
Fig. 3. MISTIE Example: Objective Function Progress versus Number of Search Iterations. Each curve shows the
trajectory of the cumulative minimum value of the objective function discovered by a parallel computing node. Black
dots show the terminal of each node’s trajectory. For the approximately 2% of nodes that did not complete 5000
iterations of SA within 72 hours, these dots mark the last iteration completed. Horizontal lines show the 0.25, 0.5,
and 0.75 quantiles, respectively, for the distribution of final objective function values across the 100 parallel nodes.
Each panel corresponds to a different hypothesis testing framework, with H COV on the left and H MB on the right.

adaptive trial in our search in the ADNI example had lower expected number enrolled relative to
an optimized single stage design. As mentioned above, this can be largely attributed to the high
enrollment required before any outcomes are measured. In such a case, it still may be possible to
reduce the trial’s expected duration using an adaptive enrichment design; such reductions can result
from stopping the trial for efficacy or futility before all participants have their outcomes measured.

We next optimized multistage designs for the ADNI example using trial duration rather than
number enrolled in the objective function. Figure 4 shows performance comparisons for the ADNI
example analogous to Figure 2, but with the vertical axis showing trial duration rather than number
enrolled. Relative to an optimized single stage design, the optimized multistage designs reduced
expected duration by 5.4% for H COV , and 7.4% for H MB . However, this comes at the cost of a
higher maximum duration. Relative to an optimized 1-stage design, the optimized multi-stage designs
increase maximum duration from 5.07 to 5.84 years for H COV , and from 5.02 to 5.75 years for H MB .

5.4. Alternative Optimization Algorithms
We also compared the performance of SA against other optimization algorithms available in the optim
function in R. For each combination of testing procedure (H MB or H COV ), application (ADNI or
MISTIE) and boundary form (structured or unstructured), each optimization method was allowed
to run on 250 parallel nodes for either 4 hours or 2500 iterations, whichever occurred first. Rather
than searching for the optimal number of stages (K), we fixed K within a node at either 2, 3, 4, 5,
or 6. These values for K were evenly distributed such that each unique configuration was allotted
250/5 = 50 parallel nodes with different starting seeds. The minimum objective function value across
all 250 parallel nodes was recorded for comparison.

SA outperformed gradient methods such as BFGS, L-BFGS-B, and Conjugate Gradient by 3-6%
in the ADNI example for expected duration and 7-27% in the MISTIE example for expected number
enrolled. Nelder-Mead and SA performed much more similarly, with Nelder-Mead outperforming SA
by approximately 1% in the ADNI example, and SA outperforming Nelder-Mead by approximately
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Fig. 4. ADNI Example: Distribution of Trial Durations. Violin plots show the trial duration distributions for three types
of multistage designs: our optimized adaptive designs with structured boundaries (optim), non-optimized multi-
stage design with O’Brien-Fleming boundaries (OBF), and non-optimized multistage design with Pocock boundaries
(Pocock). The duration distributions are taken with respect to the prior for the treatment effects described in Section
4.2, with the mean duration for each design marked “×”. Horizontal lines show the deterministic durations from two
types of single stage designs: non-optimized (dotted lines) and optimized (solid lines). Each panel corresponds to a
different hypothesis testing framework, with H COV on the left and H MB on the right.

1% in the MISTIE example.

We also compared against a version of SA where the objective function for the current design
D is re-evaluated (using a new Monte Carlo sample) at each comparison to a new candidate design
D ′, as discussed in the conclusion of Branke et al. (2008). Such an approach doubles the number
of simulations, but decreases the probability that the algorithm becomes stuck at an inferior design
whose objective function value is initially underestimated due to Monte Carlo error. This altered SA
algorithm improved over gradient based methods, but was outperformed by both Nelder-Mead and
by standard SA.

6. Discussion

We showed empirical evidence that SA can produce multistage adaptive enrichment designs with
substantially lower expected number enrolled compared to optimized single stage designs, and to non-
optimized multistage designs that use approximate Pocock or O’Brien-Fleming boundaries. Relative
to single stage designs, optimized multistage designs come at the cost of increases in maximum number
enrolled. There is an analogous tradeoff between expected and maximum number enrolled comparing
standard group sequential designs versus single stage designs (Eales and Jennison, 1992). In the
MISTIE example, the most striking difference between optimized and non-optimized trials is the
futility boundaries, while the other parameters are roughly similar. We conjecture that this change
in futility boundary is an important driver of improved trial performance.

In both the MISTIE and ADNI examples, we compared covariance-based (H COV ) and alpha-
reallocation-based (H MB) multiple testing procedures, based on optimizing multistage designs using
each procedure. The resulting designs were similar in both their design parameters and their perfor-
mance.

The optimized designs in this paper are the best designs found by the SA algorithm we used.
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These could be local optima. It is an open problem to determine how close these are to global optima
for the problems we addressed. This is because no current method exists to find the global optimum in
these problems due to the relatively large number of design parameters being simultaneously searched
over.

One exciting area of future work is to modify the search algorithm to actively account for the
Monte Carlo simulation error in each objective function evaluation. Some optimization methods
leverage noise present in the objective function, or add noise to the objective function (Kushner,
1987; Maryak and Chin, 2001), in order to increase the probability of reaching a global minimum. In
the specific context of SA, (Fink, 1998; Branke et al., 2008) argue that noise in the objective function
is analogous to having a higher temperature parameter.
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