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Super Learner Based Conditional Density
Estimation with Application to Marginal

Structural Models

Ivan Diaz Munoz and Mark J. van der Laan

Abstract

In this paper we present a histogram-like estimator of a conditional density that
uses super learner crossvalidation to estimate the histogram probabilities, as well
as the optimal number and position of the bins. This estimator is an alternative
to kernel density estimators when the dimension of the problem is large. We
demonstrate its applicability to estimation of Marginal Structural Model (MSM)
parameters in which an initial estimator of the treatment %mechanism is needed.
MSM estimation based on the proposed density estimator results in less biased es-
timates, when compared to estimates based on a misspecified parametric model.



1 Introduction

Conditional density estimation is one of the most important problems in statistics. Parametric
models such as generalized linear models intend to estimate the conditional density of an outcome
given a set of predictors by assuming a functional form that is known up to a finite-dimensional
vector of real parameters. If the assumptions made about the functional form of the conditional
density reflect characteristics of the true data generating mechanism, maximum likelihood esti-
mation techniques yield consistent and efficient estimators of the parameters of the model and
consequently of the conditional density (van der Vaart, 1998).

However, it is very common to find applications in fields such as epidemiology and social studies
in which little information about the true data generating mechanism is known, and the researcher
does not have enough scientific knowledge to assume a functional form for the conditional density.
For such cases, non parametric estimators such as kernel density estimators, which do not assume a
pre-specified functional form have been proposed. Kernel estimation was introduced by Rosenblatt
(1969), and has been extensively studied in the statistics literature since then. As a remarkable
property, under certain conditions on the true density, the univariate kernel density estimator has
been proven to have mean integrated square (MISE) error of order n−4/5, which is only n−1/5 times
larger than the MISE of a parametric density estimator if the true density was known to belong
to some parametric model (van der Vaart, 1998). A comprehensive description of univariate and
multivariate kernel density estimators and their statistical properties can be found in Wand and
Jones (1995) and Scott (1992). The multivariate kernel density estimator can be used to find
estimates of the joint densities involved in the definition of any conditional density and produce
a plug-in estimator. Nevertheless, unless the number of covariates is very small (Wand and Jones
(1995) suggests less than 6) or the sample size is extremely large, these estimators suffer from the
curse of dimensionality, and the resulting estimates are highly biased.

Cross validation selection from a library of candidates of estimators has been proven to have
optimal properties in terms of the risk of the resulting estimator (van der Vaart et al., 2006).
In particular, the super learner (van der Laan et al., 2007) is a machine learning technique that
uses cross-validated risks to find an optimal convex combination of candidate estimators in a user-
supplied library. One of its most important theoretical properties is that its solution converges to
the oracle estimator (i.e., the candidate in the library that minimizes the loss function with respect
to the true probability distribution).

In Section 2, we propose a histogram-like estimator of the density of a continuous outcome
conditioned on a set of covariates. Our proposed estimator uses cross validation to find an optimal
convex combination of candidates in a library consisting of histogram-like density estimators in-
dexed by the number and the position of the bins, and the choice of an estimator for the histogram
probabilities. In this paper, the histogram probabilities are estimated by using the super learner
as described by van der Laan et al. (2007), whose properties have been widely studied (van der
Laan et al. (2004) and van der Laan and Dudoit (2003)).

One of the various applications of conditional density estimation to inference problems has
to do with the estimation of exposure mechanisms in causal models and their use to estimate
causal parameters. In Section 3 we use simulation to compare the performance of three different
estimators of causal parameters in a marginal structural model when three different estimators of
the exposure mechanism are used: a correctly specified parametric model, an incorrectly specified
parametric model and our histogram-like estimator. As expected, the estimator of the causal
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parameter that uses a correctly specified parametric model for the treatment density outperforms
the other two, but the estimator based on the proposed histogram-like density estimator is better
than the estimator that uses the misspecified parametric model.

2 Density Estimator

Let A be a random variable representing an outcome of interest, and let W be a random vector
containing a set of predictors of A. We are interested in finding an estimator of g0(A|W ), the true
conditional density function of A given W . As explained in the introduction, we will use the super
learner to choose a convex combination of estimators among a library of candidates consisting of
histogram density estimators defined by hazard functions. In the following subsections we will
define the super learner, the candidate estimators in the library, and present the cross validated
estimator of the conditional density.

2.1 Super Learner

Consider the usual setting in which the observed data is O = (W,A) ∼ P0, and we observe n
identically distributed copies Oi, i = 1, . . . , n. Super learner deals with estimation of parameters
ψ0(O) defined as the minimizer of a loss function L(O,ψ) over some parameter space Ψ. This is
ψ0 = arg minψ∈Ψ E0L(O,ψ). For example, regression (ψ0(O) = E0(A|W )) and conditional density
estimation (ψ0(O) = g0(A|W )) problems can be formulated in this way by using loss functions
L(O,ψ) = (A− ψ(W ))2 and L(O,ψ) = − log(ψ(A,W )), respectively.

An estimate of ψ0 can be seen as a mapping Ψ̂ that takes the empirical distribution Pn and
maps it into an estimate. Ψ̂(Pn) is then the estimator based on the entire sample, and its risk can
be computed as

R(Ψ̂, P0) =

∫
L(o, Ψ̂(Pn))dP0(o).

The true risk of an estimator depends on P0, and is therefore an unknown quantity that needs to
be estimated. A first option is to use a plug-in estimator in which Pn is used instead of P0. If the
space Ψ is very large, this plug-in estimator of the risk will favor estimators Ψ̂ that over-fit the
data. Instead, super learner provides an algorithm that uses a v-fold cross validated risk estimate
to choose the best estimator of ψ0.

Let v ∈ {1, . . . , V } index a sample split into a validation sample V (v) ⊂ {1, . . . , n} and a
training sample T (v) = (V (v))c. Here we note that the union of the validation samples equals the
total sample: ∪Vv=1V (v) = {1, . . . , n}, and the validations samples are disjoint: V (v1) ∩ V (v2) = ∅
for v1 6= v2. Let PT (v) be the empirical distribution of the training sample v. The cross validated
estimator of the risk is given by the following expression, in which the parameter is estimated on
a training set and the risk is estimated in the corresponding validation set:

EBnR{Ψ̂(PT (v)), PV (n)} = EBn

∫
L{o, Ψ̂(PT (v))}dPV (v)(o). (1)

Now, if we have a library of candidate estimators Ψ̂j : j ∈ J , the so-called discrete super learner
will select the estimator in this library for which the cross validated risk in (1) is the smallest. If
we want to expand our library of candidate estimators by considering all possible convex linear
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combinations of the candidates Ψ̂j, it can be shown that the candidate in the new library with the
smallest cross validated risk will be given by

Ψ̂(Pn)(O) =
∑
j∈J

βjΨ̂j(Pn)(O),

where

β = (β1, . . . , βJ) = arg min
β

V∑
v=1

∑
i∈v

L

{
Oi,

∑
j∈J

βjΨ̂j(PT (v))

}
, (2)

subject to
∑
j∈J

βj = 1 and βj ≥ 0 for all j ∈ J .

2.2 Candidates

Consider a sequence of values α0, . . . , αk that span the range of A and define k bins. Every
candidate in our library of conditional density estimators of g0(A|W ) is given by the following
expression:

gn,α(Pn)(a|W ) =
Prn(A ∈ [αt−1, αt)|W )

αt − αt−1

, for αt−1 ≤ a < αt, (3)

where we note that the choice of the values αt (t = 0, . . . , k) implies defining the number and
position of the bins. Here Prn denotes an estimator of the true probability Pr(A ∈ [αt−1, αt)|W )
obtained through a hazard specification and use of a model for binary variables in a pooled repeated
measures dataset, as explained below. Note that we consider the estimator in (2.2) as a mapping
that takes the empirical distribution Pn and maps it into an estimate of the conditional density of
A given W . This notation will be helpful later in the section when we define the cross-validated
estimator. Note also that

Pr(A ∈ [αt−1, αt)|W ) = Pr(A ∈ [αt−1, αt)|A ≥ αt−1,W )×
t−1∏
j=1

(1− Pr(A ∈ [αj−1, αj)|A ≥ αj−1,W )).

The likelihood for model (3) is now proportional to

n∏
i=1

Pr(Ai ∈ [αt−1, αt)|W ) =
n∏
i=1

[
t−1∏
j=1

(1− Pr(Ai ∈ [αj−1, αj)|Ai ≥ αj−1,Wi))

]
×

Pr(Ai ∈ [αt−1, αt)|Ai ≥ αt−1,Wi),

which corresponds to the likelihood of a binary variable in a repeated measures data set in which
the observation of subject i is repeated as many times as intervals [αt−1, αt) are before the interval
to which Ai belongs, and the binary variables indicating Ai ∈ [αt−1, αt) are recorded. Possible
estimators for the probabilities

Pr(A ∈ [αt−1, αt)|A ≥ αt−1,W ) (4)
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include the following logistic model with only main terms:

logit {Pr(A ∈ [αt−1, αt)|A ≥ αt−1,W )} =
t∑

j=1

γjI[αj−1,αj)(A) +

p∑
l=1

θlWl, (5)

where we assume the dimension of W is p, and I[αj−1,αj)(A) denotes an indicator of A ∈ [αj−1, αj).
Another candidate might be given by a logistic model including double interaction terms. In gen-
eral, any estimator that has the potential of providing an accurate representation of the underlying
true data generating mechanism can be postulated as a candidate for estimation of (4), including
a super learner algorithm that takes all available candidate estimators and finds an optimal convex
combination of them. Each candidate estimator in (2.2) is now indexed by choice of the values αt
and choice of an algorithm for estimating (4).

The only detail missing in order to completely define a library of estimators is a clever way
to choose the most convenient locations for the bins (for fixed k), which will be determined by a
parameter c defined below.

Denby and Mallows (2009) describe the histogram as a graphical descriptive tool in which the
location of the bins can be characterized by considering a set of parallel lines cutting the graph of
the empirical distribution function (ecdf). Specifically, given a number of bins k, the equal-area
histogram can be regarded as a tool in which the ecdf graph is cut by k + 1 equally spaced lines
parallel to the x axis, whereas the usual equal-bin-width histogram corresponds to drawing the
same lines parallel to the y axis. In both cases, the location of the cutoff points for the bins is
defined by the x values of the points in which the lines cut the ecdf. As pointed out by the authors,
the equal-area histogram is able to discover spikes in the density, but it oversmooths in the tails
and is not able to show individual outliers. On the other hand, the equal-bin-width histogram
oversmooths in regions of high density and does not respond well to spikes in the data, but is a
very useful tool for identifying outliers and describing the tails of the density.

As an alternative to find a compromise between these two approaches, the authors propose a
new histogram in which the ecdf is cut by lines x + cy = bh, b = 1, . . . , k + 1; where c and h
are parameters defining the slope and the distance between lines, respectively. The parameter h
identifies the number of bins k. The authors note that c = 0 gives the usual histogram, whereas
m→∞ corresponds to the equal-area histogram.

We now define our library of candidate estimators for the conditional density as a collection
of estimators in (2) by defining values of the vector α through different choices of c and k, and
defining an estimator for the probabilities in (4). The use of this approach will result in estimators
that are able to identify regions of high density as well as provide a good description of the tails and
outliers of the density. For the sake of simplicity, we will only consider one candidate for estimation
of (4): the super learner itself with candidates that may include, for example, the logistic model
in (5). Since the choice of each α only depends on c and k, the candidate estimators gn,α in (3)
will now be denoted by gn,j, where j ∈ J is an index identifying a combination of c and k.
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2.3 Cross Validation

Consider the cross validation scheme presented in section 2.1. We define our estimator of the
conditional density of A given W as

gn(A|W ) =
∑
j∈J

βjgn,j(A|W ),

where

β = (β1, . . . , βJ) = arg min
β

V∑
v=1

∑
i∈v

log
∑
j∈J

βj gn,j(PT (v))(Ai|Wi), (6)

subject to
∑
j∈J

βj = 1 and βj ≥ 0 for all j ∈ J .

Van der Laan et al. (2004) proof that this likelihood based cross-validated estimator is asymp-
totically optimal in the sense that it performs as well as the oracle selector as the sample size
increases. The oracle selector is given by the candidate estimator in the library that minimizes the
Kullback-Leibler divergence with respect to the true data-generating distribution, and the library
of estimators that we are working with includes all the estimators given by convex combinations
of gn,j(A|W ) for j ∈ J .

The minimization in (6) is carried out by using the augmented Lagrange multiplier method as
implemented in the R function solnp() (Ghalanos and Theussl, 2010). Technical details about
the implementation of this method can be found in Ye (1987).

3 Marginal Structural Model Estimation

Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and a
set of covariates W are measured for n randomly sampled subjects. Let O = (W,A, Y ) represent a
random variable with distribution P0, and O1, . . . , On represent n i.i.d. observations of O. Assume
that the following structural causal model (SCM) (Pearl, 2000) holds:

W = fW (UW )

A = fA(W,UA) (7)

Y = fY (A,W,UY ),

where UW , UA and UY are exogenous random variables such that UA ⊥ UY holds, and either
UW ⊥ UY or UW ⊥ UA holds (randomization assumption). The true distribution P0 of O can be
factorized as

P0(O) = P0(Y |A,W )P0(A|W )P0(W ), (8)

where we denote g0(A|W ) ≡ P0(A|W ), Q̄0(A,W ) ≡ E0(Y |A,W ), and QW,0(W ) ≡ P0(W ). Causal
inference parameters are usually defined in terms of the distribution of the counterfactual outcome
Ya that one would obtain in a controlled experiment in which the equation corresponding to A in
(7) is removed from the SCM and the treatment A is set to be equal to some pre-specified value
a deterministically.
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Denote m(a) = EYa, the parameter of interest is:

β0 = arg min
β∈B⊂Rd

∫
A
L{m(a),mβ(a)}h(a) dµ(a), (9)

where A is the support of A, h(a) is a stabilizing weight function, L is a loss function that
describes the loss obtained by approximating m(a) with mβ(a), and µ is an appropriate measure.
If L{m(a),mβ(a)} is a convex function of β, the parameter can also be defined as the value
β0 = (β01, . . . , β0d)

′ that solves the system of equations∫
A

∂

∂βj
L{m(a),mβ(a)}h(a) dµ(a) = 0; j = 1, . . . , d.

The most intuitive loss function to use is

L{m(a),mβ(a)} = {m(a)−mβ(a)}2 (10)

∂

∂βj
L{m(a),mβ(a)} = −2{m(a)−mβ(a)}∂mβ(a)

∂βj
,

since it defines the function mβ as the closest to m in an L2 sense. Another option for binary
outcomes, or outcomes bounded between zero and one is

L{m(a),mβ(a)} = −m(a) log{mβ(a)} − {1−m(a)} log{1−mβ(a)}
∂

∂βj
L{m(a),mβ(a)} = − m(a)−mβ(a)

mβ(a){1−mβ(a)}
∂mβ(a)

∂βj
.

In this paper we focus in the estimation of parameters defined in terms of (10), but similar calcu-
lations can be made for other parameters defined by different loss functions.

Since m(a) is identified as a function of the distribution of the observed data by E(Q̄0(a,W )),
the parameter of interest is identified as the value β0 that solves∫

A

∂

∂βj
L(E(Q̄0(a,W )),mβ(a))h(a) dµ(a) = 0; j = 1, . . . , d. (11)

4 Estimators

In this section we describe three possible estimators for the parameter β0 of a MSM defined in the
previous section. The first estimator is an IPTW estimator that requires a consistent estimator of
the exposure mechanism in order to be consistent. The second estimator is an augmented IPTW
(A-IPTW) that solves the efficient influence curve equation and requires initial estimators of Q̄0

and g0; it is consistent if either of them is consistent, and it is efficient if both are consistent. The
third one is a targeted maximum likelihood estimator (TMLE) that has the same properties as
the A-IPTW, plus some additional advantages, like being a substitution estimator and not having
multiple solutions.
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4.1 IPTW

The IPTW estimating function is defined as DIPTW (O|g) = (DIPTWj(O|g))dj=1, where

DIPTWj(O|g, β) = (Y −mβ(A))
h(A)

g(A|W )

∂mβ(A)

∂βj
,

and the IPTW estimator is defined as the value βn,1 that solves the IPTW estimating equations

n∑
i=1

DIPTWj(O|g, β) = 0; j = 1, . . . , d.

We will use notation DIPTW (O) or DIPTW (O|g, β) depending on whether it is necessary to em-
phasize the dependence on g and β.

4.2 Augmented IPTW

The efficient influence curve D(O) of (9) in the non-parametric model can be found through the
IPTW estimating function DIPTW (O) as

D(O) = DIPTW (O)− Π(DIPTW (O)|Tnuis),

where DIPTW (O) = (DIPTWj(O))dj=1, and Π(DIPTW (O)|TCAR) is the projection of DIPTW (O) into
the space TCAR = {s(A,W ) : E{s(A,W )|W} = 0}, defined component-wise. Formally,

Π(DIPTWj(O)|TCAR) =E(DIPTWj(O)|A,W )− E(DIPTWj(O)|W )

=(Q̄(A,W )−mβ(A))
h(A)

g(A|W )

∂mβ(A)

∂βj

−
∫
A

(Q̄(a,W )−mβ(a))
∂mβ(a)

∂βj
h(a) dµ(a).

Thus, the efficient influence curve is given by D(O|Q̄, g, β) = (Dj(O|Q̄, g, β))dj=1, where

Dj(O|Q̄, g, β) = (Y − Q̄(A,W ))
h(A)

g(A|W )

∂mβ(A)

∂βj
+

∫
A

(Q̄(a,W )−mβ(a))
∂mβ(a)

∂βj
h(a) dµ(a), (12)

and the A-IPTW estimator is defined as the value βn,2 that solves the system of estimating equa-
tions

n∑
i=1

Dj(Oi|Q̄, g, β) = 0; j = 1, . . . , d.

Note that the efficient influence curve can be decomposed into three components corresponding to
the orthogonal decomposition of the tangent space implied by the factorization (8) as:

Dj(O) = Dj1(O) +Dj2(O) +Dj3(O),
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where

Dj1(O) = Dj(O)− E(Dj(O)|A,W ) = (Y − Q̄(A,W ))
h(A)

g(A|W )

∂mβ(A)

∂βj
,

Dj2(O) = E(Dj(O)|A,W )− E(Dj(O)|W ) = 0, (13)

Dj3(O) = E(Dj(O)|W )− E(Dj(O)) =

∫
A

(Q̄(a,W )−mβ(a))
∂mβ(a)

∂βj
h(a) dµ(a).

This decomposition will be useful in the next section to define the TMLE.

4.3 Targeted Maximum Likelihood Estimator

In order to define a targeted maximum likelihood estimator (van der Laan and Rubin, 2006)
for β0, we need first to define three elements: (1) A loss function L(Q) for the relevant part
of the likelihood required to evaluate β0, which in this case is Q = (Q̄, QW ), that must satisfy
Q0 = arg minQEP0L(Q)(O), where Q0 denotes the true value of Q; (2) An initial estimator Q0

n

of Q0; (3) A parametric fluctuation Q(ε) through Q0
n such that the linear span of d

dε
L(Q(ε))|ε=0

contains all the components of the efficient influence curve D(P ) defined in (12). These three
elements are defined below:

Loss Function
As loss function forQ, we will consider L(Q) = LY (Q̄)+LW (QW ), where LY (Q̄) = Y log(Q̄(A,W ))+
(1−Y ) log(1−Q̄(A,W )) and LW (QW ) = − logQW (W ). It can be easily verified that this function
satisfies Q0 = arg minQEP0L(Q)(O).

Parametric Fluctuation
Given an initial estimator Q0

n of Q0, with components (Q̄0
n, Q

0
W,n). We define the fluctuation of Q0

n

as follows:

Q1
W,n(δ)(W ) =

(
1 +

d∑
j=1

δjZj(W )

)
Q0
W,n

logit Q̄1
n(ε)(A,W ) = logit Q̄0

n(A,W ) +
d∑
j=1

εjH
0
j (A,W ),

where Zj(W ) = Dj3(O), and

Hj(A,W ) =
h(A)

g(A|W )

∂mβ(A)

∂βj
.

Since Q0
W,n is the empirical distribution of W , the non parametric MLE of δ is zero. Standard

logistic regression software can be used to find the MLE εn of ε, and the TMLE as defined by
van der Laan and Rubin (2006) is found in the first iteration. From these definitions it follows
that Dj(O) ∈< ∂

∂ε
L(Q(ε, δ))|ε=0+ ∂

∂δ
L(Q(ε, δ))|δ=0 > j = 1, . . . , d, where < · > denotes linear span.

Initial Estimators
The empirical distribution of W is used as initial estimator of QW,0.
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Targeted Maximum Likelihood Estimator
The TMLE of β0 is now defined as the value βn,3 that solves the equations∫

A

∂

∂βj
L{EQW,n

Q̄1
n(εn)(a,W ),mβ(a)}h(a) dµ(a) = 0; j = 1, . . . , d. (14)

5 Simulation

Consider the following data generating process

W1 ∼ Unif{0, 1}.
W2 ∼ Ber{0.7}.
A ∼ Gamma{(.3 + 3 log(W1 + 1) + 2.2 exp(W1)W2)−1, 1}.
Y ∼ Ber{expit(−1 + .05A− .02AW2 + .2A tan(W 2

1 )− .02W1W2 + .1AW1W2)}.

We are interested in estimating the parameter defined in (9) with

mβ(a) =
1

1 + exp(−β0 − β1a)
,

and h(a) equal to the marginal density of A. Note that the efficient influence curve calculations
made in the previous sections remain valid in this case, and that estimators of g0 and QW,0 define
an estimator of h. The true value of the parameter for this data generating distribution is β0

0 =
−1.0067 and β1

0 = 0.1520.
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Figure 1: (a) True counterfactual expectation and MSM true curve. (b) marginal density of A.

Figure 1 presents the true counterfactual expectation m(a) as well as the true MSM curve
mβ(a). Since the definition of the MSM parameter involves weighting by the marginal density of
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A, the approximation of mβ to m is almost perfect in areas of high density, at the cost of a poor
approximation in the areas in which A has low density.

In order to explore the stability of the estimators described in the previous section when the
conditional density estimator of Section 2 is used as initial estimator for the treatment mechanism,
a simulation study was performed. Three different initial estimators were used for the treatment
mechanism: (a) correctly specified parametric model, (b) normal linear model with just linear
terms, and (c) histogram-like cross-validated estimator of Section 2. Two different initial estimators
were considered for the expectation of Y given A and W : (1) correctly specified parametric model,
and (2) logistic regression with only linear terms. The choice of the misspecification of the models
performed in (b) and (2) comes from usual practice in parametric modeling in epidemiology, in
which for the sake of ease of interpretation and calculation, linear models without interactions are
usually assumed.

The conditional density estimator proposed in section 2 involves two cross validation proce-
dures: an internal one performed in order to estimates the probabilitites in (4), and an external one
performed in order to estimate the risks of each estimator defined in (3). The high computational
cost of these double cross validation made it prohibitive to use Monte Carlo simulation to assess
the properties of the MSM estimator. Instead, we drew a sample of size 10.000 from the true data
generating mechanism, and computed the three estimates defined in the previous section. Table 1
shows the results. Given the large sample size, a direct comparison of the estimates with the true

(a) (b) (c)
β0 β1 β0 β1 β0 β1

(1)
IPTW -1.0342 0.1171 -1.5406 0.3634 -1.0076 0.1055

A-IPTW -1.0331 0.1224 -1.9081 0.7968 -1.0127 0.1210
TMLE -1.0787 0.1402 -1.0006 0.1178 -1.0073 0.1376

(2)
IPTW -1.0342 0.1171 -1.5406 0.3634 -1.0076 0.1055

A-IPTW -1.0301 0.1105 -1.9401 0.7935 -1.0064 0.0979
TMLE -1.0783 0.1360 -0.9923 0.0835 -1.0141 0.1342

Table 1: Parameter estimates for different initial estimators. (a) correctly specified parametric
model for g0, (b) normal linear model for g0 with only linear terms, (c) histogram-like cross-
validated estimator of g0; (1) correctly specified parametric model for Q̄0, (2) logistic regression
with just linear terms for Q̄0.

value of the parameters provides an approximation to their bias. It is known that (up to positivity
assumptions) the TMLE and the A-IPTW are double robust in the sense that they are unbiased if
at least one of the initial estimators is consistent. The IPTW requires consistency of the estimator
for the treatment mechanism in order to be unbiased.

Misspecification of the parametric model for the treatment mechanism caused a large amount
of finite sample bias in the IPTW and A-IPTW estimates, both when the model for Q̄0 is correctly
and incorrectly specified. The TMLE, although also biased, remains closer to the true value of the
parameter in both cases. The estimates obtained using the histogram-like cross-validated density
estimator are as close to the true value of the parameter as the estimates obtained by using a
correctly specified model for g0, showing that this estimator is preferable to parametric models,
unless the true model is known to the researcher.

10 http://biostats.bepress.com/ucbbiostat/paper282
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