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Targeted Minimum Loss Based Estimator that
Outperforms a given Estimator

Susan Gruber and Mark J. van der Laan

Abstract

Targeted minimum loss based estimation (TMLE) provides a template for the con-
struction of semiparametric locally efficient double robust substitution estimators
of the target parameter of the data generating distribution in a semiparametric
censored data or causal inference model (van der Laan and Rubin (2006),van der
Laan (2008), van der Laan and Rose (2011)). In this article we demonstrate how
to construct a TMLE that also satisfies the property that it is at least as efficient
as a user supplied asymptotically linear estimator. For the sake of illustration we
focus on estimation of the additive average causal effect of a point treatment on
an outcome, adjusting for baseline covariates.



1 Introduction

Targeted minimum loss based estimation (TMLE) provides a template for the con-
struction of semiparametric locally efficient double robust substitution estimators of
the target parameter of the data generating distribution in a semiparametric cen-
sored data or causal inference model (van der Laan and Rubin (2006); van der Laan
(2008); van der Laan and Rose (2011)). It is assumed that the data set is a realiza-
tion of n independent and identically distributed random variables, the probability
distribution of this random variable is known to be an element of a semiparamet-
ric statistical model, and the target parameter (mapping) is defined as a particular
function of the possible probability distributions in this semiparametric model. A
targeted minimum loss based estimator (TMLE) of the target parameter is defined
by an initial estimator of a relevant part of the data generating distribution, a para-
metric submodel through an initial estimator, a loss function for this relevant part,
minimizing the empirical risk of the loss function along the parametric submodel to
iteratively update the initial estimator until convergence. This final estimator is the
TMLE of the relevant part of the data generating distribution, and the evaluation
of its target parameter value is the TMLE of the target parameter. By enforcing
that the loss-based score of the submodel (at zero fluctuation of the initial esti-
mator) spans the efficient influence curve of the target parameter (at the initial
estimator), it follows that the TMLE of the relevant part of the data generating
distribution solves the efficient score estimating equation, making the TMLE locally
efficient and double robust, under regularity conditions. By choosing a parametric
submodel with extra fluctuation parameters, the TMLE can be arranged to solve
additional estimating equations, and thereby satisfy additional properties of inter-
est (e.g., be an imputation estimator, see Gruber and van der Laan (2010a)). One
particular example of such an iterative TMLE was presented in the original TMLE
article, van der Laan and Rubin (2006), which involved also fluctuating the treat-
ment/censoring mechanism, resulting in a TMLE that also equals an IPTW/IPCW
estimator and is guaranteed to outperform the IPTW/IPCW estimator defined by
the initial estimator of the treatment/censoring mechanism.

Another property of interest of an estimator is that it is guaranteed to be
more efficient than a user supplied class of estimators in the case that the cen-
soring/treatment mechanism is correctly specified. This has been achieved with
empirical efficiency maximization (Rubin and van der Laan (2008), Tan (2008),Cao
et al. (2009),van der Laan and Rose (2011)). However, in general this technique as
presented in Rubin and van der Laan (2008) may come at a cost of losing double
robustness (e.g, see Robins and Rotnitzky (1992), van der Laan and Robins (2003).
Tan (2008) demonstrates how in the context of estimating equation methodology the
double robustness can be preserved. Recently, Rotnitzky et al. (2011) shows how
to combine empirical efficiency maximization with double robust locally efficient
substitution estimators, by fluctuating the treatment mechanism with a carefully
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chosen clever covariate derived from the empirical efficiency maximization proce-
dure. Borrowing this fundamental idea, in this article we demonstrate that this
enhanced efficiency property can be achieved with the above mentioned TMLE of
van der Laan and Rubin (2006) (jointly updating treatment mechanism and out-
come regression), by fluctuating the treatment mechanism with this additional clever
covariate as suggested by Rotnitzky et al. (2011). For the sake of illustration we
focus on estimation of the additive average causal effect of a point treatment on an
outcome, adjusting for baseline covariates.

1.1 Organization

In Section 2 we present the statistical estimation problem. In Section 3 we present
the TMLE, and the enhanced empirically efficient TMLE, and explain its properties.
From the presentation in Section 3, for experts familiar with the theory of augmented
IPCW estimating equations (Robins and Rotnitzky (1992), van der Laan and Robins
(2003)) it will also be clear how this TMLE is generalized to all CAR-censored data
and causal inference models. In Section 4 we review the method for empirical
efficiency maximization of Rubin and van der Laan (2008), and an adaptive version
of it as presented in van der Laan and Rose (2011), used as an ingredient in the
enhanced empirically efficient TMLE. In Section 5 we present simulations confirming
the enhanced efficiency property of the TMLE presented in Section 3, and comparing
it with the (non-double robust) empirical efficiency maximization estimator in Rubin
and van der Laan (2008), and a regular TMLE. We end with some concluding
remarks. We also provide an appendix with the R-code of the TMLEs implemented
in the simulation study.

2 The statistical model, target parameter, and estima-
tion problem

Let O = (W,A, Y ) ∼ P0 be a random variable, where W represents a vector of
baseline covariates, A a binary treatment, and Y a continuous or binary outcome
with values in [0, 1]. Let g0(A | W ) be the conditional probability distribution of
A, given W . Consider a statistical model M that makes no assumptions about
the marginal distribution of W , and the conditional distribution of Y , given A,W ,
but might make assumptions about g0. In particular, it is assumed that 0 < g0(1 |
W ) < 1 so that the following target parameter is well defined. The statistical target
parameter Ψ :M→ IR of interest is defined as

Ψ(P ) = EP (EP (Y | A = 1,W )− EP (Y | A = 0,W )).

If one assumes an underlying nonparametric structural equation modelW = fW (UW ),
A = fA(W,UA), Y = fY (W,A,UY ) (Pearl (2000)), and the randomization assump-
tion UA is independent of UY , given W , then Ψ(P0) identifies the additive causal
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effect E0(Y (1)− Y (0)), where Y (a) = fY (W,a, UY ) is the treatment-specific coun-
terfactual. For the sake of estimation, we are only concerned with the statistical
target parameter.

Let QW (P ) be the marginal distribution of W under P , Q̄(P )(A,W ) = EP (Y |
A,W ), and we will denote corresponding parameter values with QW and Q̄, respec-
tively. Let Q(P ) = (QW (P ), Q̄(P )). Note that Ψ(P ) only depends on P through
QW (P ) and Q̄(P ). Therefore, we will also use the notation

Ψ(Q) = EQW {Q̄(1,W )− Q̄(0,W )}.

Our goal is to estimate ψ0 = Ψ(Q0) based on observing n i.i.d. copies O1, . . . , On of
O ∼ P0 ∈M.

The TMLE requires knowing the canonical gradient/efficient influence curve of
the pathwise derivative of Ψ :M→ IR. The efficient influence curve of Ψ :M→ IR
at P is given by

D∗(P )(O) =
2A− 1

g(A |W )
(Y − Q̄(A,W )) +

{
Q̄(1,W )− Q̄(0,W )−Ψ(Q)

}
≡ D∗Y (P )(O) +D∗W (P )(W ),

where the latter decomposition in a score D∗Y (P ) of the conditional distribution of
Y , given A,W , and score D∗W (P ) of the marginal distribution of W will be utilized in
TMLE. In order to establish the enhanced efficiency property of the proposed TMLE
we will also utilize the augmented IPCW-representation of the efficient influence
curve (Robins and Rotnitzky (1992), van der Laan and Robins (2003)):

D∗(P )(O) =
2A− 1

g(A |W )
Y −Ψ(Q)−

{
Q̄(1,W )

g(1 |W )
+
Q̄(0,W )

g(0 |W )

}
(A− g(1 |W ))

≡ DIPTW (Q, g)(O) +DCAR(Q̄, g)(O),

where DCAR(Q̄, g) = −HCAR(Q, g)(W )(A− g(1 |W )) with

HCAR(Q, g)(W ) ≡
{
Q̄(1,W )

g(1 |W )
+
Q̄(0,W )

g(0 |W )

}
.

In cases where we want to stress the representation of the efficient influence curve
D∗(P ) as an estimating function in ψ indexed by nuisance parameters Q̄0, g0, we
will also use the notation DIPTW (ψ0, g0) for DIPTW (Q0, g0), and D∗(ψ0, Q̄0, g0) for
D∗(P0).

Another ingredient of the TMLE presented in the next section is an influence
curve D(P ) of a competing regular asymptotically linear estimator of Ψ at P in
the model M. The TMLE ψ∗n will be constructed so that it is at least as efficient
as this competing estimator at P0 in the case that we estimate g0 consistently. By
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the representation theorem for the class of gradients in CAR-censored data models
(van der Laan and Robins (2003), p. 65), it follows that

D(P ) = DIPTW (Q, g) +DCAR(Q̄e, g)

for a particular function Q̄e = Q̄e(P ). Let Q̄e0 denote the true value of this parameter
P → Q̄e(P ).

The TMLE presented in the next section will use an estimator Q̄en of Q̄e0 in
order to define a clever covariate HCAR(Q̄en, g

k
n) in the definition of the TMLE. As

a consequence of this choice of clever covariate, the TMLE Q∗n, g
∗
n will solve

0 = PnDIPTW (ψ∗n, g
∗
n) +DCAR(Q̄en, g

∗
n),

and thereby have an influence curve at least as efficient as D(P0), if g0 is estimated
consistently.

A particular choice of interest for Q̄e0 is defined by empirical efficiency maximiza-
tion over a user-supplied working model as in Rubin and van der Laan (2008). That
is, let {Q̄β : β} be a parametric working model, and define

Q̄e(P0) = arg min
Q̄β

P0{DIPTW (ψ0, g0) +DCAR(Q̄β, g0)}2. (1)

Here we used the notation Pf ≡
∫
f(o)dP (o). With this choice, D(P0) repre-

sents the influence curve with minimal variance among the class of influence curves
{DIPTW (Q0, g0) +DCAR(Q̄β, g0) : β} indexed by β.

3 The TMLE that is at least as efficient as competing
estimator

The TMLE of Ψ(Q0) as presented in van der Laan and Rubin (2006) is defined by
1) a loss function L(Q, g) = L(Q)+L(g) for (Q0, g0) so that Q0 = arg minQ P0L(Q),
g0 = arg ming P0L(g), 2) a submodel {Q(ε1) : ε1} through Q at ε1 = 0, a submodel
{g(ε2) : ε2} through g at ε2 = 0, and 3) an initial estimator Q0

n, g0
n. The TMLE is

defined by iterative minimization of the empirical risk, and updating:

ε1n = arg min
ε1

PnL(Q0
n(ε1))

ε2n = arg min
ε2

PnL(g0
n(ε2)),

Q1
n = Q0

n(ε1n), g1
n = g0

n(ε2n), and this updating process is iterated till εn =
(ε1n, ε2n) ≈ 0. The resulting Q∗n, g

∗
n solve the loss-based score equation:

Pn
d

dε
L(Q∗n(ε), g∗n(ε))

∣∣∣∣
ε=0

= 0. (2)
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By defining the loss-function L and submodel through (Q, g), one can control the
estimating equation (2) the TMLE solves. In particular, one wants the loss-based
scores to span the efficient influence curve D∗(Q∗n, g

∗
n) so that the resulting Ψ(Q∗n)

will be double robust and locally efficient. Below we present a submodel {g(ε2) : ε2}
so that the additional desired enhanced efficiency property is achieved as well.

3.1 Initial estimators

Let Q0
W,n, Q̄0

n, g0
n, and Q̄en be initial estimators of QW,0, Q̄0, g0, and Q̄e0, respectively.

Let Q0
W,n = QW,n be the empirical probability distribution of W1, . . . ,Wn. The

estimator of Q̄0 can be based on the least squares or (quasi-)log-likelihood loss
function

L(Q̄)(O) = −
{
Y log Q̄(A,W ) + (1− Y ) log{1− Q̄(A,W )}

}
. (3)

This is the log-likelihood loss-function for Q̄0 if Y is binary. We refer to Gruber
and van der Laan (2010b) in which this loss function is proposed for TMLE with
a continuous bounded outcome Y ∈ [0, 1]. By a simple linear transformation, this
also provides a loss function for Y ∈ [a, b] with bounded a, b. In particular, Q̄0

could be estimated with a loss-based super learner using this loss function for the
cross-validation selector (van der Laan et al. (2007)).

The estimator of g0 can be based on the log-likelihood loss function L(g) =
− log g. The estimation method for Q̄e0 might depend on the type of parameter it
represents. If Q̄e0 is defined by (1), then one could estimate it as

Q̄en = arg min
Q̄β

Pn{DIPTW (ψ0
n, g

0
n) +DCAR(Q̄β, g

0
n)}2, (4)

where Pn denotes the empirical probability distribution of O1, . . . , On, and ψ0
n rep-

resents an estimator of ψ0 that is consistent if g0
n is consistent. For example, ψ0

n

could be any TMLE that takes Q̄0
n and g0

n as initial estimator. We assume that Q̄en
is consistent for Q̄e0 if g0

n is consistent.

3.2 Loss function

We select the log-likelihood loss functions L(g) = − log g, L(QW ) = − logQW for
g0 and QW,0, respectively, and we select L(Q̄) (3) as loss function for Q̄0. Let
L(Q, g) ≡ L(Q̄) + L(QW ) + L(g) be the loss function for (Q0, g0).

3.3 TMLE that is at least as efficient as competing estimator

Let ḡ(W ) ≡ g(1 |W ). For a given Q̄kn, gkn, define the submodels

LogitQ̄kn(ε1) = LogitQ̄kn + ε1H
∗(gkn)

Logitḡkn(ε2) = Logitḡn + ε21HCAR(Q̄kn, g
k
n) + ε22HCAR(Q̄en, g

k
n).
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We also define a submodel QW,n(ε10) = (1+ε10D
∗
W (Qkn))QW,n through the empirical

probability distribution QW,n. Let ε = (ε10, ε1, ε2). This defines now a submodel
(Qkn(ε), gkn(ε)) through (Qkn = (QkW,n, Q̄

k
n), gkn) at ε = 0. The scores d

dεL(Qkn(ε), gkn(ε))

of (ε01, ε1) at ε = 0 spans the efficient influence curve D∗(Qkn, g
k
n). The score of ε2

at ε = 0 spans any linear combination of DCAR(Q̄kn, g
k
n) and DCAR(Q̄en, g

k
n).

Given a current estimator (Qkn, g
k
n), we estimate ε with the MLE εkn based on

loss function L(Q, g):

εk10n = arg min
ε10
−Pn logQkW,n(ε10)

εk1n = arg min
ε1

PnL(Q̄kn(ε1))

εk2n = arg min
ε2
−Pn log gkn(ε2).

Note that εk1n and εk2n can be fitted with standard univariate logistic regression using
the offset command. We start with k = 0. This defines now the first step TMLE
update (Q1

n = Q0
n(ε0n), g1

n = g0
n(ε0n)). We can iterate this updating algorithm till

convergence so that εn ≈ 0. Let (Q∗n, g
∗
n) be the final TMLE at convergence. Since

Q0
W,n is the empirical probability distribution, we have εk0n = 0 for all k, so that

this empirical probability distribution is not updated by the TMLE algorithm, i.e.,
Q∗n = (QW,n, Q̄

∗
n). The TMLE of ψ0 is the substitution estimator ψ∗n = Ψ(Q∗n).

This particular iterative TMLE algorithm involving updating both g0
n and Q0

n

was presented and implemented in van der Laan and Rubin (2006)), but without
the extra clever covariate H(Q̄en, g

k
n). The important choice of extra clever covariate

H(Q̄en, g
k
n) in a model for g0 in order to establish the enhanced efficiency property

without losing double robustness was presented in Rotnitzky et al. (2011).

3.4 Estimating equations solved by TMLE, and resulting alterna-
tive representations of the TMLE

We assume that the algorithm converges. In that case, (Q∗n, g
∗
n) solves the score

equations for the sub-model {Q∗n(ε), g∗n(ε) : ε} at ε = (ε10, ε1, ε2) = 0. As a conse-
quence, the TMLE solves the following equations:

PnD
∗(ψ∗n, Q̄

∗
n, g
∗
n) = 0

PnDIPTW (ψ∗n, g
∗
n) = 0

PnDCAR(Q̄en, g
∗
n) = 0

PnD
∗(ψ∗n, Q̄

e
n, g
∗
n) = 0.

This allows a variety of representations of the TMLE. It is a plug in estimator

ψ∗n = Ψ(Q∗n);
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it is an IPTW estimator

ψ∗n =
1

n

n∑
i=1

2Ai − 1

g∗n(Ai |Wi)
Yi;

it is an augmented IPCW-estimating equation based estimator

ψ∗n =
1

n

n∑
i=1

2Ai − 1

g∗n(Ai |Wi)
Yi −HCAR(Q∗n, g

∗
n)(Wi)(Ai − ḡ∗n(Wi)),

corresponding with the implicit estimator Q̄∗n, g
∗
n of the nuisance parameters (Q̄0, g0)

of the estimating function D∗(ψ, Q̄0, g0) in ψ; and, finally, it is also an augmented
IPCW-estimating equation based estimator

ψ∗n =
1

n

n∑
i=1

2Ai − 1

g∗n(Ai |Wi)
Yi −HCAR(Qen, g

∗
n)(Wi)(Ai − ḡ∗n(Wi)),

corresponding with estimating Q0 with Qen. In the case that Qen is defined by
empirical efficiency maximization (1), then the latter estimator is the estimator of
Rubin and van der Laan (2008), obtained by maximizing empirical efficiency of the
class of estimating functions D(ψ, Q̄β, g0) (or equivalently, D(ψ, fβ, g0), as reviewed
in next section) over the working model {Q̄β : β} at the (implicit) estimator g∗n of
g0, and defining the estimator of ψ0 as the solution of the corresponding estimating
equation.

3.5 Properties of TMLE

The TMLE presented above satisfies both the definition of the TMLE as well as
the definition of the empirical efficient maximization (estimating equation based)
estimator of Rubin and van der Laan (2008), using the implicit estimator g∗n for g0.
As a consequence, it inherits the properties of both the TMLE, as a locally efficient
double robust substitution estimator, as well as the empirically efficient maximiza-
tion estimator of Rubin and van der Laan (2008), as an estimator that is maximally
efficient among a user supplied class of asymptotically linear estimators in the case
that g0 is estimated consistently. For the sake of being self-contained we present
here the rationale resulting in these properties. Formal proofs of these properties
would require regularity conditions, and is beyond the scope of this article. There-
fore, below we present the general statements, and refer to the general theorems that
would have to be applied to formally establish the claimed asymptotic properties.
For a completely worked out proof of a TMLE for the additive treatment effect, we
refer to Zheng and van der Laan (2010) and van der Laan and Rose (2011).

By the fact that it is a TMLE that solves the efficient influence curve estimating
equation PnD

∗(ψ∗n, Q̄
∗
n, g
∗
n) = 0 it follows that ψ∗n will be consistent if either Q̄∗n

or g∗n is consistent. In addition, under regularity conditions (e.g., van der Laan
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and Robins (2003); van der Laan and Rubin (2006)), ψ∗n will be an asymptotically
linear estimator if either Q̄∗n or g∗n is consistent, and it will be efficient if both are
consistent. This corresponds with stating that ψ∗n is a double robust locally efficient
estimator.

Before we proceed with explaining the enhanced efficiency property we need to
provide the following background on estimating equation based estimators in CAR
censored data models (Robins and Rotnitzky (1992), van der Laan and Robins
(2003)). Suppose that ψn is an estimator that solves the estimating equation
0 = PnD

∗(ψ, Q̄, g0) for some Q̄. Then it follows that ψn is asymptotically linear with
influence curve D∗(ψ0, Q̄, g0). In addition, if Q̄n converges to Q̄, then under weak
regularity conditions, we have that the solution ψn of PnD

∗(ψ, Q̄n, g0) is also asymp-
totically linear with influence curve D∗(ψ0, Q̄, g0). By Theorem 2.3 in van der Laan
and Robins (2003), if the estimator g∗n of g0 is such that a particular specified smooth
function Φ(g∗n) is an efficient estimator of Φ(g0) so that its influence curve is an ele-
ment of the tangent space TCAR(P0) = {S(A |W ) : Eg0(S |W ) = 0} of g at P0 un-
der CAR, then, under regularity conditions, the solution ψn of PnD

∗(ψ, Q̄n, g
∗
n) = 0

is asymptotically linear with an influence curve that has a variance smaller than or
equal to the variance of D∗(ψ, Q̄, g0). That is, consistent (and efficient) estimation
of the orthogonal nuisance parameter g0 only improves the efficiency of the estimat-
ing equation based estimator of ψ0. Since g∗n is a pure MLE-based estimator, under
regularity conditions, and under the assumption that g0

n is consistent for g0, one can
show that Φ(g∗n) is an asymptotically linear estimator of Φ(g0) with influence curve
in TCAR(P0).

Given that we know that PnD
∗(ψ∗n, Q̄

e
n, g
∗
n) = 0, if g∗n is consistent for g0 and Q̄en

converges to Q̄e0, it follows that ψ∗n will be asymptotically linear with an influence
curve with variance smaller than or equal to the variance of D∗(ψ0, Q̄

e
0, g0). That

is, in the case that g∗n is consistent, the TMLE ψ∗n is at least as efficient as the
competing estimator whose influence curve equals D∗(ψ0, Q̄

e
0, g0).

4 Empirical efficiency maximization

This section concerns the estimation of Qe0 that forms an ingredient of the TMLE
presented above. We first review empirical efficiency maximization as presented in
Rubin and van der Laan (2008), and then we demonstrate how empirical efficiency
maximization can be embedded in loss-based learning of Q0 by using as loss function
the square of the efficient influence curve (van der Laan and Rose (2011)).

4.1 Empirical Efficiency Maximization as in Rubin, van der Laan
(2008)

In order to determine a solution that optimizes the variance of the influence curve
among a class of influence curves the following method was proposed in Rubin and
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van der Laan (2008). Firstly, it is noted that

D∗(g,Q) = DIPTW (Q, g)−HCAR(Q, g)(A− g(1 |W ))

= H∗g (A,W )(Y − f(Q, g)(W ))−Ψ(Q)

≡ D∗(g, f(Q, g),Ψ(Q)),

where H∗g (A,W ) = (2A− 1)/g(A |W ), and

f(Q, g) = g(1 |W )Q̄(0,W ) + g(0 |W )Q̄(1,W ).

Note that D∗(g, f, ψ) = DIPTW (g, ψ)−HCAR(f, g)(A− g(1 |W )), where

HCAR(f, g) =
f(W )

g(1 |W )g(0 |W )
.

Thus, if we find an optimal choice fe for f among a class of candidates, then that
also implies an optimal choice HCAR(fe, g). Determining the optimal choice for f
appears to be convenient, since

VARP0D
∗(g0, f, ψ0) = E0

{
{H∗g0}

2(A,W )(Y − f(W ))2
}
.

Given a working model {fβ : β} for f , one can now define an optimal choice

fe(P0) = arg min
fβ

P0

{
{H∗g0(A,W )}2(Y − fβ(W ))2

}
. (5)

This choice maps into a corresponding optimal

HCAR(fe0 , g)(W ) =
fe0 (W )

g(1 |W )g(0 |W )
.

The choice (5) can be estimated with weighted least squares regressing Y on W
using weights H∗,2g0 . An estimator fen of fe0 results in a clever covariate HCAR(fen, g

k
n)

in the k-th step of the TMLE-algorithm presented in previous section.

4.2 Adaptive empirical efficiency maximization

The choice Q̄e(P0) (1) corresponds with minimizing the empirical risk of the loss
function Lg0(Q̄) = {D∗(ψ0, Q̄, g0)}2 over a working model {Q̄β : β}. Note that Lg0
is indeed a valid loss function since Q̄0 = arg minQ̄ P0Lg0(Q̄) (van der Laan and
Robins (2003)). The strength of this loss function is that its loss-based dissimilarity
is given by

P0{Lg0(Q̄)− Lg0(Q̄0)} = P0

{
D∗(ψ0, Q̄, g0)−D∗(ψ0, Q̄0, g0)

}2
,

which follows by the Theorem of Pythagoras (van der Laan and Rose (2011)). In
some cases (as in previous subsection), one can define another (e.g., squared error)
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loss function that has the same loss-based dissimilarity, but with an empirical risk
that might be easier to minimize. The validity of the loss function relies on g0 being
known or consistently estimated. At the known g0, this loss-based dissimilarity
is targeted towards ψ0 since it concerns approximating the true efficient influence
curve, and it also corresponds with minimizing the variance of the influence curves
D∗(ψ0, Q̄, g0) over Q̄.

Instead of working with a single working model, we can use loss-based learning
instead, using cross-validation based on this loss function Lg0 (van der Laan and
Dudoit (2003), van der Laan et al. (2007)). For example, suppose one considers
a collection of K working models {Q̄k

βk
: βk}, k = 1, . . . ,K. Each working model

results in an estimator Q̄kn defined by the minimizer of the empirical risk PnLg0(Q̄k
βk

)

over the working model indexed by parameter vector βk. One can now select the
choice k of working model with the V -fold cross-validation selector

kn = arg min
k

V∑
v=1

∑
i∈Valv

Lg0(Q̄kn,v)(Oi),

where Valv is the validation sample for the v-th sample split, and Q̄n,v is the fit of
the k-th working model based on the training sample Trainv (i.e., the complement
of VALv) for the v-th sample split, v = 1, . . . , V The estimator would now be
Q̄en = Q̄kn

βknn
, which plays the role of an estimator of Q̄e0.

As shown in van der Laan and Rose (2011), the general oracle results of the
cross-validation selector kn apply to this loss function Lg0(Q̄) (van der Laan and
Dudoit (2003)), under the assumption that the efficient influence curve is uniformly
bounded in supremum norm (i.e., δ < g0(1 | W ) < 1 − δ for some δ > 0). As a
consequence, under this boundedness condition, if none of the working models are
correctly specified, the cross-validation selector will asymptotically make the optimal
choice, even if the number K of working models grows polynomial in sample size,
while, if one of the working models is correctly specified, then the resulting Q̄en will
converge at rate 1/

√
n to Q̄0. These oracle results will also apply if g0 is estimated

at a rate faster than at which Q̄0 is estimated (van der Laan and Dudoit (2003)).
As a consequence, if g0 is estimated consistently, the augmented IPTW estimator

that uses Q̄en as estimator of Q̄0 will now have an influence curve that is more efficient
than D∗(ψ0, Q̄

k
βk
, g0) for any βk, and any k = 1, . . . ,K. We note that this estimator

Q̄en based on using loss-based (super) learning can now be used in the clever covariate
HCAR(Q̄en, g

k
n) in the TMLE proposed in the previous section. The TMLE presented

in the previous section using this estimator Q̄en as estimator of Q̄e0 will now not only
be a double robust locally efficient substitution estimator, but, if g0 is estimated
consistently, it will also be at least as efficient as the augmented IPTW estimator
that uses Q̄en as estimator of Q̄0.

If one implements an Lg0-based super learner with a library of candidate esti-
mators of Q̄0 that includes nonparametric estimators, so that at least one candidate
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in the library will be asymptotically consistent for Q̄0, then Q̄e0 = Q̄0 and Q̄en is now
an estimator of the globally optimal Q̄0. However, if one estimates g0 consistently,
then Q̄en is also a fully targeted estimator of Q̄0 in the sense that it is tailored to
result in a best estimate of the efficient influence curve itself. Again, we can use
this estimator Q̄en in the clever covariate HCAR(Q̄en, g

k
n) in the TMLE proposed in

the previous section. The resulting TMLE is now not only a double robust locally
efficient substitution estimator, but it is also an augmented IPTW estimator that
estimates Q̄0 with an estimator Q̄en that is tailored to maximize efficiency in the
case that gn is consistent.

5 Simulations illustrating empirical efficiency property
of TMLE

We illustrate the additional enhanced efficiency property of the TMLE proposed in
the previous section, by comparing the performance of the enhanced TMLE with the
“standard” TMLE and the empirical efficiency maximization estimator proposed in
Rubin and van der Laan (2008). Two data generating distributions were defined,
and the additive treatment effect parameter was estimated for one thousand samples
of size n = 500 drawn from each. Results in Table 1 below verify that when there
are no violations of the positivity assumption, at a misspecified working model for
Q̄0 and correctly specified working model for g0, the performance of the enhanced
TMLE is on a par with the empirical efficiency maximization estimator, and both
outperform the TMLE that does not aim for maximal efficiency.

Data were generated according to the following two mechanisms:

W1,W2 ∼ N(0, 1)

g0,1(1 |W ) = 0.5

g0,2(1 |W ) = Expit(−0.3− 0.1W1 − 0.3W2)

P0,1(Y = 1 | A,W ) = Expit(−1 +A+W1 + 2.5W 2
1 )

P0,2(Y = 1 | A,W ) = Expit(−1 +A+W1 + 2.5W 2
1 − 0.2W2).

The first simulation study mimics a randomized controlled trial in which treatment
assignment is independent of baseline covariates W = (W1,W2). The probability of
being assigned to the treatment group is 0.5 for all subjects. In the second study
W1 and W2 confound the effect of treatment on the outcome. For this simulation
true treatment assignment probabilities ranged between 0.26 and 0.60. The true
values of the target parameter for these two simulations are ψ0,1 = 0.1579 and
ψ0,2 = 0.1570. Theses true values were obtained as an average of the additive effect
(Y1 − Y0) calculated from the full data for ten samples of size n = 107. For both
studies, (misspecified) logistic linear regression of Y on (A,W1) was used to obtain
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Table 1: Additive treatment effect estimates, 1000 samples (n = 500).

Simulation 1 Simulation 2
Bias Var MSE Bias Var MSE

Unadj 0.0014 0.0017 0.0017 −0.0023 0.0017 0.0017
TMLE 0.0015 0.0017 0.0017 −0.0006 0.0017 0.0017
Emp eff 0.0011 0.0015 0.0015 −0.0001 0.0015 0.0015
TMLEen 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015

the initial estimate of Q̄0, and the correctly specified logistic regression model was
used to obtain the initial estimate of g0. The estimators of ψ0 are of the following
form:

ψTMLE
n =

1

n

n∑
i=1

{
Q̄1∗
n (1,Wi)− Q̄1∗

n (0,Wi)
}
,

ψEmpeffn =
1

n

n∑
i=1

2Ai − 1

g(Ai |Wi)
(Yi − fen(Wi)) ,

ψTMLEen
n =

1

n

n∑
i=1

{
Q̄k∗n (1,Wi)− Q̄k∗n (0,Wi)

}
.

Here LogitQ̄1∗
n = LogitQ̄0

n + εnH
∗
gn , with εn fit by maximum likelihood estimation.

The target function fe0 (W ) = fc0,α0,β0(W ), which defines the empirical efficiency
maximization estimator, is defined in terms of a working model fc0,α0,β0(W ) =
c + Expit(α + βW1) (see previous section 4). The true values (c0, α0, β0) of the
coefficients are fitted with weighted least squares using the nlm function in R (Team,
2010) and weights {H∗gn}

2. Finally, Q̄k
∗
n (A,W ) is a targeted estimate of Q̄0 obtained

by applying the iterative TMLE procedure described in Section 3 to initial estimates
Q̄0
n, gn, f

e
n, where k denotes the final step. Convergence was defined as ε1 < 0.00001

and ε2 < 0.00001, and typically occurred after two to three iterations (so k typically
equals 2 or 3).

Table 1 also reports unadjusted estimates ψunadjn = En(Y = 1 | A = 1)−En(Y =
1 | A = 0), where E0(Y = 1 | A) is estimated with univariate logistic regression
of Y on A. The unadjusted estimator is unbiased in simulation 1, but biased in
simulation 2.

Results in Table 2 verify the claim made in section 3.4 that in addition to be-
ing a double robust locally efficient substitution estimator, the enhanced TMLE is
also an IPTW estimator, an augmented IPTW estimating-equation based estima-
tor in which the nuisance parameters Q0, g0 are estimated with the TMLE Q∗n, g

∗
n,

and an augmented IPTW estimating-equation based estimating in which the nui-
sance parameters Q0, g0 are estimated with (QW,n, Q̄

e
n), g∗n. Recall that the latter is
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the empirical efficiency maximization estimator of Rubin and van der Laan (2008),
except that g0 is estimated with g∗n instead of the initial estimator gn.

Table 2: Alternative representations of additive treatment effect estimates.

Simulation 1 Simulation 2
Bias Var MSE Bias Var MSE

TMLEen 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015
IPTW 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015
AIPTWa 0.0013 0.0015 0.0015 −0.0002 0.0015 0.0015
AIPTWb 0.0012 0.0015 0.0015 −0.0002 0.0015 0.0015

We next investigate estimator performance under increasing levels of confound-
ing. In simulation 3a the treatment assignment mechanism is held fixed and con-
founding is made stronger by increasing the association between W2 and the out-
come, Y . In simulation 3b the conditional distribution of Y given (A,W ) is held
fixed while the association between W2 and A increases, leading to violations of the
positivity assumption as confounding grows stronger. For each simulation estimates
were obtained for 1000 samples of size n = 500 with gn(1 | W ) bounded away from
0 and 1 at level (p, 1− p), with p = (10−9, 0.01, 0.025, 0.05, .1). Data for simulation
3 were generated as

W1,W2 ∼ N(0, 1)

g0,3(1 |W ) = Expit(−0.3− 0.1W1 − γ1W2)

P0,3(Y = 1 | A,W ) = Expit(−1 +A+W1 + 2.5W 2
1 − γ2W2)

with γ1 fixed at 0.3 and γ2 set to (0, 0.1, 0.2, . . . , 2) for simulation 3a, and γ1 set to
(0, 0.2, . . . , 1) while γ2 was fixed at 1, for simulation 3b.

Figure 1 summarizes results for simulation 3a with bounds on gn(1 | W ) set
to (10−9, 1 − 10−9) and (0.1, 0.9). The bias of the unadjusted estimator (1) in-
creases with γ2, while the TMLE (2), Emp Eff (3), and TMLEen (4) estimators
remain unbiased. When confounding is strong, the unadjusted estimator has the
highest variance, followed by TMLE, while as predicted by theory, the variance of
the TMLEen estimator closely matches that of the empirical efficiency estimator,
designed to minimize variance. Because the treatment assignment mechanism does
not lead to a violation of the positivity assumption (0.14 < g0(1 |W ) < 0.77), results
are the same regardless of the choice of truncation level for gn(1 | W ). Estimator
performance under increasing practical violations of the positivity assumption is il-
lustrated in Figure 2, which shows results at three truncation levels of gn(1 | W ),
(10−9, 1 − 10−9), (0.025, 0.975), and (0.1, 0.9). Increasing truncation introduces a
small amount of bias into TMLE, the empirical efficiency maximization estimator,

13

Hosted by The Berkeley Electronic Press



1
1

1
1

1
1

1
1 1

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

Eψn −ψ0

Confounding level (γ2)

Eψ
n
−
ψ
0

2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4 1
1

1
1

1
1

1
1 1

0.0 0.5 1.0 1.5 2.0

0.
00

0.
02

0.
04

0.
06

Eψn −ψ0

Confounding level (γ2)

Eψ
n
−
ψ
0

2 2 2 2 2 2 2 2 23 3 3 3 3 3 3 3 34 4 4 4 4 4 4 4 4

1

1

1
1

1
1 1 1 1

0.0 0.5 1.0 1.5 2.0

0.
00
14

0.
00
17

Variance

Confounding level (γ2)

Va
ria
nc
e

2
2

2

2 2

2

2 2
2

3
3

3

3 3

3

3 3 3

4
4

4

4 4

4

4
4 4

1

1

1
1

1
1 1 1 1

0.0 0.5 1.0 1.5 2.0

0.
00
14

0.
00
17

Variance

Confounding level (γ2)

Va
ria
nc
e

2
2

2

2 2

2

2 2
2

3
3

3

3 3

3

3 3 3

4
4

4

4 4

4

4
4 4

Figure 1: Simulation 3a: Estimator bias and variance at each value of γ2, two
truncation levels for gn(1 | W ), (10−9, 1 − 10−9) (left), and (0.1, 0.9) (right). 1:
Unadjusted, 2: TMLE, 3: Emp Eff, 4: TMLEen.

and TMLEen, but this amount is dwarfed by the bias of the unadjusted estima-
tor. We observe that the variance of all but the unadjusted estimator increases
with increased confounding, and is slightly ameliorated by increased truncation of
gn(1 |W ). At extreme violations of the positivity assumption (Table 3) the variance
of TMLEen(4) is slightly larger than that of the empirical efficiency maximization
estimator (3), but overall these two estimators are very close to one another.

6 Discussion

The TMLE represents a template for construction of a loss-based substitution es-
timator of a target parameter defined on a semiparametric model, defined by a
choice of loss function for a relevant part of the data generating distribution, a
parametric submodel, and a strategy for iteratively minimizing the empirical risk
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Figure 2: Simulation 3b: Estimator bias and variance at each value of γ1. Columns
correspond to truncation level for gn(1 | W ), (10−9, 1 − 10−9) (left), (0.025, 0.05)
(middle), and (0.1, 0.9) (right). 1: Unadjusted, 2: TMLE, 3: Emp Eff, 4: TMLEen.

Table 3: True conditional treatment assignment probabilities as a function of γ1.

γ1 Range of g0(A |W ) γ1 Range of g0(A |W )
0 0.305 0.551 0.6 0.035 0.926

0.2 0.212 0.676 0.8 0.013 0.969
0.4 0.090 0.837 1 0.005 0.987

over the parametric submodel. The choice of submodel and loss function defines the
score equations the TMLE will solve. In this manner it can be arranged that the
TMLE solves not only the efficient score equation, but also an estimating equation
corresponding with the influence curve of a competing estimator. By solving this
estimating equation the TMLE is at least as efficient as the competing estimator in
the case this competing estimator is asymptotically linear and g0

n is consistent.
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We demonstrated this type of TMLE for the simple point treatment data struc-
ture (W,A, Y ) and the additive effect parameter. Our presentation is straightfor-
wardly generalized to general CAR-censored data models, and target parameters,
since we only relied on a general representation of the efficient influence curve as an
augmented IPCW-function as presented in Robins and Rotnitzky (1992); van der
Laan and Robins (2003). Suppose now that the target parameter is multivariate.
One needs to define the collection of real valued parameters, and one needs to de-
fine a competing estimator for each of these real valued parameters. For example,
one might define one single real valued parameter as a function of the multivariate
parameter, or one might define each component of the target parameter as a real
valued parameter. Each of the real valued parameters implies now an influence curve
of the corresponding competing estimator. Each of these influence curves implies
a clever covariate for the treatment mechanism playing the role of H(Qen, g

k
n) in

the above TMLE algorithm. The resulting TMLE will not only be a double robust
locally efficient substitution estimator of the target parameter, but it will also esti-
mate each of the real valued parameters in a more efficient way than the competing
estimators, in the case that g0 is estimated consistently.
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Appendix: R Implementation

The R function below calculates the enhanced TMLE for binary outcomes. Required
arguments are Y (binary outcome vector), A (binary treatment indicator vector),
and initial estimates Q̄0

n(A,W ), g0
n(A | W ), and fen(W ). Q̄0

n(A,W ) is an n × 3
matrix containing values for Q̄0

n(A,W ), Q̄0
n(0,W ), and Q̄0

n(1,W ) on the logit scale.
Predicted values for gn(A |W ) are bounded away from 0 and 1.
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bound <- function(x, bounds){

x[x<min(bounds)] <- min(bounds)

x[x>max(bounds)] <- max(bounds)

return(x)

}

tmle_en <- function(Y, A, g1W, Q, f, gbds = c(10^-9, 1-10^-9)){

g1w <- bound(g1W, gbds)

eps1 <- eps2 <- Inf

epsilon <- .00001

maxIter <- 30

iterations <- 0

while((any(abs(c(eps1, eps2)) > epsilon)) & iterations <= maxIter){

iterations <- iterations + 1

h <- cbind(A/g1W - (1-A)/(1-g1W), 1/g1W, -1/(1-g1W))

m <- glm(Y ~ -1 + offset(Q[,"QAW"]) + h[,1], family=binomial)

eps1 <- coef(m)

Q <- Q + eps1*h

h2 <- plogis(Q[,"Q1W"])/g1W + plogis(Q[,"Q0W"])/(1-g1W)

h3 <- f/(g1W * (1-g1W))

g <- glm(A ~ -1 + offset(qlogis(g1W)) + h2 + h3, family=binomial)

g1W <- bound(predict(g, type = "response"), gbds)

eps2 <- coef(g)

}

Q <- plogis(Q)

psi.en <- mean(Q[,"Q1W"] - Q[,"Q0W"])

psi.IPTW <- mean((A/g1W - (1-A)/(1-g1W)) * Y)

psi.AIPTWQstargstar <- mean((A/g1W - (1-A)/(1-g1W)) * Y

- (Q[,"Q1W"]/g1W - Q[,"Q0W"]/(1-g1W))*(A-g1W))

psi.AIPTWQegstar <- mean((A/g1W - (1-A)/(1-g1W)) * Y

- f/(g1W * (1-g1W)) * (A-g1W))

return(c(psi.en, psi.IPTW, psi.AIPTWQstargstar, psi.AIPTWQegstar))

}
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