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The Relative Performance of Targeted
Maximum Likelihood Estimators

Kristin E. Porter, Susan Gruber, Mark J. van der Laan, and Jasjeet S. Sekhon

Abstract

There is an active debate in the literature on censored data about the relative per-
formance of model based maximum likelihood estimators, IPCW-estimators, and
a variety of double robust semiparametric efficient estimators. Kang and Schafer
(2007) demonstrate the fragility of double robust and IPCW-estimators in a simu-
lation study with positivity violations. They focus on a simple missing data prob-
lem with covariates where one desires to estimate the mean of an outcome that
is subject to missingness. Responses by Robins et al. (2007), Tsiatis and David-
ian (2007), Tan (2007a) and Ridgeway and McCaffrey (2007) further explore the
challenges faced by double robust estimators and offer suggestions for improving
their stability. In this article, we join the debate by presenting targeted maximum
likelihood estimators (TMLEs). We demonstrate that TMLEs that guarantee that
the parametric submodel employed by the TMLE-procedure respects the global
bounds on the continuous outcomes, are especially suitable for dealing with pos-
itivity violations because in addition to being double robust and semiparametric
efficient, they are substitution estimators. We demonstrate the practical perfor-
mance of TMLEs relative to other estimators in the simulations designed by Kang
and Schafer (2007) and in modified simulations with even greater estimation chal-
lenges.



1 Introduction

The translation of a scientific question into a statistical estimation problem often involves the formulation of
a full-data structure, a target parameter of the full-data probability distribution representing the scientific
question of interest, and an observed data structure which can be viewed as a mapping on the full data
structure and a censoring variable. One must identify the target parameter of the full-data distribution
from the probability distribution of the observed data structure, which often requires particular modeling
assumptions such as the coarsening at random assumption on the censoring mechanism (i.e., the conditional
distribution of censoring, given the full-data structure). The statistical problem is then reduced to a pure
estimation problem defined by the challenge of constructing an estimator of the estimand, defined by the
identifiability result for the target parameter of the full-data distribution. The estimator should respect the
statistical model implied by the posed assumptions on the censoring mechanism and the full-data distribution.

For semiparametric (e.g., nonparametric) statistical models, many estimators rely in one way or another
on the inverse probability of censoring weights (IPCW). Such estimators can be biased and highly variable
under practical or theoretical violations of the positivity assumption, which is a support condition on the
censoring mechanism that is necessary to establish the identifiability of the target parameter –e.g., Robins
(1986, 1987, 1999); Neugebauer and van der Laan (2005); Petersen et al. (2010). A particular class of
estimators are so called double robust estimators (see, e.g., van der Laan and Robins (2003)). Double robust
(DR) estimators, which rely on both IPCW and a model of the full-data distribution, are not necessarily
protected from the bias or inflated variance that can result from positivity violations, and in recent literature,
there is much debate on the relative performance of DR estimators when the positivity assumption is violated.
In particular, Kang and Schafer (2007) (KS) demonstrate the fragility of DR estimators in a simulation study
with near, or practical, positivity violations. They focus on a simple missing data problem in which one
wishes to estimate the mean of an outcome that is subject to missingness and all possible covariates for
predicting missingness are measured. Responses by Robins et al. (2007), Tsiatis and Davidian (2007), Tan
(2007a) and Ridgeway and McCaffrey (2007) further explore the challenges faced by DR estimators and offer
suggestions for improving their stability.

Under regularity conditions, DR estimators are asymptotically unbiased if either the model of the con-
ditional expectation of the outcome given the covariates or the model of the conditional probability of
missingness given the covariates is consistent. DR estimators are semiparametric efficient (for the nonpara-
metric model for the full-data distribution) if both of these estimators are consistent. In their article, KS
introduce a variety of DR estimators and compare them to non-DR IPCW estimators as well as a simple
parametric model based ordinary least squares (OLS) estimator. As the KS simulation has practical posi-
tivity violations, some values of both the true and estimated missingness mechanism are very close to zero.
In this situation, the IPCW will be extremely large for some observations of the sample. Therefore, DR and
non-DR estimators that rely on IPCW may be unreliable. As a result, KS warn against the routine use of
estimators that rely on IPCW, including DR estimators: this is in agreement with other literature analyzing
the issue (Robins (1986, 1987, 1999); Robins and Wang (2000); van der Laan and Robins (2003)), showing
simulations demonstrating the extreme sparsity bias of IPCW-estimators (e.g., Neugebauer and van der
Laan (2005)), diagnosing violations of the positivity assumptions in response to this concern (Petersen et al.
(2010); Wang et al. (2006a); Moore et al. (2009); Cole and Hernan (2008); Kish (1992); Bembom and van der
Laan (2008)), data adaptive selection of the truncation constant to control the influence of weighting (Bem-
bom and van der Laan (2008), and selecting parameters that are relying on realistic assumptions (see van der
Laan and Petersen (2007), and Petersen et al. (2010)).

The particular simulation in KS also gives rise to a situation in which under dual misspecification, the OLS
estimator outperforms all of the presented DR estimators. While this is an interesting issue, it is not the main
focus of this article. In our view, dual misspecification brings up the need for other strategies for improving
the robustness of estimators in general, such as incorporating data adaptive estimation instead of relying on
parametric regression models for the missingness mechanism and the conditional distribution of responses,
an idea echoed in the responses by Tsiatis and Davidian (2007) and Ridgeway and McCaffrey (2007), and
standardly incorporated in the UC Berkeley literature on targeted maximum likelihood estimation (e.g.,
van der Laan and Rubin (2006); van der Laan et al. (2009)). In particular, we note that a statistical
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estimation problem is also defined by the statistical model, which, in this case, is defined by a nonparametric
model: such models require data adaptive estimators in order to claim that the estimator is consistent.
Nonetheless, we explicitly demonstrate the impact of the utilization of machine learning on the simulation
results in a final section of this article.

In their response to the KS paper, Robins et al. (2007) point out that a desirable property of DR estimators
is “boundedness,” in that for a finite sample, estimators of the mean response fall in the parameter space
with probability 1. Estimators that impose such a restriction can introduce new bias but avoid the challenges
of highly variable weights. Robins et al. (2007) discuss ways in which to guarantee that “boundedness” holds
and present two classes of bounded estimators–regression DR estimators and bounded Horvitz-Thompson
DR estimators. We define examples of these estimators below, and we evaluate their relative performance.
The response by Tsiatis and Davidian (2007) offers strategies for constructing estimators that are more
robust under the circumstances in the KS simulations. In particular, to address positivity violations, they
suggest an estimator that uses IPCW only for observations with missingness mechanism values that are not
close to zero, while using regression predictions for the observations with very small missingness mechanism
values. One might consider either a hard cutoff for dividing observations or weighting each part of the
influence curve by the estimated missingness mechanism. Tan (2007b) also points to an improved locally
efficient double robust estimator (Tan (2006)) that is able to maintain double robustness as well as provides
guaranteed improvement relative to an initial estimator, improving on such type of estimators that had an
algebraic similar form but failed to guarantee both properties (Robins et al. (1994), and see also van der Laan
and Robins (2003)). Many responders also make valuable suggestions regarding the dual misspecification
challenge.

In the current paper, adapted in part from Sekhon et al. (2011), we add targeted maximum likelihood
estimators (TMLEs), or more generally, targeted minimum loss based estimators (van der Laan and Rubin
(2006)) to the debate on the relative performance of DR estimators under practical violations of the positivity
assumption in the particular simple missing data problem set forth by KS. TMLEs involve a two-step
procedure in which one first estimates the conditional expectation of the outcome, given the covariates, and
then updates this initial estimator, targeting the parameter of interest, rather than the overall conditional
mean of the outcome given the covariates. The second step requires specification of a loss-function (e.g.,
log-likelihood loss function) and a parametric submodel through the initial regression, so that one can fit the
parametric sub-model by minimizing the empirical risk (e.g., maximizing the log-likelihood). The estimator
of the target parameter is then defined as the corresponding substitution estimator. Because TMLEs are
substitution estimators, they not only respect the global bounds of the parameter and data (and thus satisfy
the “boundedness” property defined by Robins et al. (2007)), but, even more importantly, they respect the
fact that the true parameter value is a particular function of the data generating probability distribution.

TMLEs are double robust and asymptotically efficient. Moreover, TMLEs can incorporate data-adaptive
likelihood or loss based estimation procedures to estimate both the conditional expectation of the outcome
and the missingness mechanism.The TMLE also allows the incorporation of targeted estimation of the cen-
soring/treatment mechanism, as embodied by the collaborative TMLE (C-TMLE), thereby fully confronting
a long standing problem of how to select covariates in the propensity score/missingness mechanism of DR-
estimators. In this article, we compare the performance of TMLEs to other DR estimators in the literature
using the exact simulation study presented in the KS paper. We also make slight modifications to the KS
simulation, in order to make the estimation even more challenging.

The remainder of this article is organized as follows. Section 2 presents notation, which deviates from that
presented in KS, for the data structure and parameter of interest. Section 3 formally defines the positivity
assumption and gives an overview of causes, diagnostics and responses to violations. Section 4 defines the
estimators on which we focus in this paper, including a sample of estimators in the literature and TMLEs.
Section 5 compares estimator performance in the original and modified KS simulations. Section 6 then looks
at coupling TMLEs with machine learning. Section 8 concludes with a discussion of the findings.
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2 Data Structure, Statistical Model, and Parameter of Interest

Consider an observed data set consisting of n independent and identically distributed (i.i.d) observations
of O = (W,∆,∆Y ) ∼ P0. W is a vector of covariates, and ∆ = 1 indicates whether Y , a continuous
outcome, is observed. P0 denotes the true distribution of O, from which all observations are sampled. We
view O as a missing data structure on a hypothetical full data structure X = (W,Y ), which contains the
true, or potential, value of Y for all observations, as if no values are missing. We assume Y is missing at
random (MAR) such that P0(∆ = 1 | X) = g0(1 | W ). In other words, we assume there are no unobserved
confounders of the relationship between missingness ∆ and the outcome Y .

We define Q0 = {Q0,W , Q̄0}, where Q0,W (w) ≡ P0(W = w) and Q̄0(W ) ≡ E0(Y | ∆ = 1,W ). We make
no assumptions about Q0. The generalized Cramer-Rao information bound for any parameter of Q0 does
not depend on the statistical model for the missingness mechanism g0. The parameter of interest is the mean
outcome E0(Y ) for the sampled population, as if there were not missing observations of Y . Due to the MAR
assumption and the positivity assumption defined below, our target parameter is identified from P0 by the
following mapping from Q0:

µ(P0) = E0(Y ) = E0(Q̄0(W )).

3 The Positivity Assumption

The identifiability of the parameter of interest µ(P0) requires MAR and adequate support in the data.
Regarding the latter, it requires that within each stratum of W , there is positive probability that Y is
not missing. This requirement is often referred to as the positivity assumption. Formally, for our target
parameter, the positivity assumption requires that:

g0(∆ = 1 |W ) > 0 P0-almost everywhere. (1)

The positivity assumption is specific to the the target parameter. For example, the positivity assumption
of the target parameter E0{E0(Y | A = 1,W ) − E0(Y | A = 0,W )} of the probability distribution of
O = (W,A, Y ), representing the additive causal effect under causal assumptions, requires that within each
stratum there is a positive probability for all possible treatment assignments. For example, if A is a binary
treatment, then positivity requires that 0 < g0(A = 1 | W ) < 1. (The assumption is often referred to
as the experimental treatment assignment (ETA) assumption for causal parameters.) In addition to being
parameter-specific, the positivity assumption is also model-specific. Parametric model assumptions, which
extrapolate to regions of the joint distribution of (A,W) that may not be supported in the data, allow for
weakening the positivity assumption (Petersen et al. (2010)). However, analysts need to be sure that their
parametric assumptions actually hold true, which may be difficult if not impossible.

Violations and near violations of the positivity assumption can arise for two reasons. First, it may be
theoretically impossible or highly unlikely for the outcome Y to be observed for certain covariate values in
the population of interest. The threat to identifiability due to such structural violations of positivity exists
regardless of the sample size. Second, given a finite sample, the probability of the outcome being observed
for some covariate values might be so small that the observed sample cannot be distinguished from a sample
drawn under a theoretical violation of the positivity assumption. The effect of such practical violations of
the positivity assumption are sample size specific, and the resulting sparse data bias and inflated variance
are often as dramatic as under structural violations.

Several approaches for diagnosing bias due to positivity violations have been suggested (see Petersen
et al. (2010) for an overview). Analysts may assess the distribution of ∆ within covariate strata (or in
the case of causal parameters, the distribution of treatment assignment), but this method is not practical
with high dimensional covariate sets or with continuous or multi-level covariates, and also provides no
quantitative measure of the resulting sparse-data bias. Analysts may also assess the distribution of the
estimated missingness mechanism scores, gn(∆ = 1 |W ), or inverse probability weights. While this approach
may indicate positivity violations, it does not provide any information on the extent of potential bias of the
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chosen estimator. Wang et al. (2006b) introduce and Petersen et al. (2010) further discuss a diagnostic
that provides an estimate of positivity bias for any candidate estimator, which is based on a parametric
bootstrap. Bias estimates of similar or larger magnitude than an estimate’s standard error can raise a red
flag to analysts that inference for their target parameter is threatened by lack of positivity.

When censoring probabilities are close to 0 (or 1 in the case of an effect parameter), a common practice is
to truncate the probabilities or the resulting inverse probability weights, either at fixed levels or at percentiles
(Petersen et al. (2010); Wang et al. (2006a); Moore et al. (2009); Cole and Hernan (2008); Kish (1992);
Bembom and van der Laan (2008)). The practice limits the influence of observations with large unbounded
weights, which may reduce positivity bias and rein in inflated variance. However, this practice may also
introduce bias, due to misspecification of the missingness mechanism gn. The extent to which truncating
gn hurts or helps the performance of an estimator depends on the level of truncation, the estimator and
the distribution of the data. In our simulations below, we examine the effect of truncating missingness
probabilities for all estimators that we introduce in the next section.

4 Estimators of a Mean Outcome when the Outcome is Subject
to Missingness

4.1 Estimators in the Literature

As a benchmark, KS compare all estimators in their paper to the ordinary least squares (OLS) estimator.
For the target parameter, the OLS estimator is equivalent to the G-computation estimator based on a linear
regression model. It is defined as:

µn,OLS =
1

n

n∑
i=1

Q̄0
n(Wi).

where Q̄0
n = mβn is a linear regression initial fit of Q̄0, and βn is given by:

βn = arg min
β

n∑
i=1

∆i(Yi −mβ(Wi))
2.

(Note that in our notation, the subscript n refers to an estimation, and the superscript indicates whether
the estimation is from an initial fit (0

n), or as we introduce below, a refit (′n) or a fluctuated fit (∗n).) Under
violation of the positivity assumption, the OLS estimator, when defined, extrapolates from strata of W in
which there is support to strata of W that lack adequate support. The extrapolation depends on the validity
of the linear regression model, and misspecification leads to bias.

KS present comparisons of several DR (and non-DR) estimators. We focus on just a couple of them
here. Using our terminology with the terminology and abbreviations from KS in parenthesis the estimators
we compare are: the weighted least squares (WLS) estimator (regression estimation with inverse-propensity
weighted coefficients, µn,WLS) and the augmented IPCW (A-IPCW) estimator (regression estimation with
residual bias correction, µn,BC−OLS). Both of these DR estimators are defined below.

The WLS estimator is defined as:

µn,WLS =
1

n

n∑
i=1

mβn
(Wi),

where

βn = arg min
β

n∑
i=1

∆i

gn(1 |Wi)
(Yi −mβ(Wi))

2.

The A-IPCW estimator, introduced by J.M. Robins and Zhao (1994), is then defined as:
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µn,A−IPCW = Q̄0
n(Wi) +

1

n

n∑
o=1

∆i

gn(1 |Wi)
(Yi − Q̄0

n(Wi)).

Both of these estimators rely on estimators of Q̄0 and g0. They are consistent if Q̄0
n or gn is consistent, and

efficient if both are consistent. Under positivity violations, however, these estimators rely on the consistency
of Q̄0

n, and require that gn converges to a limit that satisfies the positivity assumption (see e.g., van der
Laan and Robins (2003)).

Additionally, in comments on KS, Robins et al. (2007) introduce bounded Horvitz-Thompson (BHT)
estimators, which, as the name suggests, are bounded, in that for finite sample sizes the estimates are
guaranteed to fall in the parameter space. A BHT estimator is defined as:

µn,BHT = Q̄0
n(W ) +

1

n

∑
i

∆i

gnEXT
(1 |Wi)

(Yi − Q̄0
n(Wi)).

This is equivalent to the A-IPTW estimator, but estimating g0(1 | W ) by fitting the following logistic
regression model

logitPEXT (∆ = 1 |W ) = αTW + φhn(W ),

and hn(W ) = Q̄0
n(W )− 1

n

∑n
i=1 Q̄

0
n(Wi).

We also include another important class of doubly robust, locally efficient, regression-based estimators
introduced by Scharfstein et al. (1999), further discussed in Robins (1999) and compared to the TMLE
in Rosenblum and van der Laan (2010). This estimator is based on a parametric regression model which
includes a “clever covariate” that incorporates inverse probability weights, and it is similar in behavior as the
TMLE using linear fluctuation (and identical if the TMLE using linear fluctuation uses this clever parametric
regression as initial estimator). We use the abbreviation PRC. The estimator is defined as:

µn,PRC =
1

n

n∑
i=1

Q̄′n(Wi),

where Q′n(W ) = mβn,εn(W ) and mβ,ε(W ) is a parametric model, which includes the clever covariate
H∗gn(W ) = 1

gn(1|W ) , and (βn, εn) is the OLS.

Cao et al. (2009) presents a DR estimator that achieves minimum variance among a class of DR esti-
mators indexed by all possible linear regressions for the initial estimator, when the estimator of missingness
mechanism is correctly specified (see also Rubin and van der Laan (2008) for empirical efficiency maximiza-
tion), while it preserves the double robustness. They also address the effect of large IPCW by enhancing the
missingness mechanism estimator in order to constrain the predicted values. Their estimator is defined as

µn,Cao =
n∑
i=1

∆iYi
gn(1 |Wi)

− ∆i − gn(1 |Wi)

gn(1 |Wi)
m(Wi, βn).

Cao’s enhanced missingness mechanism estimator is given by:

gn(1 |W ) = πen(W, δn, γn) = 1− exp(δn + W̃γn)

1 + exp(W̃γn)
.

Here W̃ = [1,W ], and the parameters γ and δ are estimated subject to the constraints 0 < π(W, δ, γ) < 1
and

∑n
i=1 ∆i/π

en(Wi, δn, γn) = n. A quasi-Newton method implemented in the constrOptim.nl function in
the R package alabama was used to estimate (δn, γn) (Varadhan, 2010). We used OLS to estimate βn, which
corresponds to Cao’s µ̂enusual.

5
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Tan (2010) presents an augmented likelihood estimator that is a more robust version of estimators
originally introduced in Tan (2006) that respect boundedness and is semi-parametric efficient. This estimator
is defined as

µn,Tan =
1

n

n∑
i=1

∆iYi

ω(W ; λ̃step2)
,

where ω(W ; λ̃step2) is an enhanced estimate of the missingness mechanism based on an initial estimate,
πML(W ). Specifically, ω(W ;λ) = πML(W ) + λThn(W ), where hn = (hTn,1, h

T
n,2),

hn,1 = (1− πn,ML(W ))νn(W ),

hn,2 =
∂π

∂γn,ML
(W ; γn,ML),

νn(W ) = [1, Q̄0
n(W )]T ,

and γn,ML is a maximum likelihood estimator for the propensity score model parameter. An estimate λn
that respects the constraint 0 < ω(Wi, λ) if ∆i = 1 can be obtained using a two-step procedure outlined in
Tan’s article. Following Tan’s recommendation, non-linear optimization was carried out using the R trust
package (Geyer, 2009). We consider the two variants of Tan’s LIK2 augmented likelihood estimator that
performed best in Tan’s simulations under misspecification of Q. Our estimator TanWLS relies on a weighted
least squares estimate of Q̄0

n. TanRV relies on the empirical efficiency maximization estimator of Rubin and
van der Laan (Rubin and van der Laan, 2008),

Q̄n,RV =
n∑
i=1

∆i

g(1 |Wi)
(Yi −m(W ;βn)) +m(W ;βn),

βn = arg min
β

n∑
i=1

∆i(1− gn(1 |Wi))

gn(1 |Wi)2
(Yi −mβ(Wi))

2.

4.2 TMLEs

We compare the above estimators with two versions of TMLEs. The targeted maximum likelihood procedure
was first introduced in van der Laan and Rubin (2006). For a compilation of current and past work on targeted
maximum likelihood estimation, see van der Laan et al. (2009).

In contrast to the estimating equation-based DR estimators defined above (WLS, A-IPCW, BHT, Cao,
and Tan), the PRC estimator and TMLEs are DR substitution estimators. TMLEs are based on an update
of an initial estimator of P0 that fluctuates the fit with a fit of a clever parametric submodel. Assuming a
valid parametric submodel is selected, TMLEs do not only respect the bounds on the outcome implied by
the statistical model or data, but also respect that the true target parameter value is a specified function of
the data generating distribution. Due to respecting this information, the TMLE does not only respect the
local bounds of the statistical model by being asymptotically (locally) efficient (as the other DR estimators),
but also respect the global constraints of the statistical model. Being a substitution estimator is particularly
important under sparsity, as implied by violations of the positivity assumptions.

Although our target parameter involves a continuous Y , to introduce the TMLE for the mean outcome,
we begin by defining the TMLE for a binary Y . In this case, the TMLE is defined as:

µn,TMLE =
1

n

n∑
i=1

Q̄∗n(Wi), (2)

where we use the logistic regression submodel

logitQ̄0
n(ε) = logitQ̄0

n + εH∗gn ,

6
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the clever covariate is defined as H∗gn(W ) = 1
gn(1|W ) , and ε, the fluctuation parameter, is estimated by

maximum likelihood in which the loss function is thus the log-likelihood loss function:

− L(Q̄)(O) = ∆
{
Y log Q̄(W ) + (1− Y ) log(1− Q̄(W ))

}
. (3)

Thus εn is fitted with univariate logistic regression, using the initial regression estimator Q̄0
n as an off-set:

εn = arg min
ε

n∑
i=1

L(Q̄0
n(ε))(Oi).

The TMLE of Q̄0 is defined as Q̄∗n = Q̄n(εn), and µ(Q∗n) is the corresponding TMLE of µ0.
For estimators Q̄0

n and gn, one may specify a parametric model or use machine learning or even super
learner, which uses loss-based cross-validation to select weighted combination of candidate estimators (van der
Laan et al. (2007)).

Next, consider that Y is continuous, but bounded by 0 and 1. In this case, we can implement the same
TMLE as we would for binary Y in (2). That is, we use the same logistic regression submodel, and the same
loss function (3), and the same standard software for logistic regression to fit ε, simply ignoring that Y is
not binary. The same loss function is still valid for the conditional mean Q̄0 (Wedderburn (1974); Gruber
and van der Laan (2010a)):

Q̄0 = arg min
Q̄

E0L(Q̄).

Finally, given a continuous Y ∈ [a, b] we can define Y ∗ = (Y − a)/(b − a) so that Y ∗ ∈ [0, 1]. Then, let
µ∗(P0) = E0(E0(Y ∗ | ∆ = 1,W )). This approach requires setting a range [a, b] for the outcomes Y . If such
knowledge is available, one simply uses the known values. If Y would not be subject to missingness, then one
would use the minimum and maximum of the empirical sample which represents a very accurate estimator of
the range. In these simulations Y is subject to informative missingness, so that the minimum or maximum
of the biased sample represents a biased estimate of the range, resulting in a small unnecessary bias in the
TMLE (asymptotically negligible relative to MSE). We enlarged the range of the complete observations on
Y by setting a to 0.9 times the minimum of the observed values, and b to 1.1 times the maximum of the
observed values, which seemed to remove most of the unnecessary bias. We expect that some improvements
can be obtained by incorporating a valid estimator of the range that takes into account the informative
missingness, but such second order improvements are outside the scope of this article. We now compute the
above TMLE of µ∗(P0), denoted as TMLEY ∗, and we use the relation µ(P0) = (b− a)µ∗(P0) + a.

We note that the estimator proposed by (Scharfstein et al., 1999) and discussed in the KS debate is a
particular special case of a TMLE (Rosenblum and van der Laan (2010)). It defines a clever parametric
initial regression for which the update step of the general TMLE-algorithm introduced in van der Laan and
Rubin (2006) results in a zero-update, and is thus not needed. Such a TMLE falls in the class of TMLEs
defined by an initial regression estimator, a squared error loss function and univariate linear regression sub-
model (coding the fluctuations of the initial regression estimator for the TMLE-update step). Such TMLEs
for continuous outcomes (contrary to the excellent robustness of the TMLE for binary outcome based on
the log-likelihood loss function and logistic regression submodel) suffer from great sensitivity to violations
of the positivity assumptions, as was also observed in the simulations presented in the Kang and Schafer
debate. As explained in (Gruber and van der Laan (2010a)) the problem with this TMLE defined by the
squared error loss function and univariate linear regression submodel is that its updates are not subject
to any bounds implied by the statistical model or data: that is, it is not using a parametric sub-model,
an important principle of the general TMLE algorithm. The valid TMLE for continuous outcomes above,
defined by the quasi-binary-log-likelihood loss and a univariate logistic regression parametric submodel, was
recently presented (Gruber and van der Laan (2010a)), and in the latter article it was demonstrated that
the previously observed sensitivity of these two estimators to the positivity assumption was due to those
specific choices.

Finally, a natural extension of all of the above TMLE is to make a more sophisticated estimate of g0.
Therefore, estimator µn,C−TMLEY ∗ is defined by (2) as well, but the algorithm for computing Q∗n differs.

7
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For the C-TMLE, we generate a sequence of nested-logistic regression model fits of g0, gn,1, . . . , gn,K , and
we create a corresponding sequence of candidate TMLEs Q∗k,gn,k

, using gn,k in the targeted MLE step,

k = 1, . . . ,K, such that the loss-function (e.g., log-likelihood) specific fit of Q∗k,gn,k
is increasing in k. Finally,

we use loss-function specific cross-validation to select k. The precise algorithm is presented in Gruber and
van der Laan (2010b) and the software is available, and posted on http://www.stat.berkeley.edu/~laan.
As a result, the resulting estimator gn used in the TMLE is aimed to only include covariates that are effective
in removing bias w.r.t. the target parameter: the theoretical underpinnings in terms of collaborative double
robustness of the efficient influence curve is presented in van der Laan and Gruber (2009).

5 Simulation Studies

In this section, we compare the performance of TMLEs to the estimating equation-based DR estimators
(WLS, A-IPTW, BHT, Cao, TanWLS, TanRV) as well as PRC and OLS, in the context of positivity
violations. The goal of the original simulation designed by KS was to highlight the stability problems of DR
estimators. We explore the relative performance of the estimators under the original KS simulation and a
number of alternative data generating distributions that involve stronger and different types of violations of
the positivity assumption. These new simulation settings were designed to provide more diverse and even
more challenging test cases for evaluating robustness and thereby finite sample performance of the different
estimators.

For the four simulations described below, all estimators were used to estimate µ(P0) from 250 samples of
size 1000. We include TMLEY ∗ and C-TMLEY ∗ estimators based on the quasi-log-likelihood loss function
and the logistic regression submodel. We evaluated the performance of the estimators by their bias, variance
and mean squared error (MSE).

We compared the estimators of µ(P0) using different specifications of the estimators of Q̄0 and g0. In each
of the tables presented below, “Qcgc” indicates that the estimators of both were specified correctly; “Qcgm”
indicates that the estimator of Q̄0 was correctly specified, but the estimator of g0 was misspecified ; “Qmgc”
indicates that the estimator of Q̄0 was misspecified, but the estimator of g0 was correctly specified, and
“Qmgm” indicates that both estimators were misspecified. For the modified simulations we present results
for the “Qmgc” specification only, in order to focus on the performance of each estimator when reliance on
gn is essential. Additional results for the other model specifications are available as supplemental materials.

Also, for all estimators, we compared results with no lower bound on gn(1 |W ) with truncating gn(1 |W )
at a lower bound set at 0.025. We note that neither KS nor Robins et al. (2007) included bounding gn(1 |W )
when applying their estimators. Although, not bounding gn(1,W ) has the advantage that in any given
application it is difficult to determine which bounds to use, the theory teaches us that the DR estimators
can only be consistent if gn is bounded from below, even if in truth g0 is unbounded. In addition, some of the
estimators above incorporate implicit bounding of gn, so that such estimators would appear to be particularly
advantageous, while the gain in performance might all be due to the implicit bounding of gn (which would
be good to know). Additional results when gn is bounded from below at 0.01 and 0.05 demonstrate similar
behavior, and are provided in the Appendix.

5.1 Kang and Schafer Simulation

Kang and Schafer (2007) consider n i.i.d. units of O = (W,∆,∆Y ) ∼ P0, where W is a vector of 4 baseline
covariates, and ∆ is an indicator of whether the continuous outcome, Y , is observed. Kang and Schafer are
interested in estimating the following parameter:

µ(P0) = E0(Y ) = E0(E0(Y | ∆ = 1,W )).

Let (Z1, . . . , Z4) be independent normally distributed random variables with mean zero and variance 1. The
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covariates W we actually observe are generated as follows:

W1 = exp(Z1/2)

W2 = Z2/(1 + exp(Z1)) + 10

W3 = (Z1Z3/25 + 0.6)3

W4 = (Z2 + Z4 + 20)2.

The outcome Y is generated as

Y = 210 + 27.4Z1 + 13.7Z2 + 13.7Z3 + 13.7Z4 +N(0, 1).

From this one can determine that the conditional mean Q̄0(W ) of Y , given W , which equals the same linear
regression in Z1(W ), . . . , Z4(W ), where Zj(W ), j = 1, . . . , 4, are the unique solutions of the 4 equations
above in terms of W = (W1, . . . ,W4). Thus, if the data analyst would have been provided the functions
Zj(W ), then the true regression function is linear in these functions, but the data analyst is measuring
the terms Wj instead. The other complication of the data generating distribution is that Y is subject to
missingness, and the true censoring mechanism, denoted by g0(1 |W ) ≡ P0(∆ = 1 |W ), is given by:

g0(1 |W ) = expit(−Z1(W ) + 0.5Z2(W )− 0.25Z3(W )− 0.1Z4(W )).

With this data generating mechanism, the average response rate is 0.50. Also, the true population mean is
210, while the mean among respondents is 200. These values indicate a small selection bias.

In these simulations, a linear main term model in the main terms (W1, . . . ,W4) for either the outcome-
regression or missingness mechanism is misspecified, while a linear main term model in the main terms
(Z1(W ), . . . , Z4(W )) would be correctly specified. Note that in the KS simulation, there are finite sample
violations of the positivity assumption. Specifically, we find g0(∆ = 1 | W ) ∈ [0.01, 0.98] and the estimated
missingness probabilities gn(∆ = 1 |W ) were observed to fall in the range [4× 10−6, 0.97].

Figure 1 and Table 1 present the simulation results without any bounding of gn. Tan’s estimator imposes
internal bounds on the estimated missingness mechanism, however we report performance of TanWLS and
TanRV estimators when given an initial estimate gn that is not bounded away from 0. All estimators have
similar performance when Q̄0

n is correctly specified. When both models are misspecified Cao’s estimator
performs as well as OLS. OLS, CAO and C-TMLEY ∗ are least biased, and TanRV has the smallest MSE.
The performance of all other estimators degrades under dual misspecification. Arguably, the most interesting
test case for all estimators (given that they are all enforced to use parametric models) is Qmgc. TanWLS,
TanRV, C-TMLEY ∗, WLS have the smallest MSE, and TanRV, TanWLS are least biased. The performance
of both Tan estimators is unaffected by externally bounding gn due to their internal bounding of gn.

Figure 2 and Table 2 compare the results for each estimator when gn is bounded from below at 0.025.
Bounding gn appears to be crucial for PRC in the case of Qmgm, and improves the performance of Cao’s
estimator for the Qmgc specification, but has little effect on the performance of the other estimators. How-
ever, this result does not generalize to other data generating distributions, where the selection bias is greater
and sparsity is more extreme, as the next simulation demonstrates.
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Figure 1: Sampling distribution of (µn − µ0) with no bounding of gn, Kang and Schafer simulation.

Table 1: Kang and Schafer simulation results with no bounding of gn.

Qcgc Qcgm Qmgc Qmgm
Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
WLS −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −3.04 2.08 11.33
A-IPCW −0.09 1.40 1.41 −0.10 1.45 1.45 0.04 2.52 2.51 −8.81 2.3e+2 3.1e+2
BHT −0.09 1.40 1.41 −0.09 1.41 1.41 0.01 2.34 2.33 −7.08 62.47 1.1e+2
PRC −0.09 1.40 1.40 −0.12 1.44 1.45 0.56 3.61 3.91 −37.24 4.9e+4 5.0e+4
Cao −0.09 1.40 1.41 −0.09 1.40 1.41 −0.69 2.27 2.74 −0.93 1.97 2.82
Tan.WLS −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.93 1.62 5.33
Tan.RV −0.09 1.40 1.40 −0.09 1.40 1.40 0.03 1.44 1.44 −1.67 1.51 4.31
TMLEY ∗ −0.10 1.40 1.41 −0.11 1.40 1.40 −0.09 2.12 2.12 −4.61 3.62 24.84
C-TMLEY ∗ −0.10 1.40 1.41 −0.11 1.40 1.40 0.09 1.77 1.77 −1.49 2.76 4.97
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Table 2: Kang and Schafer simulation results, gn bounded at 0.025.

Qcgc Qcgm Qmgc Qmgm
Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
WLS −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −2.94 1.97 10.59
A-IPCW −0.09 1.40 1.41 −0.09 1.41 1.41 0.04 2.44 2.43 −4.85 6.10 29.64
BHT −0.09 1.40 1.41 −0.09 1.41 1.41 0.03 2.20 2.19 −4.65 5.35 26.95
PRC −0.09 1.40 1.40 −0.09 1.40 1.41 0.51 3.47 3.72 −2.40 3.08 8.85
Cao −0.09 1.40 1.41 −0.09 1.40 1.41 0.18 2.17 2.20 −0.93 1.97 2.83
Tan.WLS −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.91 1.63 5.25
Tan.RV −0.09 1.40 1.40 −0.09 1.40 1.41 0.03 1.44 1.44 −1.66 1.52 4.26
TMLEY ∗ −0.10 1.40 1.41 −0.10 1.41 1.41 −0.09 2.10 2.10 −4.12 3.10 20.04
C-TMLEY ∗ −0.10 1.40 1.41 −0.10 1.40 1.41 0.11 1.74 1.74 −1.37 2.30 4.16
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Figure 2: Sampling distribution of (µn − µ0) with gn bounded at 0.025, Modification 1 of Kang and Schafer
simulation.

5.2 Modification 1 of Kang and Schafer Simulation

In the KS simulation, when Q̄0 or g0 are misspecified the misspecifications are small, and the selection
bias is small. Therefore, we modified the KS simulation in order to increase the degree of misspecification
and selection bias. This creates a greater challenge for estimators, and better highlights their relative
performance.
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As before, let Zj be i.i.d. N(0, 1). The outcome Y is generated as Y = 210+50Z1 +25Z2 +25Z3 +25Z4 +
N(0, 1). The covariates actually observed by the data analyst are now given by the following functions of
(Z1, . . . , Z4):

W1 = exp(Z2
1/2)

W2 = 0.5Z2/(1 + exp(Z2
1 )) + 3

W3 = (Z2
1Z3/25 + 0.6)3 + 2

W4 = (Z2 + 0.6Z4)2 + 2.

From this one can determine the true regression function Q̄0(W ) = E0(E(Y | Z) | W ). The missingness
indicator is generated as follows:

g0(1 |W ) = expit(−2Z1 + Z2 − 0.5Z3 − 0.2Z4).

A misspecified fit is now obtained by fitting a linear or logistic main term regression in W1, . . . ,W4, while a
correct fit is obtained by providing the user with the terms Z1, . . . , Z4, and fitting a linear or logistic main
term regression in Z1, . . . , Z4. With these modifications, the population mean is again 210, but the mean
among respondents is 184.4. With these modifications, we have a higher degree of practical violation of the
positivity assumption: g0(∆ = 1 | W ) ∈ [1.1× 10−5, 0.99] while the estimated probabilities, gn(∆ = 1 | W ),
were observed to fall in the range [2.2× 10−16, 0.87].

Table 3 present results for misspecified Q̄0
n without bounding gn, and with gn bounded at 0.025. Bounding

dramatically reduces the variance of all estimators, except OLS, Tan.WLS and Tan.RV, but recall that Tan
estimators always internally bound gn away from 0. This improved efficiency comes at the cost of a slight
increase in bias for all estimators except PRC.The variance and MSE of C-TMLEY ∗ is less than half of
the other non-TMLE estimators. In contrast to the results on the previous simulation, Cao, Tan.WLS, and
Tan.RV exhibit a lack of robustness at this level of sparsity when forced to rely on gn at misspecified Q̄0

n.

Table 3: Modification 1 of Kang and Schafer simulation, Q misspecified.

Qmgc Qmgm
lb on gn Bias Var MSE Bias Var MSE

OLS 0 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3
0.025 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3

WLS 0 −4.40 41.95 61.15 −34.67 15.95 1.2e+3
0.025 −5.52 31.62 61.93 −34.67 15.95 1.2e+3

A-IPCW 0 −1.83 1.9e+2 2.0e+2 −34.75 17.19 1.2e+3
0.025 −5.88 42.63 77.09 −34.75 17.19 1.2e+3

BHT 0 −3.04 64.63 73.59 −34.75 17.17 1.2e+3
0.025 −5.03 32.89 58.02 −34.75 17.17 1.2e+3

PRC 0 80.64 8.7e+3 1.5e+4 1.25e+11 1.74e+25 1.75e+25
0.025 9.27 2.2e+2 3.0e+2 -34.38 15.28 1.2e+3

Cao 0 −6.17 44.68 82.52 −35.57 16.58 1.3e+3
0.025 −24.25 21.79 6.1e+2 −35.50 17.87 1.3e+3

Tan.WLS 0 −3.59 24.29 37.07 −33.64 42.37 1.2e+3
0.025 −3.64 22.95 36.09 -33.49 50.00 1.2e+3

Tan.RV 0 5.22 93.77 1.2e+2 −34.69 63.16 1.3e+3
0.025 5.28 94.11 1.2e+2 −34.65 64.21 1.3e+3

TMLEY ∗ 0 −0.04 89.33 88.98 −33.74 6.48 1.1e+3
0.025 1.00 22.05 22.96 −33.74 6.48 1.1e+3

C-TMLEY ∗ 0 −0.64 15.55 15.90 −34.26 6.66 1.2e+3
0.025 −1.50 11.96 14.17 −34.19 6.82 1.2e+3
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5.3 Modification 2 of Kang and Schafer Simulation
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Figure 3: Sampling distribution of (µn − µ0) with gn bounded at 0.025, Modification 2 of Kang and Schafer
simulation.

For this simulation, we made one additional change to Modification 1: we set the coefficient in front of Z4

in the true regression of Y on Z equal to zero. Therefore, while Z4 is still associated with missingness, it is not
associated with the outcome, and is thus not a confounder. Given (W1, . . . ,W3), W4 is not associated with
the outcome either, and therefore as misspecified regression model of Q̄0(W ) we use a main term regression
in (W1,W2,W3).

This modification to the KS simulation enables us to take the debate on the relative performance of DR
estimators one step further, by addressing a second key challenge of the estimators: that they often include
non-confounders in the censoring mechanism estimator. This unnecessary inclusion could unnecessarily
introduce positivity violations. Moreover, this unnecessary inclusion can itself introduce substantial bias
and inflated variance, sometimes referred to as Z-bias. If the relationships between the variables are linear,
the inclusion on non-confounders in the censoring mechanism will always increase bias (Bhattacharya and
Vogt, 2007; Wooldridge, 2009). In the non-parametric case, the direction of the bias is less straightforward,
but increasing bias is a real possibility (Pearl, 2010). While this problem is not presented in the Kang and
Schafer paper nor the responses, it is highlighted in the literature, including Bhattacharya and Vogt (2007);
Wooldridge (2009) and Pearl (2010).

Figure 3 and Table 4 shows that C-TMLEY ∗ has superior performance relative to estimating equation-
based DR estimators when not all covariates are associated with Y . As discussed earlier, the C-TMLE
algorithm provides an innovative black-box approach for estimating the censoring mechanism, preferring
covariates that are associated with the outcome and censoring, without “data-snooping.”
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Table 4: Modification 2 of Kang and Schafer simulation, Q misspecified.

Qmgc Qmgm
lb on gn Bias Var MSE Bias Var MSE

OLS 0 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3
0.025 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3

WLS 0 −3.64 39.52 52.61 −33.09 15.18 1.1e+3
0.025 −4.92 28.65 52.75 −33.09 15.18 1.1e+3

A-IPCW 0 −1.11 1.8e + 2 1.8e+2 −33.14 16.47 1.1e+3
0.025 −5.39 39.01 67.89 −33.14 16.47 1.1e+3

BHT 0 −2.27 72.06 76.91 −33.14 16.43 1.1e+3
0.025 −4.57 29.73 50.49 −33.14 16.43 1.1e+3

PRC 0 77.78 7.7e+3 1.4e+4 5.4e+11 4.5e+25 4.5e+25
0.025 9.11 2.0e+2 2.8e+2 −32.79 14.13 1.1e+3

Cao 0 −5.55 40.60 71.21 −34.25 15.25 1.2e+3
0.025 −23.37 20.54 5.7e+2 −34.16 16.48 1.2e+3

Tan.WLS 0 −2.95 23.74 32.32 −32.02 49.66 1.1e+3
0.025 −3.11 23.32 32.91 −32.02 43.37 1.1e+3

Tan.RV 0 6.87 65.77 1.1e+2 −32.95 89.67 1.2e+3
0.025 6.94 65.02 1.1e+2 −32.87 71.78 1.2e+3

TMLEY ∗ 0 0.15 76.03 75.75 −31.99 5.64 1.0e+3
0.025 1.26 17.77 19.29 −32.00 5.60 1.0e+3

C-TMLEY ∗ 0 −0.88 10.69 11.42 −32.58 5.83 1.1e+3
0.025 −1.37 8.48 10.34 −32.68 8.48 1.1e+3

5.4 Modification 3 of Kang and Schafer Simulation

In some rare cases, C-TMLEs can be a super efficient estimator because they use a collaborative estimator
gn that takes into account the fit of the initial estimator Q̄0

n (we refer to Rotnitzky et al. (2010) and van der
Laan and Gruber (2009) for a detailed discussion). As a consequence, it is of particular interest to investigate
the behavior of C-TMLEY ∗ in the previous simulation but with the coefficient in front of Z4 set equal to
C/
√
n for a number of values of C. We report the results for C ∈ {10, 20, 50}. Table 5 provides the results

for all estimators when Q̄0
n is misspecified, gn bounded at 0.025 for each level of C. We note that C-TMLEY ∗

does not break down, even under these particularly challenging conditions.
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Table 5: Modification 3 to Kang and Schafer simulation, C/
√
n perturbation, gn bounded at 0.025.

C = 10 C = 20 C = 50
Bias Var MSE Bias Var MSE Bias Var MSE

Qmgc

OLS −34.28 15.25 1.2e+3 −34.29 15.25 1.2e+3 −34.34 15.24 1.2e+3
WLS −5.13 28.24 54.44 −5.13 28.25 54.50 −5.15 28.28 54.68
A-IPCW −5.47 38.63 68.38 −5.47 38.64 68.45 −5.49 38.69 68.67
BHT −4.62 29.60 50.85 −4.63 29.61 50.90 −4.64 29.63 51.08
PRC 9.21 2.0e+2 2.8e+2 9.21 2.0e+2 2.8e+2 9.21 2.0e+2 2.8e+2
Cao −23.42 20.47 5.7e+2 −23.43 20.47 5.7e+2 −23.46 20.48 5.7e+2
Tan.WLS −3.25 21.00 31.45 −3.25 20.94 31.42 −3.26 20.78 31.35
Tan.RV 6.94 64.90 112.84 6.93 65.23 1.1e+2 6.88 66.37 1.1e+2
TMLEY ∗ 1.17 18.03 19.34 1.17 18.02 19.32 1.16 18.02 19.29
C-TMLEY ∗ −1.63 8.01 10.64 −1.66 8.49 11.21 −1.68 8.83 11.63

Qmgm

OLS −34.28 15.25 1.2e+3 −34.29 15.25 1.2e+3 −34.34 15.24 1.2e+3
WLS −33.00 14.79 1.1e+3 −33.03 14.79 1.1e+3 −33.09 14.78 1.1e+3
A-IPCW −33.05 16.39 1.1e+3 −33.07 16.38 1.1e+3 −33.13 16.35 1.1e+3
BHT −33.05 16.36 1.1e+3 −33.07 16.35 1.1e+3 −33.13 16.32 1.1e+3
PRC −32.39 14.45 1.1e+3 −32.42 14.44 1.1e+3 −32.49 14.40 1.1e+3
Cao −34.18 16.50 1.2e+3 −34.20 16.49 1.2e+3 −34.25 16.48 1.2e+3
Tan.WLS −32.76 73.05 1.1e+3 −32.72 76.88 1.1e+3 −32.75 76.83 1.1e+3
Tan.RV −33.29 71.11 1.2e+3 −33.13 55.13 1.2e+3 −33.17 62.77 1.2e+3
TMLEY ∗ −32.03 5.57 1.0e+3 −32.05 5.56 1.0e+3 −32.12 5.54 1.0e+3
C-TMLEY ∗ −32.64 5.82 1.1e+3 −32.74 5.94 1.1e+3 −32.75 6.22 1.1e+3

6 TMLEs with Machine Learning for Dual Misspecification

The KS simulation with dual misspecification (Qmgm) can illustrate the benefits of coupling data-adaptive
(super) learning with TMLE. C-TMLEY∗ constrained to use a main terms regression model with misspecified
covariates (W1,W2,W3,W4) has smaller variance than µn,OLS , but is more biased. The MSE of the TMLEY ∗
is larger than the MSE of C-TMLEY ∗, with increased bias and variance. We ask how the estimation process
should be affected if we assume that parametric models are seldom correctly specified and that main term
regression techniques generally fail in capturing the true relationships between predictors and an outcome.
Our answer is that the estimation process should incorporate data-adaptive machine learning.

We coupled super learning with TMLE and C-TMLE to estimate both Q̄0 and g0. For C-TMLEY ∗,
four missingness-mechanism score-based covariates were created based on different truncation levels of the
propensity score estimate gn(1 | W ): no truncation, and truncation from below at the 0.01, 0.025, and
0.05-percentile. These four scores were supplied along with the misspecified main terms W1, . . . ,W4 to the
targeted forward selection algorithm in the C-TMLEY ∗ used to build a series of candidate nested logistic
regression estimators of the missingness mechanism and corresponding candidate TMLEs. The C-TMLEY ∗
algorithm used 5-fold cross-validation to select the best estimate from the eight candidate TMLEs. This
allows the C-TMLE algorithm to build a logistic regression fit of g0 that selects among the misspecified
main-terms and super-learning fits of the missingness mechanism score gn(1 | W ) at different truncation
levels.

An important aspect of super learning is to ensure that the library of prediction algorithms includes a
variety of approaches for fitting the true function Q̄0 and g0. For example, it is sensible to include a main
terms regression algorithm in the super learner library. Should that algorithm happen to be correct, the super
learner will behave as the main terms regression algorithm. It is also recommended to include algorithms
that search over a space of higher order polynomials, non-linear models, and, for example, cubic splines.
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For binary outcome regression, as required for fitting g0, classification algorithms such as classification and
regression trees (Breiman et al., 1984), support vector machines (Cortes and Vapnik, 1995)), and k-nearest-
neighbor algorithms (Friedman (1994)), could be added to the library. The point of super-learning is that
we cannot know in advance which procedure will be most successful for a given prediction problem. Super
learning relies on the oracle property of V-fold cross-validation to asymptotically select the optimal convex
combination of estimates obtained from these disparate procedures (van der Laan and Dudoit (2003); van der
Laan et al. (2004), van der Laan et al. (2007)).

Consider the misspecified scenario proposed by KS. The true full-data distribution and the missingness
mechanism are captured by main terms linear regression of the outcome on Z1, Z2, Z3, Z4. This simple
model is virtually impossible to discover through the usual model selection approaches when the observed
data consists of misspecified covariates O = (W1,W2,W3,W4,∆,∆Y ), given

Z1 = 2log(W1),

Z2 = (W2 − 10)(1 + 2W1),

Z3 =
25(W3 − 0.6)

2log(W1)
,

Z4 = 3
√
W4 − 20− (W2 − 10)(1 + 2W1).

This complexity illustrates the importance of including prediction algorithms that attack the estimation
problem from a variety of directions. The super learner library we employed contained the algorithms listed
below. The analysis was carried out in the R statistical programming environment v2.10.1 (Team, 2010),
using algorithms included in the base installation or in the indicated package.

• glm (base) main terms linear regression.

• step (base) stepwise forward and backward selection using the AIC criterion (Hastie and Pregibon,
1992).

• ipredbagg (ipred) bagging for classification, regression and survival trees (Peters and Hothorn, 2009;
Breiman, 1996).

• DSA (DSA) Deletion/Selection/Addition algorithm for searching over a space of polynomial models
or order k (k set to 2). (Neugebauer and Bullard, 2010; Sinisi and van der Laan, 2004)

• earth (earth) Building a regression model using multivariate adaptive regression splines (MARS)
(Milborrow, 2009; Friedman, 1991, 1993).

• loess (stats) Local polynomial regression fitting (W. S. Cleveland and Shyu, 1992).

• nnet (nnet) Single-hidden-layer neural network for classification (Venables and Ripley, 2002b; Ripley,
1996).

• svm (e1071) Support vector machine for regression and classification (Dimitriadou et al., 2010; Chang
and Lin, 2001).

• k-nearest-neighbors∗ (class) classification using most common outcome among identified k nearest
nodes (k set to 10) (Venables and Ripley, 2002a; Friedman, 1994)

∗ only for binary outcomes, added to library for estimating g

6.1 Results

Table 6 reports the results when super learning is incorporated into TMLEY ∗ and C-TMLEY ∗ estimation
procedures, based on 250 samples of size 1000, with predicted values for gn(1 |W ) truncated from below at
0.025. Using the data-adaptive estimator approach improved bias and variance of both estimators. TMLEY ∗
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efficiency improved by a factor of 8.5, and C-TMLEY ∗ efficiency improved by a factor of 1.5. In addition,
the MSE for both data-adaptive estimators is smaller than the MSE of the estimator that performed the
best when both Q and g were misspecified, µn,OLS (MSE = 2.82).

Table 6: Results with and without incorporating super learning into TMLE and C-TMLE, Qmgm,
gn truncated at 0.025.

Bias Var MSE

TMLEY ∗ -4.12 3.10 20.0
TMLEY ∗ + SL -0.77 1.51 2.10

C-TMLEY ∗ -1.37 2.30 4.16
C-TMLEY ∗ + SL -1.05 1.54 2.64

7 TMLE Behavior Under Sparsity

We compare the performance of TMLEY ∗ with TMLE fluctuated on the linear scale to illustrate the impor-
tance of fluctuating the initial estimate of Q̄0 in a manner that is consistent with defining a valid parametric
submodel of P0. We also include a comparison of C-TMLEY ∗ with C-TMLE fluctuated on a linear scale. The
results reported in Table 7 were obtained by estimating the EY1 parameter for 500 samples of size n = 1000
drawn from the data generating distribution defined for modification 2 of the Kang and Schafer simulation
(Section 5.3). These results provide insight into several aspects of TMLE performance under sparsity: 1)
the effect of bounding gn, 2) the importance of ensuring the fluctuation is a valid submodel, and 3) the
difference between TMLEs that rely on external nuisance parameter estimation (TMLE and TMLEY ∗), and
C-TMLEs that target ψ0 when internally fitting g.

We observe that when the model for Q is correctly specified, bounding gn away from 0 has essentially no
effect on TMLEY ∗ , C-TMLE, or C-TMLEY ∗ , yet, as we saw with the PRC estimator, when gn is incorrectly
specified, TMLE estimates blow up. To understand why this is the case, recall how a targeted estimate, Q̄∗n
is obtained on the linear scale (where there is no guarantee that the fluctuation entails a valid submodel),

Q̄∗n(A,W ) = Q̄0
n(A,W ) + ε

I(∆ = 1)

g(∆ = 1 |W )
.

A maximum likelihood fit for ε is obtained using a linear regression of Y on H∗(gn) = I(∆ = 1)/g(∆ = 1 |W )
with offset Q̄0

n using complete cases. Notice that gn near 0 for some subset of observations will heavily
influence the maximum likelihood estimate of ε, which in turn can result in an unreasonable estimate of
Q̄∗n(A,W ) for some combinations of (A,W ). Compare this behavior with TMLEY ∗ , where bounds (a, b) on
Y are used to map Y to Y ∗ ∈ (0, 1), and 0 < Q̄0

n,Y ∗(A,W ) < 1 is also enforced. In this case,

logit(Q̄∗n,Y ∗(A,W )) = logit(Q̄0
n,Y ∗) + εY ∗

I(∆ = 1)

g(∆ = 1 |W )
,

with εY ∗ fit by maximum likelihood using logistic regression. Though logit(Q̄∗n,Y ∗(A,W )) is unbounded,
the inverse logit is guaranteed not to fall outside [0,1]. Therefore, when mapped back to the original scale,
our predicted outcome is constrained to lie between [a, b], thus guaranteeing that Ψ(Q̄∗n,Y ∗) also lies within
[a, b]. This illustrates the robustness of TMLEY ∗ to sparsity, the benefits of being a substitution estimator,
and the importance of adhering to the theoretical guideline that the fluctuated estimate remain within the
defined model space.

Next we try to understand why the C-TMLE estimator fluctuated on the linear scale does not blow up
when gn is not bounded away from 0. After all, C-TMLE uses cross-validation to select among multiple
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candidate TMLEs, and we just saw that TMLE estimates fluctuated on a linear scale are susceptible to
extreme bias under sparsity as gn approaches 0. The answer is that among the candidate TMLEs, there is
at least one (and perhaps more) which do not blow up—for example, the one that uses the intercept model
for gn. C-TMLE relies on cross-validation using a loss function for Q to choose among the candidates, and
given a choice between a slightly biased estimator (e.g. unadjusted) and an extremely biased estimator,
(e.g., TMLE using a misspecified gn with extreme positivity violations), cross-validation will not select the
extremely biased TMLE. In this way C-TMLE is more robust to sparsity than TMLE.

Bounding gn away from 0 is most important when Q is misspecified, thus estimator performance depends
on gn. The Qmgc specification illustrates that under extreme sparsity bounding gn has a beneficial effect on
both bias and variance, however at large truncation levels, bounding gn starts to introduce bias. Comparing
MSE for TMLEY ∗ and C-TMLEY ∗ reveals that the bias/variance trade-off from externally estimating g0 is
less favorable then C-TMLE’s internal estimation approach, except when gn is truncated at 0.05. In practice
the optimum truncation level is not known, so the stability of C-TMLEY ∗ at all truncation levels is an
important feature.

Table 7: Simulation results by bounding level of gn, Modification 2 to Kang and Schafer simulation, 250
samples of size 1000

Qcgc Qcgm Qmgc Qmgm
Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

TMLE
0 −0.06 3.98 3.96 -2.2e+8 2.0e+19 2.0e+19 41.04 2.1e+-3 3.8e+3 1.5e+10 9.5e+22 9.5e+22
0.01 −0.06 3.96 3.95 −0.06 3.94 3.92 7.80 189.16 249.28 −33.02 1.6e+1 1.1e+3
0.025 −0.06 3.95 3.94 −0.06 3.94 3.92 2.13 41.48 45.84 −33.02 1.6e+1 1.1e+3
0.05 −0.06 3.95 3.94 −0.06 3.94 3.92 −0.66 20.62 20.98 −33.02 1.6e+1 1.1e+3

TMLEY ∗

0 −0.10 3.95 3.94 −0.11 3.90 3.90 0.15 76.03 75.75 −31.99 5.64 1.0e+3
0.01 −0.10 3.94 3.94 −0.10 3.92 3.91 0.95 43.19 43.92 −32.00 5.60 1.0e+3
0.025 −0.10 3.94 3.93 −0.10 3.92 3.91 1.26 17.77 19.29 −32.00 5.60 1.0e+3
0.05 −0.10 3.93 3.93 −0.10 3.92 3.91 −0.20 8.51 8.52 −32.01 5.56 1.0e+3

C-TMLE
0 −0.11 3.96 3.96 −0.06 3.93 3.92 4.60 65.60 86.47 −32.48 6.21 1.1e+3
0.01 −0.09 3.96 3.95 −0.06 3.94 3.92 3.45 50.96 62.67 −32.51 6.31 1.1e+3
0.025 −0.08 3.95 3.94 −0.06 3.94 3.92 0.72 19.79 20.23 −32.43 6.09 1.1e+3
0.05 −0.08 3.95 3.94 −0.06 3.94 3.92 −1.55 7.35 9.71 −32.40 6.00 1.1e+3

C-TMLEY ∗

0 −0.14 3.93 3.94 −0.11 3.89 3.89 −0.88 10.69 11.42 −32.58 5.83 1.1e+3
0.01 −0.13 3.94 3.94 −0.10 3.92 3.91 −0.91 11.67 12.45 −32.64 6.12 1.1e+3
0.025 −0.12 3.93 3.93 −0.10 3.92 3.91 −1.37 8.48 10.34 −32.68 6.07 1.1e+3
0.05 −0.12 3.93 3.93 −0.10 3.92 3.91 −2.47 6.35 12.44 −32.60 6.03 1.1e+3

8 Discussion

By mapping continuous outcomes into [0,1] and using a logistic fluctuation, TMLEs (both TMLEY ∗ and
C-TMLEY ∗) are more robust to violations of the positivity assumption than the TMLEs using the linear
fluctuation function. By being a substitution estimator, it follows that the impact of a single observation
on TMLEY ∗ is bounded by 1/n while many of the other estimators do not have such a robustness property.
We show that C-TMLEY ∗ has superior performance relative to estimating equation-based DR estimators
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when there are covariates that are strongly associated with the missingness indicator, while weakly or not
associated with the outcome Y . The C-TMLE algorithm provides an innovative approach for estimating
the censoring mechanism, preferring covariates that are associated with the outcome Y and missingness,
∆. C-TMLEs avoid data snooping concerns because the estimation procedure is fully specified before the
analyst observes any data (or at least, not any data beyond some ancillary statistics). Even in cases in which
all observed covariates are associated with Y , C-TMLEs still perform well.

Related work is also being done with respect to other parameters of interest. For example, both Cao
et al. (2009) and Tan (2006) include discussions on applying their estimators to causal effect parameters. In
addition, Freedman and Berk (2008), focus on a causal effect parameter, and demonstrate that DR estimators
(and the WLS estimator in particular) can increase variance and bias when IPCW are large.

Overall, comparisons of estimators, beyond theoretical studies of asymptotics as well as robustness, will
need to be based on large scale simulation studies, including all available estimators, and cannot be tailored
towards one particular simulation setting. Future research should be concerned with setting up such a large
scale objective comparison based on publicly available software, and we are looking forward to contribute to
such an effort. The research underlying TMLEs was motivated, in part, by the goal of increasing the stability
of DR estimators, and the KS simulations provide a demonstration of the merits of TMLEs under violations
of the positivity assumption. TMLEs are estimators defined by the choice of loss function, and parametric
submodel, both chosen so that the linear span of the scores at zero fluctuation w.r.t. the loss function includes
the efficient influence curve/efficient score. All such TMLEs are double robust, asymptotically efficient under
correct specification, and substitution estimators, but the choice of submodel can affect the finite sample
robustness if the submodel does not respect any bounds such as the linear regression submodel for the
TMLE, as observed in the current simulations. In addition, TMLEs can be combined with super learning
and empirical efficiency maximization (Rubin and van der Laan (2008) and van der Laan and Gruber (2009))
to further enhance their performance in practice. We hope that by showing that these estimators perform
well in simulations and settings created by other researchers, for the purposes of showing the weaknesses of
DR estimators, as well as in modified simulations that make estimation even more challenging, we provide
probative evidence in support of TMLEs. Of course, much can happen in finite samples, and we look forward
to further exploring how these estimators perform in other settings.
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Appendix

The following tables include results at additional bounding levels for gn, (0,0.01, 0.025, 0.05), for Kang
and Schafer simulation, and modifications 1 and 2.

Kang and Schafer Simulation

Table 8: Simulation results by bounding level of gn, Kang and Schafer
simulation, 250 samples of size 1000

Qcgc Qcgm Qmgc Qmgm
Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS
0 −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
0.01 −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
0.025 −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82
0.05 −0.09 1.40 1.41 −0.09 1.40 1.41 −0.93 1.97 2.82 −0.93 1.97 2.82

WLS
0 −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −3.04 2.08 11.33
0.01 −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −3.03 2.04 11.18
0.025 −0.09 1.40 1.41 −0.09 1.41 1.41 0.10 1.84 1.84 −2.94 1.97 10.59
0.05 −0.09 1.40 1.41 −0.09 1.41 1.41 0.11 1.81 1.82 −2.74 1.90 9.42

A-IPCW
0 −0.09 1.40 1.41 −0.10 1.45 1.45 0.04 2.52 2.51 −8.81 2.3e+2 3.1e+2
0.01 −0.09 1.40 1.41 −0.09 1.41 1.42 0.04 2.52 2.51 −6.15 17.80 55.49
0.025 −0.09 1.40 1.41 −0.09 1.41 1.41 0.04 2.44 2.43 −4.85 6.10 29.64
0.05 −0.09 1.40 1.41 −0.09 1.41 1.41 0.08 2.28 2.28 −3.78 3.20 17.49

BHT
0 −0.09 1.40 1.41 −0.09 1.41 1.41 0.01 2.34 2.33 −7.08 62.47 1.1e+2
0.01 −0.09 1.40 1.41 −0.09 1.41 1.41 0.01 2.34 2.33 −5.70 13.47 45.95
0.025 −0.09 1.40 1.41 −0.09 1.41 1.41 0.03 2.20 2.19 −4.65 5.35 26.95
0.05 −0.09 1.40 1.41 −0.09 1.41 1.41 0.09 1.98 1.98 −3.70 3.06 16.75

PRC
0 −0.09 1.40 1.40 −0.12 1.44 1.45 0.56 3.61 3.91 −37.24 4.9e+4 5.0e+4
0.01 −0.09 1.40 1.40 −0.09 1.40 1.41 0.56 3.60 3.89 −3.24 6.95 17.41
0.025 −0.09 1.40 1.40 −0.09 1.40 1.41 0.51 3.47 3.72 −2.40 3.08 8.85
0.05 −0.09 1.40 1.40 −0.09 1.40 1.41 0.39 3.01 3.15 −2.18 2.02 6.76

Cao
0 −0.09 1.40 1.41 −0.09 1.40 1.41 −0.69 2.27 2.74 −0.93 1.97 2.82
0.01 −0.09 1.40 1.41 −0.09 1.40 1.41 0.15 2.01 2.03 −0.93 1.97 2.82
0.025 −0.09 1.40 1.41 −0.09 1.40 1.41 0.18 2.17 2.20 −0.93 1.97 2.83
0.05 −0.09 1.40 1.40 −0.09 1.40 1.41 0.28 1.88 1.96 −1.02 2.15 3.19

Tan.WLS
0 −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.93 1.62 5.33
0.01 −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.92 1.62 5.31
0.025 −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.91 1.63 5.25
0.05 −0.09 1.40 1.40 −0.09 1.40 1.41 −0.01 1.55 1.54 −1.86 1.63 5.08

Tan.RV
0 −0.09 1.40 1.40 −0.09 1.40 1.40 0.03 1.44 1.44 −1.67 1.51 4.31
0.01 −0.09 1.40 1.40 −0.09 1.40 1.40 0.03 1.44 1.44 −1.67 1.51 4.30
0.025 −0.09 1.40 1.40 −0.09 1.40 1.41 0.03 1.44 1.44 −1.66 1.52 4.26
0.05 −0.09 1.40 1.40 −0.09 1.40 1.41 0.03 1.44 1.44 −1.63 1.53 4.18
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Table 8: (continued)

Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

TMLE
0 −0.09 1.40 1.41 −0.09 1.39 1.39 0.10 2.52 2.52 −15.26 1.4e+4 1.4e+4
0.01 −0.09 1.40 1.41 −0.09 1.41 1.41 0.09 2.52 2.51 −3.66 2.41 15.76
0.025 −0.09 1.40 1.41 −0.09 1.41 1.41 0.09 2.48 2.48 −3.60 2.56 15.48
0.05 −0.09 1.40 1.41 −0.09 1.41 1.41 0.12 2.34 2.35 −3.31 2.42 13.35

TMLEY ∗

0 −0.10 1.40 1.41 −0.11 1.40 1.40 −0.09 2.12 2.12 −4.61 3.62 24.84
0.01 −0.10 1.40 1.41 −0.10 1.41 1.41 −0.09 2.12 2.12 −4.43 4.15 23.76
0.025 −0.10 1.40 1.41 −0.10 1.41 1.41 −0.09 2.10 2.10 −4.12 3.10 20.04
0.05 −0.10 1.40 1.41 −0.10 1.41 1.41 −0.06 2.01 2.01 −3.60 2.41 15.32

C-TMLE
0 −0.10 1.40 1.41 −0.11 1.39 1.40 −0.19 1.90 1.93 −2.84 5.80 13.81
0.01 −0.10 1.40 1.41 −0.10 1.40 1.41 −0.17 2.02 2.04 −3.00 3.60 12.61
0.025 −0.10 1.40 1.41 −0.10 1.40 1.41 −0.25 2.23 2.28 −2.96 3.15 11.89
0.05 −0.10 1.40 1.41 −0.10 1.40 1.41 −0.16 1.92 1.94 −2.86 2.76 10.91

C-TMLEY ∗

0 −0.10 1.40 1.41 −0.11 1.40 1.40 0.09 1.77 1.77 −1.49 2.76 4.97
0.01 −0.10 1.40 1.41 −0.10 1.40 1.41 0.09 1.71 1.71 −1.33 2.21 3.96
0.025 −0.10 1.40 1.41 −0.10 1.40 1.41 0.11 1.74 1.74 −1.37 2.30 4.16
0.05 −0.10 1.40 1.41 −0.10 1.40 1.41 0.10 1.76 1.76 −1.30 2.09 3.77

Modification 1 to Kang and Schafer Simulation

Table 9: Simulation results by bounding level of gn, Modification 1 to
Kang and Schafer simulation, 250 samples of size 1000

Qcgc Qcgm Qmgc Qmgm
Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS
0 −0.17 4.69 4.70 −0.17 4.69 4.70 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3
0.01 −0.17 4.69 4.70 −0.17 4.69 4.70 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3
0.025 −0.17 4.69 4.70 −0.17 4.69 4.70 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3
0.05 −0.17 4.69 4.70 −0.17 4.69 4.70 −35.56 16.58 1.3e+3 −35.56 16.58 1.3e+3

WLS
0 −0.16 4.71 4.72 −0.16 4.70 4.70 −4.40 41.95 61.15 −34.67 15.95 1.2e+3
0.01 −0.16 4.71 4.71 −0.16 4.70 4.70 −4.61 38.93 60.02 −34.67 15.95 1.2e+3
0.025 −0.17 4.70 4.71 −0.16 4.70 4.70 −5.52 31.62 61.93 −34.67 15.95 1.2e+3
0.05 −0.17 4.70 4.71 −0.16 4.70 4.70 −7.34 24.46 78.25 −34.67 15.93 1.2e+3

A-IPCW
0 −0.16 4.75 4.75 −0.16 4.69 4.70 −1.83 1.9e+2 2.0e+2 −34.75 17.19 1.2e+3
0.01 −0.16 4.71 4.72 −0.16 4.69 4.70 −3.67 74.34 87.48 −34.75 17.19 1.2e+3
0.025 −0.17 4.71 4.71 −0.16 4.69 4.70 −5.88 42.63 77.09 −34.75 17.19 1.2e+3
0.05 −0.17 4.70 4.71 −0.16 4.69 4.70 −8.82 27.85 1.1e+2 −34.75 16.80 1.2e+3

BHT
0 −0.16 4.73 4.74 −0.17 4.71 4.72 −3.04 64.63 73.59 −34.75 17.17 1.2e+3
0.01 −0.16 4.71 4.72 −0.17 4.71 4.72 −3.58 49.69 62.30 −34.75 17.17 1.2e+3
0.025 −0.17 4.71 4.71 −0.17 4.71 4.72 −5.03 32.89 58.02 −34.75 17.17 1.2e+3
0.05 −0.17 4.70 4.71 −0.17 4.71 4.72 −7.18 23.62 75.07 −34.75 16.79 1.2e+3

24

http://biostats.bepress.com/ucbbiostat/paper279



Table 9: (continued)

Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

PRC
0 −0.18 4.74 4.75 6.8e+8 1.8e+21 1.8e+21 80.64 8.7e+3 1.5e+4 1.2e+11 1.9e+25 1.9e+25
0.01 −0.16 4.70 4.71 −0.16 4.70 4.71 20.82 8.7e+2 1.3e+3 −34.33 15.32 1.2e+3
0.025 −0.16 4.70 4.70 −0.16 4.70 4.71 9.27 2.2e+2 3.0e+2 −34.38 15.28 1.2e+3
0.05 −0.16 4.70 4.71 −0.16 4.70 4.71 6.30 61.46 1.0e+2 −34.44 15.73 1.2e+3

Cao
0 −0.17 4.71 4.72 −0.17 4.69 4.70 −6.17 44.68 82.52 −35.57 16.58 1.3e+3
0.01 −0.17 4.69 4.70 −0.16 4.68 4.69 −21.20 31.80 4.8e+2 −35.64 18.20 1.3e+3
0.025 −0.17 4.69 4.70 −0.16 4.69 4.69 −24.25 21.79 6.1e+2 −35.50 17.86 1.3e+3
0.05 −0.17 4.69 4.70 −0.16 4.69 4.70 −22.48 20.75 5.3e+2 −35.28 17.49 1.3e+3

Tan.WLS
0 −0.17 4.69 4.70 −0.16 4.70 4.71 −3.59 24.29 37.07 −33.64 42.37 1.2e+3
0.01 −0.17 4.69 4.70 −0.16 4.70 4.71 −3.60 23.85 36.68 −33.56 45.21 1.2e+3
0.025 −0.17 4.69 4.70 −0.16 4.70 4.71 −3.64 22.95 36.09 −33.49 50.00 1.2e+3
0.05 −0.17 4.70 4.70 −0.16 4.70 4.71 −3.77 20.17 34.33 −33.43 53.76 1.2e+3

Tan.RV
0 −0.17 4.70 4.71 −0.16 4.69 4.70 5.22 93.77 1.2e+2 −34.69 63.16 1.3e+3
0.01 −0.17 4.70 4.71 −0.16 4.69 4.70 5.21 93.43 1.2e+2 −34.67 67.36 1.3e+3
0.025 −0.17 4.69 4.70 −0.16 4.69 4.70 5.28 94.11 1.2e+2 −34.65 64.21 1.3e+3
0.05 −0.17 4.69 4.70 −0.16 4.69 4.70 5.48 95.33 1.2e+2 −34.64 56.83 1.3e+3

TMLE
0 −0.17 4.71 4.72 −2.2e + 08 1.2e + 19 1.2e + 19 42.07 2.4e+3 4.1e+3 −5.4e + 09 5.1e + 22 5.1e + 22
0.01 −0.16 4.71 4.72 −0.16 4.69 4.70 7.69 2.1e+2 2.7e+2 −34.75 16.94 1.2e+3
0.025 −0.16 4.70 4.71 −0.16 4.69 4.70 1.87 46.81 50.12 −34.75 16.93 1.2e+3
0.05 −0.17 4.70 4.71 −0.16 4.69 4.70 −0.95 22.80 23.62 −34.75 16.72 1.2e+3

TMLEY ∗

0 −0.22 4.71 4.74 −0.23 4.66 4.70 −0.04 89.33 88.98 −33.74 6.48 1.1e+3
0.01 −0.22 4.72 4.74 −0.22 4.70 4.73 0.71 53.39 53.68 −33.74 6.48 1.1e+3
0.025 −0.22 4.71 4.74 −0.22 4.70 4.73 1.00 22.05 22.96 −33.74 6.48 1.1e+3
0.05 −0.22 4.71 4.74 −0.22 4.70 4.73 −0.49 10.58 10.78 −33.74 6.46 1.1e+3

C-TMLE
0 −0.22 4.73 4.76 −0.17 4.67 4.68 4.93 89.20 113.13 −34.08 6.30 1.2e+3
0.01 −0.19 4.71 4.73 −0.16 4.69 4.70 3.58 68.99 81.52 −34.15 6.81 1.2e+3
0.025 −0.19 4.70 4.72 −0.16 4.70 4.70 0.45 23.20 23.31 −34.10 6.58 1.2e+3
0.05 −0.18 4.70 4.72 −0.16 4.69 4.70 −1.91 9.77 13.38 −34.13 6.67 1.2e+3

C-TMLEY ∗

0 −0.26 4.70 4.74 −0.22 4.70 4.73 −0.64 15.55 15.90 −34.26 6.66 1.2e+3
0.01 −0.24 4.71 4.75 −0.22 4.70 4.73 −0.84 21.59 22.20 −34.22 6.72 1.2e+3
0.025 −0.24 4.71 4.74 −0.22 4.70 4.73 −1.50 11.96 14.17 −34.19 6.82 1.2e+3
0.05 −0.23 4.70 4.74 −0.22 4.70 4.73 −2.61 8.72 15.49 −34.23 6.82 1.2e+3
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Modification 2 to Kang and Schafer Simulation

Table 10: Simulation results by bounding level of gn, Modification 2 to
Kang and Schafer simulation, 250 samples of size 1000

Qcgc Qcgm Qmgc Qmgm
Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

OLS
0 −0.06 3.93 3.92 −0.06 3.93 3.92 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3
0.01 −0.06 3.93 3.92 −0.06 3.93 3.92 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3
0.025 −0.06 3.93 3.92 −0.06 3.93 3.92 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3
0.05 −0.06 3.93 3.92 −0.06 3.93 3.92 −34.25 15.24 1.2e+3 −34.25 15.24 1.2e+3

WLS
0 −0.06 3.96 3.95 −0.06 3.94 3.93 −3.64 39.52 52.61 −33.09 15.18 1.1e+3
0.01 −0.06 3.96 3.94 −0.06 3.94 3.93 −3.95 35.18 50.64 −33.09 15.18 1.1e+3
0.025 −0.06 3.95 3.94 −0.06 3.94 3.93 −4.92 28.65 52.75 −33.09 15.18 1.1e+3
0.05 −0.06 3.95 3.94 −0.06 3.94 3.93 −6.74 22.75 68.05 −33.10 15.14 1.1e+3

A-IPCW
0 −0.05 3.99 3.98 −0.06 3.94 3.92 −1.11 1.8e+2 1.8e+2 −33.14 16.47 1.1e+3
0.01 −0.06 3.96 3.95 −0.06 3.94 3.92 −3.09 70.33 79.63 −33.14 16.47 1.1e+3
0.025 −0.06 3.95 3.94 −0.06 3.94 3.92 −5.39 39.01 67.89 −33.14 16.47 1.1e+3
0.05 −0.06 3.95 3.94 −0.06 3.94 3.92 −8.29 25.81 94.38 −33.14 15.92 1.1e+3

BHT
0 −0.05 3.98 3.96 −0.06 3.95 3.94 −2.27 72.06 76.91 −33.14 16.43 1.1e+3
0.01 −0.06 3.96 3.95 −0.06 3.97 3.96 −3.06 45.97 55.17 −33.14 16.43 1.1e+3
0.025 −0.06 3.95 3.94 −0.06 3.96 3.95 −4.57 29.73 50.49 −33.14 16.43 1.1 + 03
0.05 −0.06 3.95 3.94 −0.06 3.96 3.94 −6.72 21.58 66.70 −33.15 15.90 1.1e+3

PRC
0 −0.07 4.04 4.03 1.3e+9 2.5e+21 2.5e+21 77.78 7.7e+3 1.4e+4 5.4e+11 4.5e + 25 4.5e+25
0.01 −0.06 3.97 3.95 −0.06 3.94 3.93 20.25 7.9e+2 1.2e+3 −32.70 13.90 1.1e+3
0.025 −0.06 3.95 3.94 −0.06 3.94 3.93 9.11 2.0e+2 2.8e+2 −32.79 14.13 1.1e+3
0.05 −0.06 3.95 3.94 −0.06 3.94 3.93 6.22 55.84 94.30 −32.87 14.90 1.1e+3

Cao
0 −0.06 3.96 3.94 −0.06 3.93 3.92 −5.55 40.60 71.21 −34.25 15.25 1.2e+3
0.01 −0.06 3.93 3.92 −0.06 3.92 3.91 −20.49 28.48 4.5e+2 −34.28 17.59 1.2e+3
0.025 −0.06 3.94 3.92 −0.06 3.93 3.92 −23.37 20.54 5.7e+2 −34.16 16.48 1.2e+3
0.05 −0.06 3.94 3.92 −0.06 3.93 3.92 −21.65 17.58 4.9e+2 −33.97 16.37 1.2e+3

Tan.OLS
0 −0.06 3.96 3.94 −0.06 4.02 4.01 −2.25 18.74 23.74 −32.36 62.50 1.1e+3
0.01 −0.17 4.69 4.70 −0.16 4.71 4.72 −2.74 27.53 34.94 −32.82 46.80 1.1e+3
0.025 −0.17 4.69 4.70 −0.16 4.71 4.72 −2.82 26.82 34.67 −32.77 50.31 1.1e+3
0.05 −0.16 4.70 4.70 −0.16 4.71 4.72 −3.01 24.73 33.72 −32.75 54.60 1.1e+3

Tan.WLS
0 −0.06 3.96 3.94 −0.06 4.03 4.01 −2.95 23.74 32.32 −32.02 49.66 1.1e+3
0.01 −0.06 3.96 3.94 −0.06 4.03 4.01 −3.04 23.30 32.47 −32.02 48.06 1.1e+3
0.025 −0.06 3.96 3.95 −0.06 4.03 4.01 −3.11 23.32 32.91 −32.02 43.37 1.1e+3
0.05 −0.06 3.96 3.95 −0.06 4.03 4.01 −3.35 23.63 34.78 −32.12 35.47 1.1e+3

Tan.RV
0 −0.06 3.97 3.95 −0.06 4.03 4.01 6.87 65.77 1.1e+2 −32.95 89.67 1.2e+3
0.01 −0.06 3.97 3.96 −0.06 4.03 4.01 6.88 65.63 1.1e+2 −32.95 87.81 1.2e+3
0.025 −0.06 3.97 3.96 −0.06 4.03 4.01 6.94 65.02 1.1e+2 −32.87 71.78 1.2e+3
0.05 −0.06 3.96 3.95 −0.06 4.03 4.01 7.05 63.18 1.1e+2 −33.04 90.01 1.2e+3
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Table 10: (continued)

Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

TMLE
0 −0.06 3.98 3.96 -2.2e+8 1.2e+19 1.2e+19 41.04 2.1e+3 3.8e+3 1.5e+10 9.5e+22 9.5e+22
0.01 −0.06 3.96 3.95 −0.06 3.94 3.92 7.80 1.9e+2 2.5e+2 −33.02 16.10 1.1e+3
0.025 −0.06 3.95 3.94 −0.06 3.94 3.92 2.13 41.48 45.84 −33.02 16.10 1.1e+3
0.05 −0.06 3.95 3.94 −0.06 3.94 3.92 −0.66 20.62 20.98 −33.02 15.83 1.1e+3

TMLEY ∗

0 −0.10 3.95 3.94 −0.11 3.90 3.90 0.15 76.03 75.75 −31.99 5.64 1.0e+3
0.01 −0.10 3.94 3.94 −0.10 3.92 3.91 0.95 43.19 43.92 −32.00 5.60 1.0e+3
0.025 −0.10 3.94 3.93 −0.10 3.92 3.91 1.26 17.77 19.29 −32.00 5.60 1.0e+3
0.05 −0.10 3.93 3.93 −0.10 3.92 3.91 −0.20 8.51 8.52 −32.01 5.56 1.0e+3

C-TMLE
0 −0.11 3.96 3.96 −0.06 3.93 3.92 4.60 65.60 86.47 −32.48 6.21 1.1e+3
0.01 −0.09 3.96 3.95 −0.06 3.94 3.92 3.45 50.96 62.67 −32.51 6.31 1.1e+3
0.025 −0.08 3.95 3.94 −0.06 3.94 3.92 0.72 19.79 20.23 −32.43 6.09 1.1e+3
0.05 −0.08 3.95 3.94 −0.06 3.94 3.92 −1.55 7.35 9.71 −32.40 6.00 1.1e+3

C-TMLEY ∗

0 −0.14 3.93 3.94 −0.11 3.89 3.89 −0.88 10.69 11.42 −32.58 5.83 1.1e+3
0.01 −0.13 3.94 3.94 −0.10 3.92 3.91 −0.91 11.67 12.45 −32.64 6.12 1.1e+3
0.025 −0.12 3.93 3.93 −0.10 3.92 3.91 −1.37 8.48 10.34 −32.68 6.07 1.1e+3
0.05 −0.12 3.93 3.93 −0.10 3.92 3.91 −2.47 6.35 12.44 −32.60 6.03 1.1e+3
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