








(a) 30-day mRS score
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Figure 3: Estimated lower and upper bounds (using method from Section 4.2) on the fraction
who benefit, with respect to (a) 30-day and (b) 180-day mRS score. Each bar ranges from
the lower to upper bound estimate. A bar is grey if the baseline variable is not used, and
black otherwise. The user-defined assumption imposed, if any, is indicated on the x-axis.
For conciseness, restrictions were excluded from these figures if their corresponding grey and
black bars were identical to those under no user-defined assumptions. For grey bars, the value
of € is listed above the bar, if it is nonzero. For black bars, e=* indicates that one or more
of the €’s is nonzero.
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(a) 30-day mRS score
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Figure 4: Estimated lower and upper bounds (using method from Section 4.2) on the fraction
who benefit, with respect to (a) 30-day and (b) 180-day mRS score, for each subpopulation.
For bars corresponding to the subpopulation with non-severe stroke, the value of €, s listed
above the bar, if nonzero. For bars corresponding to the subpopulation with severe stroke, the
value of € is listed above the bar, if nonzero.
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Total Population

1 _ _
nr=54,n; =42 B treatment
Bl control
. J i .
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1 n; =26, nc =22
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1

Subpopulation with high baseline clot volume
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Figure 5: Empirical probability mass functions of RICV, under treatment and control. The
empirical distributions are presented for the total population, and for each subpopulation
(i.e., low or high baseline clot volume). RICV is a discretization of continuous reduction in
clot volume, y mL, as: 1 ify < -5, 2if 5 <y <0, 3if0<y<b, 4ifdb<y<10, 5 if
10 <y <15, and 6 if y > 15.
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(a) Bounds for Total Population
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(b) Bounds for Each Subpopulation
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Figure 6: Estimated bounds on the fraction who benefit, with respect to RICV. (a) gives
the estimated bounds for the total population and (b) gives the estimated bounds separately
for each subpopulation (i.e., low or high baseline clot volume).
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Supplementary Materials

Appendix A: Proof of Theorem 1

Theorem 1. Consider any user-defined assumptions R, baseline variable X, and joint dis-
tribution P on (X, Yg, Yr) that is consistent with R. Then we have 1>~ > max{u%, R}
and min{yX Y} > 1y, where each bound parameter is evaluated at P.

Proof. Let F¢, Fr, and px be the marginal distributions of Yo, Y7, and X, respectively,
under P. For each k = 1,.., K, let F% and FF be the conditional distributions of Y and Yz
given X = xy, under P. We have the following:

Yo = inf {P'(Yr > Yo) : P on (X, Ye,Yr) consistent with R, {F&, FEHC px} (1)

> inf {P'(Yr > Y¢) : P on (X, Ye, Yr) consistent with {FZ, EfH 1 px}  (2)
— le )

b = inf {P'(Yr > Ye): P on (X, Y, Yr) consistent with {Fa, FEY<  px}  (3)
> inf{P'(Yr >Yc): P on (X, Ye,Yr) consistent with Fe, Fr} (4)
= Y.

W% = inf {P'(Yy > Yo) : P' on (X, Ye,Yy) consistent with R, {FE, FEMC | px} (5)
> inf {P'(Yr >Yc): P on (X, Y, Yr) consistent with R, Fe, Fr} (6)
)

Y = inf {P(Yr > Ye): P on (X,Ye, Yr) consistent with R, Fe, Frr} (7)
> inf{P'(Yr >Yc): P on (X, Ye,Yr) consistent with Fe, Fr} (8)
_—

Notice that all of these bound parameters are well-defined since P is consistent with
Fo,Fr{FE, XK px, and R. Inequalities (2) and (6) hold because the constraint that P’
is consistent with R has been removed on the right sides, so the inf is being taken over an
increased set leading to smaller or equal value. Inequalities (4) and (8) hold because the
inf is being taken over an increased set on the right sides, since any P’ consistent with all
{FE FE}E | px is also consistent with Fg, Fr, as shown below:
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If P’ consistent with all {FE, FX}E | py (which are the marginal distributions corre-
sponding to P), then for any v,

P(Yo<y) = Y P(Yo<ylX=ux)P(X =) (9)

k=1

= Y Fiy)px(ax) (10)

= ) P(Yo <y|X =a)P(X = ) (11)
= P_(YC <y) (12)
= Fcl(y), (13)

so P’ is consistent with Fo. Using an analogous proof, it can be shown that P’ is consistent
Since ¥;°* > ¢ and ¥ > R we have 1 > max {1, ¥*}. Since ¥ > 1 and
Pl > 1y, we have min{y;X, ¥R} > . O
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Appendix B: Representing wlefX and wz;;CX as Solutions to Linear
Programs

For any k, the lower bound wle’X is the solution to a linear program because:

¢

WﬁjZOforalli,jEE

Z;:l Zle mh = Fg(i) foralli=1,.,L -1

Z?,C’X = min Z Wﬁj : Zj,zl ZZ'L:1 Wﬁj, =FkG) forall j=1,.,L—1 ,, (14)

ij?l; D et Dajet Wﬁj =1
T = 0if gi,j) = 0

\ Ve

where Wﬁj = P'(Yo =1i,Yr = j|X = ;) for any 7,5 in £. The upper bound ¢§I’€X is (14),
with max in place of min, so it is also a solution to a linear program.
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Appendix C: Proof of (8)

Consider any user-defined assumption R, baseline variable X, and joint distribution P on
(X, Ye, Yr) that is consistent with R. Then we have

K K
= oS px(), O =D 0l px (),
k=1 k=1

where each parameter is evaluated at P.

Proof. The bounds w;RX and X are defined as:

Yt = inf {P'(Yr > Yc): P on (X, Ye, Yr) consistent with R, {F&, Ff e, px},
Y = sup {P'(Yr > Ye): P on (X,Ye,Yr) consistent with R, {F&, Fih i, px},
where Ffi(y) = P(Yo < y|X = x;) and Fi(y) = P(Yr < y|X = ;) for any y and k, and

px(zx) = P(X = xy,) for any k. For each k, we have that:

5 = inf {P'(Yr > Yo|X = a) : P on (Yo, Yr|X = ) consistent with R, F§, Ff} |
¢§1}X = sup {P'(Yr > Yo|X = ;) : P' on (Yo, Yp|X = 1) consistent with R, Ff, P},
Since 1/1 , PRX {wl SO, and {ij}CX},@K:l are solutions to linear programs, inf can be

replaced with min, and sup with max in the four definitions above.
We now show that S @ZJZ?]{;X]?X (7x) and S0, wzj,’CXpX (x) are in the set

{P'(Yr > Yc): P on (X, Ye, Yr) consistent with R, {F&, Ff ey, px } - (15)
That is, there exist joint distributions P, and P, on (X, Y¢, Y7) that (i) are consistent with
R, (i) are consistent with {F%, FEYE | and px, and (iit) P(Yr > Yo) = Sp | ¢Z€k’XpX(xk),
P,(Yr > Yo) = Zle wzz;cxpx(xk). For any k, by the definition of wz’zk’x, there exists a
joint distribution P; on (Yo, Yr|X = ) that is consistent with R,F%, and F¥F, and sat-
isfies P p(Yr > Yo|X = x) = wleX Define P, as follows. Let B(Ye,Yr|X = ap) =
P (Yo, Yr|X = xy) for each k. Let P(X = ) = px(xy) for each k. It follows that
P, satisfies (i) and (ii). Also, Pi(Yr > Yo) = S0 B(Yr > Yo|X = ) P(X = a) =
Zk 1¢1k px(:pk) The joint distribution P, can be defined analogously as F,. Thus,

Zk 1%1@ “px(zx) and Zk 1¢uk px(zy) are in (15).
Now it remains to show that S r wﬁ’xpx(a:k) and SO0, ¢§;€pr(xk) are the mini-

mum and maximum of (15), respectively. We do a proof by contradiction. Suppose that
the minimum of (15) is smaller than Zle @Z)Z?,;pr (). This would imply that, for some
k, there exists a distribution P’ on (Y, Yp|X = x3) that is consistent with R, F¥, F¥
and with P'(Yr > Yo|X = xp) < Q,DleX However, this contradicts the definition of
wﬁ’X. Thus, Zszl wfk’xpx(wk) is the minimum of (15). It can be shown analogously that

S ij,’prX (xk) is the maximum of (15). We conclude that

K
vy Zfﬂﬁ’xpx(iﬁk), X = Zwuk px ().
k=1
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AN

Appendix D: Proof that lim, . Py(pc(2) > pr
Example in Section 4.1

/

2)) = 1 for the

Proof. Consider any n in N. There are three possible cases: po(2) > pr(2), pe(2) < pr(2),
or pe(2) = pr(2). Since 6 = % and pc(2) = pr(2), Po(pc(2) > pr(2)) = Po(pc(2) < pr(2)).
Therefore,

Po(pe(2) > pr(2)) = L= TolPe(2) =pr(2)

2
Now let n go to infinity. Then we have
1 — Py(pc(2) = pr(2 1
lim Py(fe(2) > pr(2)) = lim Lol =pr(2) _ 1
O
5
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Appendix E: Proof of Theorem 2

In the proofs of Theorem 2 and Lemma 2, the following notation is used. Limits are taken
as n — oo. For example, = signifies convergence in probability as n — oo. Define 1p
to be a random variable which takes the value 1 if the event E occurs, and 0 otherwise.
Generally, define [z;;]}/, = [21, 22, .-, 2,5] and [zi;]5_ = [2i1, 22, ., 2i,0]. Also, define

Iylls = v/ 0L, y2, where y = (y1, Yo, ... yur) T

Theorem 2. For any X and R, if Fy is consistent with R, then @?’X and ESX are consistent
estimators of Y]~ (Py) and YR~ (Py), respectively.

Proof. Consider any X and R. Let Py be any joint distribution on (X, Y, Y7) consistent

with R. Suppose that Assumption 2 holds. We will show that EIRX N lR’X(PO) and
—R,X p

¥, =YX (Py) as n — co. Below, we suppress the dependence of the bound parameters

on By for conciseness. Let {F% FrME | py be the marginal distributions corresponding to
F.
The structure of the proof is as follows. We show that: (I) px(z) = px(xx) for each
k/“ _R7X D, R,X _R7X D R7X )
;and (IT) ¥, = 3" and ¢, — ;" for each k. By Slutsky’s Theorem, (I) and
(IT) imply that " & Y and 9. & ¢RX. By the Weak Law of Large Numbers, (I)
follows from Assumption 2(i). We must show that (II) also holds.

Choose any k = 1,.., K. We now prove that Eﬁx LN wﬁ’x. Fix n € N. Consider the
following linear program, which we refer to as LP:

min ¢’ z, subject to Az < b,z > 0.
xX

Define z and c as:

T
r = [[7751]5:17 [775,2]5:17 cee [Wzk,L]iL:I} )
= [[11>i]1L:17 losilicy, -, [1L>i]zj':=1} )

where 1,5, takes the value 1 if j > ¢ and 0 otherwise. Define A as the matrix that satisfies:
L L L L ' L -
Ar = |:Zg(i,j)0 7Tzl'€,j7 ) A Zj:l ﬂ-zk,j? =i Zj:l Wﬁgﬁ > i Zj:l 7Tz'k’,j]iL:117
T
‘ 5 - j L - j L -
[— ZZ;':1 ijl 7Tik’,j]iL:117 [Z;”:l dic 775;’/]5:117 [— Z;':1 > ici ﬂ-zk,j/]ngl] .

Let f(b) denote the optimal value of the linear program as a function of b. Define:
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When b = 0", LP is equivalent to the linear program for EZR,CX Therefore, f(b") = %RkX <1
When b = b*, LP is equivalent to the linear program for wﬁjx. Therefore, f(b*) = wﬁk’X <1
(LP is feasible when b = b* since P, is consistent with R.) By Lemma 1 below, there exists
a constant C' > 0 such that |f(b) — f(b*)| < C||b—b*|| for any b with f(b) < co. This means
that |f(b") — f(b*)| < C|b™ — b*||2. Choose any 1 > 0. Then

Pol[dry =5 >m) = By(|f(") — f(b7)] > )

< B <||b” b > %) .
By Lemma 2 below, €, = 0. Also, FE(i) 5 Fk(i) and FE(j) 5 FE(j) foralli,j=1,..,L—1
by the Weak Law of Large Numbers. By Slutsky’s Theorem, FE(i) + € = FE(i), —FE(i) +
& = —F8(0), FR(j) + & > FE(j), and —FF(j) + & > —FF(j) forall i,j = 1,..,L — 1. By
Theorem 11.9 in Severini (2005), lim,, ., Fo (Hb” — b2 > %) = 0. Thus,
Ui

i o ] () *
lim Po(|v,, — leX| >n) < lim B (||b —b*||2 > —> =0,
n—o00 ’ n— 00 C’

so lim,, o0 PO(WZ?,;X - ¢Z§;X| > 1) = 0. The choice of n was arbitrary, so we conclude that

@Fkx N ¢l73€’X. Analogously, it can be shown that EZ},CX 2 wZE;CX. Thus, (II) holds. We

—R,X —R,X . : .
conclude that ¢, © and 7, are consistent estimators of @/JZRX and ¥ respectively.

[]

Lemma 1. Consider the linear programming problem:

minc’x, subject to Ax < b,x > 0, (16)

where A € R"*42_ Let f(b) denote the optimal value of the linear program as a function of
b, where we use the convention that f(b) = oo if the problem is infeasible. Consider any b*
such that f(b*) is finite (i.e., the linear program is bounded and feasible at b = b*). Then
there exists a constant C' > 0 such that for any V' satisfying f(V') < oo, we have

[F(V) = fO7)] < CIp" = b7

Proof. We assume the reader has familiarity with linear programming terminology. (For an
overview of linear programming relevant to our proof, please see Chapter 6 of Dantzig and
Thapa (2006).) Without loss of generality we can drop the z > 0 term in the linear program
(16) since these constraints can be incorporated into the set of inequalities Az < b. Consider
the dual linear program:

max b’ y, subject to ATy =c¢,y > 0.
y

It is bounded and feasible at b = b* and at b = b/, which follows from the conditions in the
lemma. Let V* denote the set of vertices of the dual linear program, which is non-empty,
finite, and only depends on A and ¢ (and does not depend on b). Since the optimal value of
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the dual problem occurs at a vertex, it equals max{y?b : y € V*}, for any vector b for which
the linear program is bounded and feasible (which includes the cases b = b* and b = V).

By strong duality, for each b € {¥',b*}, the optimal value of the primal (original) linear
program equals the optimal value of the dual linear program, and therefore

[FO) = )] = | maxy"V — maxy"d*| < max|y" (V' — 07| < max|ly[2 [V = b,
yeVv

where the last inequality follows from the Cauchy-Schwartz inequality. The lemma is proved
for C' = maxyey~ ||y||2, which is finite since V* is non-empty and has a finite number of
elements. O]
Lemma 2. Let Py be the true joint distribution on (X,Ye,Yr). Suppose Py is consistent
with R and Assumptions 1 and 2 hold. Then €, 2 0 for any k, as n — oo.
Proof. In this proof, we will show that lim,, ., Py(|éx — 0] > n) = 0 for any n > 0.

Choose any k = 1,.., K. Fix n € N. Consider the following linear program, referred to

as LP:
min cTa:, subject to Ax < b,z > 0.
X

Define z and c¢ as:

T
r = [[751]5:17 [7%]'6,2]{4:17 ceey [WﬁL]z‘L:p Gk] )
CT = |:01><L27 1} 9

where 0,2 is a row vector of length L? containing only zeroes. Define A as the matrix that
satisfies:

L L L L _
Ar = [Zg(i,j)zo Wﬁja Ei:l 23:1 Wﬁja - Zi:l Zj:l ﬂ-zk,j? [Z =1 Z] 1 T ] k]v;L:11>
T
_ ] L _ ] L _
[— Z =1 Z] 1 T g Ek]iLzllv [Z;”:l dici Wﬁjf - Ek]f:lla [— Z;’:l >ic1 Wﬁj/ - 619]5:111 .

Let f(b) be the optimal value of LP as a function of b. Define:

o= oo [BOIL. FROIS BOLS. FROLS]
r = oo Rl RO ROl o)D)

By Assumption 1, f(b*) = 0. When b = b", LP is equivalent to the linear program for €,

so f(b") = & < 1. By Lemma 1, there exists a constant C' > 0 such that |f(b) — f(b*")| <

Cl|b — b*||5 for any b such that f(b) < co. This means that |f(b") — f(b*)| < C||b™ — b*||2.
Choose any n > 0. Then

Po([ei = 01 > m) = Rl (6") = (67)] > m) < By (110" = ']l > ).

It follows from the Weak Law of Large Numbers that 0" converges to b* in probability, and
so the right side of the above display converges to 0 as n — oo, completing the proof of the
lemma.

]
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Table 1: Estimated Bounds on the Fraction who Benefit, with respect to 30-day mRS Score.
The bound estimates in (a) are for the entire population, and those in (b) are for each

subpopulation.

(a) For the population

Without BV With BV
l U € l U
No assumptions 0.07 0.61 0  0.17 0.52
Benefit at most 5 0.07 0.61 0 0.17 0.52
at most 4 0.07 0.61 0 0.17 0.52
at most 3 0.07 0.61 0 0.17 0.52
at most 2 0.09 0.61 0 0.17 0.52
atmost1 0.12 0.61 0 0.22 0.52
Harm at most 5 0.07 0.61 0 0.17 0.52
at most 4 0.07 0.61 0 0.17 0.52
at most 3 0.07 0.61 0 0.17 0.52
at most 2 0.07 059 0 0.17 0.52
at most 1 0.07 050 0 0.17 0.45
No Harm 0.03 0.26 0.02 0.15 0.34
(b) For each subpopulation
Non-severe Severe
l U € l U €
No assumptions 0.04 041 0 0.26 0.60 O
Benefit at most 5 0.04 0.41 0 0.26 0.60 O
at most 4 0.04 041 0 026 0.60 0
at most 3 0.04 041 0 026 0.60 0
at most 2 0.04 0.41 0 0.26 0.60 O
at most 1 0.06 0.41 0 0.33 060 O
Harm at most 5 0.04 0.41 0 0.26 0.60 0
at most 4 0.04 041 0 026 0.60 0
at most 3 0.04 041 0 026 0.60 0
at most 2 0.04 041 0 026 0.60 0
at most 1 0.04 0.26 0 0.26 0.60 O
No Harm 0.00 0.37 0.10 0.26 0.33 0

BV=baseline variable, [=lower bound estimate, u=upper bound estimate,
e=relaxation term.
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Table 2: Estimated Bounds on the Fraction who Benefit, with respect to 180-day mRS
Score. The bound estimates in (a) are for the entire population, and those in (b) are for each

subpopulation.

(a) For the population

Without BV~ With BV

) U € l U

No assumptions 0.10 0.73 0 0.13 0.64

Benefit at most 5 0.10 0.73 0 0.13 0.64

at most 4 0.10 0.73 0 0.13 0.64

at most 3 0.10 0.73 0 0.14 0.64

at most 2 0.12 0.73 0 0.18 0.64

at most 1 0.18 0.64 0 0.20 0.65

Harm at most 5 0.10 0.73 0 0.13 0.64

at most 4 0.10 0.73 0 0.13 0.64

at most 3 0.10 0.64 0 0.13 0.63

at most 2 0.10 0.62 0 0.13 0.63

at most 1 0.10 0.42 0 0.12 0.50

No Harm 0.10 0.18 0 0.12 0.50

(b) For each subpopulation

Non-severe Severe
l U € l U €
No assumptions 0.01 059 0 022 068 O
Benefit at most 5 0.01 0.59 0 0.22 0.68 0
at most4 0.01 059 0 022 068 0
at most 3 0.01 059 0 025 068 0
at most 2 0.01 0.59 0 0.32 0.68 0

atmost 1 0.01 0.57 0 0.34 0.71 0.03

Harm at most 5 0.01 0.59 0 0.22 0.68 0
at most4 0.01 059 0 022 068 0
at most 3 0.01 057 0 022 068 0
at most 2 0.01 057 0 022 068 O
at most 1 0.00 0.31 0.04 022 064 O
No Harm 0.00 0.44 0.08 0.22 0.55 0

BV=baseline variable, [=lower bound estimate, u=upper bound estimate,

e=relaxation term.

10
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Table 3: Estimated Bounds on the Fraction who Benefit, with respect to Reduction in Clot
Volume (ordinal). The bound estimates in (a) are for the entire population, and those in (b)

are for each individual subpopulation.

(a) For the population

Without BV With BV

l U € l U
No assumptions 0.82 0.99 0 0.83 0.98
Benefit at most 4 0.82 0.99 0 0.86 0.98
at most 3 0.96 0.99 0.001 0.88 0.98
at most 2 0.70 1.00 0.23 0.70 1.00
at most 1 0.52 1.00 0.35 0.37 1.00
Harm at most 4 0.82 0.99 0 0.83 0.98
at most 3 0.82 0.99 0 0.83 0.98
at most 2 0.82 0.99 0 0.83 0.98
at most 1 0.82 0.99 0 0.83 0.98
No Harm 0.82 0.99 0 0.83 0.98

(b) For each subpopulation

Low Clot Volume

High Clot Volume

l U € l U €
No assumptions 0.81 0.96 0 0.86 1.00 0
Benefit at most 4 0.81 0.96 0 0.91 1.00 0
at most 3 0.85 0.96 0 0.91 1.00 0.05
at most 2 0.71 1.00 0.22 0.70 1.00 0.23
at most 1 0.19 1.00 0.62 0.55 1.00 0.38
Harm at most 4 0.81 0.96 0 0.86 1.00 0
at most 3 0.81 0.96 0 0.86 1.00 0
at most 2 0.81 0.96 0 0.86 1.00 0
at most 1 0.81 0.96 0 0.86 1.00 0
No Harm 0.81 0.96 0 0.86 1.00 0

BV=baseline variable, [=lower bound estimate, u=upper bound estimate,
e=relaxation term.
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