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Abstract

Propensity score methods are a popular tool to control for confounding in observational data,
but their bias-reduction properties are threatened by covariate measurement error. There are
few easy-to-implement methods to correct for such bias. We describe and demonstrate how
existing sensitivity analyses for unobserved confounding—propensity score calibration, Van-
derweele and Arah’s bias formulas, and Rosenbaum’s sensitivity analysis—can be adapted
to address this problem. In a simulation study, we examined the extent to which these
sensitivity analyses can correct for several measurement error structures: classical, system-
atic differential, and heteroscedastic covariate measurement error. We then apply these
approaches to address covariate measurement error in estimating the association between
depression and weight gain in a cohort of adults in Baltimore City. We recommend the use
of Vanderweele and Arah’s bias formulas and propensity score calibration (assuming it is
adapted appropriately for the measurement error structure), as both approaches perform
well for a variety of propensity score estimators and measurement error structures.
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with depression could have disability scores that are measured too low and with more noise
than those without depression. For example, those with depression have more variable SF-
36-Phys scores (variance of 0.625 versus 0.434) and scores that are lower on average (mean of
-1.1 versus -0.6). However, we have no gold standard measurement of disability. For the pur-
poses of illustration, we use the SF-36-Phys as the gold standard and simulate measurement
error to add to obtain a mismeasured version: W = X + N(0,1) + I(A = 1) « N(-0.5,2),
where A is the depression indicator, X is the SF-36-Phys, and W is the mismeasured version
of the SF-36-Phys. W exhibits both systematic and heteroscedastic measurement error by
exposure status, shown in Figure 4, in that those who are depressed score slightly lower
and have more variability. The reliability of the mismeasured version among those who are
depressed is 0.12; the reliability among those who are not depressed is 0.31.

Figure 4: Disability measure (SF-36-Phys) with and without added measurement error.
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For this simple example, we include the N=597 women with complete data.We take a
random one-third sample to create a validation subset (N=193). We then use this valida-
tion dataset to create the PSC model and to inform the sensitivity analysis parameters for
the Vanderweele and Arah approach. We use stepwise selection to choose the best fitting
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propensity score model from all possible second order terms. We control for confounding by
conditioning on the linear propensity score for PSC and by inverse probability of treatment
weighting for the Vanderweele and Arah approach. We estimate the average effect of depres-
sion on subsequent change in BMI, conditional on covariates, correcting for measurement
error. The percentile method from 1,000 bootstrapped samples is used to estimate 95% Cls.

Results

We expect the WLS PSC approach and Vanderweele and Arah’s bias formula to correct
for our simulated systematic and heteroscedastic differential measurement error, as seen in
Table 2. We include results using the original least squares PSC approach for comparison.
Figure 5 shows the estimated effects comparing: 1) the “naive" estimate, using the version
of SF-36-Phys with added measurement error; 2) the “true" estimate, using the SF-36-Phys
without added error; 3) and the “corrected" estimates for each of the sensitivity analysis
approaches.

Figure 5: Estimates and 95% CIs of the average effect of depression on subsequent change
in BMI, conditional on covariates using the Vanderweele and Arah bias formula and PSC to

correct for covariate measurement error.
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We find that using the Vanderweele and Arah bias formula reduces bias by 94%, WLS PSC
reduces bias by 59%, and the original least squares PSC slightly increases the bias. Although
the bias is reduced using each of the two appropriate sensitivity analysis approaches, the
confidence intervals widen.

These results should be interpreted with caution as we have made multiple simplifications.
A more comprehensive analysis would account for missing data and informative drop out,
time-varying confounding, and potential mediation.

DISCUSSION

Covariate measurement error and unobserved confounding are equivalent in terms of their
potential to bias estimates. Few researchers undertake sensitivity analyses to estimate the
potential impact of unobserved confounding and even fewer do so for measurement error.
Moreover, when measurement error is considered, it is typically limited to classical measure-
ment error even though more complex error structures may be present.

In this paper, we described and demonstrated how several easy-to-implement sensitivity
analyses for unobserved confounding can be adapted to address classical, systematic differ-
ential, and heteroscedastic covariate measurement error in propensity score methods. In a
limited simulation study, we provided optimal performance bounds for the extent to which
these sensitivity analyses can correct for measurement error. To further lower barriers to
implementation, we provide annotated R code in the Web Appendix that serves as a tutorial.
We describe strengths and limitations of each sensitivity analysis below.

An advantage of PSC is that it can address multiple covariates measured with error simul-
taneously. It can be used with propensity score matching, subclassification, and regression
adjustment of the propensity score, but not with weighting. However, the surrogacy assump-
tion may be restrictive. Our adaptation of the method using WLS relaxes this assumption,
allowing PSC to be used for systematic differential measurement error. This adaptation has
the benefit of reducing bias and improving confidence interval coverage but at the expense
of greater variance. Other limitations of PSC include that it tends to overadjust and break
down when measurement error is large and/or the association between the naive and true
propensity scores is weak (14). Most importantly, it reduces but may not eliminate bias due
to measurement error. For example, in simulation studies in which all assumptions were met,
Sturmer et al. found bias reductions between 32 and 106% (16). We found similar results
(see Table 3). Similar to Sturmer et al., we found that bias reductions were closest to 100%
in scenarios where the ATE=0 (results not shown but available upon request).

A significant advantage of the Vanderweele and Arah bias formulas is that if the correct
sensitivity parameters are used and the assumptions are met, then the bias estimate is itself
unbiased in expectation. Thus, this approach can fully correct for bias due to all three types
of covariate measurement error considered. In addition, the approach can be used for any
estimation method.

Rosenbaum’s sensitivity analysis is perhaps the most familiar of all sensitivity analyses
for unobserved confounding. However, it has several disadvantages in our context. The first
is that it can only be used with propensity score matched data. The second is that it can be
used to obtain a corrected test statistic or p-value, but it is not clear how it would provide an
adjusted estimate for the ATE. Another disadvantage is that the interpretation of A is not
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straightforward when Y is continuous, which makes it difficult to posit or provide sensitivity
analysis values. Finally, we find that the method may reduce bias but that this reduction is
far from complete (see Table 3).

In addition to demonstrating method performance with a simulation study, we applied
these approaches to a data example estimating the association between depression and sub-
sequent change in BMI among women, using propensity score methods to control for con-
founding. For the purposes of illustration, we added simulated differential measurement error
to the disability covariate. We found that both recommended approaches, the Vanderweele
and Arah bias formula and WLS PSC, reduce bias due to the covariate measurement error,
thus demonstrating the practical utility of such sensitivity analyses.

This paper was limited in scope. Our goals were 1) to show the connection between
bias caused by unobserved confounding and that caused by covariate measurement error and
2) to demonstrate how several simple approaches for addressing unobserved confounding
could also be used to address covariate measurement error. There exist numerous other
approaches for addressing covariate measurement error that may perform better and rely
on fewer assumptions (46, 12, 26-34). However, with few exceptions (12), many of these
approaches are not as easy to implement for nonstatisticians. Comparing performance among
these other approaches and lowering barriers to implementation are areas for future work.

In conclusion, we recommend the use of Vanderweele and Arah’s bias formulas and PSC
(assuming it is adapted appropriately for the measurement error structure) to assess sen-
sitivity of results to covariate measurement error. Both approaches are appropriate for a
variety of propensity score estimators and measurement error structures. Real-world data
are messy. Concerns about bias due to unobserved confounding and/or measurement error
should be addressed rather than ignored. We hope that methods such as the ones examined
in this paper will be more widely utilized in addressing such concerns.

Sources of financial support: EAS’s time was supported by the National Institute of
Mental Health (RO1IMH099010; PI: Stuart). KER’s time was supported by the Drug Depen-
dence Epidemiology Training program, (T32DA007292-21; PI: Deborah Furr-Holden) and
the Robert Wood Johnson Foundation Health & Society Scholars program.
Acknowledgements: We thank Drs. Brian Schwartz and Thomas Glass for support in
providing the Baltimore Memory Study data.
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Supplementary Web Appendix for: Using sensitivity
analyses for unobserved confounding to address covariate
measurement error in propensity score methods

1 Simulation overview and set-up

We demonstrate how to implement each of the sensitivity analysis approaches discussed
in the main text with a limited simulation study. Using PSC, we estimate the condi-
tional ATE; using Vanderweele and Arah’s bias formulas, we estimate the marginal ATE
(which is the same as the conditional ATE under our data generating mechanisms); and
using Rosenbaum sensitivity analysis, we estimate the p-value. For each simulation, we
consider a sample of size N = 10,000 and run 1,000 simulation iterations. We evalu-
ate performance in terms of mean percent bias, mean variance, 95% confidence interval
coverage, and mean squared error (MSE).

In practice, we would generate multiple corrected estimates based on a variety of
sensitivity parameters or validation datasets. For the purposes of this limited simu-
lation study, however, we assume correct knowledge of sensitivity parameters and the
presence of a generalizable validation dataset. Thus, our simulation study represents
an optimal performance bound—how well each method could perform under the given
data-generating mechanism.

Table 1 gives the 1) classical, 2) systematic differential, and 3) heteroscedastic mea-
surement error data-generating mechanisms, following the same notation as in the main
text. As seen in Table 1, we use the same data-generating mechanisms for both the PSC
and Vanderweele and Arah bias formula approaches. We use different data-generating
mechanisms for the Rosenbaum approach for two reasons: first, to ensure an inferential
difference between the naive and true estimate, and second, to use a binary Y variable
to improve interpretation of the A sensitivity parameter.
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Web Table 1: Simulation data generating mechanisms. For the Rosenbaum sensitivity
analysis, only changes to the data generating mechanisms are given.

Classical ‘ Systematic Differential ‘ Heteroscedastic Differential
Propensity score calibration & Vanderweele and Arah’s bias formulas
Z ~N(1,1)

X ~N(1+40.22,1)

A ~ Ber(Logit—'(2log(1.2) — log(1.2) X — log(1.2)Z))

W ~ N(X,v2) | W~ N(X +1.24X,05) | W~ N(X,/0.5(1+A)?2)
Y ~3A+3X +2Z

Rosenbaum’s sensitivity analysis

A ~ Ber(Logit™'(—4log(2) + log(2) X + log(2)Z))
| W~ N(X — AX,0.5) |
Y ~2X 427

In the next section, we provide annotated R code to implement each measurement
error sensitivity analysis.

2 R code

2.1 Sensitivity analyses functions

require (zoo)
require (nlme)
require (Matchlt)

# the simulation set—up code in the following section makes a data frame
with the following columns

6|# t = treatment wvariable, 0/1

71# w = observed cowvariate measured with error, continuous

8|# © = unobserved cowvariate measured without error, continuous

9o|# z = observed cowvariate measured without error, continuous

10|# u = w1z

11|# y = outcome variable , continuous

12| # wvalidation = indicator of whether observation is in wvalidation subset, 0/
1

13

14| expit<—function(p){

15 } exp(p)/(1+exp(p))

16

17
18
19
20
21
22
23

logit<—function (p){
log(p/(1-p))

naiveiptw<— function(dat){
sampled . data<—dat
sampled . data$ps<—predict (glm(t ~
binomial"), type="response")

w + z, data=sampled.data, family="
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24

25

26
27
28
29
30
31
32
33
34
35
36

37
38

39
40
41
42
43

44
45
46

47
48
49
50
51
52
53
54
55
56
57

58
59

60
61

62
63
64

65
66

sampled . data$iptw<—ifelse (sampled .data$t==1, 1/sampled.data8ps, 1/(1—
sampled . data$ps))

return (summary(glm(y ~ t , data=sampled.data, family="gaussian",
weights=sampled . data$iptw))$coef[2])

}

#PSC, LS (classical measurement error)
psc <— function(dat){
sampled . data<—dat

validationdat<—sampled .data[sampled .data$validation==1,]
studydat<—sampled . data[sampled.data$validation==0,]

#fit EP ps model in validation set

validationdat$epps<—predict (glm(t ~ wxz, data=validationdat, family="
binomial"), type="response")

#fit GS ps model in validation set

validationdat$gsps<—predict (glm(t x + z, data=validationdat , family="
binomial"), type="response")

modek—glm (gsps ~ t+logit (epps), data=validationdat , family="binomial")

#get EP ps in study dataset

studydat$epps<—predict (glm(t ~ wxz, data=studydat, family="binomial"),
type="response")

studydat$predgsps<—predict (model, newdata=studydat, type="response")

return (summary (glm(y ~ t + logit (predgsps), data=studydat, family="
gaussian"))$coef[2])

}

#PSC, WLS (systematic differential measurement error)
psc.wls <— function(dat){
sampled . data<—dat

validationdat<—sampled.data[sampled .data$validation==1,]
studydat<—sampled .data[sampled.data$validation==0,]

#fit EP ps model in wvalidation set

validationdat$epps<—predict (glm(t ~ wtz, data=validationdat , family="
binomial"), type="response")

#fit GS ps model in wvalidation set

validationdat$gsps<—predict (glm(t ~ x + z, data=validationdat , family="

binomial"), type="response")

glsfit<—gls (qlogis(gsps) “txqlogis(epps)+z, data=validationdat , weights=
varldent (form = 7 1 | t))

#get EP ps in study dataset

studydat$epps<—predict (glm(t
type="response")

studydat$predgsps<—predict (glsfit , newdata=studydat)

wtz, data=studydat, family="binomial"),
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67

68
69
70
71
72
73
74
75
76

7
78
79
80
81
82
83
84
85

86

87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

106

107

109

return (summary (glm(y ~ t + predgsps, data=studydat, family="gaussian"))$
coef[2])

#Vanderweele and Arah, classical measurement error
vasimp<— function (dat){
sampled . data<—dat

atew<—naiveiptw (sampled .data)
correst<—atew — (summary(lm(y ~
coefficient [5] * summary (lm(
coefficient [2])

t + w + u, data—sampled.data))$
u = z

+ w , data=sampled.data))$

return(correst)

}

#Vanderweele and Arah, systematic differential measurement error

vanonconst<— function(dat){
sampled . data<—dat

predutl<—predict (Im(u ~ w + z, data=sampled.data|sampled.data$t==1,]),
newdata=sampled . data)

predutO<—predict (lm(u ~ w + z, data=sampled.data[sampled.data$t==0,]),
newdata=sampled . data)

predu<—predict (lm(u ~ w + z, data=sampled.data), newdata=—sampled.data)

bias<—(summary(lm(y~ z + wt u, data=sampled.data[sampled.data$t==1,]))$%

coefficient [4]*mean(predutl—predu)) — (summary(lm(y~ z + wt u, data
=sampled . data[sampled.data$t==0,]))$coefficient [4]*mean(predut0—
predu))

atew<—naiveiptw (sampled.data)

correst<—atew — bias
return(correst)

#Rosenbaum sensitivity analysis
p.upper<— function(theta, pi) {
(thetaxpi+(l—theta)*(1—pi))

}

rosenbaum<—function (dat){
sampled . data<—dat

delta<—exp (summary(glm(y = t + z + w + u, data=data, family="binomial"))$
coefficients [5])

gamma<—exp (summary (glm(t ~ z + w + u, data=data, family="binomial"))$
coefficients [4])

theta <— delta/(1+delta)
pi <— gamma/(1-+gamma)
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110
111 m.out<—matchit(t = w + z, data = data, method = "nearest", replace=FALSE)
112| pairs<—data.frame(treated=as.numeric(row.names(m. out$match. matrix)) ,
control=as.numeric(m. out$match. matrix) )

113
14|  ys<—matrix(rep(NA, 10*nrow(pairs)), ncol=10)
115  for(j in l:nrow(ys)){

116 ys|j,1l]<—c(data$y|[row.names(data)—pairs|[j,1]])
117 ys|j,2]<—c(data$y|[row.names(data)=—pairs|[j,2]])
118 }

119

120/ ysdat<—data.frame(treated=ys|[,1], control=ys|[,2])

121 ysdat$x<—ifelse (ysdat$treated==1 & ysdat$control==0, 1, 0)
122 ysdat$n<—ifelse (ysdat$treated !=ysdat$control, 1, 0)

123
124 #corrected

125 delta<—exp (summary(glm(y ~ t + z + w + u, data—data, family="binomial"))$
coefficients [5])

126| gamma<—exp (summary(glm(t ~ z + w + u, data=data, family="binomial"))$
coefficients [4])

127
128 theta <— delta/(1+delta)
120 pi <— gamma/(1+gamma)

130
131 return (binom. test (sum(ysdat$x), sum(ysdat$n), p=p.upper(theta, pi),
alternative="greater")$p. value)

132| }

SAFunctions.R

2.2 Sample code for simulation

1
2| ## PSC and Vanderweele and Arah sensitivity analysis

3

4| expit<—function(p){

5| exp(p)/(1+exp(p))

6

7

s|## Classical measurment error data generating mechanism
9

10l nsims <— 1000

11| set . seed (132)

12| n<—10000

13| truth<-3

14

15|# z is a coefficient measured without error

16| z<—rnorm(n, 1, 1)

17|# x is a coefficient measured with error

18| x<<—rnorm(n, 1+ (.2x%z), 1)

19

20| # the treatment depends on both x and z
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

beta0<— 2xlog(2)

betal<— —log(2)

beta2<— —log(2)

t<-rbinom(n, 1, prob=expit(betal + betal*xz + beta2xx))
# y is the outcome wvariable

psi0<=0

psil<—3

psi2<-3

psi3<—2

meany<—psi0 + psil*t + psi2*x + psid3*z
y<— rnorm(n, meany, 1)

# w 1s the mismeasured x.

# classical measurement error

gamma(<—0

gammal<—1

gamma2<— 0

gammad<— 0

meanw<—gammal + gammal*x + gamma2*t + gammad*t*xx
w<—rnorm(n, meanw, sqrt(2))

#systemtatic differential measurement error
#gammaK— 1.2

#meanu—gammal + gammalxx + gamma2%t + gammaSk t*x
#u—rnorm (n, meanw, .5)

#heteroscedastic

#delta0<—0.5 #measurement error in control group
#deltal<—1 #extra measurement error in tr group
#mevar<—deltaOx (1+(deltalxt)) "2

#u—rnorm(n, x, sqrt(mevar))

u<<—w—Xx
validation<-rbinom(n,1, prob=.1)

data<—data.frame(z,x,t,w,y, u, validation)

## Rosenbaum sensitivity analysis

## Classical measurment error data generating mechanism
set .seed (132)
n<—10000

# z is a coefficient measured without error
z<—rnorm(n, 1, 1)

# x is a coefficient measured with error
x<—rnorm(n, 1+ (.2x%z), 1)
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78
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81
82
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84
85
86
87
88
89
90
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95
96
97
98
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100
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106
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109
110
111

# the treatment depends on both x and z

beta0<— —4xlog (2)

betal<-log(2)

beta2<—log (2)

t<-rbinom(n, 1, prob=expit(betal + betalxz + beta2xx))
probt<—expit (beta0 + betalxz + beta2xx)

# w 1s the mismeasured x.

#classical measurement error

gamma(<—0

gammal<—1

gamma2<— 0

gammad<— 0

meanw<—gammal + gammal*xx + gamma2*t + gamma3*t*xx
w<—rnorm(n, meanw, sqrt(2))

#systematic differential measurement error
#HgammaK— —1

#meanu—gammal + gammalxx + gamma2%t + gammaSkt*x
#u—rnorm (n, meanw, .5)

#heteroscedastic measurement error

#delta0<—0.5 #measurement error in control group
#deltal<—1 #extra measurement error in tx group
#mevar<—deltaOx (1+(deltal*t)) 2

#w—rnorm(n, x, sqrt(mevar))

u<l—w—Xx

# vy 1s the outcome wvariable

psi0<-0

psil<—0

psi2<—2

psid<—2

y<-rbinom(n, 1, prob=expit(psi0 + psilxt + psi2*x} psi3*z))

data<—data.frame(x=x, w=w, t=t, y=y, z=z, u=u)

sim.R
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