.9e-3 1.6

n = 500 Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) * 5.6e-4 1.0 * 1.1e-3 1.1 * 6.2e-4 1.1
TMLE (iter) * 5.6e-4 1.0 * 1.1e-3 1.1 * 6.2e-4 1.1
IPTW * 4.7e-3 8.4 -1.2e-3 3.4e-3 3.5 * 1.6e-3 2.8
MLE * 5.5e-4 1.0 * 1.1e-3 1.1 * 5.7e-4 1.0
EE * 5.6e-4 1.0 * 1.1e-3 1.1 * 6.2e-4 1.1
Naive -1.1e-3 1.4e-3 2.5 * 2.0e-3 2.1 * 9.6e-4 1.6

Table 1: Scenario I Data: Estimator performance for various sample sizes with Q and g
correctly specified, for each of three estimated parameters. The estimates for the iterative
TMLE were from the 5th iteration. Estimates were based on between 2000 and 5000
simulations, depending on sample size. An asterisk indicates an estimated bias < 10−3.

Scenario II: Binary L(1); A(1) Assigned in Response to L(1)

When L(1) is a confounder, the naive estimator is heavily biased and we
omit it from the rest of the tables. For brevity we also only include the
performance of the estimators for a single parameter, EY1. The results for
the other treatment-rule-specific parameters are similar.
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EY1 EY2 EY3

n = 100 Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) -1.4e-3 5.1e-3 1.8 * 8.1e-3 1.7 * 3.5e-3 1.2
TMLE (iterative) -3.1e-3 4.5e-3 1.6 2.1e-3 7.7e-3 1.6 * 3.5e-3 1.2
IPTW * 2.5e-2 8.7 -4.0e-3 1.8e-2 3.6 * 8.4e-3 2.9
MLE -9.7e-2 3.2e-3 4.5 1.4e-1 3.2e-3 4.8 6.4e-2 2.2e-3 2.1
EE -3.4e-3 5.1e-3 1.8 2.5e-3 8.5e-3 1.8 1.3e-3 3.6e-3 1.2

n = 250 Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) * 2.1e-3 1.8 1.2e-3 3.2e-3 1.7 * 1.4e-3 1.2
TMLE (iterative) * 1.9e-3 1.6 1.7e-3 3.0e-3 1.6 * 1.4e-3 1.2
IPTW 2.5e-3 9.6e-3 8.6 2.3e-3 7.8e-3 4.0 * 3.4e-3 2.9
MLE -9.6e-2 1.3e-3 9.3 1.4e-1 1.3e-3 11.1 6.3e-2 9.0e-4 4.2
EE * 2.1e-3 1.9 1.4e-3 3.4e-3 1.7 * 1.4e-3 1.2

n = 500 Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) * 1.0e-3 1.8 1.6e-3 1.6e-3 1.7 * 6.7e-4 1.1
TMLE (iterative) * 1.0e-3 1.8 1.9e-3 1.6e-3 1.7 * 6.7e-4 1.1
IPTW * 5.0e-3 8.9 * 3.7e-3 3.8 * 1.7e-3 2.9
MLE -9.6e-2 6.6e-4 17.3 1.4e-1 6.6e-4 21.3 6.4e-2 4.2e-4 7.7
EE * 1.1e-3 1.9 2.0e-3 1.7e-3 1.8 * 6.7e-4 1.1

Table 2: Scenario I Data: Estimator performance for various sample sizes with Q incor-
rectly specified and g correctly specified, for each of the three parameters. Numbers of
simulations for the various sample sizes ranged from 2000 to 5000. We exclude the Naive
estimator from this table as the results should be quantitatively similar to those of the
earlier simulations, since it does not depend on estimation of Q(0).
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Qc, gc
n = 100 n = 250 n = 500

Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) 3.0e-3 3.9e-3 1.3 * 1.3e-3 1.1 * 6.3e-4 1.1
TMLE (iter) 2.8e-3 3.9e-3 1.3 * 1.3e-3 1.1 * 6.3e-4 1.1
IPTW -1.8e-3 1.1e-2 3.9 * 4.6e-3 3.9 * 2.3e-3 4.0
MLE 1.2e-3 3.9e-3 1.3 -1.0e-3 1.3e-3 1.1 * 6.3e-4 1.1
EE 1.8e-3 3.8e-3 1.3 * 1.3e-3 1.1 * 6.3e-4 1.1

Qm, gc
n = 100 n = 250 n = 500

Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) 3.9e-3 4.5e-3 1.6 1.4e-3 1.7e-3 1.4 * 8.7e-4 1.5
TMLE (iter) 3.5e-3 4.5e-3 1.5 1.1e-3 1.7e-3 1.4 * 8.6e-4 1.5
IPTW 1.5e-3 1.1e-2 3.9 -2.4e-3 4.6e-3 3.9 -1.7e-3 2.3e-3 4.0
MLE -1.2e-1 2.8e-3 6.3 -1.3e-1 1.1e-3 14.6 -1.3e-1 5.7e-4 28.5
EE -1.2e-3 4.1e-3 1.4 -1.3e-3 1.6e-3 1.4 * 8.3e-4 1.4

Table 3: Scenario II data: Performance of the various estimators in estimating a single
parameter, EY1, for various sample sizes. ‘Qc, gc’: Q correctly specified, g correctly
specified; ‘Qm, gc’: Q misspecified, g correctly specified.
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Qc, gc
n = 100 n = 200 n = 500

Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) -3.1e-3 5.5e-3 1.1 -1.5e-3 2.6e-3 1.0 * 1.0e-3 1.0
TMLE (iter) -3.0e-3 5.5e-3 1.1 -1.4e-3 2.6e-3 1.0 * 1.0e-3 1.0
IPTW -3.2e-3 2.0e-2 4.0 3.8e-3 1.2e-2 4.1 1.3e-3 4.3e-3 4.2
MLE -2.6e-3 4.9e-3 1.0 1.2e-3 2.3e-3 0.9 * 9.0e-4 0.9
EE -3.3e-3 5.4e-3 1.1 1.5e-3 2.6e-3 1.0 * 1.0e-3 1.0

Qm, gc
n = 100 n = 200 n = 500

Bias Var Rel MSE Bias Var Rel MSE Bias Var Rel MSE

TMLE (1-step) -1.7e-3 5.2e-3 1.0 -1.9e-3 2.6e-3 1.0 * 1.1e-3 1.1
TMLE (iter) -1.7e-3 5.2e-3 1.0 -1.9e-3 2.6e-3 1.0 * 1.1e-3 1.1
IPTW 2.6e-3 2.0e-2 4.0 1.9e-3 1.0e-2 4.1 * 4.2e-3 4.1
MLE -7.0e-2 2.9e-3 1.5 -7.0e-2 1.5e-3 2.5 -7.0e-2 6.4e-4 5.5
EE -3.2e-3 5.1e-3 1.0 -2.2e-3 2.6e-3 1.0 * 1.1e-3 1.0

Table 4: Scenario III Data: Performance of the various estimators in estimating a single
parameter, EY1, for various sample sizes. ‘Qc, gc’ means Q correctly specified, g correctly
specified, while ‘Qm’ means Q misspecified. Iterative TMLE estimates in this table were
for the 3rd iteration. Asterisks indicate bias < 10e-3.

Scenario III: Discrete L(1); A(1) Assigned in Response to L(1)

With discrete L(1) we modeled the binary factors QL(1)m similarly to the
way these factors were generated, i.e., using a hazard approach (see section
4.2). Thus each binary factor is modeled with logistic regression: as with

the binary case, an initial estimate Q
(0)
L(1)m

is obtained by logistic regression

(where this estimator could be correctly or incorrectly specified) and a cor-
responding fluctuation function applied. See the appendix for the efficient
influence curve for these individual binary factors, which imply the form of
the fluctuation functions Qn,L(1)m(ε) used in the targeting step.

Small Sample Results

We also simulated data under scenario III above for a sample size of 30. We
anticipated efficiency differences (if any) between the iterative and one-step
TMLE’s would show up at this very small sample size (see Discussion sec-
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Qc, gc

Bias Var Rel MSE

TMLE (1-step) -0.016 0.023 1.4
TMLE (iter) -0.021 0.022 1.4
IPTW 1.4e-3 0.067 4.0
MLE -0.035 0.021 1.3
EE -0.027 0.021 1.3

Qm, gc

Bias Var Rel MSE

TMLE (1-step) -6.5e-3 0.019 1.2
TMLE (iter) -7.0e-3 0.019 1.1
IPTW 3.7e-3 0.069 4.1
MLE -3.0e-1 0.070 9.4
EE -9.8e-3 0.027 1.6

Table 5: Scenario III Data, at n = 30: Performance of the various estimators in estimat-
ing a single parameter, EY1. ‘Qc, gc’ means Q correctly specified, g correctly specified,
while ‘Qm’ means Q misspecified. Iterative TMLE estimates in this table were for the 4th
iteration.

tion). We saw no significant difference in the variance of these two estimators,
however. The performance of the TMLE’s at this sample size is remarkable,
particularly under model misspecification, and we felt these results warranted
a separate table.

4.4 Discussion

Relative efficiency for the ML estimator is almost always . 1. The semi-
parametric efficiency bound does not apply in general to that of an estimator
based on a parametric model. Even so, when Q is correctly specified, the
variance of the ML estimator appears to be very close to the semi-parametric
efficiency bound when n ≥ 200.

Of particular note is that the TMLE, EE and MLE estimators are already
very close to the efficiency bound at n = 250 under Qc in the binary L(1)
case. Further, the reduction in bias in going to n = 500 is small in absolute
terms.
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Even more noteworthy is the performance of the TMLE’s at the small sample
size of 30 for the scenario III simulations (discrete L(1)). Bias and variance of
both estimators are better when Q(0) is misspecified. Misspecification in this
case consisted in setting Logit(QL(2)) = 3∗L(1) (compare with the true data
generating function), but using correct specification for QL(1). With Q(0)

misspecified, the bias of both TMLE’s is quite small and the variance is very
close to the efficiency bound. The better performance under misspecification
can be understood by noting that under correct model specification, many
more parameters of the model need to be fit. We expect that asymptotically,
there is a gain in efficiency of the TMLE’s if Q(0) is consistently estimated,
but these simulations show that a parsimonious, though incorrect, model as
initial estimator can have distinct advantages in the double robust TMLE at
small sample sizes, even over using the correct initial model.

The effect is still noticeable at sample size 100 in the discrete L(1) case. There
we also see lower bias of the TMLE’s under incorrect model specification
than under correct model specification. This phenomenon is not present in
the scenario II simulations however.

The advantage of the TMLEs’ being substitution estimators also becomes
apparent in these small sample results: at n = 30, many times the estimating
equation and IPTW estimators gave estimates outside the range [0, 1] (note
that the parameters here are always in [0, 1]), and this also contributes to
their higher variance.

In general, under incorrect specification of Q we do not expect any of the
estimators that estimateQ0 to be asymptotically efficient except for the MLE,
which used a much simpler model than the true model and therefore could
easily achieve a lower variance bound. Misspecification of Q in all cases was
implemented by misspecifying Q

(0)
L(2) but correctly specifying QL(1). Thus

under Qm, gc the MLE will be biased but the TMLE and EE estimators
are double robust and therefore still asymptotically unbiased under correct
specification of g. Under the scenarios simulated here g is expected to be
known and we therefore omitted simulations in which g is misspecified; the
latter will of course result in bias of the IPTW estimator. Scenarios in which
g is not known, or not completely known are also quite plausible, however;
e.g., one can easily imagine settings in which assignment of A(0) and/or
A(1) was not done in complete accordance with a defined treatment rule.
Nevertheless, even in these cases, with A(0) randomized and L(1) discrete
or binary, non-parametric estimation of g would not be difficult. If A(0) is
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a function of L(0) then some smoothing will be required for the estimate of
g(A(0) | L(0)) and model misspecification is likely to arise.

The two versions of TMLE we’ve implemented (one-step and iterative) typ-
ically agree in their estimate of the parameter to within 1%, and in many
cases to within quite a bit less than this. The choice in implementation will
depend on one’s data. For example, with two time points and a single inter-
mediate covariate L(1) with a small number of discrete levels, the one-step
estimator is conceptually easier to implement than the iterative approach.
As the number of estimated factors increases (either from having multiple
time points, multiple covariates in L(j), 1 < j < K, or both), the iterative
method may become the more practical programming choice.

Also noteworthy is that the one-step TMLE requires estimation of two ε’s
in the binary L(1) case and four ε’s in the discrete L(1) case. For the gen-
eral data structure (L(0), A(0), ...L(K), A(K), L(K+ 1)) where intermediate
factor L(j) has tj levels, the number of ε’s the one-step estimator must fit is∑K+1

j=1 (tj − 1). In contrast, the iterative TMLE performs a fitting of ε that
is independent of K and tj. (Though a new round of fitting occurs for each
iteration, the bulk of the fitting occurs in the first iteration.) We thus expect
at least a small efficiency advantage for the iterative method. We have not
observed this advantage in the current simulation study even for a sample
size as low as 30, though we still expect it to appear as K and/or tj increase.

Appendix I: Confirming Correct Implementa-

tion of the TMLE Methods

Implementing TMLE in longitudinal settings is not a trivial exercise. How-
ever, there are several checks one can use to ensure the estimator is being
correctly implemented. For example, if one is simulating data, one can check
the double-robust property, i.e., make sure the estimator goes to the truth
(as n increases) under misspecification of either Q or g (but not both at the
same time).

If both Q and g are correctly specified, the variance of the TMLE’s should
achieve the semi-parametric efficiency bound well before n = 1000 under any
of the three data scenarios presented here.
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If one is using the method on real data to estimate a parameter of inter-
est, simulation from a proposed Qn can still be performed and the double-
robustness property checked as above. An equally important check—which
can be performed on a real data set—is that the estimator solves the empiri-
cal mean of the efficient influence curve; i.e. one checks that PnD

∗ (Q∗, gn)) =
0. In our simulations the one-step estimator typically yielded values of
|PnD∗ (Q∗, gn)) | . 10−10. For the iterative approach, successive iterations
should produce decreasing values of |PnD∗|. An illustration of this is given
in Table 6, which shows median values of |PnD∗| from two of our simulation
scenarios.

Scenario II, n = 250, Qc, gc
One-step 1st 2nd 3rd 4th

1.3e-10 5.0e-04 2.5e-05 1.2e-06 5.6e-08

Scenario III, n = 200, Qc, gc
One-step 1st 2nd 3rd 4th

1.2e-10 3.9e-04 1.4e-05 5.2e-07 2.1e-08

Table 6: Median values of |PnD
∗| for the one-step and iterative approaches in estimat-

ing EY1 for two of the data scenarios examined. Scenario II data was based on 5000
simulations; scenario III, 500 simulations. Both Q and g were correctly specified in these
simulations. Values for the one-step TMLE and the first four iterations of the iterative
TMLE are presented.

Appendix II: Formulas for Efficient Influence

Curve and Clever Covariates for discrete L(1)

In the following, D∗1,t indicates the efficient influence curve for the tth binary
indicator of L(1), t = 0, 1, 2, 3, and Pa(L(1)) = (L(0), A(0)). We have

D∗1,0(O) = I(A(0)=d0(L(0)))
g(d0(L(0))|X)

×
{E(Yd | L(1) = 0, Pa(L(1)))−∑

m>0 E [Yd | L(1) = m,Pa(L(1))]P (L(1) = m | L(1) > 0, Pa(L(1)))}×
{I(L(1) = 0)− I(L(1) ≥ 0)E[I(L(1) = 0) | Pa(L(1))]},
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where, e.g.,

P (L(1) = 2 | L(1) > 0, Pa(L(1)))

= P (L(1)=2,L(1)>0|Pa(L(1)))
P (L(1)>0|Pa(L(1)))

= P (L(1)=2)|Pa(L(1))
1−P (L(1)=0|Pa(L(1)))

=
P (L(1)=2|L(1)≥2,Pa(L(1)))

∏
s<2 [1−P (L(1)=s|L(1)≥s,Pa(L(1)))]

1−P (L(1)=1|Pa(L(1))

= P (L(1) = 2 | L(1) ≥ 2, Pa(L(1))) [1− P (L(1) = 1 | L(1) ≥ 1, Pa(L(1)))] ,

and

P (L(1) = 3 | L(1) > 0, Pa(L(1)))

= P (L(1) = 3 | L(1) ≥ 3, Pa(L(1)))
∏2

s=1 [1− P (L(1) = s | L(1) ≥ s, Pa(L(1)))]

= 1 ∗
∏2

s=1 [1− P (L(1) = s | L(1) ≥ s, Pa(L(1)))] .

Similarly,

D∗1,1(O) = I(A(0)=d0(L(0)))
g(d0(L(0))|X)

×
{E(Yd | L(1) = 1, Pa(L(1)))−∑

m>1 E [Yd | L(1) = m,Pa(L(1))]P (L(1) = m | L(1) > 1, Pa(L(1)))}×
{I(L(1) = 1)− I(L(1) ≥ 1)E[I(L(1) = 1) | L(1) ≥ 1, Pa(L(1))]},

and

E[I(L(1) = m) | L(1) ≥ m,Pa(L(1))] ≡ P (L(1) = m | L(1) ≥ m,Pa(L(1))).

D∗1,2(O) is similar, but D∗1,3(O) = 0 since

I(L(1) = 3)− I(L(1) ≥ 3)E[I(L(1) = 3) | L(1) ≥ 3, Pa(L(1))]

= I(L(1) = 3)− I(L(1) = 3) ∗ E[I(L(1) = 3) | L(1) ≥ 3, Pa(L(1))]

= I(L(1) = 3)− I(L(1) = 3) ∗ P [L(1) = 3 | L(1) ≥ 3, Pa(L(1))]

= I(L(1) = 3)− I(L(1) = 3) ∗ 1 = 0.

Thus the efficient influence curve for EYd is

D∗(O) = D∗0(O) +
3∑
t=0

D∗1,t(O) +D∗2(O),
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with D∗0(O) and D∗2(O) exactly as given in Theorem 1.

The expression for clever covariate CL(1,j) follows immediately from D∗1,j as
simply the IPCW term times the first bracketed term. So, for example,
CL(1,2) would be

CL(1,2) = I(A(0)=d0(L(0)))
g(d0(L(0))|X)

×
{E(Yd | L(1) = 2, Pa(L(1)))−∑

m>2 E [Yd | L(1) = m,Pa(L(1))]P (L(1) = m | L(1) > 2, Pa(L(1)))}.

Computing Empirical Mean of Efficient Influence Curve
for Iterative TMLE

Determining whether the TMLE of EYd, Ψd(Q
∗
n), solves the efficient influence

curve proceeds as follows. For each row of the original data (i.e., data frame
for which each row is one subject/observation), the updated estimates of
QL(1,t), t = 0, 1, 2, 3, and QL(2) are computed. For example, for row i, under
rule d, we have

EQ∗ [(Yd)i] = EQ∗(Y | L(1) = 0, Ā(1)i = d(L̄), L(0)i)× λQ∗(0 | Pa(L(1))i)+
EQ∗(Y | L(1) = 1, Ā(1)i = d(L̄), L(0)i)×λQ∗(1 | Pa(L(1))i)[1−λQ∗(1 | Pa(L(1))i)]+
EQ∗(Y | L(1) = 2, Ā(1)i = d(L̄), L(0)i)×λQ∗(2 | Pa(L(1))i)

∏
s<2 [1− λQ∗(s | Pa(L(1))i)]+

EQ∗(Y | L(1) = 3, Ā(1)i = d(L̄), L(0)i)×λQ∗(3 | Pa(L(1))i)
∏

s<3 [1− λQ∗(s | Pa(L(1))i)],

where λQ∗(s | Pa(L(1))i) = PQ∗(L(1) = s | L(1) ≥ s, L(0)i, A(0)i =
d(L(0))), and EQ∗(Y | ...) and λQ∗(s | ...) are the updated estimates, Q∗L(2)

and Q∗L(1,s), respectively.

D∗0(Oi)(Q
∗, g0) is then given by EQ∗ [(Yd)i]−Ψd(Q

∗
n).

D∗1,j(Oi)(Q
∗, g0) are computed according to the formulas given in the previous

section with all the terms E(Y | ...) and P (L(1) = m | ...) replaced with
EQ∗(Y | ...), PQ∗(L(1) = m | ...) as shown in D∗0(Oi)(Q

∗, g0) above.

D∗2(Oi)(Q
∗, g0) is given by I(Āi=d(L̄))

g(d(L̄)|Xi)
×{Yi−EQ∗(Y | L(1)i, Ā(1)i = d(L̄), L(0)i)}.

Finally, the empirical average of D∗(Oi)(Q
∗, g0) is computed as
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PnD
∗(Q∗, g0) =

1

n

n∑
i=1

{
D∗0(Oi)(Q

∗, g0) +
4∑
j=1

D∗1,j(Oi)(Q
∗, g0) +D∗2(Oi)(Q

∗, g0)

}
.

As discussed in the context of binary L(1), |PnD∗| was very small in our sim-
ulations for the one step estimator (on the order of 10−12). For the iterative
estimator, |PnD∗| decreased by an order of magnitude or so on successive
iterations. (After five or six iterations, it should be approaching that of the
one-step estimator.)

Solving the empirical mean of the efficient influence curve is a good indication
that the estimators are correctly implemented, though does not guarantee it.
As mentioned above, one can also check the double-robustness property by
simulating data similar to a real data set of interest.
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