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Avoiding Boundary Estimates in Linear Mixed
Models Through Weakly Informative Priors

Yeojin Chung, Sophia Rabe-Hesketh, Andrew Gelman, Jingchen Liu, and
Vincent Dorie

Abstract

Variance parameters in mixed or multilevel models can be difficult to estimate,
especially when the number of groups is small. We propose a maximum penal-
ized likelihood approach which is equivalent to estimating variance parameters
by their marginal posterior mode, given a weakly informative prior distribution.
By choosing the prior from the gamma family with at least 1 degree of freedom,
we ensure that the prior density is zero at the boundary and thus the marginal
posterior mode of the group-level variance will be positive. The use of a weakly
informative prior allows us to stabilize our estimates while remaining faithful to
the data.
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Abstract

We propose a maximum penalized likelihood approach for estimating group-level

variance parameters in mixed or multilevel models, equivalent to estimating variance

parameters by their posterior mode, given a weakly informative prior distribution. By

choosing the prior from the gamma family with shape parameter greater than 1, we

ensure that the estimated variance will be positive. When the maximum likelihood

estimate is at zero, our maximum penalized likelihood estimator is approximately one

standard error from zero and thus remains consistent with the likelihood while being

non-degenerate. (In contrast, lognormal and inverse-gamma penalty functions effec-

tively bound the estimated variance parameter away from zero, which can result in

regularized estimates that are inconsistent with the likelihood.) We also discuss the

use of the gamma family to convey substantive prior information. In either case—pure

penalization or prior information—our recommended procedure gives non-degenerate

estimates when the number of groups is small and in the limit coincides with maximum

likelihood as the number of groups increases.
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1 Introduction

Linear mixed models (e.g. Harville, 1977; Laird and Ware, 1982), also known as hierarchical

or multilevel linear models, are widely used for longitudinal data, cross-sectional data on sub-

jects nested in neighborhoods or institutions (hospitals, schools, firms), cluster-randomized

trials, multi-site trials, and meta-analysis. The models include random intercepts and some-

times random coefficients that vary among groups and that we will refer to as varying

intercepts and coefficients. We consider the situation where some variability is known to

exist a priori due to omitted group-level covariates. Maximum likelihood is a useful way to

estimate variance parameters in mixed models. But when the number of groups is small,

estimates of group-level variance parameters can be noisy and can often be zero. In a multi-

variate setting, estimated covariance matrices can be singular. Estimating a variance to be

zero causes underestimation of uncertainty in the parameter estimates of the model.

Most clearly, degenerate variance estimates lead to complete shrinkage of predictions

for new and existing groups and yield estimated prediction standard errors that understate

uncertainty. For example, Gelman et al. (2007) fit a multilevel model predicting voter choice

given income, with the intercept and slope for income varying by state. They found that

richer voters tended to support Republican candidates but with a slope that varied depending

on some state-level predictors. For one election year, the fitted model had a zero value for

the point estimate of the variance of the state-level errors for the slopes. In the resulting

inferences, the state-level slopes were perfectly predicted by the state-level predictors. There

is no reason to believe this—the perfect prediction is merely an artifact of a variance estimate

that happened to be zero—and it is awkward to graph these results, showing an estimated

perfect fit that we do not and should not believe. A related difficulty arises when comparing

instances of a model that is repeatedly fit to similar data from different surveys or different

years, yielding zero variance estimates some of the time.
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When a variance parameter is estimated as zero, there is typically a large amount of

uncertainty about this variance. One possibility is to declare in such situations that not

enough information is available to estimate a multilevel model. However, the available

alternatives can be unappealing since, as noted above, discarding a variance component or

setting the variance to zero understates uncertainty. The other extreme is to fit a regression

with indicators for groups (a fixed-effects model), but this will overcorrect for group effects

(it is mathematically equivalent to a mixed-effects model with variance set to infinity) and

also does not allow predictions for new groups.

If zero variance is not a null hypothesis of interest, a boundary estimate, and the corre-

sponding zero likelihood ratio test statistic, should not necessarily lead us to accept the null

hypothesis and to proceed as if the true variance is zero. This point is particularly important

when zero variance leads to the smallest possible standard errors for parameters of interest

as in random-effects meta-analysis where the practice of using tests of homogeneity as a ba-

sis for choosing between fixed and random-effects meta-analysis has been criticized (Hardy

and Thompson, 1998; Curcio and Verde, 2011; Draper, 1995, p.52-53). Inclusion of varying

intercepts can be viewed as a continuous model expansion (Draper, 1995) to allow for the

possibility that there may be unexplained differences between groups (see also Gelman and

Meng, 1996).

An argument against avoiding boundary estimates is that negative variance parameters

should be permitted if the model is viewed as a marginal model for the responses given

the covariates, in which case only the sum of the group-level and within-group variance

must be positive (Verbeke and Molenberghs, 2000, p.52-53). However, we take a hierarchical

perspective, where the intercepts vary due to omitted group-level variables, and therefore

the group-level variance must be nonnegative.

Several authors (e.g., Kubokawa and Tsai, 2006; Srivastava and Kubokawa, 1999; Mathew

and Niyogi, 1994; Kelly and Mathew, 1994) have developed nonnegative (definite) estimators
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of variance components to improve standard estimation methods such as analysis of variance,

maximum likelihood (ML) or restricted maximum likelihood (REML) in terms of Stein loss

or mean-squared error (MSE). Our estimators are developed to avoid boundary estimates

while respecting the data, and they turns out to perform as well as the standard methods

such as ML or REML in terms of MSE.

1.1 Outline of our approach

In this paper we develop a non-degenerate estimator by maximizing the likelihood∗ multiplied

by a penalty function, or equivalently by assigning a prior distribution to the unknown

variance parameters and finding the posterior mode. It is possible to do this without requiring

strong prior knowledge. But our functional form is general enough that it can also be applied

when real prior information is available.

Our primary aim is to develop a default penalization that gives non-degenerate variance

estimators in multilevel models, bounded away from zero but automatically respecting the

data. In particular, we recommend a class of gamma priors (for unidimensional problems)

and Wishart (for multidimensional) that produce maximum penalized likelihood estimates

(or Bayes modal estimates) approximately one standard error away from zero when the

maximum likelihood estimate is at zero. We consider these priors to be weakly informative

in the sense that they supply some direction but still allow inference to be driven by the

data. The prior has little influence when the number of groups is large or when the data are

informative about the variance.

Penalized likelihood estimation has been used to obtain more stable estimates of item

parameters in item response theory (Swaminathan and Gifford, 1985; Mislevy, 1986; Tsu-

takawa and Lin, 1986) and to avoid boundary estimates in log-linear models (Galindo-Garre

∗We use the term likelihood to refer to the integrated or marginal likelihood, with random effects inte-
grated out.
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et al., 2004) and latent class analysis (Maris, 1999; Galindo-Garre and Vermunt, 2006). To

our knowledge, this idea has not previously been applied to variance parameters in multilevel

models.

Compared with full Bayes or posterior mean estimation, our approach does not require

simulation and is computationally as efficient as maximum likelihood estimation, in fact

potentially more efficient as it avoids the slow convergence that can occur if the maximum

likelihood estimate is on the boundary. No additional convergence checking is required and

there is no need to specify priors for all model parameters. We have implemented posterior

modal estimation in Stata and R with only minor modifications of existing software for max-

imum likelihood estimation of linear mixed models. Given user-specified or default choices

of hyperparameters, the programs automatically find the posterior mode of the variance

parameter and provide inferences for the coefficients conditional on that estimate.

Although our main objective is to avoid boundary estimates, we also compare the bias

and MSE of our estimator to maximum likelihood and restricted maximum likelihood in

simulations across a wide range of conditions. Our method performs well and also provides

better estimates of standard errors of regression coefficients.

Our method has natural extensions to models beyond the linear mixed model with a

varying intercept. For the model with varying intercept and slopes, the penalty function can

be generalized using the relationship between the gamma and Wishart distributions. Since

we propose a principled method to avoid boundary estimates, we can extend it to other

models in which variance parameters could be estimated at zero including generalized linear

mixed models and hierarchical models with more than two levels.

We begin by illustrating the boundary problem for a simple model in Section 1.2. In

Section 2, we discuss Bayes modal estimation and propose a gamma prior as a weakly

informative prior. Section 3 shows theoretical properties of the resulting estimator. In

Section 4 we apply the proposed method to a dataset and in Section 5 we perform simulations
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to compare performance of our method with maximum likelihood and restricted maximum

likelihood in a range of situations. We end with a discussion in Section 6.

1.2 Boundary problem for a simple model

We demonstrate the problem with a varying-intercept model with J = 10 groups and a

single group-level variance parameter. To keep things simple, we do not include covariates

and treat the mean and within-group variance as known:

yj ∼ N(θj, 1), θj ∼ N(0, σ2
θ), for j = 1, . . . , J.

In our simulation, we set the group-level standard deviation σθ to 0.5. From this model,

we create 1000 simulated datasets and estimate σθ by maximum likelihood by solving for σ̂θ in

the equation 1+ σ̂2
θ = 1

J

∑J
j=1

y2j , with the boundary constraint that σ̂θ = 0 if 1

J

∑J
j=1

y2j < 1.

In this simple example, it is easy to derive the probability of obtaining a boundary estimate

as Pr(χ2(J) < J
1+σ2

θ

) = 0.37.

[Figure 1 about here.]

Figure 1(a) shows the sampling distribution of the maximum likelihood estimate of σθ. As

expected, in more than a third of the simulations, the likelihood is maximized at σ̂θ = 0.

The noise is so much larger than the signal here that it is impossible to do much more than

bound the group-level variance; the data do not allow an accurate estimate.

Figure 1b displays 100 draws of the likelihood function, which shows in a different way

that the maximum is likely to be on the boundary, with there being quite a bit of uncertainty.

We want a point estimator that is positive while being consistent with the data. Setting σθ

to zero would be a mistake, and it would also be wrong to say that the likelihood offers no

information at all. In particular, it bounds σθ on the high end. A fair point summary would
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be somewhere in the range supported by the likelihood, with a standard error high enough

to acknowledge the uncertainty in the inference.

2 Maximum penalized likelihood estimation of σθ

2.1 A brief review of the maximum likelihood and restricted maximum likelihood

estimation

We consider the model

yij = xT
ijβ + θj + ǫij , i = 1, . . . , nj, j = 1, . . . , J,

J∑

j=1

nj = N, (1)

where yij is the response variable and xij is a p-dimensional vector of covariates for unit

i in group j; β is a p-dimensional vector of coefficients that do not vary between groups;

θj ∼ N(0, σ2
θ) is a group-level error; and ǫij ∼ N(0, σ2

ǫ ) is a residual for each observation.

We further assume that θj and ǫij are independent.

The parameters (β, σθ, σǫ) are commonly estimated by maximum likelihood (ML). An-

other option is restricted or residualized maximum likelihood (REML, Patterson and Thomp-

son, 1971), which is equivalent to specifying uniform priors for the regression coefficients β

and maximizing the marginal posterior mode, integrated over θj and β (Harville, 1974). Un-

like the ML estimator, the REML estimator of σ2
θ is unbiased in balanced designs (constant

group-size) if it is allowed to be negative.

Discussion of small-sample inference for mixed models has largely focused on the covari-

ance matrix of β̂ (e.g., Kenward and Roger, 1997). Longford (2000) points out that this

covariance matrix is often poorly estimated because variance components are estimated in-

accurately. The sandwich estimator (Huber, 1967; White, 1990) is asymptotically consistent

even if the distributional assumptions are violated. However, as Drum and McCullagh (1993)
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note, it can perform poorly when the sample size is small. Crainiceanu et al. (2003) derive

a general expression for the probability that the (local) maximum of the marginal (or re-

stricted) likelihood is at the boundary for linear mixed models and Crainiceanu and Ruppert

(2004) discuss the finite-sample distribution of the likelihood ratio statistic for testing null

hypotheses regarding the group-level variance.

2.2 Maximum penalized likelihood estimation

In the present article, we are particularly concerned with the group-level standard deviation,

and we specify a penalty or a prior only for σθ, implicitly assuming a uniform prior, p(β, σǫ) =

1, on β and σǫ.

The penalized log-likelihood function can be written as

log lp(σθ,β, σǫ;y) = log l(σθ,β, σǫ;y) + log p(σθ) + c, (2)

where the first term of the right hand side is the log-likelihood, log p(σθ) is an additive penalty

term or log prior, and c is a constant. We find the maximum penalized likelihood (MPL)

estimator that attains the maximum of (2). The penalized log-likelihood can be regarded

as the marginal log-posterior density with varying intercepts (θj) integrated out and MPL

estimates are equivalent to posterior modal estimates. By integrating the posterior over

θj , we avoid the incidental parameter problem (Neyman and Scott, 1948; O’Hagan, 1976;

Mislevy, 1986).

Unlike posterior mean estimation, posterior modal estimation does not involve simula-

tion and is computationally as efficient as maximum likelihood estimation. In addition, by

modifying existing maximum likelihood estimation procedures, we can easily find the pos-

terior mode. We have implemented maximum penalized likelihood estimation for gllamm

(Rabe-Hesketh et al., 2005; Rabe-Hesketh and Skrondal, 2008) in Stata and for lmer in the
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lme4 package (Bates and Maechler, 2010) in R. In both programs, the user has the option

to specify a prior and the corresponding log density is added to the log-likelihood during op-

timization. (The modified gllamm is available from www.gllamm.org and the modified lmer

can be found in the blme package available from the Comprehensive R Archive Network.)

2.3 Desired properties of a weakly informative prior

Our goal is to find a penalty or a prior for σθ so that MPL estimates are off the boundary,

but with the penalty being weak enough so that inferences are consistent with the data. For

our purpose, we desire p(σθ) that

(i) is zero at the origin and

(ii) has a positive constant derivative at zero.

Condition (i) ensures a positive estimate of the variance parameter, even when the maximum

of the likelihood is at 0. Condition (ii) allows the likelihood to dominate if it is strongly

curved near zero. The positive constant derivative implies that a prior is linear at zero and

there is no “dead zone” in the penalty near zero—that is, the penalty does not rule out

positive values near zero if they are supported by the likelihood.

For our default choice of penalty, we do not impose any restriction on the right tail of

p(σθ) since our primary concern is to avoid boundary estimates and the right tail has little

impact on the posterior mode. If the number of groups is small and we want to further

control the estimate, it would make sense to assign a finite scale to the prior to constrain

the right tail.

Various reasonable-seeming choices of priors do not satisfy both the above conditions. The

exponential and half-Cauchy families, for example, do not decline to zero at the boundary, so

they do not rule out posterior mode estimates of zero. Such priors can be excellent weakly

9

Hosted by The Berkeley Electronic Press



informative priors for full Bayesian (posterior mean) inference (see Gelman, 2006) but do

not work if the goal is to get a non-degenerate posterior mode estimate.

The lognormal and inverse-gamma densities satisfy condition (i) but not condition (ii).

They have a zero derivative at the origin, essentially ruling out low estimates of σθ no

matter what the data suggest. Thus, the lognormal can only be used when there is real prior

information to guide the choices of its two parameters; it cannot be a default choice of the

sort we are seeking here.

2.4 Gamma penalty function

We propose the logarithm of a gamma (not inverse-gamma) density as a penalty function of

σθ or equivalently, assign a gamma prior on σθ : defined by

p(σθ) =
λα

Γ(α)
σα−1

θ e−λσθ , α > 0, λ > 0 (3)

with mean α/λ and variance α/λ2, where α is the shape parameter and λ is the rate param-

eter (the reciprocal of the scale parameter).

With an appropriate choice of parameters, the gamma satisfies the two conditions for the

weakly informative prior listed in the previous section. For any α > 1, gamma(α, λ) satisfies

the first condition that p(0) = 0. In order to have a positive constant derivative at zero (the

second condition), α can be chosen to be 2.

We consider three ways to apply the gamma prior as a penalty:

• Our default choice is gamma(α, λ) with α = 2 and λ → 0, which is the (improper)

density (p(σθ) ∝ σθ). As we discuss shortly, this default bounds the MPL estimate

away from zero while keeping it consistent with the likelihood.

• Sometimes we have weak prior information about a variance parameter that we would
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like to include in our model. When α = 2, the gamma density has its mode at 1/λ, and

so our recommendation is to use the gamma(α, λ) with 1/λ set to the prior estimate

of σθ.

• If strong prior information is available, then both parameters of the gamma density

can be set to encode this. If α is given a value higher than 2, property (ii) above will

no longer hold, but this is acceptable if this represents real information about σθ.

3 Theoretical properties

3.1 Difference between ML estimator and MPL estimator

To examine the effect of α and λ on the MPL estimator analytically, we treat (β, σǫ) as

nuisance parameters and assume that the profile log-likelihood can be approximated by a

quadratic function in σθ around the ML estimator, σ̂ML
θ ,

logL(σθ) ≈ −(σθ − σ̂ML
θ )2

2 · ŝe(σ̂ML
θ )2

+ c1. (4)

Here ŝe(σ̂ML
θ ) represents the estimated asymptotic standard error of σθ (based on the observed

information). This quadratic approximation of the profile log-likelihood function of σθ is

reasonable because the first derivative of the profile log-likelihood (with respect to σθ, not

σ2
θ) at the ML estimate σ̂ML

θ is zero even when σ̂ML
θ is zero.

For example, consider a balanced varying-intercept model without covariates by setting

xT
ijβ = µ and ni = n in model (1). Then the profile log-likelood of σθ is given by

logLσθ
(σθ) = −(n− 1)J

2
log σ̂2

ǫ −
J

2
log

{
σ̂2
ǫ + nσ2

θ

}
− 1

2

(
SST

σ̂2
ǫ

− nσ2
θ

σ̂2
ǫ (σ̂

2
ǫ + nσ2

θ)
SSB

)
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where

σ̂2

ǫ =





SSW/(n− 1)J if SSB ≥ SSW
n−1

SST/nJ if SSB < SSW
n−1

,

SST =
∑

j

∑
i(yij − ȳ··)

2, SSB = n
∑

j(ȳ·j − ȳ··)
2 and SSW = SST − SSB.

Taking the derivative of logLσθ
with respect to σθ, we have

∂ logLσθ

∂σθ

=

(
− nJ

2(σ̂2
ǫ + nσ2

θ)
+

n · SSB
2(σ̂2

ǫ + nσ2
θ)

2

)
· 2σθ. (5)

When we have boundary estimates of σθ, it is possible that the log-likelihood function of σ2
θ

has its maximum in the negative region, and so ∂ logLσθ
/∂(σ2

θ) (the part in the parenthesis

of the right-hand side in (5)) is negative at σ2
θ = 0. In this case, the quadratic approximation

of logLσθ
in σ2

θ at the boundary will not be appropriate because the linear term still exists.

Even in this case, (5) will be zero because of the factor 2σθ. Therefore, in the Taylor

expansion of logLσθ
in σθ at 0, the linear term vanishes, the leading term becomes the

quadratic (with negative coefficient when σ̂θ = 0) and the higher order terms are negligible

around σθ = 0. In Sections 4 and 5, we will confirm that the quadratic approximation fits

well in an application and in simulations.

Using this quadratic approximation of the profile log-likelihood in σθ, we derive a number

of properties of the log-gamma(α, λ) penalty of σθ. (Derivations are in the supplementary

materials.) In what follows, we discuss the behavior of σ̂θ for two cases: given under Property

1 for σ̂ML
θ = 0 and Property 2 for σ̂ML

θ > 0.

Property 1. When σ̂ML
θ = 0, for fixed α > 1 and ŝe(σ̂ML

θ ), the largest possible MPL estimate

is attained when λ → 0 with the value

σ̂θ = ŝe(σ̂ML
θ )

√
α− 1. (6)
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When α = 2, we obtain σ̂θ = ŝe(σ̂ML
θ ). That is, when the ML estimate is on the boundary,

the log-gamma(2, λ) penalty shifts the MPL estimate away from zero but not more than one

estimated standard error.

One standard error can be regarded as a statistically insignificant distance from the ML

estimate. If the quadratic approximation in (4) holds and σ̂ML
θ is zero, the likelihood-ratio

test (LRT) statistic for H0 : σθ = ŝe(σ̂ML
θ ) is 2(logL(0) − logL(ŝe(σ̂ML

θ ))) = 1. For the null

hypothesis σθ = 0, it is known that the asymptotic distribution (as J approaches infinity)

of the test statistic is 0.5χ2
0 + 0.5χ2

1 with 99th percentile 5.41. In finite samples, the mass

at zero is larger and the 99th percentile is smaller, but even with J = 5, the 99th percentile

is as large as 3.48, in a model without covariates and large cluster size (Crainiceanu and

Ruppert, 2004). For testing H0 : σθ = ŝe(σ̂ML
θ ) (> 0), the percentile will be larger because

there is less point mass at zero (Crainiceanu et al., 2003). Therefore, a LRT statistic of 1

can be considered small.

Property 2. When σ̂ML
θ > 0, for fixed α > 1 and ŝe(σ̂ML

θ ), the largest possible MPL estimate

is attained when λ → 0 with the value

σ̂θ =
σ̂ML
θ

2
+

σ̂ML
θ

2

√
1 + 4(α− 1)ŝe(σ̂ML

θ )2/(σ̂ML
θ )2 > σ̂ML

θ .

In addition, ∂σ̂θ/∂ŝe(σ̂
ML
θ ) decreases in σ̂ML

θ .

Similar to the case of σ̂ML
θ = 0, σ̂θ is greater than σ̂ML

θ and is an increasing function of

ŝe(σ̂ML
θ ). The gradient ∂σ̂θ/∂ŝe(σ̂

ML
θ ) has maximum

√
α− 1 for σ̂ML

θ = 0 that coincides with

(6) and decreases as σ̂ML
θ increases. This implies that the log-gamma(α, λ) penalty does not

shift the MPL estimate as much when σ̂ML
θ > 0 as it does when σ̂ML

θ = 0 when λ is close to

zero. Therefore it has less influence on the estimate when the ML estimate is plausible than

when the ML estimate is on the boundary.
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3.2 Asymptotic properties

Although this paper is concerned with the problem of boundary estimates which occur when

J is small, it is important to investigate the asymptotic properties of the proposed estimator

as J → ∞ and compare them with the asymptotic properties of the ML estimator.

Consider a balanced varying-intercept model with xT
ijβ = µ and ni = n. For sim-

plicity, we assume that µ and σ2
ǫ are known. Then the ML estimator of σθ is σ̂ml

θ =[(∑J
j=1

(ȳ·j − ȳ··)
2/J − σ2

ǫ /n
)+

]1/2
where (·)+ = max(·, 0).

When log-gamma(α, λ) penalty is applied to σθ, the MPL estimator, say σ̂MPL
θ , is a root

of a fifth order polynomial (See the supplementary materials B). Therefore, we do not have

a simple formula for σ̂MPL
θ but we can investigate its asymptotic properties using expansions

of the penalized log-likelihood (or the log-posterior) function.

The asymptotic distribution of the ML estimator in linear mixed models is shown in Miller

(1977). To examine the asymptotic properties of an estimator for σθ, it is sufficient to assume

only J → ∞ regardless of n. As J → ∞, σ̂ML
θ is consistent with σ0

θ and
√
J
(
σ̂ML
θ − σ0

θ

)

follows N(0, I(σ0
θ)

−1) asymptotically where I(σ0
θ) is the information matrix and σ0

θ is the

true value of σθ.

Fu and Gleser (1975) show that the posterior mode is consistent and has the same limiting

distribution as the ML estimator under some regularity conditions that are satisfied for our

model. That is, as J → ∞,

√
J(σ̂MPL

θ − σ0

θ) → N
(
0, I(σ0

θ)
−1
)
.

Based on this result, we compare the higher order bias of the ML estimator and the MPL

estimator in the following theorem.

Theorem 3. At the order of J−1, the ML estimator and the MPL estimator have the fol-
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lowing bias.

E(σ̂ML
θ ) = σ0

θ −
1

4(σ0
θ)

3J

(
σ2
ǫ

n
+ (σ0

θ)
2

)2

+ o(J−1)

E(σ̂MPL

θ ) = σ0

θ +

(
α + λσ0

θ − 1

2
− 1

4

)
1

(σ0
θ)

3J

(
σ2
ǫ

n
+ (σ0

θ)
2

)2

+ o(J−1)

In addition, with the default prior (α = 2 and λ → 0), two estimators have the same

magnitude of bias but negative for σ̂ML
θ and positive for σ̂MPL

θ .

Proof. An outline of the proof is in the supplementary materials and Dorie (2012).

The MPL estimator of σMPL
θ with the default penalty is not only asymptotically unbiased

and as efficient as the ML estimator, but also has the same magnitude of bias at the higher

order as seen in Theorem 3. In addition, the MPL estimator tend to be less biased for small

J as will be shown using simulations in Section 5.

3.3 Transformation of σθ

In the Bayesian point of view, when the posterior density of σθ is asymmetric, a transforma-

tion of σθ can make the density more symmetric so that the posterior mode will be located

near the posterior mean which has good asymptotic properties. Note that while the ML

estimator is invariant under transformations, the posterior modal estimator is not due to the

change in prior density when transforming σθ. Thus the transformation affects the posterior

mode.

Consider the Box-Cox transformations (Box and Cox, 1964)

gγ(σθ) =





σγ
θ
−1

γ
if γ 6= 0;

log(σθ) if γ = 0
.

Property 4. With a gamma(α, λ) prior on σθ, maximizing the posterior of gγ(σθ) is equiv-

alent to maximizing the posterior of σθ with a gamma(α+ 1− γ, λ) prior on σθ.

15

Hosted by The Berkeley Electronic Press



For example, consider a special case with α = 1, λ → 0, and γ = 0, which implies the

uniform (improper) prior on σθ and log transformation of σθ. With this prior, the marginal

posterior density is just the likelihood, which is often right-skewed or even has its mode at

σθ = 0 (where the boundary estimation problem occurs). In this case, the log transformation

of σθ can make the shape of the posterior more symmetric. If we maximize the posterior

density of log(σθ), then the maximizer ̂log(σθ) will be the same as log(σ̂θ) where σ̂θ is the

maximizer of the posterior with gamma(2, λ) prior on σθ.

We have discussed the gamma prior on the group-level standard deviation (σθ) since the

profile log-likelihood as a function of σθ has a better quadratic approximation so it helps us

to investigate the properties in Section 3.1. However, one might still be interested in priors

on the variance, σ2
θ .

Property 5. In the limit λ → 0, a gamma(α, λ) prior on σ2
θ is equivalent to a gamma(2α−

1, λ) prior on σθ.

Therefore, the properties of the gamma prior in this paper hold for the gamma prior on

σ2
θ with α adjusted appropriately.

3.4 Connection to REML

In Section 2.1, we mentioned that REML gives an unbiased estimate for variance components

in the balanced case (when negative variance estimates are permitted). In this section, we

regard REML as a penalized likelihood estimator and compare the REML penalty with the

log of the gamma density, considered as a penalty on the log-likelihood.

Patterson and Thompson (1971) describes the REML log-likelihood, say logLR, in terms

of the original log-likelihood, L, and an additive penalty term,

logLR = logL− 1

2
log

(
det(XTV −1X)

)
(7)
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where V is the N ×N covariance matrix of the vector of all responses y and X is the design

matrix with rows xT
ij. In the varying-intercept model in (1), V is a block-diagonal matrix

with nj × nj blocks, Vj, j = 1, . . . , J , where Vj contains σ2
θ + σ2

ǫ in the diagonal and σ2
θ

in the off-diagonals. Recalling that the penalized log-likelihood in (2) is the sum of the

log-likelihood and the log-gamma density, the second term in (7), denoted by log pR(σθ), is

analogous to the log of the gamma density function.

In order to compare the REML penalty and log-gamma penalty, we consider a special

case of model (1) with balanced group size n, q level-1 covariates, and r level-2 covariates.

The level-1 covariates, written as columns z1, . . . , zq of the design matrix, consist of the

same elements for each group and satisfy 1Tzu = 0, zT
u zu′ = 1 if u = u′, and 0 otherwise

for u = 1, . . . , q. The level-2 covariates are assumed to be dummy variables for the first

r(< J − q − 2) groups. Then the REML penalty becomes

log pR(σθ) =
r + 1

2
log

(
σ2

θ +
σ2
ǫ

n

)
+ c1 (8)

where c1 is a constant. The proof is provided in the supplementary materials.

Recall that, when λ → 0, the gamma(α, λ) prior on σ2
θ (equivalently gamma(2α − 1, λ)

on σθ) has log density,

log p(σ2

θ) = (α− 1) log σ2

θ + c2. (9)

Ignoring the constant terms that have no influence on the posterior mode, we see that the

gamma((r + 1)/2 + 1, λ) on σ2
θ (equivalently gamma(r+2, λ) on σθ) approximately matches

the REML penalty, particularly when the group-size n is large and λ is close to zero.

The difference between these two penalty terms is clear when σθ is close to zero. At

σθ = 0, the log-gamma penalty term in (9) is −∞ for α > 1, whereas the REML penalty

in (8) approaches −∞ only if σǫ → 0 or n → ∞. This explains why REML can produce

17

Hosted by The Berkeley Electronic Press



boundary estimates. Further, it implies that the log-gamma penalty assigns more penalty on

σθ close to zero than REML for small n and large σǫ. Otherwise, REML can approximately

be viewed as a special case of our method with a log-gamma penalty.

The REML penalty expression in (8) is derived for covariates with specific properties as

described above. However, we found that the relationship between the REML and gamma

penalty illustrated in this section holds more generally (see the supplementary materials.)

4 Application: meta-analysis of 8-schools data

Alderman and Powers (1980) report the results of randomized experiments of coaching for the

Scholastic Aptitude Test (SAT) conducted in eight schools. The data consist of an estimated

treatment effect and associated standard error for each school (obtained by separate analyses

of the data of each school) and have previously been analyzed by Rubin (1981) and Gelman

et al. (2004).

Meta-analysis with varying intercepts (DerSimonian and Laird, 1986), typically called

random-effects meta-analysis, allows for heterogeneity among studies due to differences in

populations, interventions, and measures of outcomes. The model for the effect size yi of

study i can be written as

yi = µ+ θi + ǫi, θi ∼ N(0, σ2

θ), ǫi ∼ N(0, s2i ), (10)

and allows the effect µ + θi of study i to deviate from the overall effect size µ by a study-

specific amount θi. The estimated effect yi for study i differs from µ + θi by an estimation

error ǫi with standard deviation set equal to the estimated standard error for study i.

[Figure 2 about here.]

Figure 2 shows the profile log-likelihood (maximized with respect to µ) of σθ (left) and
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σ2
θ (middle). On the left we see that the profile log-likelihood has its maximum at zero where

the gradient is zero as discussed in Section 3.1. Further, the profile log-likelihood is quite

flat. We see in the middle panel of Figure 2 that the profile log-likelihood has a negative

gradient at zero as a function of σ2
θ so that the quadratic approximation for σ2

θ is poor at

the maximum likelihood estimate of zero.

When a researcher is interested in comparing study-specific effects, we can predict θi using

the empirical Bayes predictor, θ̃i = λiyi+(1−λi)µ̂ where λi = σ̂2
θ/(σ̂

2
θ+s2i ) (e.g. Raudenbush

and Bryk, 1985). When σθ is estimated as zero, all the studies have the same predicted value

µ̂, The right panel of Figure 2 shows that predictions change rapidly with increasing σθ. The

widths of the empirical Bayes prediction interval also increase with increasing σθ, so that

the uncertainty of the predictions is understated with σθ is underestimated.

Inference for σθ is also important because it affects both the point estimate and estimated

standard error of the overall effect size µ,

ŝe(µ̂) =

[∑

i

1

s2i + σ̂2
θ

]−1/2

. (11)

For example, the estimated standard error is 4.1 for σ̂θ = 0, compared with 5.5 for σ̂θ = 10

(the corresponding estimates of µ are 7.7 and 8.1, respectively.)

[Table 1 about here.]

For the model in (10), we consider four different penalties: log-gamma(2, λ) and log-

gamma(3, λ) on σθ and log-gamma(1.5, λ) and log-gamma(2, λ) on σ2
θ , where λ = 10−4.

MPL estimates with these penalties and ML estimates are given in Table 1. The estimated

standard error of σ̂ML
θ is 6.32 (which corresponds to ŝe(σ̂ML

θ ) in Section 3.1).

When the penalty is assigned on σθ (rows 2 and 3), σ̂MPL
θ is 6.30 and 9.42 for α = 2

and α = 3, respectively. These are close to the values ŝe(σ̂ML
θ )

√
α− 1 with ŝe(σ̂ML

θ ) = 6.32,

19

Hosted by The Berkeley Electronic Press



which we expect with σ̂ML
θ = 0 if the profile log-likelihood is quadratic in σθ, as it appears

to be in the left panel of Figure 2. In both cases, the log-likelihood at the MPL estimate is

only a little bit lower than the maximum log-likelihood.

Specifying a log-gamma(2, λ) penalty on σ2
θ (row 5) gives estimates that agree well with

those for a log-gamma(3, λ) penalty on σθ as expected (see Property 5). Similarly, a log-

gamma(1.5, λ) on σ2
θ (row 4) gives MPL estimates that are close to the estimates with

log-gamma(2, λ) on σθ. A log-gamma penalty on σ2
θ with α = 1.5 corresponds to REML

with no level-2 covariates. While REML gives σ̂θ = 0 (not shown here), a log-gamma penalty

with α = 1.5 gives a legitimate estimate and decreases the log-likelihood by only 0.5.

Table 1 also reports model-based and robust standard error estimates for µ̂ (seR). We

see that the estimated model-based standard error of the estimated overall effect size µ

increases with σθ as implied by (11), whereas the robust standard errors, based on the

sandwich estimator, change very little.

5 Simulation study: balanced varying-intercept model

We consider a varying-intercept model,

yij = β0 + θj + β1x1ij + β2x2ij + ǫij , i = 1, . . . , n, j = 1, . . . , J (12)

with J = 3, 5, 10, 30 groups and n = 5, 30 observations per group. This model includes

two covariates: x1ij = i varies within groups only (its mean is constant across groups),

and x2ij = j varies between groups only. The coefficients β0, β1, β2 are fixed parameters,

θj ∼ N(0, σ2
θ) is a varying intercept for each group, and ǫij ∼ N(0, σ2

ǫ ) is an error for each

observation.

For each combination of J and n, we generated 1000 datasets with true parameter values
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β0 = 0, β1 = β2 = 1, σǫ = 1, and σθ = 0, 1/
√
3, or 1, which correspond to intra-class corre-

lations ρ = 0, 0.25 and 0.5, respectively. Although our method is based on the assumption

that σθ > 0, we include the condition σθ = 0 as the worst-case scenario. We obtain MPL

estimates with log-gamma(2, λ) and log-gamma(3, λ) penalties on σθ, where λ = 10−4. The

REML penalty corresponds to α = 3 since the model contains one group-level covariate. We

compare MPL estimates with ML and REML estimates.

Boundary estimates Here we report the proportion of estimates of σθ that are on the

boundary (less than 10−5) when the true σθ is not zero (1/
√
3 and 1). For σθ = 1/

√
3, 47%

of ML estimates and 45% of REML estimates are zero for J = 3 and n = 5. As J or n

increases, the proportion decreases, but for J = 5 and n = 30, the proportion of estimates

on the boundary is still 5% for ML and 4% for REML.

When σθ = 1, the same pattern occurs but estimates are on the boundary less often for

a given condition. For J = 3 and n = 5, ML produces 34% of estimates on the boundary

compared with 32% for REML. When J increases to 5 and n to 30, 1% of ML estimates

and 0.7% of REML estimates are on the boundary. When J = 30, ML and REML yield no

boundary estimates for either value of σθ.

In contrast to the ML and REML estimates, the MPL estimates are never on the bound-

ary in any of the simulation conditions. At the same time, the likelihood at the MPL

estimates does not differ considerably from the maximum. The likelihood ratio test statistic

−2
[
logL(σ̂MPL

θ )− logL(σ̂ML
θ )

]
for testing the restriction σθ = σ̂MPL

θ was calculated for each

replicate. When J > 3, the largest test statistic among all the replicates and simulation

conditions is 2.60. Even for J = 3, the largest test statistic is 3.45. As discussed in Section

3.2, these values are not large.
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Quadratic approximation

[Figure 3 about here.]

We now assess how well some of the relationships hold that were derived in Section 3.1 by

assuming that the profile log-likelihood is quadratic. Figure 3 shows that the MPL estimates

calculated by the quadratic approximation of the profile log-likelihood (see properties 1 and

2) agree well with the MPL estimates with a log-gamma(2,λ) penalty on σθ for J = 3 (left)

and J = 30 (right) when ρ = 0.25 and n = 30.

[Figure 4 about here.]

Figure 4 summarizes the estimated bias and the root mean squared error (RMSE) of σθ,

and the coverage of 95% confidence intervals (CI) for β2 for the four methods for n = 5,

J = 3, 5, 10, 30 and σθ = 0, 1/
√
3, 1. Results for n = 30 are given in the supplementary

materials.

Estimates of σ̂θ The first row of Figure 4 shows that the bias for σθ decreases as J

increases and σθ decreases. Thus the differences between methods are most obvious with

small J , and particularly when σθ > 0.

For σθ > 0, both REML and ML tend to underestimate σθ. MPL estimates with a

log-gamma(2, λ) penalty also tend to be downward biased for σθ but not as much as the

ML estimates. On the other hand, the MPL estimator with log-gamma(3, λ) produces the

largest estimates among the four estimators so it often overestimates σθ. For σθ = 1, the

MPL estimator with log-gamma(3, λ) has the smallest bias for all J .

When σθ = 0, as expected, the MPL estimators assign more penalty on the values close

to the boundary than REML, so the bias is larger than for REML and ML.

When n = 30 (given in the supplementary materials), the overall pattern is the same

as when n = 5 but the MPL with log-gamma(3, λ) are closer to REML for σθ > 0. This
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confirms that the log-gamma penalty on σθ with α = 3 agrees with the REML penalty

when the model contains one group-level covariate, particularly with large n, as discussed in

Section 3.4.

The root mean squared errors (RMSE) of both MPL estimators are consistently smaller

than for ML and REML when σθ is not zero (see second row of the figure). For σθ = 1/
√
3

and σθ = 1, REML has smaller bias than MPL with log-gamma(2, λ) but its RMSE is

significantly larger because the REML estimates have the largest variance among the four

estimators. The MPL estimator tends to have smaller RMSE with log-gamma(2, λ) than

with log-gamma(3, λ) but the difference decreases as n, J and σθ increase.

Coverage of CI for β2 The standard error estimates of the estimated coefficient of the

group-level covariate (β̂2) is greatly influenced by σ̂θ. The squared asymptotic standard

error of β̂2 from the Hessian matrix is Var(β̂2) ≈ (nσ2
θ + σ2

ǫ )/nJs
2
X2

where sX2
is the standard

deviation of the group-level covariateX2 (Snijders and Bosker, 1993). When the true variance

is not zero but σ̂θ is on the boundary, the standard error of β̂2 will be underestimated and

the CI will be too narrow.

The third row of Figure 4 shows the proportions of 95% CI that cover the true value of

β2. The gray solid line shows the nominal coverage (0.95). For all values of σθ, ML gives

CI with lower than nominal coverage. For σθ = 0, all the methods except ML tend to have

higher than nominal coverage.

When σθ > 0, most of the methods have lower than nominal coverage, but the MPL

estimator with α = 3 has the best coverage, particularly for σθ = 1/
√
3. Although the MPL

estimator with α = 3 tends to have large positive bias for σθ, it turns out to give better

coverage. Recalling that log-gamma(3, λ) is close to the REML penalty (discussed in Section

3.4) for large n, we found that the coverage for the MPL estimator with α = 3 is closer to

REML for n = 30 (not shown here) than for n = 5. However, REML still shows significantly
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lower coverage than the MPL estimator, particularly for small J .

In summary, the MPL estimator with a log-gamma penalty is successful at avoiding

boundary solutions and, at the same time, the likelihood does not change substantially most

of the time. Furthermore, the MPL method performs as well as or better than ML or

REML: if σθ is not zero, RMSE of σ̂θ is uniformly lower for the MPL estimator with both

log-gamma penalties than for REML and the ML estimator and coverage of the CI for the

fixed coefficient for the group-level covariate is best for the MPL estimator with α = 3.

Although there is no obvious winner between gamma with α = 2 and α = 3, neither penalty

ever produces a boundary estimate (σ̂θ < 10−5).

We also performed a simulation study for unbalanced variance component models without

any covariates, following Swallow and Monahan (1984). For two different unbalanced pat-

terns with σθ = 0, 1/
√
3, 1, we compared ML and REML estimates with MPL estimates with

a gamma(2, λ) prior, which corresponds to the REML penalty when there is no group-level

covariate. (Results are in the supplementary materials.)

Similar to the balanced case, when σθ is not zero, ML and REML tend to underestimate

σθ and the RMSE tends to be larger than for the MPL estimates. The advantage of the

gamma prior in terms of the RMSE is more obvious for σθ = 1. The standard errors of

the fixed intercept estimate are also underestimated by ML and REML when σθ is not zero

while the MPL estimators perform better in this regard.

6 Discussion

In this paper, we considered linear varying-intercept models and suggested specifying a log-

gamma penalty for the group-level standard deviation to avoid boundary estimates. We

showed that our procedure guarantees non-zero estimates of the group-level variance, while

maintaining statistical properties as good or better than maximum likelihood and restricted
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maximum likelihood when the true group-level variance is not too close to zero. The penalty

(or prior) is only weakly informative in the sense that the log-likelihood at the maximum

penalized likelihood estimates tends to be not much lower than the maximum.

We have shown that this strategy of accepting the maximum likelihood estimate results in

under-coverage of confidence intervals for regression coefficients of group-level covariates. In

datasets where boundary estimates occur, a large range of values of the group-level standard

deviation is often supported by the data, and our method provides one such value. Our

approach is hence somewhere between purely data-based maximum likelihood estimation

and setting the variance to a constant instead of estimating it, as suggested by Longford

(2000) for the purpose of obtaining better standard errors and by Greenland (2000) when

the variance is not identified.

Our idea can also be applied to models with varying intercepts and slopes where the

problem is to regularize the covariance matrix, say Σ, away from its boundary, |Σ| = 0. In

this case, the gamma prior can be naturally extended to the Wishart prior on Σ, which is

equivalent to the product of gamma priors on the eigenvalues of Σ1/2. Therefore the Wishart

prior with a certain choice of parameters will shift the posterior mode of each eigenvalue

away from 0, or equivalently move the posterior mode of Σ away from the singularity. At the

same time, it moves the eigenvalues approximately at most one standard error away from

the ML estimates as did the gamma(2,λ) in the univariate case.

Other applications of our approach include generalized linear mixed models, models with

more hierarchical levels, and latent variable models of all sorts—basically, any models in

which there are variance parameters that could be estimated at zero.

Another generalization arises when there are many variance parameters—either from

a large group-level covariance matrix, several different levels of variation in a multilevel

model, or both. In any of these settings, it can make sense to stabilize the estimated

variance parameters by modeling them together, adding another level of the hierarchy to
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allow partial pooling of estimated variances.

Finally, from a computational as well as an inferential perspective, a natural interpreta-

tion of a posterior mode is as a starting point for full Bayes inference, in which informative

priors are specified for all parameters in the model and Metropolis or Gibbs jumping is used

to capture uncertainty in the coefficients and the variance parameters (Dorie et al., 2011).

For reasons discussed above, it can make sense to switch to a different class of priors when

moving to full Bayes: once modal estimation is abandoned, there is no general reason to

work with priors that go to zero at the boundary.

Supporting Information

A supplementary material contains derivation of properties in Section 3, proofs of Theorem
3 and equation (7), REML and gamma priors in general cases, and additional simulation
results.
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Figure 1: From a simple one-dimensional hierarchical model with scale parameter 0.5 and
data in 10 groups: (a) Sampling distribution of the maximum likelihood estimate σ̂θ, based
on 1000 simulations of data from the model. (b) 100 simulations of the log-likelihood. The
dark lines are the log-likelihoods with maximum at 0 and the grey lines are the others. The
maximum likelihood estimate is extremely variable and the likelihood function is not very
informative about σθ.
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Figure 2: Profile log-likelihood as a function of σθ (left) and σ2
θ (middle) and empirical

Bayes prediction (right) for 8-schools data. The dashed curve on the left is the quadratic
approximation at the mode, based on the estimated standard error. The vertical dashed line
is the MPL estimate for a log-gamma(2,λ) penalty on σθ (left) or σ2

θ (middle). The vertical
dotted line on the right panel indicates one standard error of σ̂ML

θ .
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Figure 3: MPL estimates with log-gamma(2,λ) penalty on σθ for J = 3 (left) and J = 30
(right), ρ = 0.25 and n = 30 for the first 100 replicates, compared with the MPL estimates
based on the quadratic approximation of the profile log-likelihood (see properties 1 and 2).
Agreement is good, suggesting that the quadratic approximation is good. Dots on the left
graph that fall off the line are due to a few samples that have uncommonly large estimated
standard errors.
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Figure 4: Bias of σθ , RMSE of σθ and coverage of CI for β2 for group size 5, standard
deviation σθ = 0, 1/

√
3, and 1 (columns) and number of groups J = 3, 5, 10, 30 (x-axis).

Different estimators are represented by different line patterns. When σθ > 0, all the methods
outperform ML. Bias of the MPL estimator is as low as REML depending on α. RMSE of
the MPL estimator with both α is smaller than REML and ML. Coverage of CI is best for
the MPL estimator with α = 3.

33

Hosted by The Berkeley Electronic Press



Table 1: ML and MPL estimates for the 8 schools data, where the penalty is log-gamma(α, λ)
on σθ or σ2

θ , with λ = 10−4. With log-gamma(α, λ) penalty on σθ, the MPL estimates
are approximately at ŝe(σ̂ML

θ )
√
1− α and agree well with the MPL estimates with log-

gamma((α + 1)/2, λ) on σ2
θ .

µ σθ

Method est se seR est se Log-lik
ML 7.69 4.07 3.33 0 6.32 −29.67
MPL: gamma(2, λ) on σθ 7.92 4.72 3.39 6.30 4.61 −30.18
MPL: gamma(3, λ) on σθ 8.10 5.38 3.43 9.42 5.34 −30.76

MPL: gamma(1.5, λ) on σ2
θ 7.92 4.72 3.38 6.28 4.79 − 30.18

MPL: gamma(2, λ) on σ2
θ 8.09 5.37 3.42 9.37 5.30 −30.75

seR: robust (sandwich) standard error.
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