






(a) 30-day mRS score
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(b) 180-day mRS score
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Figure 3: Estimated lower and upper bounds (using method from Section 4.2) on the fraction
who benefit, with respect to (a) 30-day and (b) 180-day mRS score. Each bar ranges from

the lower to upper bound estimate. A bar is grey if the baseline variable is not used, and

black otherwise. The user-defined assumption imposed, if any, is indicated on the x-axis.

For conciseness, restrictions were excluded from these figures if their corresponding grey and

black bars were identical to those under no user-defined assumptions. For grey bars, the value

of ✏ is listed above the bar, if it is nonzero. For black bars, ✏=* indicates that one or more

of the ✏k’s is nonzero.
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(a) 30-day mRS score
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(b) 180-day mRS score
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Figure 4: Estimated lower and upper bounds (using method from Section 4.2) on the fraction
who benefit, with respect to (a) 30-day and (b) 180-day mRS score, for each subpopulation.
For bars corresponding to the subpopulation with non-severe stroke, the value of ✏1 is listed

above the bar, if nonzero. For bars corresponding to the subpopulation with severe stroke, the

value of ✏2 is listed above the bar, if nonzero.
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1 2 3 4 5 6

Total Population

RICV

0

1 nT = 54 , nC = 42 treatment
control

1 2 3 4 5 6

Subpopulation with low baseline clot volume

RICV

0

1 nT = 26 , nC = 22

1 2 3 4 5 6

Subpopulation with high baseline clot volume

RICV

0

1 nT = 28 , nC = 20

Figure 5: Empirical probability mass functions of RICV, under treatment and control. The
empirical distributions are presented for the total population, and for each subpopulation

(i.e., low or high baseline clot volume). RICV is a discretization of continuous reduction in

clot volume, y mL, as: 1 if y < -5, 2 if -5  y < 0, 3 if 0  y < 5, 4 if 5  y < 10, 5 if

10  y < 15, and 6 if y � 15.
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(a) Bounds for Total Population
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(b) Bounds for Each Subpopulation
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Figure 6: Estimated bounds on the fraction who benefit, with respect to RICV. (a) gives

the estimated bounds for the total population and (b) gives the estimated bounds separately

for each subpopulation (i.e., low or high baseline clot volume).
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Supplementary Materials

Appendix A: Proof of Theorem 1

Theorem 1. Consider any user-defined assumptions R, baseline variable X, and joint dis-

tribution P on (X, Y

C

, Y

T

) that is consistent with R. Then we have  

R,X

l

� max{ X

l

, 

R
l

}
and min{ X

l

, 

R
l

} �  

l

, where each bound parameter is evaluated at P .

Proof. Let F

C

, F
T

, and p

X

be the marginal distributions of Y
C

, Y
T

, and X, respectively,
under P . For each k = 1, .., K, let F k

C

and F

k

T

be the conditional distributions of Y
C

and Y

T

given X = x

k

, under P . We have the following:

 

R,X

l

= inf
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, {F k

C

, F

k

T

}K
k=1, pX

 
(1)

� inf
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with {F k

C

, F

k

T

}K
k=1, pX

 
(2)

=  

X

l

.

 

X

l

= inf
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with {F k

C

, F

k

T

}K
k=1, pX

 
(3)

� inf {P 0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with F

C

, F

T

} (4)

=  

l

.

 

R,X

l

= inf
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, {F k

C

, F

k

T

}K
k=1, pX

 
(5)

� inf {P 0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, F

C

, F

T

} (6)

=  

R
l

.

 

R
l

= inf {P 0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, F

C

, F

T

} (7)

� inf {P 0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with F

C

, F

T

} (8)

=  

l

.

Notice that all of these bound parameters are well-defined since P is consistent with
F

C

,F
T

,{F k

C

, F

k

T

}K
k=1, pX , and R. Inequalities (2) and (6) hold because the constraint that P 0

is consistent with R has been removed on the right sides, so the inf is being taken over an
increased set leading to smaller or equal value. Inequalities (4) and (8) hold because the
inf is being taken over an increased set on the right sides, since any P

0 consistent with all
{F k

C

, F

k

T

}K
k=1, pX is also consistent with F

C

, F

T

, as shown below:
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If P 0 consistent with all {F k

C

, F

k

T

}K
k=1, pX (which are the marginal distributions corre-

sponding to P ), then for any y,

P

0(Y
C

 y) =
KX

k=1

P

0(Y
C

 y|X = x

k

)P 0(X = x

k

) (9)

=
KX

k=1

F

k

C

(y)p
X

(x
k

) (10)

=
KX

k=1

P (Y
C

 y|X = x

k

)P (X = x

k

) (11)

= P (Y
C

 y) (12)

= F

C

(y), (13)

so P

0 is consistent with F

C

. Using an analogous proof, it can be shown that P 0 is consistent
with F

T

.
Since  R,X

l

�  

X

l

and  R,X

l

�  

R
l

, we have  R,X

l

� max{ X

l

, 

R
l

}. Since  X

l

�  

l

and
 

R
l

�  

l

, we have min{ X

l

, 

R
l

} �  

l

.
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Appendix B: Representing  

R,X

l,k

and  

R,X

u,k

as Solutions to Linear

Programs

For any k, the lower bound  R,X

l,k

is the solution to a linear program because:

 

R,X

l,k

= min

8
>>>>><

>>>>>:

X

j>i

i,j2L

⇡

k

i,j

:

⇡

k

i,j

� 0 for all i, j 2 LP
i

i

0=1

P
L

j=1 ⇡
k

i

0
,j

= F

k

C

(i) for all i = 1, .., L� 1P
j

j

0=1

P
L

i=1 ⇡
k

i,j

0 = F

k

T

(j) for all j = 1, .., L� 1P
L

i=1

P
L

j=1 ⇡
k

i,j

= 1

⇡

k

i,j

= 0 if g(i, j) = 0

9
>>>>>=

>>>>>;

, (14)

where ⇡k

i,j

= P

0(Y
C

= i, Y

T

= j|X = x

k

) for any i, j in L. The upper bound  R,X

u,k

is (14),
with max in place of min, so it is also a solution to a linear program.
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Appendix C: Proof of (8)

Consider any user-defined assumption R, baseline variable X, and joint distribution P on
(X, Y

C

, Y

T

) that is consistent with R. Then we have

 

R,X

l

=
KX

k=1

 

R,X

l,k

p

X

(x
k

),  

R,X

u

=
KX

k=1

 

R,X

u,k

p

X

(x
k

),

where each parameter is evaluated at P .

Proof. The bounds  R,X

l

and  R,X

u

are defined as:

 

R,X

l

= inf
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, {F k

C

, F

k

T

}K
k=1, pX

 
,

 

R,X

u

= sup
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, {F k

C

, F

k

T

}K
k=1, pX

 
,

where F

k

C

(y) = P (Y
C

 y|X = x

k

) and F

k

T

(y) = P (Y
T

 y|X = x

k

) for any y and k, and
p

X

(x
k

) = P (X = x

k

) for any k. For each k, we have that:

 

R,X

l,k

= inf
�
P

0(Y
T

> Y

C

|X = x

k

) : P 0 on (Y
C

, Y

T

|X = x

k

) consistent with R, F

k

C

, F

k

T

 
,

 

R,X

u,k

= sup
�
P

0(Y
T

> Y

C

|X = x

k

) : P 0 on (Y
C

, Y

T

|X = x

k

) consistent with R, F

k

C

, F

k

T

 
,

Since  R,X

l

,  R,X

u

, { R,X

l,k

}K
k=1, and { R,X

u,k

}K
k=1 are solutions to linear programs, inf can be

replaced with min, and sup with max in the four definitions above.
We now show that

P
K

k=1  
R,X

l,k

p

X

(x
k

) and
P

K

k=1  
R,X

u,k

p

X

(x
k

) are in the set
�
P

0(Y
T

> Y

C

) : P 0 on (X, Y

C

, Y

T

) consistent with R, {F k

C

, F

k

T

}K
k=1, pX

 
. (15)

That is, there exist joint distributions P
l

and P

u

on (X, Y

C

, Y

T

) that (i) are consistent with
R, (ii) are consistent with {F k

C

, F

k

T

}K
k=1 and p

X

, and (iii) P
l

(Y
T

> Y

C

) =
P

K

k=1  
R,X

l,k

p

X

(x
k

),

P

u

(Y
T

> Y

C

) =
P

K

k=1  
R,X

u,k

p

X

(x
k

). For any k, by the definition of  R,X

l,k

, there exists a

joint distribution P

l,k

on (Y
C

, Y

T

|X = x

k

) that is consistent with R,F k

C

, and F

k

T

, and sat-

isfies P

l,k

(Y
T

> Y

C

|X = x

k

) =  

R,X

l,k

. Define P

l

as follows. Let P

l

(Y
C

, Y

T

|X = x

k

) =
P

l,k

(Y
C

, Y

T

|X = x

k

) for each k. Let P

l

(X = x

k

) = p

X

(x
k

) for each k. It follows that

P

l

satisfies (i) and (ii). Also, P
l

(Y
T

> Y

C

) =
P

K

k=1 Pl

(Y
T

> Y

C

|X = x

k

)P
l

(X = x

k

) =P
K

k=1  
R,X

l,k

p

X

(x
k

). The joint distribution P

u

can be defined analogously as P

l

. Thus,P
K

k=1  
R,X

l,k

p

X

(x
k

) and
P

K

k=1  
R,X

u,k

p

X

(x
k

) are in (15).

Now it remains to show that
P

K

k=1  
R,X

l,k

p

X

(x
k

) and
P

K

k=1  
R,X

u,k

p

X

(x
k

) are the mini-
mum and maximum of (15), respectively. We do a proof by contradiction. Suppose that
the minimum of (15) is smaller than

P
K

k=1  
R,X

l,k

p

X

(x
k

). This would imply that, for some

k, there exists a distribution P

0 on (Y
C

, Y

T

|X = x

k

) that is consistent with R, F

k

C

, F

k

T

and with P

0(Y
T

> Y

C

|X = x

k

) <  

R,X

l,k

. However, this contradicts the definition of

 

R,X

l,k

. Thus,
P

K

k=1  
R,X

l,k

p

X

(x
k

) is the minimum of (15). It can be shown analogously thatP
K

k=1  
R,X

u,k

p

X

(x
k

) is the maximum of (15). We conclude that

 

R,X

l

=
KX

k=1

 

R,X

l,k

p

X

(x
k

),  

R,X

u

=
KX

k=1

 

R,X

u,k

p

X

(x
k

).
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Appendix D: Proof that lim

n!1 P0(bpC(2) > bp
T

(2)) =

1
2 for the

Example in Section 4.1

Proof. Consider any n in N. There are three possible cases: bp
C

(2) > bp
T

(2), bp
C

(2) < bp
T

(2),
or bp

C

(2) = bp
T

(2). Since ✓ = 1
2 and p

C

(2) = p

T

(2), P0(bpC(2) > bp
T

(2)) = P0(bpC(2) < bp
T

(2)).
Therefore,

P0(bpC(2) > bp
T

(2)) =
1� P0(bpC(2) = bp

T

(2))

2
.

Now let n go to infinity. Then we have

lim
n!1

P0(bpC(2) > bp
T

(2)) = lim
n!1

1� P0(bpC(2) = bp
T

(2))

2
=

1

2
.
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Appendix E: Proof of Theorem 2

In the proofs of Theorem 2 and Lemma 2, the following notation is used. Limits are taken
as n ! 1. For example,

p! signifies convergence in probability as n ! 1. Define 1
E

to be a random variable which takes the value 1 if the event E occurs, and 0 otherwise.
Generally, define [z

i,j

]L
i=1 = [z1,j, z2,j, ..., zL,j] and [z

i,j

]L
j=1 = [z

i,1, zi,2, ..., zi,L]. Also, define

kyk2 =
qP

M

i=1 y
2
i

, where y = (y1, y2, .., yM)T .

Theorem 2. For any X and R, if P0 is consistent with R, then  

R,X

l

and  

R,X

u

are consistent

estimators of  

R,X

l

(P0) and  
R,X

u

(P0), respectively.

Proof. Consider any X and R. Let P0 be any joint distribution on (X, Y

C

, Y

T

) consistent

with R. Suppose that Assumption 2 holds. We will show that  
R,X

l

p!  

R,X

l

(P0) and

 

R,X

u

p!  

R,X

u

(P0) as n ! 1. Below, we suppress the dependence of the bound parameters
on P0 for conciseness. Let {F k

C

, F

k

T

}K
k=1, pX be the marginal distributions corresponding to

P0.
The structure of the proof is as follows. We show that: (I) bp

X

(x
k

)
p! p

X

(x
k

) for each

k; and (II)  
R,X

l,k

p!  

R,X

l,k

and  

R,X

u,k

p!  

R,X

u,k

for each k. By Slutsky’s Theorem, (I) and

(II) imply that  
R,X

l

p!  

R,X

l

and  
R,X

u

p!  

R,X

u

. By the Weak Law of Large Numbers, (I)
follows from Assumption 2(i). We must show that (II) also holds.

Choose any k = 1, .., K. We now prove that  
R,X

l,k

p!  

R,X

l,k

. Fix n 2 N. Consider the
following linear program, which we refer to as LP:

min
x

c

T

x, subject to Ax  b, x � 0.

Define x and c as:

x =
⇥
[⇡k

i,1]
L

i=1, [⇡k

i,2]
L

i=1, . . . , [⇡k

i,L

]L
i=1

⇤
T

,

c

T =
⇥
[11>i

]L
i=1, [12>i

]L
i=1, . . . , [1

L>i

]L
i=1

⇤
,

where 1
j>i

takes the value 1 if j > i and 0 otherwise. Define A as the matrix that satisfies:

Ax =

P
g(i,j)=0 ⇡

k

i,j

,

P
L

i=1

P
L

j=1 ⇡
k

i,j

, �
P

L

i=1

P
L

j=1 ⇡
k

i,j

, [
P

i

i

0=1

P
L

j=1 ⇡
k

i

0
,j

]L�1
i=1 ,

[�
P

i

i

0=1

P
L

j=1 ⇡
k

i

0
,j

]L�1
i=1 , [

P
j

j

0=1

P
L

i=1 ⇡
k

i,j

0 ]L�1
j=1 , [�

P
j

j

0=1

P
L

i=1 ⇡
k

i,j

0 ]L�1
j=1

�
T

.

Let f(b) denote the optimal value of the linear program as a function of b. Define:

b

⇤ =
h
0, 1, �1,

⇥
F

k

C

(i)
⇤
L�1

i=1
,

⇥
�F

k

C

(i)
⇤
L�1

i=1
,

⇥
F

k

T

(j)
⇤
L�1

j=1
,

⇥
�F

k

T

(j)
⇤
L�1

j=1

i
T

;

b

n =


0, 1, �1,

h
b
F

k

C

(i) + ✏

k

i
L�1

i=1
,

h
� b
F

k

C

(i) + ✏

k

i
L�1

i=1
,

h
b
F

k

T

(j) + ✏

k

i
L�1

j=1
,

h
� b
F

k

T

(j) + ✏

k

i
L�1

j=1

�
T

.
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When b = b

n, LP is equivalent to the linear program for  
R,X

l,k

. Therefore, f(bn) =  

R,X

l,k

 1.

When b = b

⇤, LP is equivalent to the linear program for  R,X

l,k

. Therefore, f(b⇤) =  

R,X

l,k

 1.
(LP is feasible when b = b

⇤ since P0 is consistent with R.) By Lemma 1 below, there exists
a constant C > 0 such that |f(b)�f(b⇤)|  Ckb� b

⇤k2 for any b with f(b) < 1. This means
that |f(bn)� f(b⇤)|  Ckbn � b

⇤k2. Choose any ⌘ > 0. Then

P0(| 
R,X

l,k

�  

R,X

l,k

| > ⌘) = P0(|f(bn)� f(b⇤)| > ⌘)

 P0

⇣
kbn � b

⇤k2 >
⌘

C

⌘
.

By Lemma 2 below, ✏
k

p! 0. Also, bF k

C

(i)
p! F

k

C

(i) and b
F

k

T

(j)
p! F

k

T

(j) for all i, j = 1, .., L�1

by the Weak Law of Large Numbers. By Slutsky’s Theorem, b
F

k

C

(i) + ✏

k

p! F

k

C

(i),� b
F

k

C

(i) +

✏

k

p! �F

k

C

(i), bF k

T

(j) + ✏

k

p! F

k

T

(j), and � b
F

k

T

(j) + ✏

k

p! �F

k

T

(j) for all i, j = 1, .., L� 1. By
Theorem 11.9 in Severini (2005), lim

n!1 P0

�
kbn � b

⇤k2 > ⌘

C

�
= 0. Thus,

lim
n!1

P0(| 
R,X

l,k

�  

R,X

l,k

| > ⌘)  lim
n!1

P0

⇣
kbn � b

⇤k2 >
⌘

C

⌘
= 0,

so lim
n!1 P0(| 

R,X

l,k

�  

R,X

l,k

| > ⌘) = 0. The choice of ⌘ was arbitrary, so we conclude that

 

R,X

l,k

p!  

R,X

l,k

. Analogously, it can be shown that  
R,X

u,k

p!  

R,X

u,k

. Thus, (II) holds. We

conclude that  
R,X

l

and  
R,X

u

are consistent estimators of  R,X

l

and  R,X

u

, respectively.

Lemma 1. Consider the linear programming problem:

min
x

c

T

x, subject to Ax  b, x � 0, (16)

where A 2 Rd1⇥d2
. Let f(b) denote the optimal value of the linear program as a function of

b, where we use the convention that f(b) = 1 if the problem is infeasible. Consider any b

⇤

such that f(b⇤) is finite (i.e., the linear program is bounded and feasible at b = b

⇤
). Then

there exists a constant C > 0 such that for any b

0
satisfying f(b0) < 1, we have

|f(b0)� f(b⇤)|  Ckb0 � b

⇤k2.

Proof. We assume the reader has familiarity with linear programming terminology. (For an
overview of linear programming relevant to our proof, please see Chapter 6 of Dantzig and
Thapa (2006).) Without loss of generality we can drop the x � 0 term in the linear program
(16) since these constraints can be incorporated into the set of inequalities Ax  b. Consider
the dual linear program:

max
y

b

T

y, subject to A

T

y = c, y � 0.

It is bounded and feasible at b = b

⇤ and at b = b

0, which follows from the conditions in the
lemma. Let V

⇤ denote the set of vertices of the dual linear program, which is non-empty,
finite, and only depends on A and c (and does not depend on b). Since the optimal value of
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the dual problem occurs at a vertex, it equals max{yT b : y 2 V

⇤}, for any vector b for which
the linear program is bounded and feasible (which includes the cases b = b

⇤ and b = b

0).
By strong duality, for each b 2 {b0, b⇤}, the optimal value of the primal (original) linear

program equals the optimal value of the dual linear program, and therefore

|f(b0)� f(b⇤)| =
��max
y2V ⇤

y

T

b

0 �max
y2V ⇤

y

T

b

⇤��  max
y2V ⇤

|yT (b0 � b

⇤)|  max
y2V ⇤

kyk2kb0 � b

⇤k2,

where the last inequality follows from the Cauchy-Schwartz inequality. The lemma is proved
for C = max

y2V ⇤ kyk2, which is finite since V

⇤ is non-empty and has a finite number of
elements.

Lemma 2. Let P0 be the true joint distribution on (X, Y

C

, Y

T

). Suppose P0 is consistent

with R and Assumptions 1 and 2 hold. Then ✏

k

p! 0 for any k, as n ! 1.

Proof. In this proof, we will show that lim
n!1 P0(|✏k � 0| > ⌘) = 0 for any ⌘ > 0.

Choose any k = 1, .., K. Fix n 2 N. Consider the following linear program, referred to
as LP:

min
x

c

T

x, subject to Ax  b, x � 0.

Define x and c as:

x =
⇥
[⇡k

i,1]
L

i=1, [⇡k

i,2]
L

i=1, . . . , [⇡k

i,L

]L
i=1, ✏

k

⇤
T

,

c

T =
⇥
01⇥L

2
, 1

⇤
,

where 01⇥L

2 is a row vector of length L

2 containing only zeroes. Define A as the matrix that
satisfies:

Ax =

P
g(i,j)=0 ⇡

k

i,j

,

P
L

i=1

P
L

j=1 ⇡
k

i,j

, �
P

L

i=1

P
L

j=1 ⇡
k

i,j

, [
P

i

i

0=1

P
L

j=1 ⇡
k

i

0
,j

� ✏

k

]L�1
i=1 ,

[�
P

i

i

0=1

P
L

j=1 ⇡
k

i

0
,j

� ✏

k

]L�1
i=1 , [

P
j

j

0=1

P
L

i=1 ⇡
k

i,j

0 � ✏

k

]L�1
j=1 , [�

P
j

j

0=1

P
L

i=1 ⇡
k

i,j

0 � ✏

k

]L�1
j=1

�
T

.

Let f(b) be the optimal value of LP as a function of b. Define:

b

⇤ =
h
0, 1, �1,

⇥
F

k

C

(i)
⇤
L�1

i=1
,

⇥
�F

k

C

(i)
⇤
L�1

i=1
,

⇥
F

k

T

(j)
⇤
L�1

j=1
,

⇥
�F

k

T

(j)
⇤
L�1

j=1

i
T

,

b

n =


0, 1, �1,

h
b
F

k

C

(i)
i
L�1

i=1
,

h
� b
F

k

C

(i)
i
L�1

i=1
,

h
b
F

k

T

(j)
i
L�1

j=1
,

h
� b
F

k

T

(j)
i
L�1

j=1

�
T

.

By Assumption 1, f(b⇤) = 0. When b = b

n, LP is equivalent to the linear program for ✏
k

,
so f(bn) = ✏

k

 1. By Lemma 1, there exists a constant C > 0 such that |f(b) � f(b⇤)| 
Ckb� b

⇤k2 for any b such that f(b) < 1. This means that |f(bn)� f(b⇤)|  Ckbn � b

⇤k2.
Choose any ⌘ > 0. Then

P0(|✏k � 0| > ⌘) = P0(|f(bn)� f(b⇤)| > ⌘)  P0

⇣
kbn � b

⇤k2 >
⌘

C

⌘
.

It follows from the Weak Law of Large Numbers that bn converges to b

⇤ in probability, and
so the right side of the above display converges to 0 as n ! 1, completing the proof of the
lemma.
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Table 1: Estimated Bounds on the Fraction who Benefit, with respect to 30-day mRS Score.
The bound estimates in (a) are for the entire population, and those in (b) are for each

subpopulation.

(a) For the population

Without BV With BV
l u ✏ l u

No assumptions 0.07 0.61 0 0.17 0.52
Benefit at most 5 0.07 0.61 0 0.17 0.52

at most 4 0.07 0.61 0 0.17 0.52
at most 3 0.07 0.61 0 0.17 0.52
at most 2 0.09 0.61 0 0.17 0.52
at most 1 0.12 0.61 0 0.22 0.52

Harm at most 5 0.07 0.61 0 0.17 0.52
at most 4 0.07 0.61 0 0.17 0.52
at most 3 0.07 0.61 0 0.17 0.52
at most 2 0.07 0.59 0 0.17 0.52
at most 1 0.07 0.50 0 0.17 0.45
No Harm 0.03 0.26 0.02 0.15 0.34

(b) For each subpopulation

Non-severe Severe
l u ✏ l u ✏

No assumptions 0.04 0.41 0 0.26 0.60 0
Benefit at most 5 0.04 0.41 0 0.26 0.60 0

at most 4 0.04 0.41 0 0.26 0.60 0
at most 3 0.04 0.41 0 0.26 0.60 0
at most 2 0.04 0.41 0 0.26 0.60 0
at most 1 0.06 0.41 0 0.33 0.60 0

Harm at most 5 0.04 0.41 0 0.26 0.60 0
at most 4 0.04 0.41 0 0.26 0.60 0
at most 3 0.04 0.41 0 0.26 0.60 0
at most 2 0.04 0.41 0 0.26 0.60 0
at most 1 0.04 0.26 0 0.26 0.60 0
No Harm 0.00 0.37 0.10 0.26 0.33 0

BV=baseline variable, l=lower bound estimate, u=upper bound estimate,
✏=relaxation term.
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Table 2: Estimated Bounds on the Fraction who Benefit, with respect to 180-day mRS
Score. The bound estimates in (a) are for the entire population, and those in (b) are for each

subpopulation.

(a) For the population

Without BV With BV
l u ✏ l u

No assumptions 0.10 0.73 0 0.13 0.64
Benefit at most 5 0.10 0.73 0 0.13 0.64

at most 4 0.10 0.73 0 0.13 0.64
at most 3 0.10 0.73 0 0.14 0.64
at most 2 0.12 0.73 0 0.18 0.64
at most 1 0.18 0.64 0 0.20 0.65

Harm at most 5 0.10 0.73 0 0.13 0.64
at most 4 0.10 0.73 0 0.13 0.64
at most 3 0.10 0.64 0 0.13 0.63
at most 2 0.10 0.62 0 0.13 0.63
at most 1 0.10 0.42 0 0.12 0.50
No Harm 0.10 0.18 0 0.12 0.50

(b) For each subpopulation

Non-severe Severe
l u ✏ l u ✏

No assumptions 0.01 0.59 0 0.22 0.68 0
Benefit at most 5 0.01 0.59 0 0.22 0.68 0

at most 4 0.01 0.59 0 0.22 0.68 0
at most 3 0.01 0.59 0 0.25 0.68 0
at most 2 0.01 0.59 0 0.32 0.68 0
at most 1 0.01 0.57 0 0.34 0.71 0.03

Harm at most 5 0.01 0.59 0 0.22 0.68 0
at most 4 0.01 0.59 0 0.22 0.68 0
at most 3 0.01 0.57 0 0.22 0.68 0
at most 2 0.01 0.57 0 0.22 0.68 0
at most 1 0.00 0.31 0.04 0.22 0.64 0
No Harm 0.00 0.44 0.08 0.22 0.55 0

BV=baseline variable, l=lower bound estimate, u=upper bound estimate,
✏=relaxation term.
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Table 3: Estimated Bounds on the Fraction who Benefit, with respect to Reduction in Clot
Volume (ordinal). The bound estimates in (a) are for the entire population, and those in (b)

are for each individual subpopulation.

(a) For the population

Without BV With BV
l u ✏ l u

No assumptions 0.82 0.99 0 0.83 0.98
Benefit at most 4 0.82 0.99 0 0.86 0.98

at most 3 0.96 0.99 0.001 0.88 0.98
at most 2 0.70 1.00 0.23 0.70 1.00
at most 1 0.52 1.00 0.35 0.37 1.00

Harm at most 4 0.82 0.99 0 0.83 0.98
at most 3 0.82 0.99 0 0.83 0.98
at most 2 0.82 0.99 0 0.83 0.98
at most 1 0.82 0.99 0 0.83 0.98
No Harm 0.82 0.99 0 0.83 0.98

(b) For each subpopulation

Low Clot Volume High Clot Volume
l u ✏ l u ✏

No assumptions 0.81 0.96 0 0.86 1.00 0
Benefit at most 4 0.81 0.96 0 0.91 1.00 0

at most 3 0.85 0.96 0 0.91 1.00 0.05
at most 2 0.71 1.00 0.22 0.70 1.00 0.23
at most 1 0.19 1.00 0.62 0.55 1.00 0.38

Harm at most 4 0.81 0.96 0 0.86 1.00 0
at most 3 0.81 0.96 0 0.86 1.00 0
at most 2 0.81 0.96 0 0.86 1.00 0
at most 1 0.81 0.96 0 0.86 1.00 0
No Harm 0.81 0.96 0 0.86 1.00 0

BV=baseline variable, l=lower bound estimate, u=upper bound estimate,
✏=relaxation term.
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