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Targeted Methods for Finding Quantitative
Trait Loci

Hui Wang, Sherri Rose, and Mark J. van der Laan

Abstract

Conventional genetic mapping methods typically assume parametric models with
Gaussian errors, and obtain parameter estimates through maximum likelihood es-
timation. We propose a general semiparametric model to map quantitative trait
loci (QTL) in experimental crosses. In contrast with widely-used interval map-
ping (IM) derived methods, our model requires fewer assumptions and also ac-
commodates various machine learning algorithms. Estimation using both targeted
maximum likelihood and collaborative targeted maximum likelihood methods is
compared to a composite interval mapping (CIM) approach. We demonstrate with
simulations and real data analyses that, on average, our semiparametric targeted
learning approach produces less biased QTL effect estimates than those from para-
metric models.
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1 Introduction
The goal of quantitative trait loci (QTL) mapping is to identify genes underlying an observed trait
in the genome using genetic markers. In experimental organisms, the QTL mapping experiment
usually involves crossing two inbred lines with substantial differences in a trait, and then scoring
the trait in the segregating progeny. A series of markers along the genome is genotyped in the
segregating progeny, and associations between the trait and the QTL can be evaluated using the
marker information. Of primary interest are the positions and effect sizes of QTL genes.

Early literature (Sax 1923; Thoday 1960) focused on directly analyzing a single marker using
analysis of variance (ANOVA). The biggest disadvantage of such marker-based analysis is its in-
ability to assess QTL genes between markers. In 1989, Lander and Botstein proposed the interval
mapping (IM) method (Lander and Botstein 1989). With IM, the genotypic value of a QTL fol-
lows a multinomial distribution, determined by the distance of the QTL to its flanking markers and
the genotypes of the flanking markers. The trait value is modeled as a Gaussian mixture with the
mixing proportions being the multinomial probabilities of the QTL genotype. The significance of
the QTL effect is then assessed using likelihood ratio test. By testing positions at small increments
along the genome, a whole-genome finely scaled test statistic profile can be constructed. IM has
greatly increased the accuracy of estimating QTL parameters, and it has gained wide popularity
in the genetic mapping community. Later, Haley and Knott developed a regression method to ap-
proximate IM (Haley and Knott 1992). This method imputes the unobserved genotypic value of a
putative QTL with its expected value.

IM methods unrealistically assume there is only one gene underlying the observed trait in the
entire genome, represented as testing each potential position separately (Lander and Botstein 1989)
or computing the univariate association between the expected genotypic value and the phenotypic
trait in Haley–Kott regression. In other words, IM only considers the current QTL; all other QTL
genes are ignored. When this assumption is violated, the effects of other QTL genes are contained
within the residual variance, affecting the assessment of QTL parameters.

To handle multiple QTL genes, Jansen (1993) and Zeng (1994) developed a composite inter-
val mapping (CIM) approach. In CIM, background markers are added to a standard IM statistical
model to reduce noise and increase the precision of QTL effect estimates. Thus, the CIM approach
estimates QTL effects adjusted for confounding markers and can substantially improve the perfor-
mance of IM when the background markers are properly chosen. Multiple interval mapping (MIM)
was also developed to simultaneously estimate effects and positions of multiple QTL genes (Kao
et al. 1999). MIM enjoys greater power but is computationally difficult. It also has a long-standing
estimator selection problem: Which QTL genes are to be included? Bayesian approaches have
also been studied and applied in QTL mapping (Satagopan et al. 1996; Heath 1997; Sillanpaa and
Arjas 1998).

In recent years, with finely scaled single nucleotide polymorphism (SNP) markers replacing
the traditional widely spaced microsatellite markers, identifying QTL genes between markers has
become less concerning. Due to the high-dimensional nature of SNP data, the univariate marker-
trait regression is widely used for its simplicity and computational feasibility despite its noisy
results.

Machine learning algorithms, such as random forests (Breiman 2001), are also used to map
QTL genes (Lee et al. 2008). While machine learning algorithms are powerful statistical tools, their
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use in QTL mapping is limited. These algorithms are particularly good at identifying interactions
between genes and predicting the conditional expectation of the outcome given the covariates (in
our case, genetic markers). However, their variable importance measurements (VIMs) lack p-
values and are otherwise not targeted toward the effects of interest.

Many of the QTL methods discussed above are fully parametric and typically assume a Gaus-
sian distribution for the phenotypic trait, as well as require specification of a parametric regression
model. The estimation of QTL effects often relies on the method of maximum likelihood estima-
tion. Maximum likelihood estimation based on such parametric regression models is widely used
and well studied, with software available in many platforms. However, quite often, these paramet-
ric models represent an over-simplified description of the underlying genetic mechanism and leads
to biased estimates. In addition, if the parametric model is data-adaptively selected among a set of
candidate parametric regression models, then the reported standard errors and the p-values are not
interpretable.

In this technical report, we address the QTL mapping problem through the use of a semipara-
metric regression model, the targeted maximum likelihood estimator (TMLE) (van der Laan and
Rubin 2006; van der Laan and Rose 2011) and the collaborative TMLE (C-TMLE) (van der Laan
and Gruber 2010; van der Laan and Rose 2011). The only assumption of the semiparametric re-
gression model is that the phenotypic trait changes linearly with the QTL gene. We define the
TMLE and, in particular, the C-TMLE, which is an appealing estimator for high-dimensional ge-
nomic data structures. Our approach allows one to explore a much larger model space with fewer
restrictions while still being computational feasible with its incorporation of machine learning al-
gorithms. The (C-)TMLE approach targets the VIMs of interest (i.e., the QTL genes) and can
provide improved QTL gene effect estimates and rankings by taking advantage of the prediction
power of machine learning algorithms. Excerpts from this technical report have been published
in the refereed literature (Wang et al. 2010, 2011) with several remaining unpublished sections
submitted for publication in a final third paper.

2 Methods
Typical segregating designs include the backcross (B1) design and the intercross (F2) design.
Backcross is produced by back crossing the first generation (F1) to one of its parental strains;
F2 is produced by intercrossing the first generation (F1 x F1). In a backcross population, there are
two possible genotypes Aa and aa at any locus; in an F2 population, there are three genotypes AA,
Aa, and aa. For the ease of presentation, we will use backcross to demonstrate our method. All the
derivations can be readily extended to F2 population and other types of experimental crosses.

2.1 Semiparametric Regression Model
Suppose the observed data are i.i.d. realizations of Oi = (Yi,Mi) ∼ P0, i = 1, . . . ,n, where Y rep-
resents the phenotypic trait value, M represents the marker genotypic values, and i indexes the ith
subject. Let A be the genotypic value of the putative QTL under consideration. When A lies on
a marker, A is observed. When A lies between markers, it is unobserved. In this case, we impute
A with its expected value from a multinomial distribution computed from the genotypes and the
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relative locations of its flanking markers. This is the same strategy used in Haley–Knott regression
(Haley and Knott 1992), and we will thus only be estimating the effect of an imputed A. The
semiparametric regression model for the effect of A at value A = a relative to A = 0, adjusted for a
user-supplied set of other markers M−, is given by

E0(Y | A = a,M−)−E0(Y | A = 0,M−) = β0a. (1)

Other parametric forms, such as a∑
J
j=1 β jVj incorporating effect modification by other markers Vj,

can be incorporated as well. We view β0 as our parameter of interest, which also corresponds with
a marginal average effect obtained by averaging this conditional effect over the distribution of M−.

In a backcross population, when the homozygote aa is coded 0 and the heterozygote Aa is
coded 1, β0 measures the effect of the Aa genotype on Y relative to aa. In an F2 population,
with the coding (AA,Aa,aa) = (1,0,−1), β0 can be interpreted as the difference in Y when A
changes from heterozygote to homozygote. In the above model, the only assumption we make is
the linearity of the QTL effect (i.e. β0A) on the phenotype. We do not impose any distributional
assumption on the data and any functional form on all functions f (M−) of M−. For β0 to be
estimable and to be well defined, we also need the assumption that A is not a perfect surrogate of
M−. In other words, if we choose to estimate E0(A | M−), the R2 (coefficient of determination)
from the estimator has to be less than 1.

2.2 The TMLE
The TMLE of β0 (van der Laan and Rubin 2006; Tuglus and van der Laan 2011) involves an initial
machine learning (e.g., super learner) fit of E0(Y | M) based on the squared error loss function,
which yields a fit of E0(Y |A= 0,M−), mapping the latter into an initial estimator of β0 and thereby
of E0(Y | A,M−) in the semiparametric regression model. After obtaining this initial estimator of
E0(Y | A,M−) of the semiparametric form as enforced by the semiparametric regression model, we
carry out a single targeted update step by adding an estimate of the clever covariate A−E0(A |M−),
and fitting the coefficient ε in front of this clever covariate with univariate regression, using the
initial estimator of E0(Y | A,M−) as offset. Note that the TMLE of β0 is now simply β 0

n + εn. The
TMLE algorithm defined below is performed for each A.

Obtain an initial estimator Q0
n for E0(Y | A,M−). This initial estimator has to respect the semi-

parametric model in equation (1) and takes the form Q0
n = β 0

n A+ fn(M−).

Obtain a reasonable estimate gn(W ) of the marker confounding mechanism E0(A |W ). We typ-
ically only need to focus on a subset W of M− that is viewed as potential confounders of the
effect of A on Y . Hence, we can rewrite the g0(M−) as g0(W ), and we denote its estimator
with gn(W ). In our application, W is the set of markers on the same chromosome as A.

Compute r(A,W ) = A−gn(W ). The r(A,W ) is the residual of gn(W ), also referred to as the
“clever covariate”. It plays the key role of correcting the bias in the initial estimator.

Fit the “ε-regression.” This regression is given by Y ′ ∼ εr(A,W ) where Y ′ =Y −Q0
n(A,M

−) and
the regression coefficient estimate is denoted εn.
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Update. The initial estimate of β 0
n is updated with β 1

n = β 0
n + εn, and the initial fitted value Q0

n
with Q1

n(A,M
−) = Q0

n(A,M
−)+ εnr(A,W ).

Compute the variance estimate σ2
n for β 1

n . Using influence-curve-based methods, we calculate
the variance estimate

σ
2
n =

∑i(Yi−Q1
n(Ai,M−i ))2ri(Ai,Wi)

2

(∑i Air(Ai,Wi))2 .

The TMLE estimator will be consistent if either the Q0
n or the gn(W ) is consistent, and will be

efficient when Q0
n is consistent. In other words, when Q0

n is correctly specified, the TMLE estimate
of β essentially stays unchanged with minor modification from the second stage. When Q0

n is
mis-specified, a correct specification of the gn(W ) will achieve a full bias reduction for Q0

n and β 0.
The estimation of the clever covariate requires an estimator of E0(A |M−) (or E0(A |W )). The

latter can be carried out with a machine learning algorithm regressing A on M−. In particular, one
could decide to fit this regression of the marker of interest on two flanking markers, thereby dra-
matically simplifying the estimation problem, while potentially capturing most of the confounding
by the total marker set M−. The choice of how great the distance between the flanking markers will
be is a delicate issue. If one selects the flanking markers right next to the marker of interest, the
data might not allow the separation of the effect of interest from the effect of the flanking markers.
That is, one is aiming to adjust for confounders that are too predictive of the marker of interest.
On the other hand, if one selects the flanking markers too far away from the marker of interest, the
flanking markers will not adjust well for the markers that are in between the marker of interest and
the flanking markers. Simulations in the previous chapter suggest that the TMLE shows no sign of
deterioration for correlations smaller than 0.7 between the marker of interest and the confounders.
This could be used to set the window width defined by the two flanking markers. Subject matter
considerations, such as that the scientist would be satisfied with a claim that the targeted effect of
the marker can be due to other markers in a window of a particular size, could also be used to set
this window width of the flanking markers.

An alternative approach is to let the data decide what other markers to include in the model
for E0(A |M−). For that purpose, we can employ the C-TMLE (using a linear regression working
model for fluctuation of initial estimator) for estimation of an additive effect E0(E0(Y | A= 1,W )−
E0(Y | A = 0,W )) for the observed data structure O = (W,A,Y ) and nonparametric model for the
probability distribution P0 of O. This C-TMLE has also been implemented for this estimation
problem, but, obviously, now in terms of TMLEs in this semiparametric regression model. Thus,
this algorithm involves using forward selection of main terms to build a main term linear regression
fit for E0(A |M−), based on the sum of squared residuals (i.e., MSE) of the corresponding TMLE
of E0(Y | A,M−) that uses this main term regression fit of E0(A | M−) in the clever covariate.
Cross-validation is used to select the number of main terms (i.e., the number of forward selection
steps that the algorithm carries out) that will actually be included in the fit of E0(A | M−). The
candidate main terms can include fits of E0(A | M−) such as one based on two flanking markers
defined by a choice of window width, across a number of possible window widths. In this manner
the C-TMLE algorithm can data-adaptively decide how aggressive the targeting step should be in
its effort to reduce bias due to residual confounding.

The C-TMLE implementation may also involve the selection of a penalty to be added to the
MSE in order to make the procedure more robust in the context of having to adjust for highly cor-
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related markers. Details are presented in the next section. C-TMLE allows one to data-adaptively
determine the markers to include in the fit of E0(A |W ). For example, one may wish to only
adjust for the two closest markers that are farther than δ -apart from the marker A, and one can
use C-TMLE to data-adaptively select this choice δ based on the log-likelihood of the TMLE of
the semiparametric regression fit. In our simulations and data analysis we have implemented both
TMLEs as well as C-TMLEs.

2.3 The C-TMLE
Let Q0

n = m(A,V | β 0
n )+ r(M−) be the initial estimate of Q0 contained in the same semiparametric

regression model that we also used in the TMLE. The C-TMLE is concerned with iteratively up-
dating this initial estimate of Q0. Firstly, we compute a set of K univariate covariates W1, . . . ,WK
from M−, which we will refer to as main terms, even though a term could be an interaction term
or a super learning fit of the regression of A on a subset of the components of M−. Let’s refer to
M− by W = (W1, . . . ,WK). In this subsection we will suppress in the notation for estimates of Q0
and g0 their dependence on the sample size n. Let Ω = {W1, . . . ,WK} be the full collection of main
terms. A linear regression model fit gK of g0(W ) = E0(A |W ) using all main terms in Ω is viewed
as the most nonparametric estimate of g0. For a given subset of main terms S ⊂Ω, let S c be its
complement within Ω. For a given subset S k, we will define gk as the least squares fit of the linear
regression model for E0(A |W ) that includes as main terms all the terms in S k. In the C-TMLE
algorithm we use a forward selection algorithm that augments a given set S k into a next set S k+1

obtained by adding the best main term among all main terms in the complement S k,c of S k. In
other words, the algorithm iteratively updates a current estimate gk into a new estimate gk+1, but
the criterion for g does not measure how well g fits g0; it measures how well the TMLE using this
g fits Q0.

Let L(Q)(O) = (Y −Q(A,W ))2 be the squared error loss function for the true regression func-
tion Q0 = E0(Y | A,W ) = β0A+E0(Y | A = 0,W ). For a given initial estimate Q, let Qg(ε) =
Q+ ε(A−g(W )) be the parametric working fluctuation model used in the TMLE of Q0 defined in
the previous section. For a given estimate g of g0 and initial Q of Q0, the corresponding TMLE
(as defined in the previous section) of Q0 is given by Qg(εn), where εn = argminε PnL(Qg(ε)) is
the univariate least squares estimator of ε using the initial estimate Q as offset, and Pn denotes
the empirical probability distribution of O1, . . . ,On. Here we used the notation P f ≡

∫
f (o)dP(o).

That is, an initial estimate Q, an estimate g, and the data O1, . . . ,On are mapped into a new targeted
maximum likelihood estimate Q∗ = Qg(εn). Let’s refer to this mapping as Q∗ = TMLE(Q,g),
suppressing its dependence on Pn.

The C-TMLE algorithm defined below generates a sequence (Qk,S k) and corresponding TM-
LEs Qk∗, k = 0, . . . ,K, where Qk represents an initial estimate, S k a subset of main terms that
defines gk, and Qk∗ the corresponding TMLE that updates Qk using gk. These TMLEs Qk∗ rep-
resent subsequent updates of the initial estimator Q0

n, and the corresponding main term set S k,
as used to define gk in this k-specific TMLE, increases in k, one unit at a time: S 0 is empty,
| S k+1 |=| S k | +1, S K = Ω. The C-TMLE uses cross-validation to select k, and thereby to
select the TMLE Qk∗ that yields the best fit of Q0 among the K +1 k-specific TMLEs that are in-
creasingly aggressive in their bias-reduction effort. This C-TMLE algorithm is defined as follows:

Initiate algorithm: Set initial TMLE. Let k = 0. Qk = Q0
n is the initial estimate of Q0, and S k

6

http://biostats.bepress.com/ucbbiostat/paper285



is the empty set so that gk is the empirical mean of A. Thus, Qk∗ is the TMLE updating this
initial estimate Qk using as clever covariate A−gk.

Determine next TMLE. Determine the next best main term to add to the linear regression work-
ing model for g0(W ) = E0(A |W ):

S k+1,cand = arg min
S k∪W j:W j∈S k,c

PnL(TMLE(Qk,S k∪Wj)).

If
PnL(TMLE(Qk,S k+1,cand))≤ PnL(TMLE(Qk∗)),

then (S k+1 = S k+1,cand,Qk+1 = Qk), else Qk+1 = Qk∗, and

S k+1 = arg min
S k∪W j:W j∈S k,c

PnL(TMLE(Qk∗,S k∪Wj)).

[In words: If the next best main term added to the fit of E0(A |W ) yields a TMLE of E0(Y |
A,W ) that improves upon the previous TMLE Qk∗, then we accept this best main term, and
we have our next TMLE Qk+1∗,gk+1 (which still uses the same initial estimate as Qk∗ uses).
Otherwise, reject this best main term, update the initial estimate in the candidate TMLEs
to the previous TMLE Qk∗ of E0(Y | A,W ), and determine the best main term to add again.
This best main term will now always result in an improved fit of the corresponding TMLE
of Q0, so that we now have our next TMLE Qk+1∗,gk+1 (which now uses a different initial
estimate than Qk∗ used).]

Iterate. Run this from k = 1 to K at which point S K = Ω. This yields a sequence (Qk,gk) and
corresponding TMLE Qk∗, k = 0, . . . ,K.

This sequence of candidate TMLEs Qk∗ of Q0 has the following property: the estimates gk are
increasingly nonparametric in k and PnL(Qk∗) is decreasing in k, k = 0, . . . ,K. It remains to select
k. For that purpose we use V -fold cross-validation. That is, for each of the V splits of the sample
in a training and validation sample, we apply the above algorithm for generating a sequence of
candidate estimates (Qk∗ : k) to a training sample, and we evaluate the empirical mean of the loss
function at the resulting Qk∗ over the validation sample, for each k = 0, . . . ,K. For each k we take
the average over the V -splits of the k-specific performance measure over the validation sample,
which is called the cross-validated risk of the k-specific TMLE. We select the k that has the best
cross-validated risk, which we denote with kn. Our final C-TMLE of Q0 is now defined as Qkn∗,
and the corresponding updated regression coefficient is our TMLE β ∗n of β0.

Remark. The candidate main terms can also include fits of E0(A | M−) such as one based on
two flanking markers defined by a choice of window width, across a number of possible window
widths. In this manner, the above C-TMLE algorithm data-adaptively decides which window width
yields effective bias reduction.

Penalty. C-TMLE implementation in the following data analysis involved a penalized mean
squared error as a measure of fit instead of the mean squared error, where the penalty is defined
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as a variance estimator of the corresponding TMLE of β0. With C-TMLE we select among a se-
quence of candidates using a likelihood-based criterion. In our setting, for a putative QTL A with
the TMLE fit Q1

n, this log-likelihood can be reduced to the empirical MSE:

MSE =
1
n

n

∑
i=1

(Yi−Q1
n(Ai,M−i ))2.

To protect the algorithm from breaking down in borderline identifiable cases, the MSE is also
penalized with the variance estimate of βn. We denote this penalized MSE as “pMSE”, indexed by
gn(W ):

pMSE(gn(W )) = MSE+σ
2
n .

The pMSE criterion is used in C-TMLE to construct a sequence of increasingly nonparametric
candidates of gn(W ). For the confounding marker set W of dimension mw, we start with an inter-
cept model, and then in a manner similar to that of forward stepwise regression, we grow gn(W )
by adding markers from W one at a time based on pMSE. Every time the gn(W ) grows bigger,
we define it as a “move”. Let k, k = 1 · · ·K, be the number of moves. In our case, k is equivalent
to the number of covariate terms in gn(W ). The capital K is the maximum possible number of
moves, and in our implementation K = min(mw,10). We can then index each candidate gn(W )
with k. Notationally, we will use gk

n to represent the gn(W ) with k moves. The sequence of gk
n

should be increasingly nonparametric, which means pMSE(gk
n) > pMSE(gk+1

n ). In the case that
adding markers in the gk

n does not result in a smaller pMSE, we augment the ε-regression with
a new clever covariate computed from the gk−1

n . This will ensure that the pMSE(gk
n) is always

smaller than the pMSE(gk−1
n ). Hence, for a realized gk

n, it will be associated with a fixed number
h of clever covariates in the ε-regression. In this way, we can create a sequence of candidates gk

n
with increasing size and log-likelihood, and one can then choose the best gk

n using cross validation.
Below is a practical implementation of the C-TMLE procedure using this penalty:

1. For k = 0, set h = 1 and initialize the g0
n with the intercept model, which essentially does

zero adjustment for Q(0)
n .

2. For k = 1, · · · ,K, carry out the following two steps:

(a) At k = k, exclude the markers in the gk−1
n from W , and index the remaining markers

with j, j = 1, · · · ,mw−k+1. For each remaining Wj, incorporate it into the gk−1
n . This

will result in mw−k+1 candidates for gk
n indexed by gk−1

n and Wj, and we denote them
with c(gk−1

n ,Wj). Compute pMSE(c(gk−1
n ,Wj)) for each j. If

min
{

pMSE(c(gk−1
n ,Wj))

}
< pMSE(gk−1

n ), (2)

take the c(gk−1
n ,Wj) with the minimum pMSE as the k-th candidate gk

n.

(b) If the inequality 2 is not satisfied, we update the TMLE initial fit in the k-th move with
the TMLE estimates from the (k−1)-th move, i.e.:

Q0k
n = Q1k−1

n and β
0k
n = β

1k−1
n .
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This is equivalent to having an additional clever covariate in the ε-regression, and h
will be increased by 1. We then redo step (a) with the updated Q0k

n and β
0k
n . This step

guarantees that pMSE(gk
n)< pMSE(gk−1

n ).

3. When all the K candidates gk
n are built, corresponding to each gk

n, we will also have K exact
algorithms for building the initial estimator Q0k

n , which is relevant to the number of clever
covariates in gk

n. Now one can carry out TMLE with each gk
n and the corresponding Q0k

n ,
and select the best gk

n based on the cross validated MSE. In addition, on the parsimonious
side, the gk

n of a smaller model should be given more preference. To serve this purpose,
we use a BIC (Bayesian Information Criterion) like criterion to penalize the size of the gk

n.
We recognize that one clever covariate has one degree of freedom. When there are multiple
moves within a single clever covariate, we evenly partition the one degree of freedom among
its moves. Hence, for a particular gk

n with k moves and h clever covariates, its size is defined
as:

sgk
n
= (h−1)+

kh

lh
,

where kh is the position of the k-th move within the h-th clever covariate, and lh is the total
number of moves within h. For example, for the gk=5

n in a candidate sequence list with
k = (1, · · · ,7) and h = (1,1,1,2,2,2,3),

sg2
n
= (2−1)+

2
3
= 1

2
3
.

We can then define a criterion pMSE∗ indexed by gk
n based on the cross validated MSE:

pMSE∗(gk
n) = n log(CV MSE+σ

2
n )+ sgk

n
log(n). (3)

We then choose the gk
n associated with the minimum pMSE∗ as the working gn(W ) in the

TMLE.

A particular problem we want to highlight here is overfitting in the initial estimator Q0
n. In the

ε-regression, the dependent variable is the residual from the Q0
n. Overfitting can destroy useful

signals in these residuals, and hence does harm to TMLE. In particular, we have encountered
problems with TMLE caused by overfitting in Random Forest, while we have not run into the
same problem with machine learning algorithms using internal cross validation to select the fine
tuning parameters. Nevertheless, since it does present problems, we want to discuss here how to
avoid overfitting in Q0

n and possible remedies for a TMLE estimator with an overfitted Q0
n.

In the first place, we want to prevent the usage of an overfitted Q0
n without compromising the

fit. Overfitting is usually represented as more parameters than needed to achieve the same cross
validation performance. Hence, when there are multiple Q0

n candidates, a natural solution is to
choose the Q0

n with the minimum cross validated (CV) L2 risk. However, we found out that the
CV risk alone is often not enough to address the overfitting problem for TMLE, and we suggest to
use the difference between the CV risk and the empirical (EM) risk as an additional penalty. This
penalty term is explicitly aimed at penalizing overfitting because an overfitted model often has a
much bigger CV risk than its EM risk. We then have the pMSE∗∗ criterion:

pMSE∗∗ = 2×CV Risk−EM Risk. (4)

9
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This criterion gives us better discretion in borderline cases when an over-complex model produces
a similar CV risk as that of a small model.

Alternatively, if there is only a single candidate of Q0
n available and overfitting is a concern, we

can use the CV Q0
n in place of the EM Q0

n. Suppose the samples are divided into two disjoint sets: a
training set and a validation set. The validation set contains the ith observation. The cross validated
Q0

n of the i-th observation is then obtained through predicting the Yi from the model learned from
the training set. When an aggressive prediction algorithm is used for Q0

n and the empirical Q0
n is

overfitting, the cross validated version of Q0
n will not be overfitting and will actually provide an

effective remedy to the overfitting problem in the initial estimator without affecting the properties
of TMLE.

In principle, when obtaining the initial estimator, a separate Q0
n should be computed. This may

create a substantial computational burden when there are many markers and complex machine
learning algorithms are used. To alleviate this burden, one can first obtain a background estimate
Bn(M) for the conditional expectation E(Y |M) on all the markers M, and then, for each A, perform
the projecting regression Y ∼ βA with the offset Bn(Y |MA = 0,M−), where MA is the marker set
closely linked to A including A itself. This same idea is also implemented in the CIM. In practice,
one can take the MA as all the markers within a window size (for example, 10 cM) of A. Another
straightforward choice is to take the MA as all the markers on the same chromosome as A.

Very often, direct variance estimates σ2
n of QTL effects from a model obtained using machine

learning algorithms are on the small side because the models are chosen data adaptively. This prob-
lem is alleviated in TMLE. The variance estimate of TMLE estimator is based on influence curves
and, in the first order, only relevant to the limit of Q0

n when the sample size is large (van der Laan
and Robins 2003). Hence TMLE variance estimates are not affected by how Q0

n is constructed, and
TMLE p-values are generally more honest with less false positives.

Statistical Properties of the C-TMLE. To understand the appeal of the C-TMLE, we make the
following remarks. Including a main term in the fit of the clever covariate that has no effect on the
outcome will only harm the TMLE of β0 both with respect to bias and mean squared error. If one
uses the log-likelihood (i.e., MSE) of the regression of A on M− as a criterion for selection of the
main terms, then one will easily select main terms that have a weak effect on the outcome, while
truly important main terms are not included. Therefore, it is crucial to use a main term selection
criterion for E0(A | M−) that actually measures the fit of the resulting TMLE of the outcome
regression. In addition, one can formally prove that the TMLE achieves the full bias reduction with
respect to β0 if the clever covariate uses a true regression, E0(A |Ms), with Ms being a reduction of
M− that is rich enough so that E0(Y | A = 0,M−) is captured. In fact, the result is stronger, since
Ms only needs to capture the function of M− that is obtained by taking the difference between the
true E0(Y | A = 0,M−) and its initial estimator En(Y | A = 0,M−) (van der Laan and Gruber 2010).
Thus, theory indeed fully supports that we should be selecting main terms in the clever covariate
that are predictive of residual bias of the initial estimator of E0(Y | A = 0,M−), and the C-TMLE
algorithm presented above indeed targets such main terms.
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3 Simulations
We carried out three simulations to study the behavior of targeted methods. Simulation I com-
pares TMLE with the CIM, Simulation II studies the effect of overfitted initial estimators on the
performance of TMLE, and Simulation III is a demonstration of C-TMLE.

3.1 Simulation I
A single chromosome of 100 markers was simulated on 600 backcross subjects. Markers were
evenly spaced at 2 centimorgan (cM). A single QTL main effect was generated at marker posi-
tion 100 cM, denoted by M(100). Here, the number in the subscript of M indicates the position of
the marker. There were also four epistatic effects on markers M(60), M(90), M(120), and M(150).
Phenotypic values were generated from the data-generating distribution: Y = 5 + 1.2M(100) −
0.8M(60)M(90)−0.8M(90)M(120)−0.8M(120)M(150)−0.8M(150)M(60)+U , where U is the error term
drawn from an exponential distribution scaled to have a variance of 10. We generated 500 simu-
lated data sets of this type.

In this simulation, the density of markers is fairly high, the phenotypic outcome follows a
nonnormal distribution, and there are strong counteracting epistatic effects in linked markers. A
univariate regression effect estimate of the effect of, for example, M(100) will be biased due to the
lack of adjustment for the effect of the highly correlated markers. Indeed, the CIM estimate for the
effect of M(100) is negative, far away from the true value 1.2. On the other hand, taking the CIM
prediction function as the initial estimator Q̄0

n, TMLE was then able to recover some of the signal
and hence improved on the CIM estimates. In TMLE, the true regression of A on the other 99
markers, M−, was estimated with a main terms linear regression including two flanking markers
with a prespecified distance to A. We used two distances, 20 cM and 40 cM, and denote the esti-
mators by TMLE(20) and TMLE(40). The CIM analysis was carried out using QTL Cartographer
(Basten et al. 2001), with default settings. We analyzed markers without considering positions
between them. For CIM, the mean effect estimate for M(100) is −0.2731 and is dominated by the
epistatic effects from its nearby markers. TMLE(40) is able to correct some of the bias, and its ef-
fect estimate is 0.5365. TMLE(20) utilizes an estimator of E0(A |M−) with more predictive power
than TMLE(40) and produced an estimate closest to the truth. We list the averages of the effect
estimates for M(100) across 500 simulations in Table 1 along with their standard errors for CIM,
TMLE(20), and TMLE(40).

We also used a univariate regression (UR) fit for Q̄0
n within TMLE, and these results can be

Table 1: Mean effect estimates of M(100) over 500 simulations

Q̄0
n=CIM Q̄0

n=UR
Estimate SE Estimate SE

Initial Estimate −0.2731 0.3273 −0.6248 0.2684
TMLE(40) 0.5365 0.4538 0.2705 0.3135
TMLE(20) 0.8478 0.4508 0.8093 0.4079
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found in Table 1. The UR initial estimate was even more biased than that of CIM. TMLE(20),
using UR as Q̄0

n, produced very similar estimates to TMLE(20) using CIM as initial estimator.
On the other hand, TMLE(40) using the CIM as initial estimator produced a better estimator than
TMLE(40) using the univariate regression as initial estimator. This demonstrates the robustness
of TMLE with respect to misspecification of the initial estimator, which predicts that the more
predictive the regression of A on M−, the more robust TMLE will be to the choice of its initial
estimator. A closer look at Table 1 also reveals that compared to TMLE(40), the additional bias
reduction of TMLE(20), using univariate regression as initial estimator, comes with an increase in
standard error.

3.2 Simulation II
Simulation II imitates the classic QTL mapping scenario with widely spaced markers and a more
complex structure of QTL genes. Forty-one markers on a single large chromosome of 800 cM
were generated for 1000 backcross subjects, evenly spaced at 20 cM. Six main QTL effects and
four epistatic effects were placed on the chromosome with effect sizes ranging from 1% to 10%
of the total phenotypic variance. Positions of these QTL genes either overlap with a marker or lie
in between markers. Details of these simulated QTL genes can be found in Table 2. We set the
population mean equal to 5.0, and the error is normally distributed with mean 0 and variance 10.
We replicated this simulation for 100 times.

To obtain a background marker model Bn(M), we evaluated three algorithms: Deletion Sub-
stitution Addition (DSA) (Sinisi and van der Laan 2004), random forests (RF), and super learner
(SL) (van der Laan et al. 2007). DSA is a search algorithm using polynomial basis functions and
minimizing residual sum of squares over subsets of covariates in a regression. When restricted to
main term linear models, it often produces results similar to CIM. RF is a tree-based nonparametric
machine learning algorithm. In this simulation, the least aggressive fit is a linear main-term model
from DSA, and we consider RF to be the most aggressive fit as it is likely to capture interaction
terms. SL takes both DSA and RF as its candidate learners and finds an optimal combination of
these two. Here, on average, it combines these algorithms with weights 0.59 for DSA and 0.41
for RF. See Table 3 for the average CV risk, the empirical (EM) risk, and the pMSE∗∗ risk of the
Bn(M) for these three algorithms. If we had only considered the CV risk, we would have chosen
SL as the best Bn(M). The differences between the CV risks for all three algorithms were subtle,
while the differences between the EM risks were more substantial. It is apparent that RF is overfit-
ting because its EM risk is much smaller than its CV risk. SL takes RF as a candidate learner, and
is thus also affected by this overfitting. Taking this into consideration, DSA produces the best Q0

n.
Hence, in the following analysis, we use a TMLE initialized with DSA as a reference line.

The entire chromosome was scanned with a 2-cM incremental step. In gn(W ), W1 and W2 are
the flanking markers 40 cM to A. In Table 4 and Figure 1, we report the TMLE estimates and
their standard errors at genomic locations with a main QTL effect, for the RF initial estimator,
TMLE(Q0

n=EM RF), TMLE(Q0
n=CV RF), and TMLE(Q0

n=DSA). (We use TMLE(Q0
n) to index

TMLE with its initial estimator Q0
n.) For RF, the initial effect estimates are far from the truth due

to overfitting. When using the RF fit as Q0
n, TMLE produced better estimates than the RF initial

estimator, but it was not better than TMLE(Q0
n=DSA). We then used a cross-validated RF fit as Q0

n.
TMLE was able to fully recover the effect size estimates to the level of TMLE(Q0

n=DSA), while the

12
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Table 2: True positions and effect sizes of QTL genes in Simulation II

Position (cM) Effect Size Proportion (%) of variance Effect type

40 2.40 6.57 Main
310 3.00 10.27 Main
330 -3.00 10.27 Main
675 2.00 4.56 Main
710 -1.60 2.82 Main
780 1.20 1.64 Main

70 / 120 1.85 2.92 Epistatic
200 / 240 3.00 7.71 Epistatic
450 / 610 2.31 4.56 Epistatic
490 / 525 1.85 2.92 Epistatic

Note: For epistatic effects, positions of interacting QTLs are indicated with a slash. Proportions of explained
variance for epistatic effects were computed assuming interacting QTLs are independent of each other.

Table 3: The mean risk of Bn(M) from Simulation II

SL DSA RF

EM risk 7.55(64.02%) 12.27(41.46%) 3.20(84.74%)
CV risk 12.97(38.12%) 13.30(36.58%) 13.61(35.06%)
pMSE∗∗ 18.40 14.32 24.03

Percentages in the brackets are the coefficients of determination (R2).
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Table 4: The estimates of QTL main effects and their standard errors in Simulation II

TMLE
Truth RF Initial Q0

n=EM RF Q0
n=CV RF Q0

n=DSA
Pos Effect Pos Est SE Pos Est SE Pos Est SE Pos Est SE
40 2.4 46 2.0952 0.3367 46 2.0802 0.3295 44 2.2841 0.3220 46 2.6822 0.4348

310 3.0 296 0.6684 0.1887 298 0.9385 0.2169 298 1.4429 0.2927 306 1.6206 0.3937
330 -3.0 344 -0.6349 0.1628 338 -0.9266 0.2031 338 -1.4878 0.2999 334 -1.5446 0.3781
675 2.0 674 0.7209 0.2015 678 0.8926 0.2463 678 1.3198 0.3216 674 1.7316 0.5324
710 -1.6 714 -0.3633 0.1316 724 -0.6901 0.1596 724 -1.1989 0.2426 706 -0.9472 0.6162
780 1.2 784 0.6300 0.1525 774 0.7519 0.1616 774 1.1238 0.2253 774 1.2895 0.3507

Positions (Pos) are in centi-morgans.

position estimates stayed essentially unchanged compared to TMLE(Q0
n=EM RF). TMLE(Q0

n=CV
RF) also generated a more conservative p-value profile than TMLE(Q0

n=EM RF), as illustrated in
Figure 1.

3.3 Simulation III
In Simulation III, we demonstrate the performance of C-TMLE in a simple example. We simulated
600 backcross subjects and 120 markers each spaced at 5 cM on a pseudo-chromosome. Two
QTL genes were placed at marker position 110 cM and marker position 310 cM, denoted with
M(110) and M(310). An epistatic effect was situated at M(200) and M(240). Error terms were drawn
from N(0,10). The two main effects at M(110) and M(310) account for 3.3% and 2.3% of the total
phenotypic varaiance, respectively, and the epistatic effect accounts for 1.7% of the total variance.
We generated 100 such simulation sets. Since markers were dense, our analysis did not consider
positions in-between markers. Therefore, all As are observed. The CIM output was used as Q0

n. For
gn(W ) in C-TMLE, we arbitrarily excluded a 20 cM region around A from W to avoid adjusting
for strongly correlated markers.

C-TMLE improved the original CIM estimates, with a better resolution and less significant p-
values, as illustrated in Figure 2. We also analyzed this simulation with TMLE(20) (see Simulation
I). Compared to TMLE(20), C-TMLE produced similar effect estimates yet smaller standard errors,
resulting in smaller p-values. As noted before, by adjusting for markers highly correlated with A
in gn(W ), we remove more bias in the estimate. However, additional adjustment also means larger
standard errors. In the extreme case, the model parameter β becomes unidentifiable. Thus, there
is a trade-off between using a highly predictive gn(W ) and a conservative one, and the C-TMLE
algorithm is designed to determine an optimal trade-off based on the data. In this simulation, C-
TMLE selects a more conservative gn(W ) than TMLE(20). In general, C-TMLE is indeed less
aggressive than TMLE(20). Choice of Q0

n also affects C-TMLE. As an illustration, we used the
univariate regression (UR) fit as Q0

n. C-TMLE with the UR initial produced satisfactory results,
considering the poor performance of UR. However, with the CIM initial, C-TMLE is performs
even better with improved resolution and better separation of two linked interacting QTL genes
(Figure 2).
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Figure 1: The mean effect estimate and the median p-value of βn from simulation II. In (a), the
mean effect estimate across all simulations are plotted at each tested position, for the initial RF
estimator, TMLE(Q(0)

n =EM RF), and TMLE(Q(0)
n =CV RF). True effect sizes and positions are su-

perimposed. Black triangles represent main QTL effects. Colored stars represent epistatic effects.
Epistatic effects are halved for a clear display, and the interacting QTLs are grouped in the same
color. In (b), the median p-values are plotted at each tested position in correspondence with (a).
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Figure 2: A demonstration of C-TMLE performance. In (a), the average QTL effect estimate
across 100 simulations is plotted against its position, for UR, CIM, C-TMLE with UR initial, and
C-TMLE with CIM initial. UR and C-TMLE with UR initial are grouped by broken lines. CIM
and C-TMLE with CIM initial are grouped by solid lines. Black triangles indicate two main effects
at position 110 and 310 cM. Blue stars indicate the epistatic effect at the location 200 and 240 cM,
and for the ease of plotting, this epistatic effect is evenly divided between M(200) and M(240). Dotted
line is the zero line.In (b),the median p-value of βn across all simulations at each marker is plotted,
in correspondence with (a).
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Table 5: The estimates of QTL effect sizes and positions from CIM and C-TMLE for the
wound-healing trait

CIM C-TMLE
QTL ID Chr cM Effect size Chr cM Effect size

1 1 43.91 -0.1170 1 51.4 -0.1098
2 2 44.11 -0.0433 - - -
3 2 56.41 -0.0460 2 58.3 -0.0453
4 3 28.81 -0.0531 3 32.5 -0.0487
5 4 20.61 -0.0993 4 19.4 -0.0891
6 4 55.01 -0.1024 4 57.4 -0.0979
7 6 0.01 0.0444 6 3.4 0.0478
8 6 32.21 -0.0992 6 25.4 -0.1120
9 - - - 6 33.4 -0.1148

10 6 51.91 -0.0457 6 55.4 -0.0412
11 7 30.91 0.1089 7 39.4 0.0969
12 9 43.31 -0.1582 9 46.3 -0.1714
13 - - - 11 38.5 0.05972
14 12 2.01 0.0563 12 4.3 0.05752
15 13 45.91 -0.0785 13 44.1 -0.0822
16 13 58.61 -0.0783 - - -
17 - - - 17 8.1 0.05124
18 - - - 17 30.1 -0.0585

4 Data Analyses
We present three data application studies to demonstrate the utility of targeted methods in QTL
data.

4.1 Wound-Healing Application
In this section, we analyze a data set published in Masinde et al. (2001). The original study was
designed to identify QTL genes involved in the wound-healing process. A genomewide scan of
119 codominant markers was performed using 633 F2 (MRL/MP x SJL/J) mice. Each mouse was
punctured with a 2-mm hole in its ear, and the phenotypic trait was the hole closure measurement
at day 21. The marginal distribution of the phenotypic trait is bell-shaped.

We analyzed this data set with TMLE, C-TMLE, and CIM. Based on the evaluation of a dis-
crete super learner (van der Laan et al. 2007) that included both DSA and random forests, the
DSA machine learning algorithm was selected as initial estimator of E0(Y |M), and subsequently
mapped into the desired initial estimator for E0(Y | A,M−) satisfying the semiparametric regres-
sion model. To lessen the computational load, we first screened additive and dominant effects of
all markers with univariate regression and supplied to this machine learning algorithm the markers
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Figure 3: The genomewide FDR adjusted p-value profile for the additive effects in the wound-
healing data set. The black line represents CIM, and the red line represents C-TMLE. Chromosome
numbers are superimposed on top of the picture.

with a p-value less than 0.10. In the TMLE, the conditional mean of A, given M− is fitted with a
main terms linear regression model with main terms Ac, W a

1 , W d
1 , W a

2 , W d
2 , where Ac denotes the

dominant effect of A when A is additive and the additive effect of A when A is dominant, W1 and
W2 are the closest flanking markers 20 cM away from A, and the superscript a denotes the additive
effect and d the dominant effect. In C-TMLE, when A is additive, W is defined as the additive
effects of all markers on the same chromosome 20 cM away from A and the dominant effects of all
markers on the same chromosome as A, and vice versa when A is dominant.

Four hundred putative QTL positions were tested at 2-cM increments for both the additive and
dominant effects. The p-values were adjusted using FDR (Benjamini and Hochberg 1995). The
TMLE and C-TMLE produced similar results, thus we only present C-TMLE results. Figure 3 dis-
plays the genomewide FDR-adjusted p-value profile for the additive effect at each tested position.
Table 5 summarizes significant QTL genes at level 0.05. The CIM p-values were computed from
the asymptotic χ2 distribution. No significant dominant effect was detected in this data set. The
C-TMLE essentially identified the same QTL genes as CIM, albeit with an improved resolution.
Many of these genes were also reported in Masinde et al. (2001). However, on chromosome 6, the
C-TMLE suggests two linked QTL genes instead of one, as indicated by CIM.

4.2 Listeria Application
Boyartchuk et al. (2001) published a data set on the survival time of 116 age-matched female mice
following infection with Listeria monocytogenes, a Gram-positive bacteria causing a wide range
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Figure 4: Histogram of the survival time for mice upon infection with Listeria monocytogenes, on
logarithm scale.

of diseases. The mice were an F2 intercross population derived from susceptible BALB/cByJ and
resistant C57BL/6ByJ strains, and the goal of the study was to map genetic factors of susceptibility
to L. monocytogenes. The phenotypic trait is the recorded time to death for each mouse upon in-
fection with L. monocytogenes. One hundred and thirty-one codominant markers were genotyped
on the autosomal chromosomes. When a mouse survived beyond 240 h, it was considered recov-
ered. About 30% of the mice recovered, and we refer to them as survivors and the remaining mice
as nonsurvivors. This creates a spike in the phenotypic trait distribution, violating the normality
assumption in traditional approaches of QTL mapping (Figure 4).

The outcome Y was defined as the logarithm of the phenotypic trait. Y can be decomposed into
a binary trait of survival or nonsurvival and a continuous trait of survival time among nonsurvivors
(Broman 2003). We denote this binary trait of survival by Z = I(Y = log264). Then, the expected
value of Y given the marker data M can be represented as

E0(Y |M) = P0(Z = 1 |M) log264+P0(Z = 0 |M)E0(Y | Z = 0,M).

In the above formula, P0(Z = 1 | M) and P0(Z = 0 | M) are conditional probabilities of whether
a mouse has survived (Z = 1) or died (Z = 0) given the marker data M. We fit this with a super
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Table 6: Mean risk of candidate initial regressions in discrete super learner from the Listeria
data set

DSA RF SL 2-part SL

CV risk 0.2212 0.1581 0.1589 0.1463
EM risk 0.0938 0.0293 0.0293 0.0246
pMSE∗∗ 0.3586 0.2868 0.2885 0.2681

Table 7: The estimates of effect sizes and positions of QTL genes from CIM, TMLE, and
C-TMLE in the Listeria dataset. QTL genes with FDR adjusted p-values smaller than 0.05
are reported.

QTL CIM TMLE C-TMLE
ID Type Chr cM Effect size Chr cM Effect size Chr cM Effect size

1 dom 1 15.0 -0.2351 - - - - - -
2 dom 1 72.8 0.1606 - - - - - -
3 add 1 78.8 -0.1349 1 76.1 -0.1114 1 78.1 -0.1074
4 dom 2 14.0 -0.2623 - - - - - -
5 add 2 18.0 -0.1744 - - - - - -
6 dom 5 0.0 -0.1468 - - - - - -
7 dom 5 61.0 -0.1693 - - - - - -
8 add 5 18.1 0.2764 5 26.1 0.1743 5 26.1 0.1960
9 dom 6 33.8 -0.1235 - - - - - -

10 dom 12 41.8 -0.2352 12 40.1 -0.1372 12 40.1 -0.1372
11 add 13 22.7 -0.3409 13 16.4 -0.1599 13 14.4 -0.1668
12 dom 13 25.9 0.3525 13 26.4 0.1458
13 add 15 25.1 0.1540 15 26.1 0.0647 15 22.1 0.0678
14 dom 15 12.0 0.2042 15 22.1 0.1438
15 add 18 - - 18 14.1 -0.0679 18 14.1 -0.0692
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Figure 5: The genomewide p-value profile for the additive and dominant effects in the Listeria
dataset. The p-values are FDR adjusted and on a negative log10 scale. (a) the p-value profile from
the CIM. (b) p-value profile from the TMLE. (c) p-value profile from the C-TMLE. In all three
panels, the black solid line represents additive effects, and the blue dashed line represents dominant
effect. The black dash-dot line indicates the 0.05 p-value threshold. Chromosome numbers are
superimposed on top of each panel.
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learning algorithm for binary outcomes. E0(Y | Z = 0,M) is the conditional expectation of Y on M
given that the mouse has died, which can be obtained by applying super learning on nonsurvivors.
We refer to this machine learning algorithm as the 2-part super learner.

The collection of algorithms in the super learner included DSA and random forests. As before,
the machine learning algorithms were only provided the additive and dominant markers that had a
significant univariate effect based on a p-value threshold of 0.10. Since we wished to evaluate if
this 2-part super learner provided a better fit than a regular super learner, we implemented a discrete
super learner whose library consisted of a total of four algorithms for estimation of E0(Y | M):
DSA, random forests, super learner, and a 2-part super learner. In Table 6, we report the EM risk,
the CV risk, and the pMSE∗∗ of DSA, RF, SL, and the 2-part SL. In the super learning fits, more
than 95% of the weight was put on random forests, thereby strongly favoring a fit that allows for
complex interactions.

The 2-part super learner had the smallest risk for all three types of risk and was therefore
selected as the estimator of E0(Y |M). In the TMLE, we fitted the conditional mean of A, given
M−, with a main term linear regression model including the main terms used Ac, W a

1 , W d
1 , W a

2 , W d
2 ,

where Ac denotes the dominant effect of A when A is additive and the additive effect of A when A
is dominant, W1 and W2 are the closest flanking markers 20 cM away from A, and the superscript a
denotes the additive effect and d the dominant effect.

When inspecting Fig. 5, TMLE and C-TMLE display much less noise than the parametric CIM.
Three additive genes on chromosomes 1, 5, and 13 are clearly identified. Two additive effects on
chromosomes 15 and 18 are borderline significant. In addition, C-TMLE also detected dominant
effects on chromosomes 12, 13, and 15. The chromosome 15 QTL gene is identified as carrying
both the additive and dominant effects. The literature suggests that the chromosome 1 QTL gene
has an effect on how long a mouse can live given it will eventually die, the chromosome 5 gene has
an effect on a mouse’s chance of survival, and the genes on chromosomes 13 and 15 are involved
in both (Boyartchuk et al. 2001; Broman 2003; Jin et al. 2007). We detected all of these genes
and, in addition, an additive gene on chromosome 18 and a dominant gene on chromosome 12.
CIM also identified those major genes, however, with less significance and many more suspicious
positives. See Table 7.

4.3 Yeast Data Set
In this section, we analyze an expression QTL dataset. The original data came from Brem et al.
(2002), consisting of 6216 expression traits and 3312 markers on 112 haploid segregates of budding
yeast. Genotypes of markers are dichotomous, and many markers have identical genotypes. We
dropped all the redundant markers, resulting in 972 markers. Missing markers were imputed based
on the linkage disequilibrium (LD) information of the nearby regions. A fast version of TMLE
was applied to this dataset. The initial estimator Q0

n is from univariate regression (UR), and gn(W )
is a linear regression with covariates W1 and W2, where W1 and W2 are markers on both sides of
A with LD R2 = 0.2 to A. This strategy essentially consists of three simple linear regressions:
Y ∼ A, A ∼W1 +W2, and the ε-regression. In this special case, the TMLE estimate for β will be
equivalent to the coefficient of A from the multiple regression Y ∼ A+W1 +W2, which means that
our semiparametric model is reduced to a simple parametric model. Since we are using a simple
Q0

n that is unlikely to capture the truth, the consistency of βn now relies largely on the fit of gn(W ).
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Table 8: Significant QTL hotspots detected by the UR and the TMLE in the yeast dataset.
Significant QTL hotspots are defined as the QTL linked to more than 26 gene expression
traits for the UR, and 20 traits for the TMLE. Column “n” is the number of genes linked to
the QTL hotspot

Univariate Regression TMLE

chr start end n cis-linked genes chr start end n cis-linked genes

1 40 60 32 OAF1, YAL049C, YAL046C 1 40 60 25 SAME
1 180 200 21 YAR028W, UIP3, MST28

2 300 320 75 N/A
2 360 380 142 ECM2, TRM7, NRG2, YBR064W,

TIP1, TAT1
2 360 380 21 SAME

2 500 580 593 CNS1, TBS1, CSH1, DEM1, PEX32,
TOS1, TYR1, NPL4, YBR137W

2 500 580 333 SAME

2 640 680 86 N/A
3 60 100 279 LEU2, RNQ1, FRM2 3 60 100 201 SAME
3 100 120 65 N/A 3 100 120 50 N/A
3 200 220 67 YCR041W, MATALPHA2, MATAL-

PHA1, TAF2, RSC6
3 200 220 50 SAME

4 920 940 111 N/A 4 920 940 73 N/A
4 1140 1160 29 YDR339C

4 1520 1540 28 YDR544C, YRF1-1 4 1520 1540 27 SAME
5 100 120 49 URA3, GEA2 5 100 120 41 URA3
5 340 360 148 N/A 5 340 360 23 N/A
5 380 400 72 N/A 5 380 400 23 N/A
5 420 440 155 N/A 5 420 440 32 N/A
7 40 60 135 TAD1 7 40 60 29 SAME
8 80 120 151 GPA1, YAP3, YHL010C, SHU1 8 80 120 90 SAME

9 20 40 44 YIL169C, YIL166C, YIL163C
10 20 40 36 YJL213W, YJL218W, YJL217W 10 20 40 22 YJL218W, YJL217W
10 80 100 30 SWI3, ATG27, CPS1
12 500 520 36 YLR173W, DPH5, IDP2, YLR179C,

RFX1
12 500 520 32 SAME

12 640 720 256 HAP1, NEJ1, YLR283W, YLR287C 12 640 660 121 HAP1
12 880 900 27 N/A
12 940 960 27 YLR414C
12 1040 1060 55 YLR455W 12 1040 1080 84 YLR455W, YLR462W, YLR464W,

YLR463C
13 40 60 109 N/A 13 40 60 123 N/A

13 540 560 39 N/A
14 440 460 413 YPT53, RHO2, YNL089C, TOP2 14 440 460 330 SAME
14 480 500 222 LAT1, MSK1 14 480 540 162 LAT1, MSK1, AQR1
14 540 560 39 SLM2, YNL046W, YNL040W
15 140 200 517 HMI1, SPO21, RFC4, YOL092W,

HAL9, YOL085C, ATG19, PHM7
15 140 180 405 SAME

15 280 300 28 YOL019W, YOL014W 15 280 300 22 SAME
15 560 580 62 YOR131C 15 560 580 56 SAME

16 420 440 41 CWC27

Despite the simplicity of this approach, there were substantial improvements in TMLE compared
to UR (Figure 6), and one can use this fast TMLE as a more reliable screening tool.

We surveyed all the gene-marker pairs with TMLE and UR. P-values were adjusted with FDR,
pooling all the tests. The 0.05 FDR cutoff for UR was 0.00028, and for TMLE was 0.00011.
Redundant linkages were handled as in Wang et al. (2006), where at most one QTL is assumed
on each chromosome. In Table 9, we report the number of gene expression traits with multiple
QTL at an FDR 0.05 level for both UR and TMLE. With UR, there are 2997 gene expression
traits detected with more than 2 QTL, while with TMLE, this number is reduced to 1837. In
Zou and Zeng (2009), 1242 traits are claimed to have multiple QTL with a sequential multiple
interval mapping procedure. We also summarized our results in terms of the QTL hotspots —
small genomic regions linked to multiple gene expression profiles. The yeast genome was divided
into 611 20-Kb bins, and the number of non-redundant linkages to each bin were counted. For
UR, there are 6430 linkages to 752 markers; for TMLE, there are 4304 linkages to 702 markers.

23

Hosted by The Berkeley Electronic Press



0 200 400 600

0
5

10
15

Gene BTS1

Kb

−
lo

g1
0 

p−
va

lu
e

UR
TMLE

Figure 6: An individual example of how the TMLE achieves a better resolution than the UR for a
QTL on chromosome 2 for gene expression trait BTS1. The y-axis is the negative log10 p-value,
the x-axis represents the chromosome 2 in Kb. Black line represents the UR, and red line represents
the TMLE.

24

http://biostats.bepress.com/ucbbiostat/paper285



Table 9: The number of genes tabulated with the number of QTL linked to the gene for the
yeast data set

Number of QTL 0 1 2 3 4 5 6 7

UR 1127 2051 1726 895 297 65 13 1
TMLE 2042 2296 1249 460 108 16 4 0

We also assessed cis-linked genes at significant QTL hotspots and listed these genes in Table 8. A
cis-gene is defined as an expression trait gene with a QTL linked to itself within a 10 Kb upstream
and downstream window. Our results are essentially consistent with what has been reported in the
literature (Brem et al. 2002; Sun et al. 2007).

5 Discussion
Current practice for assessing the effects of genes on a phenotype involves the utilization of para-
metric regression models. One of the advantages of parametric regression models is that they also
provide a p-value, allowing one to rank the different estimated effects and assess their significance.
However, both the effect estimates as well as the reported statistical significance are subject to bias
due to model misspecification. On the other hand, machine learning algorithms such as random
forest, are not sufficient when used alone since these algorithms are tailored for prediction, report
generally poor effect estimates, and do not provide a measure of significance. C-TMLE allows us
to incorporate the state of the art in machine learning, without significant computational burden
(the targeting step is relatively trivial, although it needs to be carried out for each effect), while still
providing an estimate tailored for the effect of interest and CLT-based statistical inference.
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