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Targeted Minimum Loss Based Estimation
Based on Directly Solving the Efficient

Influence Curve Equation

Paul Chaffee and Mark J. van der Laan

Abstract

Applying targeted maximum likelihood estimation to longitudinal data can be
computationally intensive. As the number of time points and/or number of in-
termediate factors grows, the computation resources consumed by these algo-
rithms likewise increases. Different TMLE algorithms have different computa-
tional speeds and implementation challenges; there may also be efficiency differ-
ences of the corresponding estimators. The algorithm we describe here proceeds
by solving the empirical efficient influence curve equation directly using numer-
ical computation methods, rather than indirectly (by solving a score equation),
which is the usual route. We believe that this estimator is the simplest of the
TMLE procedures to implement in the longitudinal data structure simulated here,
which mimics a sequential randomized controlled trial with dynamic treatment
rules. Our choice of numerical methods is the well-known secant method for find-
ing the root of a function. The resulting estimation algorithm has computational
speed approximately equal to one of the two existing TMLE algorithms for the
data generating distributions considered here.



1 Introduction

1.1 Background

Experimental Setting

Sequentially Randomized Controlled Trials (SRCTs) are rapidly becoming
essential tools in the search for optimized treatment regimes in ongoing treat-
ment settings. Analyzing data for multiple time-point treatments with a view
toward optimal treatment regimes is of interest in many types of afflictions.

A common setting for ongoing treatment therapy involves randomization to
initial treatment (or randomization to initial treatment within subgroups of
the population of interest), followed by later treatments which may also be
randomized, or randomized to a certain subset of possible treatments given
that certain intermediate outcomes occurred after the initial treatment. We
give a very brief list of recent method papers for SRCTs in Chaffee and
van der Laan (2011).

In particular we concern ourselves with parameters of the observed data that
are indexed by dynamic treatment rules or dynamic treatment regimes. A
generic example of such a rule is to randomize subjects of a study to an
initial pair of treatments (A or B, say), and if a subject responds poorly to
the initial treatment, then he or she is again randomized to A or B at the
second treatment point. On the other hand, if the subject does well on the
first treatment (as determined by some intermediate biomarker), then he or
she is assigned the same treatment at the second time point as the first. If
the intermediate biomarker in such SRCTs is affected by initial treatment,
and in turn affects decisions at the second time-point treatment as well as
the final outcome, then it is a so-called time-dependent confounder. Many
of the methods developed for multiple time-point treatments are designed to
remove bias due to this type of confounder.

Context of the New Estimator

In Chaffee and van der Laan (2011) we describe the implementation of two
distinct targeted maximum likelihood estimation (TMLE) algorithms (corre-
sponding to “one-step” and “iterative” procedures) for estimating specified
counterfactual parameters of the underlying distribution corresponding to a
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particular longitudinal data structure, indexed by dynamic treatment rules.
We also compared their performance to that of some well-known existing es-
timators. The comparative advantages amongst TMLE’s involve differences
in computational resources needed, and in complexity of implementation. In
this article we present a third algorithm, which we find conceptually eas-
ier to implement than either of the foregoing methods, and whose speed is
comparable to that of the iterative method.

We emphasize that there are targeted maximum likelihood estimators (plu-
ral) of a given parameter, since TMLE is a class of estimation methods that
utilizes i) a fluctuation submodel of an initial estimator and ii) a loss function
or other empirical criterion for fitting the submodel.

The TMLEs presented in Chaffee and van der Laan (2011), as well as all
other heretofore implemented TMLEs independent of data type, all solve a
score equation as the means of constructing the estimator. Here we present
a TMLE based on a different empirical criterion, namely, solving the empir-
ical efficient influence curve equation directly. We have been moving toward
the term “targeted minimum loss-based” rather than “targeted maximum
likelihood” in describing this class of estimators, and the procedure we de-
scribe here motivates this terminological adjustment since maximizing the
likelihood is not involved in the construction of the estimator.

The procedure bears a superficial similarity to that of estimating equation
methodology, though our procedure solves the efficient influence curve (EIC)
equation by adjusting the amount of fluctuation of a predesignated fluctua-
tion submodel, and does not solve it in the parameter, ψ. Like all TMLE’s
(and unlike estimating equation-based estimators), this TMLE is a substi-
tution estimator, and retains the associated benefits. Results from our sim-
ulations indicate that the procedure also exhibits all of the finite sample
advantages of the existing TMLE procedures, which have been described in
a variety of applications (van der Laan et al., 2009), and which were also
seen in Chaffee and van der Laan (2011).

2 Data Structure and Likelihood

As in our earlier paper, we consider the longitudinal data structure O =
(L(0), A(0), L(1), A(1), Y = L(2)) ∼ P0, where L(0) is a vector of baseline
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covariates, A(0) is initial randomized treatment, L(1) is a single intermediate
outcome or other time-varying covariate, A(1) is the second time point treat-
ment, Y = L(2) is the outcome of interest and P0 is the joint distribution of
O. The likelihood of the data described above can be factorized as

p(O) =
2∏
j=0

P [L(j) | L̄(j − 1), Ā(j − 1)]
1∏
j=0

P [A(j) | L̄(j), Ā(j − 1)], (1)

where Ā(j) = (A(0), A(1), ..., A(j)) and L̄(j) is similarly defined. This par-
ticular factorization is the natural one given the time-ordering of the factors
specified by the data structure.

For simplicity, we introduce the notation QL(j), j = 0, 1, 2 to denote the
factors of (1) under the first product and gA(j), j = 0, 1 for those under the
second, which is the treatment mechanism. In the simpler notation,

p =
2∏
j=0

QL(j)

1∏
j=0

gA(j) = Qg.

We are interested in a treatment-specific mean for the multiple time point
data structure, where here a particular treatment means a specific treatment
course over time. Instead of a static treatment regime, we define a treatment
rule, d = (d0, d1) for the treatment points (A(0), A(1)) where d0 : L(0) →
d0(L(0)) and d1 : (A(0), L̄(1)) → d1(A(0), L̄(1)). Since following the rule
entails A(0) = d0(L(0)) we can also write d1 : L̄(1) → d1(L̄(1)) and hence
the overall rule d(L̄(1)) =

(
d0(L(0)), d1(L̄(1))

)
. Under this definition we can

easily express either static or dynamic treatment rules, or a combination of
the two. Several examples of dynamic treatment rules are given in section
4.1.

We next define the G-formula to be the product across all nodes, excluding
intervention nodes, of the conditional distribution of each node given its
parent nodes, and with the values of the intervention nodes fixed according to
the static or dynamic intervention of interest. This formula thus expresses the
distribution of L̄ under the dynamic intervention Ā ≡ (A(0), A(1)) = d(L̄):

P (d)(L̄) =
2∏
j=0

Q
(d)
L(j)(L̄(j)), (2)
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where

Q
(d)
L(j)(L̄(j)) ≡ P (L(j) | L̄(j − 1), Ā(j − 1) = d(L̄(j − 1))).

The superscript (d) here indicates that the conditional distribution of each
node given its parent L nodes is also conditional on treatment being set
according to the specified treatment rule. We reserve subscript d to refer to
counterfactually-defined variables.

Under the so-called sequential randomization assumption (SRA) and posi-
tivity assumption, the G-computation formula equals the counterfactual dis-
tribution of the data had one carried out the specified intervention described
by the causal graph, which graph is assumed to underlie data generation.

In Chaffee and van der Laan (2011), we present the causal model we as-
sume, which is nothing but a set of causal dependencies implied by the time
ordering (L(0), A(0), ..., L(2)). The model can be viewed as a set of struc-
tural equations that codify functional dependencies between the graph nodes,
and which therefore allow us to define the counterfactual Yd. This in turn
enables the identification of a corresponding counterfactual parameter of in-
terest, ΨF = EYd, which is a well-defined mapping MF → R under the full
data distribution. Using (2),

ΨF = EYd

=
∑

l(0),l(1)

E (Yd | L(0) = l(0), Ld(1) = l(1))
1∏
j=0

QLd(j)(l̄(j)), (3)

where QLd(j) ≡ P (Ld(j) | Pa(Ld(j))). In words, this parameter is the mean
outcome under the causal model where all treatments are set according to
the dynamic treatment intervention Ā = d(L̄).

For the parameter of interest here, EYd, the sequential randomization as-
sumption (SRA), Yd ⊥ A(j) | Pa(A(j)) for j = 0, 1, is sufficient for iden-
tifiability of the causal parameter ΨF and the following parameter of the
observed data distribution, Ψ(P0) (Robins, 1986).
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ΨF ≡ EYd
SRA
=

∑
l(0),l(1)

E
(
Y | L(0) = l(0), L(1) = l(1), Ā = d(L̄)

)
×

P (L(1) = l(1) | L(0) = l(0), A(0) = d0)×

P (L(0) = l(0))

= Ψ(P0). (4)

Note that this parameter depends only on the Q part of the likelihood and
we therefore also write Ψ(P0) = Ψ(Q0). Note also that the first two factors in
the summand are undefined if either P

(
Ā = d(L̄) | L(0) = l(0), L(1) = l(1)

)
or P (A(0) = d0 | L(0) = l(0)) are 0 for any (l(0), l(1)), and so we require
these two conditional probabilities to be positive—the so-called positivity
assumption.

3 Method

3.1 Existing TML Estimators

In targeted minimum loss-based estimation (TMLE) we begin by obtaining
an initial estimator of Q0; we then update this estimator with a fluctuation
function that is tailored specifically to remove bias in estimating the particu-
lar parameter of interest. Naturally, this means that the fluctuation function
is a function of the parameter of interest. The initial estimator, Q0 of Q0 can
be obtained in a number of ways, but we advocate a data-adaptive approach
in all cases. In any case, the TMLE methods do not require any particular
estimation method for Q0, though there are clear gains if Q0 is close to Q0.

Upon obtaining an initial estimate Q0, the next step in TMLE is to ap-
ply a fluctuation function to this initial estimator that is the least favorable
parametric submodel through the initial estimate, Q0, for the parameter Ψ
(van der Laan and Rubin, 2006). We signify this fluctuated update Qn(ε).
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Since the Cramer-Rao lower bound corresponds with a standardized L2 norm
of dΨ(Qn(ε))/dε evaluated at ε = 0, this is equivalent to selecting the para-
metric submodel for which this derivative is maximal w.r.t. this L2 norm.

The above described fluctuated update Qn(ε) also results in an asymptot-
ically efficient estimator, because the score of our parametric submodel at
zero fluctuation equals the EIC of the pathwise derivative of the target
parameter, Ψ (also evaluated at ε = 0). As we mentioned in the last
section the TMLE of Ψ(Q) essentially consists in i) selecting a submodel
Qg(ε) possibly indexed by nuisance parameter g, and ii) a valid loss function
L(Q,O) : (Q,O)→ L(Q,O) ∈ R. Given these two elements, TMLE solves

Pn

{
d

d(ε)
[L(Q∗n(ε))]ε=0

}
= 0, (5)

so if this “score” is equal to the EIC, D∗(Q∗n, gn), then we have that Q∗n
solves PnD

∗(Q∗n, gn) = 0. Now a result from semi-parametric theory is that
solving this efficient score for the target parameter yields, under regularity
conditions (including the requirement that Qn and gn consistently estimate
Q0 and g0, respectively), an asymptotically linear estimator with influence
curve equal to D∗(Q0, g0) (Bickel et al., 1997). The TMLE of the target
parameter is therefore efficient. Moreover, the TMLE is double-robust in
that it is a consistent estimator of Ψ(Q0) if either Qn or gn is consistent.

TMLE acquires this property by choosing the fluctuation function, Q(ε), such
that it includes a term derived from the efficient influence curve of Ψ.

3.2 Numerical Solution TMLE

General Description

Above we mentioned that existing TMLE’s solve (5). The method we present
here involves solving instead

PnD
∗(Qn(ε), g) = 0 (6)

in ε, or to the same effect, selecting εs such that

εs = argmin
ε
|PnD∗(Qn(ε), g)|, (7)
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where g is either the given, known treatment mechanism or an estimate of
it, and ε ∈ [a, b] ⊂ R, which interval is assumed to contain the solution to
(6). The general idea for this method was first suggested in van der Laan
and Rubin (2006). Qn(ε) takes the exact form as for the loss-based TMLE’s,
i.e., it uses the same parametric submodel through Q0 (see below). What
remains is to choose ε. If the empirical EIC is well-behaved on ε ∈ [a, b] and
the solution is contained in that interval, then one should be able to find an
εs such that PnD

∗(Qn(εs), gn) is arbitrarily close to 0, which means one has
effectively found an estimator Qn(εs) of Q0 that solves (6).

Accordingly, let us define Q∗s ≡ Qn(εs), where εs is the solution to (6), or
to (7) if a finite number of candidate solutions is considered. Ψ(Q∗s) is then
the corresponding “numerical methods TMLE” of Ψ(Q0). Since this choice
of Q∗s solves PnD

∗(Qn(ε), g) = 0, it necessarily solves (5) with Q∗s in place
of Qn(ε). However, since the solution εs was not arrived at via application
of the loss function L(Q,O) assumed in (5), we have no assurance that the
likelihood for Q∗s has increased relative to Q0, the latter estimator being
some initial estimate of Q0 without fluctuation applied. That is, assuming
the negative log likelihood as the loss function, we have no set of conditions
that guarantees that PnL(Q∗s, O) ≤ PnL(Q0, O). Nevertheless, Q∗s represents
a movement along the hardest submodel from some initial Q0, which does
indeed result in an estimator Ψ(Q∗s) that is less biased than Ψ(Q0), even if in
practice Q∗s does not have a greater likelihood than Q0, though it would be
surprising if it failed to. It is nevertheless encouraging to see that PnL(Q∗s) ≤
PnL(Q0) in practice, where in our simulations Q0 is the standard MLE, and
this was indeed the case without fail in our simulation runs. In fact, the
likelihood of the numeric solution estimator was strictly greater than that of
Q0 in all simulations.

Efficient Influence Curve and Parametric Submodel

In order to obtain a numerical solution to (6), one of course needs the explicit
form of D∗(Q, g) for the parameter being estimated. The EIC for parameter
ψ = EYd when L(1) and Y ≡ L(2) are binary, and where d is a treatment
rule is given in Theorem 1 of van der Laan (2010a), and the EIC for ψ when
L(1) is discrete-valued is given in Chaffee and van der Laan (2011).

The empirical estimate of D∗ (say D∗n) for a single observation substitutes

the corresponding estimates QL(j),n and Q
(d)
L(j),n in place of QL(j) and QLd(j).
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It is instructive to representD∗n in terms of these estimates of theQ-components
of the likelihood and, by implication, in terms of ε, which is to be selected.

Though the D∗ we present here is for the case of binary L(1), our simulations
for this article are for discrete-valued L(1) with four levels. The EIC for the
parameters we identified above are more complex in the discrete L(1) case
than the binary case, but the method we present here is independent of the
types of variables involved. We therefore develop the method for the binary
L(1) case to avoid unnecessary conceptual and notational complexity.

We have

D∗n(O) = D∗n(Qn, gn)(O) =
2∑
j=0

D∗j,n(Qn, gn)(O)

where

D∗0,n =
∑
l(1)

{
Q

(d)
L(2),n(y = 1, L(0), l(1))Q

(d)
L(1),n(L(0), l(1))

}
− ψn,

D∗1,n =
I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]

{
Q

(d)
L(2),n(y = 1, l(1) = 1, L(0))−

Q
(d)
L(2),n(y = 1, l(1) = 0, L(0))

}
×
{
L(1)−QL(1),n(l(1) = 1, A(0), L(0))

}
,

D∗2,n =
I[Ā = d(L̄)]

g[Ā = d(L̄) | X]

{
L(2)−QL(2),n

(
y = 1, L̄(1), Ā(1)

)}
,

(8)

and

ψn = ÊYd =
1

n

n∑
i=1

∑
l(1)

Q
(d)
L(2),n(y = 1, L(0)i, l(1))

1∏
j=0

Q
(d)
L(j),n(L(0)i, l(1)).

and where X refers to the full data. For TMLE, the EIC gives us the form of
the parametric submodel, Q(ε) for the conditional probability of each factor
L(j) that is to be estimated:
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logit(QL(j)(ε)) = logit(Q0
L(j)) + εCL(j),n, (9)

where Q0
L(j) is some initial estimate of QL(j) (e.g., the MLE),

CL(1),n =
I[A(0) = d0(L(0))]

g[A(0) = d0(L(0)) | X]

{
Q

(d)
L(2),n(y = 1, l(1) = 1, L(0))−

Q
(d)
L(2),n(y = 1, l(1) = 0, L(0))

}
,

and

CL(2),n =
I[Ā = d(L̄)]

g[Ā = d(L̄) | X]
.

Using now fluctuation submodels QL(j)(ε) and Q
(d)
L(j)(ε) given in (9) for the

elements QL(j),n and Q
(d)
L(j),n, respectively, in the formula above, our method

attempts to solve (6) or (7) with D∗n in place of D∗.

3.3 Numerical Methods for Solving Empirical Efficient
Influence Curve Equation

Though complex, (8) for our present purposes is nothing but a one dimen-
sional function of ε. For notational convenience let us thus write f(ε) ≡
PnD

∗(Qn(ε)). If f(ε) is continuous and has a unique root, then the well-
known bisection and secant methods of numerical analysis (see, e.g., Faires
and Burden, 2003) are promising techniques for finding the root. If, further,
f(ε) is differentiable w.r.t ε on the interval over which it is being evaluated,
then Newton’s method is also a candidate. (Other well-known methods in-
clude the method of false position and Müller’s method.)

The purpose of this article is primarily to present the solving of the em-
pirical EIC equation—given a specified fluctuation submodel—via numerical
techniques as a method of producing a TMLE. We thus omit technical and
detailed comparisons of various numerical techniques for obtaining these solu-
tions. For a suitably well behaved function f , the specific technique employed
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to find εs, though central to the actual implementation of the estimator, is
of secondary importance to the overall method described here. There are
certainly pros and cons of each technique, which can be assessed a priori
if one knows the exact form of f(ε) under all applicable data sets, but one
generally does not have such knowledge. The advantages associated with
these techniques have to do with whether or not the algorithm is guaran-
teed to converge, and if it does converge, how quickly. Basic texts on the
subject (e.g., Faires and Burden, 2003) give an adequate treatment of these
comparisons and we refer the reader there for more detail. To re-iterate:
our research interest is in the performance of a TMLE that is produced by
solving (6) or (7) in the manner explained in the previous section, and we
assume that in all cases of interest there is a numerical technique adequate
to the task.

Nevertheless, a brief comparison of the best known techniques for the present
context is in order. We have in fact implemented both the bisection and
secant methods, and have not attempted Newton’s method. The appeal of
Newton’s method is its rate of convergence (in terms of number of iterations)—
under most circumstances if it does converge it has the fastest convergence
rate. This is not universally true however. Moreover, the method has the
drawback that for each iteration both f(ε) and f ′(ε) must be evaluated. For
functions that are computationally intensive to evaluate, as in our case, this
undercuts the advantage of requiring fewer iterations for a given tolerance
compared to the secant method, and could even make Newton’s method
slower to converge in real time, even if in fewer iterations. The latter fact
combined with the added complexity of implementation make the possible
gains of Newton’s method over the secant method negligible in our case. We
thus pursued the secant method as our primary numerical method, having
first implemented the bisection method.

Most worthy of mention in comparing these latter two numerical techniques
is that 1) the bisection method is guaranteed to converge if the function of
interest has a root on the initially specified interval, and the secant method
is not (though this is not problematic in our context—see below) and 2)
the bisection method is much slower to converge than the secant method in
general. In our context the latter factor drives the choice between these two
numerical techniques. (Recall that we seek estimators that have computa-
tional advantages in the longitudinal setting, which setting is generalizable
to any number of time points, and multiple intermediate outcomes per time
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point.) Though we have implemented the bisection method, we found that
in all cases tested, the secant method converged in far fewer iterations for
a given tolerance (usually chosen to be ∼ 10−6). The difference in the val-
ues of the solution εs produced by the two methods can be made arbitrarily
small by performing enough iterations. Since the secant method is superior
in every way applicable to our function (except guaranteed convergence) we
focus entirely on it as the chosen technique. As mentioned above, lack of
guaranteed convergence is not a concern here, which we address in detail in
the Discussion section. We therefore give a brief description of how to apply
the secant method for our function of interest, f(ε) ≡ PnD

∗(Qn(ε)).

Secant Method

The secant method is based on a sequence of approximations to the root of a
function, generated by drawing secant lines through, in our case, the points
(εk, f(εk)) and (εk+1, f(εk+1)), k = 0, 1, ..., K. The zero of each such line is
computed and this defines the position of the next approximation, εk+2. The
initial values (ε0, ε1) need not bracket the solution though the closer they
are to it, the more rapidly the algorithm will converge. Starting with initial
approximations (ε0, ε1), the first iteration produces a new approximation

ε2 = ε1 −
(ε1 − ε0)f(ε1)

f(ε1)− f(ε0)
.

This result follows from a straight-forward application of point-slope algebra.
The next iteration uses (ε1, ε2) as starting values and the process is iterated
until |f(εk)| ≤ T where T is the tolerance deemed sufficient. In our case, the
difference in successive estimates |ψk − ψk+1| was typically on the order of
|PnD∗(εk)|. Thus, an εk that yields a |PnD∗(εk)| ≤ 10−3 is quite sufficient,
though for our simulations we used T = 10−6.

4 Simulations

We simulated data corresponding to the data structure described in section 2
for discrete-valued L(1) under correct and incorrect model specification, and
at various sample sizes. Incorrect model simulations were done to illustrate
the double-robustness property of the TMLE’s. A(0) was assigned randomly
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Hosted by The Berkeley Electronic Press



but A(1) was assigned in response to an individual’s L(1); the latter cor-
responding to an individual’s intermediate response to treatment A(0). We
give the specification of these dynamic regimes in the following section.

For each simulated data set, we computed the estimate of our target param-
eter Ψ(P0) ≡ EYd for the following estimators: 1) Secant TMLE; 2) Iterative
TMLE; 3) One-step TMLE; 4) Inverse Probability of Treatment Weight-
ing (IPTW); 5) Efficient Influence Curve Estimating Equation Methodology
(EE); 6) Maximum Likelihood Estimation using the G-computation formula.
In the Results subsection we give bias, variance and relative MSE estimates.
A brief description of each of the comparison estimators is given in Chaffee
and van der Laan (2011).

4.1 Specific Treatment Rules

As in our earlier work, we considered several treatment rules.

• Rule 1 . A(0) = 1, A(1) = A(0)∗I(L(1) > 1)+(1−A(0))∗I(L(1) ≤ 1).
In words, set treatment at A(0) to treatment 1, and if the patient does
well on that treatment as defined by L(1) > 1, continue with same
treatment at A(1). Otherwise, switch at A(1) to treatment 0.

• Rule 2 . A(0) = 0, A(1) = A(0)∗I(L(1) > 1)+(1−A(0))∗I(L(1) ≤ 1).
Identical in principle to Rule 1 except that patients start on treatment
0 instead of treatment 1.

• Rule 3 . A(0) either 0 or 1, A(1) = A(0) ∗ I(L(1) > 1) + (1 − A(0)) ∗
I(L(1) ≤ 1). In words, set treatment at A(1) to be the same as A(0) if
the patient is doing well, and switch treatments otherwise.

The parameters we estimate are indexed by these three treatment rules,
which we signify by EYd, d = 1, 2, 3.

4.2 Data Generation

Please see our earlier article (Chaffee and van der Laan, 2011) for a full
description of the data-generation process for discrete (4-valued) L(1).
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4.3 Simulation Results

Estimates of bias, variance and relative mean squared error (Rel MSE) for all
three parameters specified above are presented for the TMLE’s and several
comparison estimators in tables 1 and 2. We define estimated relative MSE
for each estimator as the ratio of its estimated MSE to that of an efficient,
unbiased estimator. The efficiency bound here is the variance of the efficient
influence curve. Thus for each estimator ψn of ψ0,

Rel MSE ≡ (Ê(ψn)− ψ0)
2 + v̂ar(ψn)

var(D∗(Q, g))/n
,

where D∗ is the efficient influence curve for the relevant parameter of the
full data distribution, ΨF . In fact, the value used in these computations
for var (D∗) is itself an estimate computed from taking the variance of
D∗(Q0, g0)(O) from a large number of observations generated from P0.

The estimates of bias in all cases are not accurate to much less than 10−3;
we indicate estimates that appeared to be less than this with an asterisk.

Qm, gc denotes simulations where g (the treatment mechanism) was correctly
specified, but Q0

L(2) was purposely misspecified. Qc, gc are simulations for
which both Q and g are correctly specified. Note that the IPTW estimator
is not affected by the form of Q0 since this estimator does not estimate
Q0. Differences in IPTW performance between the sets of runs where Q is
correctly specified and those where it is misspecified are thus the result of
randomness in the simulations.

We generated 4000 independent simulations for each model specification/sample
size combination (six sets of simulations in all).

5 Discussion

Please see our earlier article (Chaffee and van der Laan, 2011) for discussion
of the results as they pertain to the maximum likelihood-based TMLEs and
the rest of the comparison estimators. We mention a few highlights here but
focus on results from the secant-based TMLE.

In terms of the performance measures given in the tables, the differences
between the three TMLEs implemented are insignificant. The one-step algo-
rithm appears to hold a very slight bias advantage at the small sample size
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Qc, gc

n = 30
Sec Iter 1-step IPTW MLE EE

EY1
Bias -0.028 -0.028 -0.023 -0.009 -0.041 -0.032
Var 0.024 0.023 0.024 0.069 0.022 0.022
Rel MSE 1.4 1.4 1.5 4.1 1.4 1.4

EY2
Bias -0.018 -0.018 -0.017 -0.004 -0.024 -0.019
Var 0.027 0.027 0.028 0.062 0.027 0.027
Rel MSE 1.4 1.4 1.4 3.0 1.3 1.3

EY3
Bias -0.017 -0.017 -0.017 -0.007 -0.024 -0.017
Var 0.012 0.012 0.012 0.024 0.012 0.012
Rel MSE 1.2 1.2 1.2 2.5 1.2 1.2

n = 100
Sec Iter 1-step IPTW MLE EE

EY1
Bias -0.0019 -0.0019 -0.0020 * -0.0017 -0.0021
Var 0.0054 0.0054 0.0054 0.0212 0.0048 0.0054
Rel MSE 1.1 1.1 1.1 4.2 1.0 1.1

EY2
Bias * * * 0.0016 * *
Var 0.0068 0.0068 0.0068 0.0197 0.0064 0.0067
Rel MSE 1.1 1.1 1.1 3.2 1.0 1.1

EY3
Bias * * * * * *
Var 0.0032 0.0032 0.0032 0.0075 0.0031 0.0032
Rel MSE 1.1 1.1 1.1 2.5 1.0 1.1

n = 200
Sec Iter 1-step IPTW MLE EE

EY1
Bias * * * * * *
Var 0.0026 0.0026 0.0026 0.0103 0.0023 0.0026
Rel MSE 1.0 1.0 1.0 4.1 0.9 1.0

EY2
Bias 0.0015 0.0015 0.0016 0.0028 0.0010 0.0015
Var 0.0032 0.0032 0.0032 0.0094 0.0029 0.0031
Rel MSE 1.0 1.0 1.0 3.1 1.0 1.0

EY3
Bias * * * 0.0016 * *
Var 0.0014 0.0014 0.0014 0.0034 0.0014 0.0014
Rel MSE 1.0 1.0 1.0 2.3 0.9 1.0

Table 1: Qc, gc. Estimator performance for various sample sizes with Q and g correctly
specified, for each of three estimated parameters. The estimates for the iterative TMLE
were from the 4th iteration. (*) indicates an estimated bias < 10−3. (Based on 4000
simulations at each sample size.)
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Qm, gc

n = 30
Sec Iter 1-step IPTW MLE EE

EY1
Bias -0.0049 -0.0050 -0.0042 -0.0071 -0.2975 -0.0093
Var 0.021 0.020 0.020 0.068 0.071 0.028
Rel MSE 1.2 1.2 1.2 4.1 9.5 1.7

EY2
Bias -0.0010 * * 0.0022 -0.1677 0.0090
Var 0.024 0.024 0.024 0.064 0.075 0.029
Rel MSE 1.2 1.1 1.2 3.1 5.0 1.4

EY3
Bias -0.0025 -0.0026 -0.0026 -0.0025 -0.2326 *
Var 0.011 0.011 0.011 0.025 0.072 0.013
Rel MSE 1.1 1.1 1.1 2.5 12.8 1.3

n = 100
Sec Iter 1-step IPTW MLE EE

EY1
Bias -0.0040 -0.0040 -0.0044 0.0014 -0.3159 -0.0034
Var 0.0056 0.0056 0.0056 0.0203 0.0326 0.0078
Rel MSE 1.1 1.1 1.1 4.0 26.3 1.6

EY2
Bias 0.0021 0.0021 0.0026 -0.0024 -0.1855 0.0026
Var 0.0063 0.0063 0.0064 0.0187 0.0351 0.0080
Rel MSE 1.0 1.0 1.0 3.0 11.3 1.3

EY3
Bias * * * * -0.251 *
Var 0.0030 0.0030 0.0030 0.0072 0.0338 0.0036
Rel MSE 1.0 1.0 1.0 2.4 32.6 1.2

n = 200
Sec Iter 1-step IPTW MLE EE

EY1
Bias -0.0038 -0.0038 -0.0042 -0.0016 -0.3276 -0.0029
Var 0.0028 0.0028 0.0028 0.0104 0.0187 0.0039
Rel MSE 1.1 1.1 1.1 4.1 50.0 1.5

EY2
Bias 0.0017 0.0017 0.0020 0.0012 -0.1962 0.0019
Var 0.0033 0.0033 0.0034 0.0095 0.0200 0.0040
Rel MSE 1.1 1.1 1.1 3.1 19.0 1.3

EY3
Bias -0.0010 -0.0010 -0.0011 * -0.2620 *
Var 0.0015 0.0015 0.0015 0.0034 0.0193 0.0017
Rel MSE 1.0 1.0 1.0 2.3 59.4 1.1

Table 2: Qm, gc. Estimator performance for various sample sizes with Q misspecified
and g correctly specified, for each of three estimated parameters. Estimates for the itera-
tive TMLE were from the 4th iteration. (*) indicates an estimated bias < 10−3. (Based
on 4000 simulations at each sample size.)
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of 30 in estimating EY1, but the relative MSE’s are nearly the same. The
overall performance of the secant TMLE could be improved slightly by in-
tervening on simulation runs to ensure the algorithm converges. This makes
the differences in bias that we report partly an artifact of the process of bias
estimation by simulation, and not a true bias difference, assuming that in
actual practice one can examine the empirical EIC for any given data set,
which is the case.

In almost every simulation the difference in estimates produced by the itera-
tive and secant approaches was on the order of 10−4 or less, even at n = 30.
The occasions in which the difference was significant were those in which one
or the other algorithm failed to converge (in terms of yielding an estimate of
Q that solved the empirical EIC) in the allotted number of steps.

The variance of the TMLE, EE and MLE estimators are already very close
to the efficiency bound at n = 100 under Qc. In our earlier study we found
this to be the case for sample sizes of 250 and greater rather than at 100.

The performance of the TMLE’s at the small sample size of 30 is remark-
able, particularly under model misspecification. Indeed, bias and variance
of all three estimators are better when Q0 is misspecified. The bias of the
estimating equation estimator is also smaller under model misspecification.
The advantage of the TMLEs’ being substitution estimators also becomes
apparent in these small sample results: at n = 30, many times the estimat-
ing equation and IPTW estimators gave estimates outside the range [0, 1]
even though the outcome is binary.

Misspecification of Q in all cases meant misspecifying Q0
L(2) but correctly

specifying Q0
L(1). Thus under Qm, gc the MLE will be biased but the TMLE

and EE estimators are double-robust and therefore still asymptotically un-
biased under correct specification of g. Under the scenarios simulated here g
is expected to be known and we therefore omitted simulations in which g is
misspecified; the latter will of course result in bias of the IPTW estimator.

5.1 Convergence of the Secant Algorithm

In practice, we examined several plots of f(ε) vs ε to get a rough idea of
its shape, and variability of shape, in order to select starting points for the
secant algorithm in the simulations. Using these examples we selected fixed
initial points for a given set of simulations, and never intervened on particular
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runs to ensure convergence of the algorithm. (The algorithm never failed to
converge for n ≥ 100.) The shape of most curves examined was made to order
for the secant method, assuming well-chosen starting values (see below). In
general practice, one would not need to specify starting points without first
examining such a plot, which allows one simply to select starting points
that will clearly lead to convergence. In effect, this just means selecting
starting points that are “close enough” to the root. Unfortunately there is
no generally agreed upon (or even proposed) notion of “close-enough” in the
literature, but there are clear cases of it. For example, if the curve is roughly
linear near the root, then starting points in the linear region will suffice.

There are also clear cases which can be problematic for finding the root in a
reasonable number of iterations using the secant method. We have discovered
two such general cases, both of which were observed only at the small sample
size of 30. The first is when the curve has a point approaching zero slope
between the two starting values (see figure 1). That is, assuming f(ε) is
differentiable, then there is an ε′ ∈ [ε0, ε1] such that

f ′(ε)

∣∣∣∣
ε=ε′
≈ 0.

(The empirical EIC is in fact differentiable for our parameters of interest.
More generally, if PnD

∗(Q, g) were merely continuous and not differentiable
at all points in the domain, then the situation above approximately corre-
sponds to the existence of an ε′ such that ε∗ < ε′ < ε1 or ε∗ > ε′ > ε1 implies
0 < |f(ε′)| ≥ |f(ε1)|, where ε∗ is the root.) In fact the algorithm performs
much worse if the position of zero slope is between ε1 and ε∗, rather than
between ε0 and ε∗. Since this is true of the two starting points, (ε0, ε1), it
is also true for the points (εk, εk+1) corresponding to the kth iteration of the
algorithm.

The second difficulty arises when f(ε) approaches zero slowly near the root
(see figure 1). In this case the secant method is known to have trouble
converging in a reasonable number of iterations even if the starting values
yield a value of f(ε) that is relatively close to zero. Several of our simulations
at n = 30 confirm this. Interestingly, these tend also to be cases in which all
the TMLE’s give a parameter estimate of either 1 or 1− δ with δ < 0.05. In
these cases, the TMLE is trying to force the estimate to 1. Regardless of the
reason for this, the situation is reflected in the empirical EIC, which reveals
that the solution εs, is relatively far from 0. Since εs is the coefficient in
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Figure 1: Two examples of PnD
∗(ε) for which the secant method failed to converge

at n = 30. Left: Point of zero slope in starting interval. No convergence with the two
indicated starting values (-1,1) in 10 steps or less. Starting values (ε0, ε1) = (0.25, 0.5)
did yield converence. Right: Curve approaches 0 slowly near the root. The true εs in
this case was ≈ 20.81. Starting values (-0.5, 0.5) failed to converge but alternate starting
points did yield convergence.

front of the clever covariate term, a large (absolute) value of εs (assuming a
non-negligible clever covariate) will result in a large term in the exponential
expression in the denominator of Qn(ε), and drive Ψ(Qn(ε)) toward 0 or
1. Nevertheless, even in these cases the secant-based TMLE tends to agree
with the maximum likelihood-based TMLE’s—they all produce estimates
very close to 1. These are cases in which the TMLE methods are breaking
down due to sparsity. (They are not cases of positivity violation, since g0
was given.)

Despite these potentially problematic types of curves, the fact that the secant
method is not guaranteed to converge in general appears to be no drawback
at all in our situation. One can always examine f(ε) in the neighborhood
of the root and pick initial estimates in an informed way—i.e., close enough
to the root to avoid the potential problems described above. We were able
to do this whenever the initial starting values did not result in convergence
to a solution in ten iterations of the algorithm or less. It may be that there
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are cases in which the empirical EIC behaves so poorly in the neighborhood
of the root that this technique fails when there is in fact a solution, but we
observed no such cases.

There are also so-called “safeguarded” algorithms which force each iteration
to bracket the solution by ensuring that the two current estimates are of
opposite sign. The method of false position is one such algorithm (Faires
and Burden, 2003). Such methods can be used to guard against divergence
of the method, and can be used in place of the secant method if for some
reason an a priori guarantee of convergence is required.

5.2 Comparison of the TMLE Algorithms

All targeted minimum loss-based estimators—including the “numerical meth-
ods” TMLE—are double-robust, and are efficient under correct model spec-
ification.

The advantage of the the numerical methods approach (secant, bisection,
Newton, etc.) is that it is the easiest overall to implement, given K ≥ 2
(where K is the number of time-points at which data is measured). Next
in terms of implementation complexity is the one-step algorithm, and finally
the iterative approach.

Also noteworthy is that the one-step TMLE requires estimation of two ε’s in
the binary L(1) case and four ε’s when L(1) has four levels (three for L(1) and
one for L(2)). For the general data structure (L(0), A(0), ...L(K), A(K), L(K+
1)) where intermediate factor L(j) has tj levels, the number of ε’s the one-step

estimator must fit is
∑K+1

j=1 (tj − 1). In contrast, the iterative and numerical
solution TMLE’s perform a fitting of a single ε. It would therefore not be
surprising to see at least a small efficiency advantage for the iterative and
numerical methods as K and/or tj increase, though we have not observed
any such advantage in the present simulations.

The three methods also differ slightly in terms of computational resources
required. For the data simulated here, at n = 2000, the order in terms of
computational speed was 1) one-step, 2) iterative and 3) secant. However,
this result was based on running four iterations of the iterative procedure
and imposing a tolerance |PnD∗(Qn(ε))| ≤ 10−6 on the secant algorithm,
both of which criteria are overkill. Since typically for the kth iteration of
the secant method, |ψk − ψk+1| ≈ |PnD∗(εk)|, a reasonable tolerance is, say,
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|PnD∗(εk)| ≤ var(ψk)/10. Such a tolerance will make the speed of the secant
procedure comparable to the iterative procedure.

It is possible that under some conditions the empirical EIC has multiple
solutions, or no solution, though we observed no such cases. If multiple
solutions, one could select the εs that yielded the highest likelihood. If the
EIC has no solution for the single ε approach then the one-step procedure
would be favored.
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