














setting A = a on the SCM (Pearl, 2009). For the individually randomized trial, this framework
allows us to ask, what would have been the marginal proportion of recoveries if all children had
received RUTF compared to the marginal proportion if all children had received the control?
Likewise, for the cluster randomized trial, we can compare the expected proportion of recoveries
if all schools had administered RUTF compared to the expected proportion if none of the schools
had administered it. In both scenarios, the target causal parameter is the difference in the means
of the counterfactual distributions:

ΨF (PXF ) = EXF [Y (1)]− EXF [Y (0)]

where XF = (W,Y (1), Y (0)) represents the full data resulting from the ideal experiment and is
distributed as PXF . This target causal parameter is known as the average treatment effect or as
the causal risk difference. Throughout, we use these names interchangeably.

In reality, we only observe one counterfactual outcome, corresponding with the observed treat-
ment. Nonetheless, the average treatment effect can be identified from the observed data. In
particular, given the randomization of the treatment, the target statistical parameter is

Ψ(P0) = E0(Y |A = 1)− E0(Y |A = 0)

= E0[E0(Y |A = 1,W )− E0(Y |A = 0,W )]

= E0[Q̄0(1,W )− Q̄0(0,W )]

where Q̄0(A,W ) = E0(Y |A,W ) represents the conditional mean outcome, given the intervention
and baseline covariates. We note that conditioning on baseline characteristics is not necessary for
identifiability. Randomization guarantees there is no confounding. Stratification, however, allows
us to adjust for chance imbalances in covariate distributions, reduces variation in the treatment-
specific mean, and increases study power (Pocock et al., 2002; Tsiatis et al., 2008; Zhang et al., 2008;
Moore and van der Laan, 2009; Rosenblum, 2011; Rubin and van der Laan, 2011). We also note
that the positivity assumption is immediately satisfied, as the probability of receiving RUTF or the
standard supplement is simply 0.5. (Also known as the experimental treatment assignment, this
assumption requires there to be a positive probability of receiving each treatment in all stratas of
baseline covariates. For a review this assumption and its consequences for estimation, see Petersen
et al. (2012).) Overall, the target causal parameter has been identified as a well-defined and
interesting parameter of the observed data.

3.3 The Efficient Influence Curve of the Target Parameter

The efficient influence curve is a fundamental quantity in statistical learning. It is the canonical
gradient of the pathwise derivative of Ψ at P0 (Bickel et al., 1993). It is a mean zero function of
the unit data and an element of the tangent space T (P ) ⊂ L2

0(P ). We acknowledge that readers
may be unfamiliar with the gradients, influence curves and tangent spaces. We note, however,
that it is not necessary to understand the mathematical theory behind these functions. Instead,
the efficient influence curves for many statistical parameters (e.g. risk differences, risk ratios, odds
ratios, survival functions) have already been derived (Bickel et al., 1993; van der Laan and Robins,
2003; van der Laan and Rose, 2011).

In particular, the efficient influence curve for the target parameter Ψ(P0) = E0[Q̄0(1,W ) −
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Q̄0(0,W )] is the following function of the observed data

D∗(P0)(O) = D∗Y (P0) +D∗W (P0)

with D∗Y (P0) =

(

I(A = 1)

P0(A = 1|W )
−

I(A = 0)

P0(A = 0|W )

)

(Y − Q̄0(A,W ))

D∗W (P0) = Q̄0(1,W )− Q̄0(0,W )−Ψ(P0)

where I(·) is the indicator function and P0(A|W ) is the conditional probability of treatment, given
baseline covariates. We remind the reader that Q̄0(A,W ) = E0(Y |A,W ) represents the conditional
expectation of the outcome, given the treatment and baseline covariates. We also note that in
a randomized trial the probability of receiving the intervention is independent of the covariates:
P0(A = 1|W ) = P0(A = 1) = 0.5. The first term D∗Y (P0) is the difference between the observed
outcome and the expected outcome, weighted by the probability of the observed treatment. It is a
mean zero function of the unit data O = (W,A, Y ). The second term D∗W (P0) is the difference in
the treatment-specific means minus the target parameter, which averages this difference over the
baseline covariate distribution. It is a mean zero function of only W . These two components of the
efficient influence curve are orthogonal.

The variance of the efficient influence curve D∗(P0) establishes a lower bound on the asymptotic
variance of all regular, asymptotically linear estimators of the target parameter (Bickel et al., 1993).
In the limit, these estimators are normally distributed with variance specified by their influence
curve. In other words, an estimator’s influence curve is the foundation for statistical inference (e.g.
hypothesis testing and confidence interval construction). More importantly, an estimator achieves
the smallest possible variance if and only if its influence curve equals the efficient influence curve.
(See Appendix A.4 in van der Laan and Rose (2011) for a self-contained proof.) Consequently,
the efficient influence curve has been used in the construction of optimal double-robust estimating
functions (Robins and Rotnitzky, 1992; van der Laan and Robins, 2003) and the targeted minimum
loss estimator (van der Laan and Rubin, 2006; van der Laan and Rose, 2011). However, the goal of
this paper is not to consider various estimators of the target parameter. Instead, we wish to evaluate
the efficiency of pair-matching in randomized trials. As the variance of the efficient influence curve
provides lower bound on the variance of all reasonable estimators, we can compare its variance
under matched sampling and under independent sampling to understand the information provided
in each design for estimation of the target parameter.

4 Design Alternatives

In the previous section, we presented a motivating example and two randomized trials that could
be used to estimate the average treatment effect. First, we considered an individually randomized
trial: (i) randomly sampling a child from the target population, (ii) measuring baseline covariates,
(iii) randomly allocating the treatment, and (iv) measuring the outcome at two months. We also
considered the analogous cluster randomized trial. In both studies, the resulting point treatment
data structure was O = (W,A, Y ) and distributed as P0 in a semiparametric model M. We
considered O as a random coarsening of the time-ordered full data structure XF = (W,Y (1), Y (0))
and identified the causal risk difference from the observed data: Ψ(P0) = E0[Q̄0(1,W )− Q̄0(0,W )].
Finally, we considered the efficient influence curve of Ψ at P0 and discussed its importance. In this
section, we consider two alternative data generating experiments: the Independent Design and the
Pair-Matched Design.
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4.1 The Independent Design

Before conducting either trial, suppose we carryout a series of Monte Carlo simulations, where we
generate the observed data O according to the SCM (Eq. 1). Suppose these simulations suggest the
vast majority of the trials will have an imbalance in the number of units receiving the treatment
and the number receiving the control. We want to ensure that exactly half of the children (schools)
receive RUTF and exactly half the control. Therefore, we decide to randomly sample two units
and randomly allocate the treatment within that pair. The experimental unit then becomes a pair
of observations:

O′ = (O1, O0) =
(

(W1, Y1), (W0, Y0)
)

∼ P ′0

where the subscript a denotes the treatment assignment. Specifically, O1 represents the observed
data for the child (school) receiving RUTF, while O0 denotes the observed data for the companion
child (school) receiving the standard supplement. Now the aforementioned SCM no longer describes
the experiment that would generate the observed data. Instead, we can think of the data generating
experiment as sampling a treated observation from the conditional distribution of (W,Y ), given
A = 1, and then independently sampling a control observation from the conditional distribution of
(W,Y ), given A = 0. Repeating this experiment n times, the observed data set is comprised of n
independent, identically distributed (i.i.d.) observations of random variable O′ = (O1, O0) ∼ P ′0.
The statistical model M′, describing the collection of possible probability distributions of O′, is
semiparametric and implied by the underlying statistical model M. In particular, the marginal
distributions of (W,Y ) are completely determined by the population distribution P0 ∈ M. We
refer to this data generating experiment as the “Independent Design” and note it is equivalent to
pair-matching on the empty set.

4.2 The Pair-Matched Design

Now suppose that despite balanced treatment allocation, we are convinced that pair-matching
children or schools on important determinants of the outcome is necessary for study credibility. For
example, in the individually randomized trial, we might be worried if, by chance, a greater number
of children suffering from severe acute malnutrition were randomized to the control. Likewise,
policy makers and funders might be skeptical of the results of the cluster randomized study if, by
chance, the majority of the control schools were in an urban slum. Consequently, we decide to
pair-match units on a subset of measured baseline covariates and randomize the treatment within
pairs. Let M ⊂ W represent the selected matching variables, which are believed to be predictive
of the outcome. These matching factors can be discrete or continuous; they can also be summary
measures of the baseline covariates. Then the following data structure would be observed

O′ = (O1, O0) =
(

(W1,M1, Y1), (W0,M0 = M1, Y0)
)

∼ P ′0

As before, the observed data for the treated unit O1 is sampled from the conditional distribution of
(W,M, Y ), given A = 1. Now, however, the observed data for the control O0 is sampled from the
conditional distribution of (W,M, Y ), given A = 0 and M = M1, where M1 is the observed value
of the matching variable in its treated companion:

(W1,M1, Y1) ∼ (W,M, Y |A = 1)

(W0,M0, Y0) ∼ (W,M, Y |A = 0,M = M1)

For the individually randomized trial, the experimental unit now consists of a treated child and
a control child, who share the value of matching variable M1 = M0. Analogously, for the cluster
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randomized trial, the experimental unit is a pair of schools, sharing matching covariates. Then the
observed data consist of n i.i.d. observations O′1, . . . , O

′

n and are distributed as P ′0 in the semi-
parametric model M′. Again, the marginal distributions of (W,Y ) are specified by the underlying
distribution P0 ∈M. We refer to this data generating experiment as the “Pair-Matched Design”.

5 The Asymptotic Efficiencies of the Independent Design and the

Pair-Matched Designs

In the previous section, we considered two alternative data generating experiments. The Inde-
pendent Design guaranteed treatment was evenly allocated. The Pair-Matched Design ensured
balanced treatment allocation and that the covariates M ⊂W were evenly distributed across study
arms. In both cases, the experimental unit was a pair of observations, and the observed data were
O′ = (O1, O0) = ((W1,M1, Y1), (W0,M0, Y0)) ∼ P ′0. In the Independent Design, the matching set is
empty: M = {∅}. In this section, we use weights to map the efficient influence curve for the target
parameter at the non-paired data distribution P0 into the corresponding efficient influence curve
at the paired data distribution P ′0. Then we compare the relative efficiency of the designs through
the variances of their influence curves. This approach focuses on the target parameter of interest,
avoids any parametric modeling assumptions and is estimator-independent.

5.1 Mapping Functions of Non-paired Data into Functions of Paired Data

A general weighting scheme can correct for the pairing of observations (van der Laan, 2008; Rose
and van der Laan, 2009). The mapping was originally developed to adjust estimators and inference
for biased sampling in case-control designs, but is widely applicable to many paired data structures.
Specifically, any function F of the underlying random variable O = (W,A, Y ) ∼ P0 can be mapped
into a function F ′ of the observed random variable O′ = (O1, O0) ∼ P ′0 by

F ′(O′) ≡ q0F (O1) + q̄0(M)F (O0)

= q0F (W1,M1, Y1) + q̄0(M)F (W0,M0, Y0)

where q0 = P0(A = 1) is the marginal probability of being allocated the treatment,

q̄0(M) = q0
P0(A = 0|M)

P0(A = 1|M)

is a ratio of treatment probabilities, and F (Oa) is the function evaluated A = a.
Now let us map the efficient influence curve for the target parameter Ψ under sampling from

P0 into its weighted counterpart for paired sampling from P ′0. In both the Independent Design
and the Pair-Matched Design, the treatment is randomized within pairs. Therefore, the weight
for the treated observation O1 is q0 = 0.5, and the weight for the control observation O0 is also
q̄0(M) = 0.5. (Had the treatment not been randomized, the weights for the control observations
would not be equal under the two designs.) As as result, the efficient influence curves for target
parameter are equivalent under independent and matched sampling:

D∗I(O′) = D∗M (O′) = 0.5D∗(O1) + 0.5D∗(O0) (2)

Here, the superscript I denotes the Independent Design and the superscript M denotes the Pair-
Matched Design. D∗(Oa) is the efficient influence curve at the underlying distribution P0 evaluated
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at A = a:

D∗(O1) =
Y1 − Q̄0(1,W1)

P0(A = 1|W1)
+ Q̄0(1,W1)− Q̄0(0,W1)−Ψ(P0)

D∗(O0) =
−(Y0 − Q̄0(0,W0))

P0(A = 0|W0)
+ Q̄0(1,W0)− Q̄0(0,W0)−Ψ(P0)

where the matching variables Ma ⊂Wa are suppressed for notational convenience. Again, we note
that in a randomized trial the probability of receiving the intervention or the control is independent
of baseline covariates: P0(A|W ) = P0(A) = 0.5.

5.2 The Variance of the Efficient Influence Curve

The information contained in the Independent Design for estimating the average treatment effect
is determined by the variance of the weighted efficient influence curve:

V ar[D∗I(O′)] = 0.25V ar[D∗(O1)] + 0.25V ar[D∗(O0)]

The covariance term Cov[D∗(O1), D
∗(O0)] is zero as the treated child (school) and the control child

(school) within a pair are independently sampled. On the other hand, the variance of the most
efficient estimator in the Pair-Matched Design is determined by

V ar[D∗M (O′)] = 0.25V ar[D∗(O1)] + 0.25V ar[D∗(O0)] + 0.5Cov[D∗(O1), D
∗(O0)]

Here, the covariance term is non-zero, as the observations share characteristics M1 = M0. Since
the marginal distribution of Oa is the same under both the designs, we can re-express the variance
of the efficient influence curve under matched sampling as

V ar[D∗M (O′)] = V ar[D∗I(O′)] + 0.5Cov[D∗(O1), D
∗(O0)] (3)

Thereby, the Pair-Matched Design will be asymptotically more efficient if and only if the covariance
between D∗(O1) and D∗(O0) is negative.

Recall that the efficient influence curve is the sum of two orthogonal pieces: D∗ = D∗Y +D∗W .
Therefore, the covariance of D∗(O1) with D∗(O0) can also be expressed as a sum of covariances:

Cov[D∗(O1), D
∗(O0)] = Cov[D∗Y (O1), D

∗

Y (O0)] + Cov[D∗W (O1), D
∗

W (O0)]

Consequently, the efficiency gained or lost by pair-matching depends on the magnitude and direction
of the following expectations

Cov[D∗Y (O1), D
∗

Y (O0)] = E0

[(

Y1 − Q̄0(1,W1)

P0(A = 1|W1)

)(

−(Y0 − Q̄0(0,W0))

P0(A = 0|W0)

)]

Cov[D∗W (O1), D
∗

W (O0)] = E0

[

(Q̄0(1,W1)− Q̄0(0,W1)−Ψ(P0))(Q̄0(1,W0)− Q̄0(0,W0)−Ψ(P0))
]

The covariance of the D∗Y terms will typically be negative, while the covariance of the D∗W terms
will typically be positive.

Let us consider the ideal situation where the measured baseline covariates W are strongly and
independently predictive of the outcome. Let us further assume that we are able to match exactly
on all of them: M = W . Then the deviations between the observed outcome Ya and the expected
outcome Q̄(a,Wa) are going to be small. For example, imagine the outcome is a simple function of
the treatment, covariates and error: Y = β0+β1A+β2W +β3AW +ε, with ε ∼ N(0, σ2

ε ). Then the
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covariance of the D∗Y terms is exactly −4E(ε2) = −4σ2
ε . As more of the variation in the outcome

is explained by the covariates, this residual shrinks to zero. Now let us consider the covariance of
the D∗W components of the efficient influence curve. When matching on all baseline covariates, the
D∗W terms will be exactly equal at O1 and O0:

E0[D
∗

W (O1)D
∗

W (O0)] = E0[(Q̄0(1,W )− Q̄0(0,W )−Ψ(P0))
2] ≥ 0

In many cases, the difference in the treatment-specific means Q̄0(1,W ) − Q̄0(0,W ) will diverge
from the target parameter Ψ, which averages over the covariate distribution. This divergence will
grow as the matching variables have a stronger effect on the outcome. Thus, when matching on
strong predictors of the outcome, the covariance of the D∗Y components shrinks to zero, while the
covariance of the D∗W components will often be large and positive. Consequently, the sum of the
covariances is easily positive and the Pair-Matched Design asymptotically less efficient than the
Independent Design.

5.3 An Alternative Data Generating Experiment

In the previous subsection, the variance of the efficient influence curve indicated that the Pair-
Matched Design was more efficient if and only if the covariance term was negative. This conclusion
might seem counterintuitive. Indeed, there appears to be a consensus in the literature that matching
on a strong predictor of the outcome should induce a positive correlation between outcomes within
pairs and thereby reduce the variance of the estimator (e.g. Martin et al. (1993); Diehr et al. (1995);
Klar and Donner (1997); Hayes and Moulton (2009)). In this subsection, we explore the foundation
of this claim.

Let us consider a data generating experiment, where we randomly assign the treatment A and
measure the outcome Y at the end of followup. As no baseline covariates are measured, the observed
data would be Or = (A, Y ) and distributed as Pr, known to be an element of the semiparametric
statistical model Mr. Here, we use subscript r to emphasize this data structure, probability
distribution and statistical model are reduced compared to those with measured covariates W .
Given the randomization of the intervention, the average treatment effect can still be identified as
an element of Pr by

Ψr(Pr) = E(Y |A = 1)− E(Y |A = 0) = Q̄(1)− Q̄(0)

This target statistical parameter is the unadjusted difference in the treatment-specific means. Its
efficient influence curve at Pr is

D∗r(Pr)(Or) =

(

I(A = 1)

P (A = 1)
−

I(A = 0)

P (A = 0)

)

(Y − Q̄(A)) (4)

where P (A) is the marginal probability of treatment and equal to 0.5 in a randomized trial.
Now consider the analogous paired experiments. In the Independent Design, researchers would

randomly pair two units, randomize the treatment and measure the outcomes. Alternatively, in
the Pair-Matched Design, researchers would match units on unmeasured characteristics, randomize
the treatment, and record the outcomes. For example, consider the opthalmic trials, where eyes
are matched exactly on all unmeasured characteristics of the patient, the treatment randomized,
and the outcomes measured. In both designs, the observed data are

O′r = (O1, O0) = (Y1, Y0) ∼ P ′r
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As before, Y1 represents the observed outcome under treatment, and Y0 represents the observed
outcome under the control. Random variable O′r is distributed as P ′r, known to be an element of
a semiparametric statistical model M′

r. Once more, M′

r is implied by the underlying statistical
model Mr.

Intuitively, we expect that matching on important determinants of the outcome (even if not
measured) will reduce the variability within pairs and thereby the variance of the estimator. In other
words, we expect an opthalmic trial randomizing the treatment within eyes of a single patient to be
more efficient than another trial randomizing the treatment to eyes of different patients. To be more
rigorous, we need to map the efficient influence curve at the non-paired, reduced distribution Pr into
the efficient influence curve at paired distribution P ′r. As before, randomization yields weights 0.5
for the treated observations and for the control observations. Consequently, the efficient influence
curve under paired sampling of only the outcomes is

D∗Ir (P ′r)(O
′

r) = D∗Mr (P ′r)(O
′

r) = (Y1 − Q̄(1))− (Y0 − Q̄(0))

Then the variance of the efficient influence curve in the Independent Design at P ′r is

V ar[D∗Ir (O′r)] = V ar[Y1 − Q̄(1)] + V ar[Y0 − Q̄(0)]

Again, the covariance is zero, as the treatment-specific outcomes are independently sampled. On
the other hand, the variance of the efficient influence curve in the Pair-Matched Design at P ′r is

V ar[D∗Mr (O′r)] = V ar[Y1 − Q̄(1)] + V ar[Y0 − Q̄(0)]− 2Cov[(Y1 − Q̄(1)), (Y0 − Q̄(0))]

Here, the covariance between observations within a pair is non-zero as the units are known to be
similar on important (but unmeasured) determinants of the outcome. Furthermore, the covariance
will be positive, whenever the matching variables are predictive of the outcome. Expressing the
efficiency of the Pair-Matched Design in terms of the efficiency of the Independent Design yields

V ar[D∗Mr (O′r)] = V ar[D∗Ir (O′r)]− 2Cov[(Y1 − Q̄(1)), (Y0 − Q̄(0))] (5)

as the marginal distribution of Ya is determined by the underlying distribution Pr. Consequently,
the Pair-Matched Design is asymptotically more efficient when units are matched on unmeasured
predictors of the outcome. We emphasize that the function D∗r(P

′

r)(O
′

r) is the efficient influence
curve if and only if the observed data are O′r = (Y1, Y0) ∼ P ′r. In other words, the above discussion
applies to the case where there are no measured baseline covariates.

5.4 Recap of Theoretical Results

In most pair-matched randomized trials, the data generating experiment involves measuring base-
line covariates W , matching two units on a subset of these characteristics M ⊂W , randomizing the
treatment A within the pair, and measuring the outcomes Y at the end of followup. The resulting
data structure is O′ =

(

(W1,M1, Y1), (W0,M0, Y0)
)

and distributed as P ′0 ∈ M
′. By examining

the variance of the efficient influence curve for the target parameter, we concluded that the Pair-
Matched Design is asymptotically less efficient in many cases. Matching often induces a positive
covariance between observations within a pair and decreases the precision the design (Eq. 3).

For comparison, we also considered the less common data generating experiment, where units
are paired on unmeasured covariates. As an example, we discussed opthalmic trials, in which eyes
are naturally matched on all baseline covariates of the patient. Another example is twin studies,
where the treatment is randomized within monozygotic pairs (Hunter et al., 2000). It is very
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difficult to imagine an analogous cluster randomized trial. Nonetheless, we do not disregard the
possibility nor the validity of such an experiment. In any case, when baseline covariates are not
measured, the observed data are simply O′r = (Y1, Y0) and distributed as P ′r ∈M

′

r. The variance of
the efficient influence curve indicated that the Pair-Matched Design is asymptotically more efficient
for estimation of the unadjusted difference in treatment-specific means. Matching on strong but
unmeasured predictors of the outcome induces a positive covariance and thereby increases the
precision of the Pair-Matched Design (Eq. 5).

6 Simulation Studies

In this section, we explore the theoretical results. Specifically, we simulate data for an individually
randomized and a cluster randomized trial and then evaluate the information generated from differ-
ent designs for estimation of the average treatment effect. We acknowledge that these simulations
do not reflect the complexities of real data. Instead, their purpose is to concretely illustrate the
theoretical concepts presented above.

6.1 Simulation Methodology

Suppose there is a single baseline covariate of interest W . For simplicity, let W be drawn from a
normal distribution with mean 0 and variance 0.22. Let the intervention A be binary and random-
ized as P0(A|W ) = P0(A) = 0.5. Suppose the individual-level outcome is also binary Y ∈ {0, 1}.
Then the corresponding cluster-level outcome is the proportion Y ∈ [0, 1]. In either case, let us
define the function h(A,W ) of the baseline covariate W and the treatment A:

h(A,W ) = expit
[

β0 + β1A+ β2W + β3AW
]

where the expit(x) is the inverse logistic function and equal to 1
1+exp(−x) . For an individually

randomized trial, the binary outcome is drawn from a Bernoulli distribution with probability given
by h(A,W ):

Y ∼ Bernoulli(p = h(A,W ))

For the cluster randomized trial, suppose there are J = 10 individuals within each cluster. Then
J binary outcomes are drawn from a binomial distribution with probability p = h(A,W ), and the
cluster-level outcome Y is taken as the average. We also consider a cluster randomized trial with
J = 2500 individuals subsampled. This allows us to examine the effect of subsample size on the
relative efficiency of the designs. Alternatively, the proportion of individuals with the outcome can
be directly simulated as

Y = h(A,W ) + ε (6)

where ε ∼ N(0, 0.012).
By varying the regression coefficients β0 and β1 in function h(A,W ), we can understand how

the asymptotic efficiency is impacted by the rarity of the outcome. To simulate a rare outcome, we
set these coefficients to yield cumulative incidences of 1% in the control and 0.6% in the treated.
For a more common outcome, these coefficients are set to yield cumulative incidences of 25% in
the control and 18.75% in the treated. These values were chosen to correspond with realistic
incidences and effect sizes in public health. Also, to understand the effects of matching on a
variable strongly, moderately or weakly predictive of the outcome, we set the coefficient β2 to 4, 3,
and 2, respectively. Finally, we consider scenarios without an interaction, β3 = 0, and with a weak
interaction, β3 = −0.75. Among treated observations, this interaction term reduces, but does not
reverse, the effect of the baseline covariate on the outcome.
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Our interest is not to understand the asymptotic variance of the completely randomized design:
O = (W,A, Y ) ∼ P0. Instead, we want to simulate paired data. Specifically, the data generating
experiment for the Independent design is sampling (W,M, Y ) conditional on A = 1 and then
sampling (W,M, Y ) conditional on A = 0. The data generating experiment for the Pair-Matched
Design is sampling (W,M, Y ) given A = 1, and then sampling (W,M, Y ) given A = 0 and M = M1.
We consider two versions of matching. In the first, we match the control unit to the treated exactly
on the baseline covariate: W1 = W0. In the second, we match only on quartiles of the baseline
covariate: M1 = Φ(W1) = M0. In either case, the observed data are

O′ = (O1, O0) = ((W1,M1, Y1), (W0,M0, Y0)) ∼ P ′0 ∈M
′

For each design and each scenario, we calculated the true variance of the efficient influence curve.
Specifically, we generated N = 50, 000 pairs of observations and computed the sample variance of
the influence curve values. We then compared the relative efficiency of the designs with

REtrue =
V ar[D∗I(O′)]

V ar[D∗M (O′)]

where D∗I(O′) is the efficient influence curve at P ′0 in the Independent Design and D∗M (O′) is the
efficient influence curve at P ′0 in the Pair-Matched Design.

We also considered the relative efficiency of the designs, when we failed to include the baseline
covariate W in the specification of the data, statistical model and target parameter. Indeed, for
each simulated data set, we evaluated the efficient influence curve as if the observed data were only
O′r = (Y1, Y0) ∼ P ′r ∈ M

′

r and as if the target statistical parameter were Ψr(Pr) = Q̄(1) − Q̄(0).
Under this misspecification, the relative efficiency of the designs is given by

REmisp =
V ar[D∗Ir (O′r)]

V ar[D∗Mr (O′r)]

where D∗Ir (O′r) is the efficient influence curve at P ′r in the Independent Design and D∗M (O′r) is the
efficient influence curve at P ′r in the Pair-Matched Design. We note that this would be the correct
efficiency comparison for the less common data generating experiment, where units are paired
on unmeasured and unobserved baseline covariates. This, however, is not the data generating
experiment for the simulation. All statistical programing and computing was done R version 2.14.1
(R Development Core Team, 2011).

6.2 Simulation Results

In Table 1 we explore the relative efficiency of the designs when researchers are able to exactly
match the continuous baseline covariate: W1 = W0. This represents the ideal scenario for the Pair-
Matched Design. The first column indicates the type of study: individually randomized or cluster
randomized. Clust10 indicates the outcome Y is the average of the simulated outcomes of J = 10
individuals; Clust2500 indicates the outcome Y is the average of the simulated outcomes of J = 2500
individuals, and Clust∗ indicates the cluster-level outcome is directly simulated according to Eq. 6.
The second column indicates whether the outcome was rare or common. The remaining columns
give the asymptotic efficiency of the Independent Design relative to the Pair-Matched Design under
various scenarios. Specifically, REmisp represents the relative efficiency of the designs when we have
ignored the baseline covariates and thereby misspecified the observed data as O′r = (Y1, Y0) ∼ P ′r.
Conversely, REtrue represents the true relative precision of the designs and is the variance of the
efficient influence curve at P ′0 under independent sampling divided by the variance of the efficient
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No interaction Interaction
Type Outcome Strong Moderate Weak Strong Moderate Weak

Indv
Rare

REmisp 0.987 0.993 0.961 0.986 0.983 0.966
REtrue 0.977 0.988 0.959 0.978 0.979 0.965

Common
REmisp 1.116 1.059 1.028 1.090 1.042 1.016
REtrue 1.004 1.000 1.000 0.999 0.997 0.998

Clust10
Rare

REmisp 1.083 1.046 1.018 1.064 1.031 1.012
REtrue 0.991 1.005 1.003 0.989 0.999 1.001

Common
REmisp 2.114 1.618 1.264 1.851 1.438 1.153
REtrue 0.996 0.992 0.989 0.970 0.970 0.971

Clust2500
Rare

REmisp 6.602 5.156 3.376 3.046 2.596 1.889
REtrue 0.610 0.713 0.839 0.537 0.607 0.712

Common
REmisp 62.822 46.692 31.055 15.269 9.315 4.817
REtrue 0.609 0.640 0.709 0.528 0.527 0.532

Clust∗
Rare

REmisp 1.809 1.327 1.109 1.494 1.202 1.058
REtrue 0.943 0.972 0.987 0.894 0.947 0.974

Common
REmisp 56.667 41.356 26.142 14.934 9.168 4.754
REtrue 0.650 0.691 0.769 0.547 0.553 0.567

Table 1: The asymptotic efficiency of the Independent Design relative to the Pair-Matched Design,
when matching exactly on a continuous baseline covariate. The first column refers to the type of trial
and the method of simulation. The second column indicates whether the outcome was rare or common. The third
column denotes whether the efficiency comparison is made under misspecification or the correct specification of the
data, model and target parameter. REmisp is the variance of the efficient influence curve at misspecified P ′

r under
independent sampling divided by the variance of the efficient influence curve under matched sampling at misspecified
P ′

r. REtrue is the ratio of these variances at the true data generating distribution P ′

0. The remaining columns give
the relative efficiencies for the six scenarios examined. The strength of the relationship of W on Y is varied with β2,
and the interaction is varied with β3 equal to 0 or -0.75.

influence curve at P ′0 under matched sampling. In either case, a relative efficiency greater than one
indicates the Pair-Matched Design is asymptotically more efficient, while a relative efficiency less
than one indicates the Pair-Matched Design is asymptotically less efficient.

For the individually randomized trial, matching does not appear to induce meaningful gains or
losses in the asymptotic efficiency. The Pair-Matched Design yields approximately the same amount
of information for estimating the average treatment effect as the Independent Design. When the
observed baseline covariates are excluded from the data, model and target parameter, the matched
design appears at most 11.6% more efficient than its non-matched counterpart. However, when the
true data generating experiment for the simulation is respected, this difference is inconsequential
and reduced to a maximum gain and loss of 0.4%. This is not surprising as the variability in the
outcomes outweighs the positive and negative contributions of the covariance terms. Indeed, the
covariance term is at most 1.67% of the total variance of the efficient influence curve at P ′0 in the
Pair-Matched Design. (See Table 2 for the ratio of the covariance of D∗(O1) and D∗(O0) to the
total variance of the efficient influence curve in the Pair-Matched Design. Recall the covariance is
zero in the Independent Design.)

Similar precision results are seen for the cluster randomized trial with a subsample of J = 10
individuals (Table 1). When we misspecify the data generating experiment by ignoring measured
baseline covariates, the Pair-Matched Design appears at most 2.114 times more efficient than the
Independent Design. Conversely, when we correctly specify the observed data, the design employing
matching is up to 3% less efficient than its non-matched counterpart. Again, it is not surprising
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No interaction Interaction
Type Outcome Strong Moderate Weak Strong Moderate Weak

Indv
Rare

Cov:Varmisp 0.0004 0.0019 0.0017 0.0009 0.0012 0.0020
Cov:Vartrue 0.0167 0.0008 -0.0036 0.0123 0.0019 -0.0056

Common
Cov:Varmisp 0.0605 0.0346 0.0168 0.0490 0.0255 0.0115
Cov:Vartrue -0.0109 -0.00889 -0.0101 -0.0045 -0.0022 -0.0063

Clust10
Rare

Cov:Varmisp 0.0489 0.0232 0.0131 0.0358 0.0180 0.0103
Cov:Vartrue -0.0135 -0.0120 -0.0245 0.0041 -0.0087 -0.0209

Common
Cov:Varmisp 0.5521 0.3081 0.1357 0.4215 0.2199 0.0801
Cov:Vartrue 0.0061 0.0106 0.0034 0.0574 0.0512 0.0384

Clust2500
Rare

Cov:Varmisp 2.9950 2.1792 1.2246 1.1036 0.8427 0.4617
Cov:Vartrue 0.7304 0.5454 0.3024 0.8611 0.7421 0.5538

Common
Cov:Varmisp 31.5072 23.3291 15.3670 7.2761 4.2510 1.9594
Cov:Vartrue 0.7796 0.7102 0.5649 0.9373 0.9289 0.9103

Clust∗
Rare

Cov:Varmisp 0.4086 0.1670 0.0583 0.2524 0.1051 0.0331
Cov:Vartrue 0.0948 0.0363 0.0077 0.1936 0.0880 0.0331

Common
Cov:Varmisp 27.6952 20.0713 12.5004 6.9448 4.0716 1.8717
Cov:Vartrue 0.6947 0.6110 0.4529 0.9055 0.8939 0.8676

Table 2: The ratio of the covariance term to the total variance of the efficient influence curve for the
Pair-Matched Design, when matching exactly on a continuous covariate. The first column refers to the
type of trial and the method of simulation. The second column indicates whether the outcome was rare or common.
The third column denotes whether the comparison is made under misspecification or the correct specification of the
data, model and target parameter. Cov:Varmisp is the ratio of the covariance term to the total variance of the efficient
influence curve at the misspecified P ′

r. Cov:Vartrue is the ratio of the covariance term to the total variance of the
efficient influence curve at the true data generating distribution P ′

0. The remaining columns give the ratios for the
six scenarios examined. The strength of the relationship of W on Y is varied with β2, and the interaction is varied
with β3 equal to 0 or -0.75.

that matching has a little effect when only J = 10 individuals are subsampled, as the variability in
the cluster-level outcome is large. For example, the covariance term is at most 5.74% of the total
variance at the true P ′0 in the Pair-Matched Design (Table 2).

The efficiency results are quite dramatic for the cluster randomized trial with J = 2500 individ-
uals subsampled (Table 1). The Pair-Matched Design appears unequivocally more efficient under
misspecification (REmisp > 1), and is unequivocally less efficient under the correct specification
(REtrue < 1). In particular, the matched design appears up to 62.822 times more efficient than its
non-matched counterpart, assuming the efficient influence curve for O′r = (Y1, Y0). Conversely, it is
64.2% less efficient in the same scenario, assuming the efficient influence curve for the true observed
data O′. Indeed, for one simulation (matching on a strong predictor of a common outcome in the
presence of interaction), the Independent Design is 89.4% more efficient than the Pair-Matched
Design. In all scenarios, the covariance term is large and positive (Table 2). It contributes up to
93.73% of the total variance at the true P ′0 in the Pair-Matched Design.

Similar precision results are seen for the cluster randomized trial, where the proportion of
individuals with the outcome is directly simulated (Table 1). The Pair-Matched Design appears
up to 56.667 times more efficient, when the baseline covariates are excluded from specification of
the data, model and target parameter. Under the correct specification, the matched design is up
to 54.7% less efficient than its non-matched counterpart. Again, the covariance term is positive
in all scenarios (Table 2). It contributes up to 90.55% of the total variance at the true P ′0 in the
Pair-Matched Design.
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No interaction Interaction
Type Outcome Strong Moderate Weak Strong Moderate Weak

Indv
Rare

REmisp 1.004 0.992 0.972 1.005 0.973 0.976
REtrue 0.998 0.988 0.970 1.000 0.970 0.974

Common
REmisp 1.087 1.046 1.024 1.068 1.034 1.015
REtrue 0.994 0.997 1.000 0.992 0.996 0.999

Clust10
Rare

REmisp 1.045 1.024 1.013 1.032 1.007 1.010
REtrue 0.992 0.996 1.001 0.986 0.985 1.001

Common
REmisp 1.802 1.472 1.226 1.639 1.350 1.142
REtrue 0.994 0.990 0.996 0.974 0.973 0.986

Clust2500
Rare

REmisp 2.110 2.383 2.285 1.819 1.890 1.656
REtrue 0.725 0.785 0.870 0.682 0.708 0.772

Common
REmisp 6.143 5.917 5.725 4.926 4.216 3.157
REtrue 0.628 0.665 0.740 0.553 0.565 0.577

Clust∗
Rare

REmisp 1.366 1.209 1.085 1.261 1.139 1.048
REtrue 0.967 0.984 0.994 0.940 0.967 0.984

Common
REmisp 6.013 5.739 5.447 4.768 4.055 3.022
REtrue 0.669 0.711 0.789 0.573 0.587 0.604

Table 3: The asymptotic efficiency of the Independent Design relative to the Pair-Matched Design,
when matching on a coarsening of the baseline covariates. The first column refers to the type of trial
and the method of simulation. The second column indicates whether the outcome was rare or common. The third
column denotes whether the efficiency comparison is made under misspecification or the correct specification of the
data, model and target parameter. REmisp is the variance of the efficient influence curve at misspecified P ′

r under
independent sampling divided by the variance of the efficient influence curve under matched sampling at misspecified
P ′

r. REtrue is the ratio of these variances at the true data generating distribution P ′

0. The remaining columns give
the relative efficiencies for the six scenarios examined. The strength of the relationship of W on Y is varied with
β2, and the interaction is varied with β3 equal to 0 or -0.75. In the Pair-Matched Design, units were matched on
quartiles M1 = Φ(W1) = M0.

The last two sets of simulations illustrate the following trends in design efficiency. When the
measured baseline covariates are excluded, the Pair-Matched Design appears most efficient when
the covariates are strongly predictive of the outcome and in the absence of the interaction. When
we correctly specify the data generating experiment by including the measured covariates, the Pair-
Matched Design tends to be least efficient when matching on covariates strongly predictive of the
outcome and in the presence of the interaction. We also explored the relative efficiency when units
were matched only on quartiles of baseline covariates, M1 = Φ(W1) = M0. The simulation results,
given in Table 3, are less dramatic, but the overall trends hold. When variability in the outcome
outweighs the positive or negative contributions of the covariance term, the designs yield approx-
imately the same amount of information for estimating the average treatment effect. Otherwise,
the Pair-Matched Design appears asymptotically more efficient when the data, model and target
parameter are misspecified and is asymptotically less efficient under the correct specification.

6.3 Finite Sample Simulations

Our previous results focused on the asymptotic efficiency lost by pair-matching. Understanding
the finite sample performance, however, is essential for the application of this work to cluster
randomized trials, which usually have very limited sample sizes. Consequently, we simulated 5000
cluster randomized trials, each limited to n = 10 or n = 20 independent units. As before, the
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baseline covariate W was drawn from N(0, 0.22) and the treatment A randomized. We focused
on the cluster randomized trial where J = 2500 individual outcomes were drawn from a binomial
distribution with probability p = h(A,W ) and the cluster-level outcome Y was the average. We
further supposed that with such a limited sample size, researchers would only be able to measure
and to match on quartiles of the baseline covariate. Let W be a four-level categorical variable,
representing the observed quartiles of W . Then the data generating experiment for the Independent
Design was sampling (W, Y ) given A = 1 and independently sampling (W , Y ) given A = 0. The
data generating experiment for the Pair-Matched Design was sampling (W, Y ) given A = 1 and
then sampling (W, Y ) given A = 0 and W = W1. In both cases, the following data structure was
simulated

O′ = (O1, O0) = ((W1, Y1), (W0, Y0)) ∼ P ′0

where W1 = W0 under matching. Again, we varied the rarity of the outcome, the presence of an
interaction, and the baseline covariate’s effect on the outcome.

For each trial, we estimated the target parameter using weights to map standard estimators
into their paired counterparts (van der Laan, 2008). Specifically, with n i.i.d. observations of the
non-paired data O = (W, A, Y ) ∼ P0, a simple substitution of Ψ(P0) = E0[Q̄0(1,W)− Q̄0(0,W)] is

Ψn(Pn) =
1

n

n
∑

i=1

Q̄n(1,Wi)− Q̄n(0,Wi)

where Pn denotes the empirical probability distribution, i indexes independent observations, and
Q̄n(A,W) is an estimate of the treatment-specific mean outcome, given baseline covariate category
W. Then with n i.i.d. observations of the paired data O′, the weighted substitution estimator is

Ψn(P
′

n) =
1

n

n
∑

i=1

q0
{

Q̄n(1,W1i)− Q̄n(0,W1i)
}

+ q̄0
{

Q̄n(1,W0i)− Q̄n(0,W0i)
}

(7)

where weights q0 and q̄0 are 0.5, given the randomization of the treatment.
To estimate the conditional mean function Q̄n(A,W), we performed three simple regressions.

In Model 1, we regressed the observed outcome Y on the treatment A and observed covariate
W. In Model 2, we created dummy variables for the categories of W, and regressed the observed
outcome Y on the treatment A and these indicators. In Model 3, we created dummy variables
for each combination of treatment and covariates, and regressed the observed outcome Y on these
indicators. In all cases, we used logistic regression to guarantee the predicted outcomes and effect
estimate remained bounded between zero and one. We consider these regression functions as
working models, in that we do not assume the true data generating distribution P0 is an element of
the parametric statistical model. In fact, we know these models are misspecified as the outcome Y

was simulated according to h(A,W ), which is a function of the treatment A and the unobserved,
continuous covariate W . Nonetheless, when a generalized linear model for the conditional mean
function includes an intercept and a treatment indicator, the resulting estimate of the causal effect
will be unbiased and locally efficient in randomized trials (Scharfstein et al., 1999). In other
words, the substitution estimators implementing parametric models 1 and 2 are targeted maximum
likelihood estimators and guaranteed to solve the efficient score equation (Moore and van der Laan,
2009; Rosenblum, 2011; Rubin and van der Laan, 2011). For comparison, we also estimated the
target parameter as the average of the unadjusted difference of the outcomes within pairs:

Ψn(P
′

n) =
1

n

n
∑

i=1

Y1i − Y0i
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This would be the non-parametric maximum likelihood estimator, if the observed data were O′r =
(Y1, Y0) and we were interested in the unadjusted risk difference: Ψr(Pr) = Q̄(1) − Q̄(0). Finally,
to determine the finite sample performance, we calculated the variance of each estimator over
5,000 simulations. The ratio of the estimator’s variance under independent sampling compared to
matched sampling is a measure of the information contained in each design for estimating Ψ in
very finite samples.

6.3.1 Finite Sample Results

A graph of the relative efficiency of each estimator is given in Fig. 1 for a rare outcome (1% in the
control and 0.6% in the treated) and in Fig. 2 for a more common outcome (25% in the control and
18.75% in the treated). The y-axis represents the estimator’s variance under independent sampling
divided by the estimator’s variance under matched sampling. The x-axis represents different simu-
lation scenarios varying the effect of the baseline covariate on the outcome and the presence of the
interaction.

As expected, the Pair-Matched Design yields more efficient estimators of the unadjusted risk
difference Ψr. The matched design appears at most 6.2 times more efficient than its non-matched
counterpart (for a common outcome and a sample size of 10). This comparison is unfair, as matching
is a form of adjustment. When the substitution estimator (Eq. 7) is implemented, the Independent
Design often yields more efficient estimators. For the rare outcome (Fig. 1), the relative efficiencies
of the adjusted estimators implementing Models 1 and 2 are less than or equal to one in all scenarios.
In other words, pair-matching harms estimator precision in very small samples of n = 10 or n = 20
clusters. The Independent Design is up to 25.2% more efficient. When the outcome is common
(Fig. 2) and the regression model contains an intercept, the treatment and the covariate (Model
1), the Independent Design is always more efficient. Indeed, the Pair-Matched Design is up to
21.6% less efficient with a sample size of 10 and 23.9% less efficient with a sample size of 20. When
the outcome is common and a less parsimonious model is fit with indicators for each strata of W
(Model 2), the Pair-Matched Design tends to be less efficient, especially in the presence of the weak
interaction.

Our attempt at estimating the conditional mean function with a saturated parametric model
failed. The algorithm automatically drops strata without support. Consequently, the regression
model becomes unsaturated and makes nonsensical extrapolations. Therefore, the Pair-Matched
Design, which guarantees support in observed covariate categories, yielded a more efficient estimator
when the sample size was limited to 10. However, the estimator’s performance was substantially
improved by increasing the number of experimental units to 20. Then for rare outcomes the Pair-
Matched Design is less efficient, and for more common outcomes is less efficient in the presence of
a weak interaction.

7 Right Censoring and Pair-Matching in Randomized Trials

In this section, we consider the effect of missing outcomes on the validity and efficiency of pair-
matching in randomized trials. Let us again consider the examples seeking to estimate the causal
effect of RUTF versus the standard supplement on the marginal proportion of children recovering
from undernutrition. For the individually randomized trial, suppose a child is more likely to be
admitted to a health center and thereby lost to followup, if he or she is suffering from severe acute
malnutrition at baseline. If this censoring is differential between treatment groups, then the study
is subject to bias. The children whose outcomes are observed differ systematically from the children
whose outcomes are missing. For the cluster randomized trial, suppose an external organization
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Figure 1: The relative efficiency of estimators in finite samples when the outcome is rare. We explore
four estimators of the average treatment effect in trials limited to n = 10 and n = 20 independent units. The y-axis
give the sample variance of the estimator in the Independent Design relative to the Pair-Matched Design over 5000
trials. The x-axis denotes different simulation scenarios, varying the presence of the interaction and the strength
of the effect of W on Y . In each simulation, the cluster-level outcome was taken as the average of the J = 2500
individual-level outcomes. In the Pair-Matched Design, units were matched exactly on continuous covariate W .
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Figure 2: The relative efficiency of estimators in finite samples when the outcome is common. We
explore four estimators of the average treatment effect in trials limited to n = 10 and n = 20 independent units. The
y-axis give the sample variance of the estimator in the Independent Design relative to the Pair-Matched Design over
5000 trials. The x-axis denotes different simulation scenarios, varying the presence of the interaction and the strength
of the effect of W on Y . In each simulation, the cluster-level outcome was taken as the average of the J = 2500
individual-level outcomes. In the Pair-Matched Design, units were matched exactly on continuous covariate W .
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began providing RUTF to control schools in rural areas. Since these schools no longer follow their
assigned treatment, they are artificially censored. The probability of being observed would depend
on the treatment assignment and geographic region.

7.1 Data, Model and Target Parameter

Let us adopt the data structure, statistical model and target parameter to incorporate censoring.
In the individually randomized trial, a child is randomly sampled; his or her baseline covariates W
measured, and the treatment A randomly assigned. After two months, the child is either recovered
from undernutrition or not: Y ∈ {0, 1}. The outcome is only observed, however, if the child was
followed until the end of the study. Let ∆ be an indicator, equalling one if the child’s outcome was
recorded. Then the observed outcome can be represented with Ỹ = ∆Y . By definition, Ỹ equals
the true outcome Y if the child was not censored (∆ = 1) and equals zero otherwise. The data
generating experiment for the cluster randomized trial is analogous. Both can be described by the
following SCM (Pearl, 2009)

U = (UW , UA, U∆, UY ) ∼ PU

W = fW (UW )

A = fA(UA)

∆ = f∆(W,A,U∆)

Ỹ = ∆fY (W,A,UY )

As before, the baseline covariates W are some function of unmeasured variables; the treatment
A is randomly allocated, and the outcome Y is generated by some unspecified function of the
measured covariates, the treatment and background factors. However, we only observe the outcome
if ∆ = 1. The missingness indicator, itself, is a function of the baseline covariates, the treatment
and unmeasured error. Repeating this experiment n times yields n i.i.d. copies of random variable

O = (W,A,∆, Ỹ = ∆Y ) ∼ P0 ∈M

The statistical model M for the set of possible data distributions is implied by the SCM and is
semiparametric. In particular, the SCM specifies our knowledge of the treatment mechanism: A is
independent of W . We have not, however, placed any restrictions on the censoring mechanism.

In the ideal world, the outcomes under the treatment and under the control would be observed
for all units. Let Y (a, 1) represent the counterfactual outcome, intervening on the SCM to set
treatment A = a and to prevent censoring ∆ = 1. Then the target causal parameter is a function
of this joint intervention. It is difference in the expected outcome had all units received RUTF
compared to the expected outcome had all units received the standard supplement and there was
no censoring:

ΨF (PXF ) = EXF [Y (1, 1)]− EXF [Y (0, 1)]

where XF = (W,Y (1, 1), Y (0, 1)) denotes the full data and is distributed as PXF . This causal
parameter corresponds to the average treatment effect in the absence of censoring. With the
coarsening at random (CAR) assumption (Heitjan and Rubin, 1991; Jacobsen and Keiding, 1995;
Gill et al., 1997), the full data parameter can be identified from the observed data. Under CAR, the
joint intervention (A,∆) is conditionally independent from the full data XF , given the measured
baseline covariates W . (We note this assumption only serves to enrich our interpretation of the
target statistical parameter. If one is hesitant to believe CAR, an interesting and well-defined
statistical parameter can still be specified.)
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The target statistical parameter is the marginal difference in the intervention-specific mean
outcomes:

Ψ(P0) = E0[E0(Ỹ |A = 1,∆ = 1,W )− E0(Ỹ |A = 0,∆ = 1,W )]

= E0[Q̄0(1, 1,W )− Q̄0(0, 1,W )]

where Q̄0(a, 1,W ) represents the conditional expectation of the outcome, given the joint interven-
tion (A = a,∆ = 1) and baseline covariates. Here, conditioning on baseline covariates is necessary
for identifiability and can improve study efficiency. We also require that the conditional probability
of being assigned each treatment is positive and that the conditional probability of being observed
is positive:

0 < P0(A = 1|W ) < 1

0 < P0(∆ = 1|A,W ) < 1

The first assumption is immediately satisfied by the randomization of the treatment: P0(A|W ) =
P0(A) = 0.5. The second assumption is required for the target parameter to be well-defined. For
example, if all severely malnourished children dropped out of the control arm, there would be no
hope in estimating the average treatment effect.

The efficient influence curve for the target parameter Ψ(P0) is the following function of the
observed data

D∗(P0)(O) = D∗Y (P0) +D∗W (P0)

with D∗Y (P0) =

(

I(A = 1,∆ = 1)

P0(A,∆|W )
−

I(A = 0,∆ = 1)

P0(A,∆|W )

)

(Ỹ − Q̄0(A, 1,W ))

D∗W (P0) = Q̄0(1, 1,W )− Q̄0(0, 1,W )−Ψ(P0)

where P0(A,∆|W ) is the conditional distribution of the joint intervention, given baseline covariates.
We remind the reader that the variance of D∗(P0) establishes a lower bound on the variance of all
reasonable estimators of the target parameter (Bickel et al., 1993). In other words, an estimator
is efficient if and only if its influence curve equals the efficient influence curve. By mapping the
efficient influence curve for the completely randomized design into the efficient influence curves for
the Independent Design and the Pair-Matched Design, we can study the information provided when
the outcome is subject to censoring.

7.2 Design Alternatives & Asymptotic Efficiencies

The Independent Design guarantees the treatment allocation is balanced. The Pair-Matched De-
sign guarantees that the treatment allocation is balanced and that matching variables M ⊂ W

are balanced between study groups. For both designs, the data generating experiment could be
described as sampling one treated observation from the conditional distribution of (W,M,∆, Ỹ )
given A = 1 and then sampling one control observation from this conditional distribution given
A = 0 and M = M1, where M1 is the value of the matching variable in the treated unit and equal
to the empty set {∅} in the Independent Design. Repeating this experiment n times yields n i.i.d.
copies of random variable

O′ = (O1, O0) =
(

W1,M1,∆1, Ỹ1), (W0,M0,∆0, Ỹ0)
)

∼ P ′0

with Ma = {∅} in the Independent Design and M1 = M0 in the Pair-Matched Design. The
statistical modelM′ is semiparametric and is implied by the underlying statistical model M. The
marginal distributions of (W,M,∆, Ỹ ) are determined by the population distribution P0.

Hosted by The Berkeley Electronic Press



As before, the efficient influence curve for target parameter Ψ under sampling from P0 can be
mapped into its weighted counterpart for paired sampling from P ′0. Specifically, randomizing the
treatment A yields weights of 0.5, and the efficient influence curves under independent and matched
sampling are equivalent:

D∗I(O′) = D∗M (O′) = 0.5D∗(O1) + 0.5D∗(O0)

with D∗(O1) =
∆1(Ỹ1 − Q̄0(1, 1,W1))

P0(A = 1,∆1|W1)
+ Q̄0(1, 1,W1)− Q̄0(0, 1,W1)−Ψ(P0)

D∗(O0) =
−∆0(Ỹ0 − Q̄0(0, 1,W0))

P0(A = 0,∆0|W0)
+ Q̄0(1, 1,W0)− Q̄0(0, 1,W0)−Ψ(P0)

Recall that the superscript I denotes the Independent Design, the superscript M denotes the Pair-
Matched Design, and D∗(Oa) is the efficient influence curve at P0 evaluated at A = a. Once
more, the precision gained or lost by pair-matching depends on the magnitude and direction of the
covariance term:

V ar[D∗I(O′)] = 0.25V ar[D∗(O1)] + 0.25V ar[D∗(O0)]

V ar[D∗M (O′)] = 0.25V ar[D∗(O1)] + 0.25V ar[D∗(O0)] + 0.5Cov[D∗(O1), D
∗(O0)]

The covariance between D∗(O1) and D∗(O0) can be written as the sum of the following covariances

Cov[D∗Y (O1),D
∗

Y (O0)] = E0

[(

∆1(Ỹ1 − Q̄0(1, 1,W1))

P0(A = 1,∆1|W1)

)(

−∆0(Ỹ0 − Q̄0(0, 1,W0))

P0(A = 0,∆0|W0)

)]

Cov[D∗W (O1),D
∗

W (O0)] =

E0

[(

Q̄0(1, 1,W1)− Q̄0(0, 1,W1)−Ψ(P0)
)(

Q̄0(1, 1,W0)− Q̄0(0, 1,W0)−Ψ(P0)
)]

If both outcomes are observed, the covariance of the D∗Y terms is often negative. The numerator
is the deviation between the observed outcome and the expected outcome given the intervention
and covariates. It shrinks to zero as the measured covariates explain more about the outcome.
The denominator represents the conditional distribution of the joint intervention. It can be fac-
torized as P0(a|Wa)P0(∆a|a,Wa) = 0.5P0(∆a|a,Wa). Therefore, the censoring mechanism plays
an important role in determining the magnitude of the covariance of the D∗Y terms. Nonetheless,
Cov[D∗Y (O1), D

∗

Y (O0)] is always zero, if one or more of the outcomes is missing within a pair. On
the other hand, the D∗W term is the difference in the expected outcomes minus the target parameter
and always contributes whether the outcome is observed or not. In many cases, the covariance of
the D∗W terms will be large and positive, as the target parameter Ψ averages over the distribution
of baseline covariates. Consequently, the overall covariance of D∗(O1) and D∗(O0) is easily positive
and the Pair-Matched Design asymptotically less efficient than the Independent Design.

7.3 The Importance of Measuring Baseline Covariates

Suppose we did not measure any baseline covariates and proceeded with randomized trial. The
observed data under independent or matched sampling would be

O′r = (O1, O0) =
(

(∆1, Ỹ1), (∆0, Ỹ0)
)

∼ P ′r ∈M
′

r

The semiparametric statistical modelM′

r is implied by the underlying statistical modelMr for the
distribution of reduced data structure Or = (A,∆, Ỹ ). In order to identify the causal parameter,
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we must assume that missingness is only a function of the assigned treatment A. In other words,
we must assume there is no factor (e.g. baseline malnutrition status) that affects both dropout and
the outcome. This assumption is often unrealistic, and if it fails to hold, the resulting estimand is
biased.

Nonetheless, let us assume that missingness is completely random or only a function of the
assigned treatment. Then the average treatment effect in the absence of censoring is identified
from the reduced data Or = (A,∆, Ỹ ) ∼ Pr as

Ψr(Pr) = E(Ỹ |A = 1,∆ = 1)− E(Ỹ |A = 0,∆ = 1) = Q̄(1, 1)− Q̄(0, 1)

This target statistical parameter is the unadjusted difference in the intervention-specific mean
outcomes. The efficient influence curve for Ψr at Pr is

D∗r(Pr)(Or) =

(

I(A = 1,∆ = 1)

P (A,∆)
−

I(A = 0,∆ = 1)

P (A,∆)

)

(Ỹ − Q̄(A, 1))

Then the efficient influence curve for Ψr under paired sampling from P ′r is

D∗Ir (O′r) = D∗Mr (O′r) =
∆1(Ỹ1 − Q̄(1, 1))

P (∆1|A1)
−

∆0(Ỹ0 − Q̄(0, 1))

P (∆0|A0)

The asymptotic efficiency of the Independent Design compared to the Pair-Matched Design for
estimating the average treatment effect when the outcome is subject to missingness, once again,
depends on the direction and magnitude of a covariance term:

V ar[D∗Mr (O′r)] = V ar[D∗Ir (O′r)]− 2Cov

[

∆1(Ỹ1 − Q̄(1, 1))

P (∆1|A1)
,
∆0(Ỹ0 − Q̄(0, 1))

P (∆0|A0)

]

Therefore, the Pair-Matched Design will be asymptotically more efficient when units are matched on
unmeasured predictors of the outcome. Both designs will be biased, however, if censoring depends
on unmeasured characteristics that also affect the outcome.

7.4 Simulation Study Incorporating Missingness

We adopted the previously discussed simulations to understand the asymptotic efficiency of pair-
matching in randomized trials when the outcome is subject to censoring. We again focused on
the cluster randomized trial where the outcome Y is the average of J = 2500 individual outcomes,
drawn from a binomial distribution with probability p = h(A,W ). The outcome was only observed,
however, if ∆ = 1. We considered three scenarios for the censoring mechanism:

Random (non-informative): P (∆ = 1) = 0.7

Dependent only on the treatment: P (∆ = 1|A) = 0.65 + 0.1A

Informative: P (∆ = 1|A,W ) = expit
[

logit(0.7) + 3AW − 5(1−A)W
]

The data generating experiment for the Independent Design was sampling (W,M,∆, Ỹ ) given A = 1
and independently sampling (W,M,∆, Ỹ ) given A = 0. The data generating experiment for the
Pair-Matched Design was sampling (W,M,∆, Ỹ ) given A = 1 and then sampling (W,M,∆, Ỹ )
given A = 0 and M = M1. We considered matching exactly on the continuous baseline covariate:
W1 = W0. Table 4 gives the asymptotic efficiency of the Independent Design relative to the Pair-
Matched Design when the outcome is subject to missingness.
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No interaction Interaction
Type Outcome Strong Moderate Weak Strong Moderate Weak

Random
Rare

REmisp 2.506 2.315 1.973 1.975 1.799 1.507
REtrue 0.675 0.776 0.880 0.599 0.671 0.768

Common
REmisp 3.176 3.135 3.058 2.854 2.637 2.226
REtrue 0.640 0.678 0.756 0.536 0.544 0.555

Dept. on A

Rare
REmisp 2.351 2.193 1.900 1.853 1.711 1.460
REtrue 0.679 0.781 0.884 0.601 0.676 0.772

Common
REmisp 3.061 3.015 2.933 2.690 2.476 2.092
REtrue 0.641 0.681 0.759 0.537 0.545 0.556

Informative
Rare

REmisp - - - - - -
REtrue 0.721 0.822 0.920 0.630 0.717 0.818

Common
REmisp - - - - - -
REtrue 0.663 0.704 0.777 0.546 0.554 0.564

Table 4: The asymptotic efficiency of the Independent Design relative to the Pair-Matched Design
when the outcome is subject to missingness. The first column refers to the type of censoring. The second
column indicates whether the outcome was rare or common. The third column denotes whether the efficiency
comparison is made under misspecification or the correct specification of the data, model and target parameter.
REmisp is the variance of the efficient influence curve at misspecified P ′

r under independent sampling divided by
the variance of the efficient influence curve under matched sampling at misspecified P ′

r. REtrue is the ratio of these
variances at the true data generating distribution P ′

0. The remaining columns give the relative efficiencies for the six
scenarios examined. Specifically, the strength of the relationship of W on Y is varied with β2, and the interaction is
varied with β3 equal to 0 or -0.75. In the Pair-Matched Design, units were matched exactly on continuous covariate
W .

Once again, it is crucial to include the measured baseline covariates in the specification of
the data, model and target parameter. When the measured covariates are excluded, the matched
design appears most efficient when the covariates are strongly predictive of the outcome and in the
absence of the interaction. Indeed, the Pair-Matched Design appears over three times more precise
than the Independent Design, assuming the efficient influence curve at P ′r. When we correctly
specify the data generating experiment by including measured covariates, the matched design is
least efficient when matching on a covariate strongly predictive of the outcome and in the presence
of the interaction. The Independent design is nearly twice as precise at the Pair-Matched Design
at P ′0. These results hold when we vary the rarity of the outcome and the type of censoring. When
censoring is informed by both the treatment and covariates, the unadjusted statistical parameter
Ψr(P

′

r) is not equivalent to the target causal parameter. Consequently, the relative efficiency,
assuming the efficient influence curve at P ′r, is not given.

8 Discussion and Conclusion

For nearly sixty years, researchers have been debating the merits of matching in experimental
studies. Despite warnings, matching is often implemented as a way to improve study credibility
and to increase study power. In this paper, we compared the relative efficiency of the Independent
Design to the Pair-Matched Design. In the first data generating experiment, units are randomly
paired and the treatment randomized within the pair. In the second, units are matched on baseline
covariates and then the treatment randomized within the pair. The Independent Design guarantees
that treatment allocation is balanced. The Pair-Matched Design ensures not only that the treatment
allocation is balanced but also that important baseline covariates are balanced between the study
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groups.
We used the efficient influence curve to evaluate the information contained in each design for

estimation of the average treatment effect. The variance of the efficient influence curve establishes
a lower bound on the asymptotic variance of all regular, asymptotically linear estimators (Bickel
et al., 1993). Therefore, the ratio of the variance of this function in the Independent Design to
the Pair-Matched Design is a direct measure of design efficiency. Our theoretical and simulation
results indicate that pair-matching on measured baseline covariates is asymptotically less efficient
than simply adjusting for these covariates in the analysis. Our theoretical and simulation results
also indicate that in the uncommon situation when units can be matched on unmeasured predictors
of the outcome, the Pair-Matched Design is asymptotically more efficient. These results hold when
we vary the rarity of the outcome, the presence of an interaction, the strength of the effect of
the baseline covariate on the outcome, and subject the outcome to missingness. The finite sample
simulations, limiting the number of independent units to 10 or 20, support these findings.

Overall, it is of utmost importance to carefully describe the data generating experiment. For
many public health interventions, it is difficult to imagine a pair-matched trial, where units can be
matched on unmeasured covariates that are predictive of the outcome. Indeed, many pair-matched
cluster randomized trials employ an algorithm to pair clusters on the basis of measured covariates. It
is critical to include these measured covariates W in the definition of the data, statistical model and
target parameter. Misspecification of these quantities can lead to incorrect conclusions regarding
the efficiency of pair-matching in randomized trials.
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